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ABSTRACT
Geographic landscapes in all over the world may be subject to rapid changes induced, for
instance, by urban, forest, and agricultural evolutions. Monitoring such kind of changes is usually
achieved through remote sensing. However, obtaining regular and up-to-date aerial or satellite
images is found to be a high costly process, thus preventing regular updating of land cover
maps. Alternatively, in this paper, we propose a low-cost solution based on the use of ground-
level geo-located landscape panoramic photos providing high spatial resolution information
of the scene. Such photos can be acquired from various sources: digital cameras, smartphone,
or even web repositories. Furthermore, since the acquisition is performed at the ground level,
the users’ immediate surroundings, as sensed by a camera device, can provide information
at a very high level of precision, enabling to update the land cover type of the geographic
area. In the described herein method, we propose to use inverse perspective mapping (inverse
warping) to transform the geo-tagged ground-level 360◦ photo onto a top-down view as if it had
been acquired from a nadiral aerial view. Once re-projected, the warped photo is compared to
a previously acquired remotely sensed image using standard techniques such as correlation.
Wide differences in orientation, resolution, and geographical extent between the top-down
view and the aerial image are addressed through specific processing steps (e.g. registration).
Experiments on publicly available data-sets made of both ground-level photos and aerial images
show promising results for updating land cover maps with mobile technologies. Finally, the
proposed approach contributes to the crowdsourcing efforts in geo-information processing and
mapping, providing hints on the evolution of a landscape.
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1. Introduction

The concept of Volunteered Geographic Information
(VGI) refers to involving human volunteers in gather-
ing photo collections that can be further used to feed
geographical information systems. In fact, every human
is able to act as an intelligent sensor, equippedwith such
simple aids as GPS and camera or even the means of
taking measurements of environmental variables. As
stated by Goodchild (2007), the notion that citizens
might be useful and effective sources of scientifically rig-
orous observations has a long history, and it is only re-
cently that the scientific community has come to dismiss
amateur observation as a legitimate source.

Over the past few years, VGI has become more
available, for instance through web services. A range
of new applications are being enabled by the georefer-
enced information contained in “repositories” such as
blogs, wikis, social networking portals (e.g. Facebook or
MySpace), and, more relevant to the presented work,
community contributed photo collections (e.g. Flickr
(https://www.flickr.com/) or Panoramio (http://www.
panoramio.com/). The advantages of VGI are its tem-
poral coverage, which is often better both in terms of
frequency and latency than traditional sources. How-
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ever, they come with a loss in data quality since user
inputs are usually made available without review and
without metadata (e.g. data source and properties).
Georeferenced photo collections are enabling a new
form of observational inquiry, which is termed “prox-
imate sensing” by Leung and Newsam (2010). This
concept depicts the act of using ground-level images of
close-by objects and scenes rather than images acquired
from airborne or satellite sensors.

While large collections of georeferenced photos have
recently been available through the emergence of
photo-sharing websites, researchers have already in-
vestigated how these collections can help a number of
applications. Research works in this context can be
classified into two main categories according to
Leung and Newsam (2010): (i) using location to in-
fer information about image and, (ii) using images to
infer information about a geographical location. In the
first category, methods for clustering and annotating
photos have been proposed (Moxley, Kleban, andMan-
junath 2008; Quack, Leibe, and Van Gool 2008).
Images are labeled based on their visual content as de-
picting events or objects (landmarks).Other approaches
such asHays andEfros (2008) attempted to estimate the
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unconstrained location of an image based solely on
its visual characteristics and on a reference data-set.
In the second category, some researchers tried to ad-
dress the problem of describing features of the surface
of the Earth. Examples of works in this area include:
using large collections of georeferenced images to dis-
cover interesting properties about popular cities and
landmarks such as the most photographed locations
(Crandall et al. 2009); creating maps of developed and
undeveloped regions (Leung andNewsam2010), where
the problem faced is then related to spatial coverage
non-uniformity of images collections; computing
country-scale maps of scenicness based on the visual
characteristics andgeographic locations of ground-level
images (Xie and Newsam 2011); or more recently rec-
ognizing geo-informative attributes of a photo, e.g. the
elevation gradient, population density, demographics
using deep learning (Lee, Zhang, and Crandall 2015;
Workman, Souvenir, and Jacobs 2015). Although Xie
and Newsam (2011) demonstrated the feasibility of ge-
ographic discovery from georeferenced social media,
they also reported the noisiness of obtained results.

The work presented in this paper is closely related
to Leung and Newsam (2010); Xie and Newsam (2011)
since we are here exploring content of georeferenced
photos to infer geographic information about the lo-
cations at which they were taken. But here we are not
excluding available aerial or satellite images. Instead,
we propose to use them in conjunction with recently
available ground-level images. The purpose of thiswork
is therefore to update and check up existingmaps (built
from standard remote sensing techniques) based on
changedetectionperformedwith available ground-level
images. We thus investigate the application of proxi-
mate sensing to the problemof land cover classification.
Rather than using only airborne/satellite imagery to
determine the distribution of land cover classes for
a given geographical area, we explore here whether
ground-level images can be used as a complementary
data source. To do so, we present some first work aim-
ing to compare recently acquired ground-level images
to a previously acquired remotely sensed image using
standard techniques related to computer vision and
image analysis. In this context, our work share some
similaritywithMurdock, Jacobs, andPless (2013; 2015),
where it is proposed tousewebcamvideos togetherwith
satellite to estimate cloud maps. However, conversely
to these previous studies, we do not use aerial imagery
solely for training the ground-based image recognition
process. Our goal is rather to perform comparison be-
tween both available data sources.

The remainder of this paper is organized as follows:
Section 2 describes the study area and the data-set con-
sidered in the experiments. The technical approach
is presented in Section 3. We detailedly carried out
experiments and discuss obtained results in Section 4

before providing some conclusions and directions for
future research.

2. Study area and data set

The study area focuses on several cities in France:
Vannes, Rennes, and Nantes in Brittany, and Dijon
in Burgundy. For the sake of conciseness, we provide
visual illustrations for the Vannes city only, but re-
ported accuracy includes the whole data-set. Experi-
ments on Vannes city focused on the surroundings of
the Tohannic Campus which hosts Université Bretagne
Sud and IRISA research institute where the authors are
affiliated. This choice ismotivated by: (i) the availability
of ground truth that can be assessed by in situ obser-
vations and (ii) the appearance of many new buildings
over the last few years (with availability of data acquired
both before and after these changes). It covers a 1-km2

area. The geographical extent is provided in Figure 1.
Ground-level images were grabbed fromGoogle Str-

eet View (https://www.google.com/maps/streetview/)
or taken in-situ from people involved in this work
equipped with mobile camera. Both kinds of images
consist in panoramic views covering 360◦ (resp. 180◦)
field of view horizontally (resp. vertically). We assume
here the following scenario: given the acquired image
is georeferenced, it is possible to download an asso-
ciated map from existing sources (Bing Maps, Google
Maps, and OpenStreetMap). We consider here maps
of 150 × 150 m2 downloaded through a Bing Maps
(https://www.bing.com/maps/) request according to
measured GPS position.

For the sake of clarity, we denote the images with the
following terms in the sequel:

• A: Aerial image, or high flying UAV image
(dimensionsm × n).

• P: Panoramic image, or wide field-of-view image
from user mobile device or Google Street View
(dimensions p × q).

• T : Top-down image, or bird’s eye view of the
ground (dimensions r × r).

Beyond Vannes city for which it was both possible
to build ground truth from in situ observation and
acquire panoramic photos with crowdsourcing activ-
ities, we also consider three other data-sets to evaluate
the robustness of our methods. On these other cities,
panoramic photos are grabbed fromGoogle StreetView
and were subsequently used to build ground truth
through visual interpretation.

3. Proposedmethod

Since the images were taken from up to three differ-
ent kinds of sensors (Google Street View’s car, user’s
camera and aerial vehicle), several image preprocessing

https://www.google.com/maps/streetview/
https://www.bing.com/maps/
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Figure 1. Aerial map from Bing Maps© with blue rectangles highlighting zones that have been recently transformed.

Figure 2. Flowchart of the proposed method.

steps are required before change detection can be per-
formed. The flowchart of the proposed method in-
cluding these different preprocessing steps is given in
Figure 2.

3.1. Top-down view construction

The panorama images used in this work cover (360◦,
180◦) field of view on (horizontal, vertical) dimensions.
For a given scene, the panorama image P is warped
to obtain a bird’s eye view T (as shown in Figure 3)
following the method proposed by Xiao et al. (2012).
First, the world coordinates of the panoramic image P
are computed using the inverse perspective mapping
technique. To do so, the 3D model of the image P is
generated using the following equations (Xiao 2012):

X = r cos
(
−θx + π

2

)
(1)

Z = r sin
(
−θx + π

2

)
(2)

Y =
{
0, if points are lying on the ground
ch + r tan θy , otherwise

(3)

where r = ch| cot θy|, θy = πy/H is the angle between
the optical axis and the horizon and θx = 2πx/W rep-
resents the angle between the projection of the optical
axis on the flat plane (y = 0) and z axis. Finally, ch

denotes the camera height (in meters) from the ground
plane.

In the next step, the obtained 3D image is projected
onto the planeY = 0 to get a new imageT representing
the top-down view of the original image. This remap-
ping process produces image T(u, v) by recovering the
texture of the ground plane as shown by the following
equations (Muad et al. 2004):

u(X, 0,Z) = γ (X,0,Z)−(θx−α)
2α

W−1
(4)

v(X, 0,Z) = θ(X,0,Z)−(θy−α)
2α
H−1

(5)

where α is the camera angular aperture,W ×H are the
image dimensions, θ = tan−1 (ch/(x2 + Z2)0.5) and
γ = tan−1 (Z/X). The color for the ground location is
obtained using bi linear interpolation from the
panorama pixels.

3.2. Ground-level image to aerial view
registration

The next step aims to detect the area occupied by the
top-down view in the aerial image. It is considered
as a fine localization problem that can be formulated
as matching image descriptors of the warped ground-
level imageT with descriptors computed over the aerial
mapA. The proposed solution (see Figure 4) is inspired
from the work fromAugereau, Journet, and Domenger
(2013). Various image descriptors are available to per-
form thismatching.A recent study (Viswanathan, Pires,
and Huber 2014) comparing the performance of SIFT,
SURF, FREAK, and PHOW in matching ground im-
ages onto a satellite map has shown that SIFT obtains
the overall best performance, even with increasing
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Figure 3. Example of a top down-view T (b) constructed from a panorama image P (a).

Figure 4. Standard object recognition and localization process.

complexity of the satellitemap.We thus rely here on the
SIFT descriptor (Lowe 2004) in the matching process.

First, SIFT keypoints are detected and relative de-
scriptors (feature vectors) are extracted for both aerial
map A and top-down view T . Then, the similarity be-
tween the ground sample T descriptor vectors q and
each descriptor p from A is computed. Each match
m(qi, pj) is considered as correct or incorrect based on
the Euclidean distance |·, ·|2.

m(qi, pj) = argmin
j

|qi, pj|2 (6)

In order to select the best match among candidate ones,
we adopt the commonapproach relyingonk-NN(near-
est neighbor) classifier. Its complexity is however
quadratic as a function of the number of keypoints.
The multiple randomized kd-trees algorithm (Silpa-
Anan and Hartley 2008) has the advantage of speeding
up k-NN search. Thus, we used FLANN (Muja and
Lowe 2009) library that provides an implementation
of this algorithm where multiple kd-trees are searched
in parallel. We note that for the randomized k-d trees,
the split dimension is chosen randomly from the top 5
dimensions with the highest variance.

In order to find the geometric transformation be-
tween matched keypoints, homography matrix H is
computed by (Agarwal, Jawahar, andNarayanan 2005).
At this level, RANSAC algorithm (Fischler and Bolles
1981) is used in order to discard outliers. In fact, the aim
of geometric transformation estimation step is to split
the set of matches between good matchings (inliers)
and mismatches (outliers) using RANSAC algorithm.
In order to estimate the 9-parameter transformation
matrix H between key points ofT denoted P1 and their
correspondences in A denoted P2, the most represen-
tative transformation among all matches is sought. The
matrix H has the following shape:

P2 = H P1 (7)

or equivalently
⎡
⎣x2
y2
w2

⎤
⎦ =

⎡
⎣H11 H12 H13
H21 H22 H23
H31 H32 H33

⎤
⎦×

⎡
⎣x1
y1
w1

⎤
⎦ (8)

where locations of P1 and P2 are represented by ho-
mogeneous coordinates.

Finally, if at least t inliers are validated, T is con-
sidered to be situated in the aerial image A. We chose
here t = 4, which is the minimum number of points
necessary for homography computing. An illustration
of this process is given in Figure 5. We can observe
that the technique is robust to a certain level of changes
between the content visible in T and A.

3.3. Ground-level image and aerial view
comparison

Several change indices have already been proposed for
estimating the change of appearance at two identical
locations, from simple image difference or ratio tomore
elaborated statistics such as theGeneralized-Likelihood
Ratio Test (GLRT) (Shirvany et al. 2010) or the local
Kullback–Leibler divergence (Xu and Karam 2013).

For the sake of illustration, we have chosen here
to rely on the well-known correlation index between
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Figure 5. Example of top-down view localization in the aerial image. The top-down view T (a) is compared with the large aerial
image A (b), and the green area denotes the found localization of T .

the top-down view and the portion of the aerial map
corresponding to it (see Section 3.2). The correlation
coefficient r between two images a and b of size N is
computed as follows:

r =
N

N∑
i=1

IaiIbi −
N∑
i=1

Iai
N∑
i=1

Ibi√√√√(N N∑
i=1

I2ai −
( N∑
i=1

Iai
)2)

·
(
N

N∑
i=1

I2bi −
( N∑
i=1

Ibi
)2)

(9)

where i is the pixel index, Iai and Ibi are the intensities
of the two images for pixel position i. In the corre-
lation image, a low correlation value means a change.
However, Liu and Yamazaki (2011) pointed that even if
there was no change, some areasmight be characterized
by a very low correlation value. In this respect, they
propose a new factor z used to represent changes, which
combines the correlation coefficient r with the image
difference d. The latter is defined by:

d = Iai − Ibi (10)

where Iai and Ibi are the corresponding averaged values
over a M = k × k pixels window surrounding the i-
th pixel. We follow here a standard setting, where the
window size is set as 9 × 9 pixels.

The factor z is then expressed by:

z = |d|
maxi (|d|) − c · r (11)

where maxi (|d|) is the maximum absolute value of
difference d among all pixel coordinates i, and c is
the weight between the difference and the correlation
coefficient. Following Liu and Yamazaki (2011), we
weight the difference as 4 times the correlation, in order
to omit subtle changes, whichmeans that c is set to 0.25.

A high value of z means high possibility of change.
We adopt here the threshold value used by Liu and
Yamazaki (2011) and consider the areas with z > 0.2 as
changed areas.

4. Experiments and results

We recall that our method was evaluated with pre-
liminary experiments on several cities in France (see
Section 2), namely Vannes, Nantes, and Rennes in Brit-
tany, and Dijon in Burgundy.

Aerial images have been extracted from Bing Maps.
Ground-based imagery have been either downloaded
from Google Street View or captured in situ by some
volunteers involved in these experiments (for the
Vannes site only). Aerial images are dated from 2011 to
2012 while ground-level data were taken either in 2013
(Google Street View) or in 2015 (Google Street View or
in situ observations).
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Table 1. Confusion matrix for the changed/unchanged
classification.

Unchanged Changed Total labeled

Unchanged 34 38 72
Changed 8 20 28
Total classified 42 58 100

100 significant locations were selected for the study
site and therefore related ground-level P and aerial A
images were included in the experiments.

Figure 6 shows the 100 panoramic images used in
our study, while Figure 7 shows the 100 corresponding
aerial images. As we can see, the data-set shows signifi-
cant differences in landscapes and visual content.

Let us recall that our goal is to explore how ground-
based (possibly crowdsourced) imagery could help to
perform change detection in terms of land cover/land
use. Visual interpretation has thus been conducted on
the whole set of images (i.e. both a ground-based
panorama and an aerial image for each of the 100 loca-
tions) to label each location as changed or unchanged.
Obtained z values for these 100 images yield a varia-
tion between 0.00528137 and 0.417598, with a change
threshold set equals to 0.20 as in Liu and Yamazaki
(2011).

Experimental results were analyzed through stan-
dard statistical measures and the confusion matrix is
provided in Table 1 from which are derived producer
accuracy (recall) and user accuracy (precision), as well
as overall accuracy (ratio of correctly classified elements
among all elements).We can observe that the proposed
method achieves an overall accuracy of 54%, but with
significant difference between recall and precision rate
for the two different classes. More interestingly, the
method shows a rather high recall rate (71%) for the
changed class, at the cost of a lower precision (34%)
though. In other words, a location for which a change
in land cover/land use occurs is barely to be missed by
ourmethod. This is highly preferred to other situations,
e.g.missing changes that can be recovered only byman-
ual analysis of the whole data-set. Conversely, manual
refinement of the results consists in filtering out false
positives only.

In order to assess more precisely the behavior of
the method, we have performed a finer classification,
where we distinguished between structured areas con-
taining built-up objects and unstructured ones. Thus,
each ground-level image is manually assigned to one
of these two classes based on its visual content. This
reference classification is then compared against an
automatic procedure inspired fromLeung andNewsam
(2010). To do so, we compute lines descriptors on each
image to quantify the distribution of edges at different
orientations. Indeed, images of structured areas have
a higher proportion of horizontal and vertical lines
than images of unstructured scenes. Hough transform

Table 2. Confusion matrix for the unchanged/changed/
structured classification.

Unchanged Unchanged Changed Total
unstructured structured structured labeled

Unchanged unstructured 25 0 10 35
Unchanged structured 3 6 28 37
Changed structured 3 5 20 28
Total classified 31 11 58 100

Table 3. Computational complexity of the different steps
composing our proposed approach. CPU times have been
averaged among 100 runs.

Step Time (ms)

Top-down view construction 877.80
Localisation & registration 2834.62
Difference & correlation & change detection 90.08

(Hough 1962) was applied to detect lines at roughly
horizontal, vertical, 45◦ diagonal, 135◦ diagonal, and
isotropic (non-orientation) directions. Therefore, each
panoramic image is represented by a five dimensional
line feature vector. Then, we use a Hidden Conditional
Random Field (Quattoni, Collins, and Darrell 2004)
classifier to label individual images based on their line
descriptors.

We report in Table 2 the confusion matrix for this
second classification experiments. Let us note that un-
changed unstructured areas have been extracted from
Vannes and Dijon cities, while unchanged structured
areas and changed structured areas are both coming
from Vannes, Rennes, and Nantes cities.

Again, we are focusing on changed (structured) ar-
eas. We can observe that including a structured/
unstructured preclassification step allows to achieve
better accuracy. Indeed, considering only images con-
taining built-up structures, the recall for changed areas
is reaching 80%, for a precision of 42%. More gen-
erally, we can see that the misclassification between
changed/unchanged areas ismore importantwith struc-
tured areas than unstructured ones.

Beyond accuracy evaluation, we have also measured
the computational efficiency of the proposed approach.
The goal is to assess its usability in a crowdsourcing
context. To do so, we have averaged computation time
over 100 runs, considering a standard PC workstation
(CPU: i7-4600@2.10 GHz, RAM: 8 GB). Results are
reported in Table 3. We can observe that CPU times
are very low, the overall process being performed in
3–4 s. This makes the proposed approach a realistic
crowdsourcing solution for change detection.

5. Discussion

An in-depth analysis of situations where the proposed
method was failing to identify land use/land cover
changeswas thusperformed.We thusobserve the strong
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Figure 6. Panorama images used in experimental evaluation.
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Figure 7. Aerial images used in experimental evaluation.
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Figure 8. Artifacts brought by built-up structures (from top to bottom): missed changed, false changes due to other structured
objects, false changes due to deformation brought by top-down view. For each line are given (from left to right): ground panorama,
top-down view, and corresponding aerial image.

effect played by artifacts brought by built-up structures
in top-down views, as shown in Figure 8. Critical omis-
sion situations were faced when only a few parts of
buildings are appearing in the top-down view (Figure
8, first line). Let us note that this issue could be solved
through another comparison step based on image fea-
tures. On the other hand, false positives coming from
unstructured areas are caused by the presence of cars
or panels in the ground-based image. When mapped
on the top-down view, these objects have a similar ap-
pearance as built-up structures (Figure 8, second line).
Moreover, since buildings are seen from their roofs in
the aerial view and from their sides or facades in the
ground-level images, a lot of unchanged structured ar-
eas also lead to false positives being classified as changed
by the proposed method (Figure 8, third line). In the
future work, this kind of errors would be removed
by considering methods for aerial to ground building
matching (Bansal et al. 2011).

6. Conclusions

In the herein presented work, land use/land cover
changes are detected from comparing new acquired
ground-level images to less recent aerial images. To
do so, we propose to transform the geo-tagged
panoramic photo onto a top-down view as if it had been
acquired from a nadiral aerial view. Once reprojected,

the warped photo is compared to a previously acquired
remotely sensed image using a technique combining
correlation coefficient and image difference. We have
conducted an experiment including 100 images from
four different cities in France. The obtained results
show a high recall rate for the changed areas, with
nevertheless a lower precision rate. Let us underline
that recall is here more important than precision, since
it is always possible to proceed with further manual
inspection of potential changes. This emphasizes the
feasibility of change detection by comparing ground
level to aerial views. Besides, a more careful analy-
sis distinguishing between structured and unstructured
areas has been performed to understand the current
bottlenecks of the proposed method.

In the aim of enhancing current results, we will
nowconsidermore advanced images comparisonmeth-
ods and will complete our preprocessing pipeline
by other steps such as photometric correction.
Comparing ground-based and aerial imagery is still a
challenging issue, as noticed by a recent study from
Loschky et al. (2015). Other future works include en-
larging geographic extent of the study area and in-
creasing the volume of test data and metrics. The final
goal would be to perform land cover updating with our
method, to illustrate the strength of crowdsourcing as
an ancillary but important information source for geo-
information management.
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