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Abstract

The main result of this paper is a new characterization of regular differential chains, which are
generalizations of Ritt’s characteristic sets in differential algebra. An original presentation of a
similar equivalence theorem for nondifferential regular chains is also provided.
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1. Introduction

This paper summarizes in an equivalence Theorem (Theorem 26, page 17) the most
important properties of regular differential chains, which are sets of differential polyno-
mials that naturally arise in the elimination theory of differential algebra.

1.1. Relationship with Classical Differential Algebra

Differential algebra is an algebraic theory for systems of differential polynomials foun-
ded by Ritt (1932, 1950) and developed by Kolchin (1973). It has involved an elimination
theory from its very beginning. Casual readers will find in Section 1.2 an academic
example which illustrates its usefulness.

A regular differential chain is a concept very close to the one of a characteristic set
of a differential ideal. Characteristic sets are introduced in Ritt (1932) already, under
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the name basic set. The term characteristic set itself appears in (Ritt, 1950, Chapter
I) where the nonconstructive argument that any set of differential polynomials has a
characteristic set permits to prove the Ritt-Raudenbush Basis Theorem and then the
fact that any radical differential ideal is a unique finite initersection of prime differential
ideals. Characteristic sets are then used in (Ritt, 1950, Chapter V, Constructive Methods)
as a major tool for an elimination theory.

In the remaining part of this section, we review a short set of the works which led
from Ritt (1950) to the concept of regular differential chain and the ones which are
strongly related to technical issues addressed by this paper. All of them essentially aim
at generalizing Ritt’s original ideas by fixing two important drawbacks: the use, by Ritt,
of factorizations over towers of algebraic extensions of the base field of the equations;
and the fact that the case of more than one derivation — the case of systems of partial
differential equations — is not covered.

Seidenberg (1956) seems to be the first one to provide an elimination theory which is
factorization free and covers the case of more than one derivation. However, the theory
of rankings was not yet fully developed at this time and Seidenberg restricts himself
to the case of pure elimination rankings. His methods do not compute characteristic
sets: instead, they are decision procedures which gather as input a basis of a differential
ideal A, a differential polynomial p and return a boolean indicating whether a power of p
belongs to A. Their complexity is very high as pointed out by Grigoriev (1987).

Rosenfeld (1959) seems to be the first one to provide the algorithmic conditions (the
so-called coherence property) that Ritt’s characteristic sets would need to fulfill in order
to apply in the case of more than one derivation. His Lemma is formulated using the
modern concept of rankings.

Kolchin (1973) provides an impressive unified presentation of the earlier works of
Ritt’s school and generalizes many of them. Unfortunately, his presentation of Rosenfeld’s
Lemma hides the algorithmic nature of this important result.

Wu (1989) and his school popularized Ritt’s theory of characteristic sets by describing
many applications (though the term characteristic set has different meanings in the texts
of Ritt and Wu). Wu does not address the case of more than one derivation. His work was
later developed by many authors such as Wang (1996), more recently Gao et al. (2009)
and many others.

Fliess (1989) pointed out the conceptual importance of differential algebra in the
context of control theory. This seminal work motivated a renewal of interest for Ritt’s
characteristic sets in the case of a single derivation. See Ollivier (1990); Ljung and Glad
(1994).

Boulier (1994) and Boulier et al. (1995) developed the first factorization free elimina-
tion method (the RosenfeldGroebner algorithm) for differential algebra which covers also
the case of more than one derivation, by combining Seidenberg’s idea of using Hilbert’s
Theorem of Zeros, Rosenfeld’s Lemma and Gröbner bases for the eventual simplification
of polynomial systems of equations and inequations returned by the differential proce-
dure. The RosenfeldGroebner algorithm gathers as input a basis of a differential ideal A,
a ranking and returns a decomposition of the radical of A as an intersection of differ-
ential ideals that need not be prime but are radical, as stated by the so-called Lazard’s
Lemma (Boulier et al., 1995, Lemma 2). However, generalizing characteristic sets meth-
ods to nonprime ideals raises specific difficulties. In particular, it becomes much more
important to understand the structure of the set of the zerodivisors in rings defined by
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characteristic sets. It is this difficulty which makes the proof of (Boulier et al., 1995,
Lemma 2) incomplete. Morrison (1995, 1999) was the first one to provide a complete
proof, and to point out the relevance of Macaulay’s unmixedness Theorem not only in
this theory but also in related ones, such as most of the elimination theories relying on
triangular sets. Ritt proved that every prime ideal has a characteristic set, which permits
to decide membership to it, by means of some reduction process, based on the pseudodi-
vision. The generalization to nonprime ideals led to the concept of characterizable ideals,
introduced by Hubert (2000).

The concept of regular chain was introduced independently by Kalkbrener (1993);
Chou and Gao (1993); Yang and Zhang (1994), as an alternative of Gröbner bases for
the study of nondifferential polynomial ideals. It would be quite long to list all the works
which developed this idea. Let us just cite Aubry et al. (1999), who summarized the
important properties of regular chains in (Aubry et al., 1999, Theorem 6.1), with a proof
which implicitly relies on Macaulay’s unmixedness Theorem. In particular, it is proved
that regular chains are (up to some irrelevant degree condition) characteristic sets, in the
sense of Ritt, of the polynomial ideals that they define.

Lemaire (2002) then introduced the concept of regular differential chain, formulated a
version of RosenfeldGroebner that returns them and proved that they are characteristic
sets, in the sense of Ritt, of the differential polynomial ideals that they define.

1.2. An Academic Example

Regular differential chains are sets of differential polynomials returned by differen-
tial elimination procedures such as the RosenfeldGroebner function of the MAPLE
DifferentialAlgebra package, which was developed by Boulier and Cheb-Terrab (2008)
and followed an earlier package developed by Boulier and Hubert (1996). In order to mo-
tivate readers, here is a small academic example, carried out by the package.

The variable sys is assigned a system of polynomial PDE, in jet notation. The equa-
tions (the sign “= 0” is omitted but the polynomials are viewed as left-hand sides of
equations) are polynomials. The two differential indeterminates u and v represent un-
known functions of the two independent variables x and y. The constant 1 represents the
constant function of the two variables x and y, equal to 1. The symbol u[x,y] denotes

the derivative ∂2u(x,y)
∂x ∂y . In commutative algebra, polynomials belong to polynomial rings.

In differential algebra, differential polynomials belong to differential polynomial rings.
Such a differential polynomial ring is assigned to the R variable.

> with (DifferentialAlgebra):

> R := DifferentialRing(derivations = [x,y], blocks = [[v,u]]);

R := differential_ring

> sys := [u[x]^2-4*u, u[x,y]*v[y]-u+1, v[x,x]-u[x]];

2

sys := [u[x] - 4 u, u[x, y] v[y] - u + 1, v[x, x] - u[x]]

There exists a notion of leading derivative of a differential polynomial. This notion is by
no means intrinsic. It is defined by an ordering (a ranking) on the set of all the derivatives
of the differential indeterminates. In the variable R above, a ranking was defined together
with the more mathematical differential polynomial ring. The following command returns
the differential polynomials of sys in “solved form” i.e. as equations, with the leading
derivatives on the left-hand sides and differential fractions on the right-hand sides.
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> Equations(sys, R, solved);

-u + 1 2

[v[x, x] = u[x], u[x, y] = - ------, u[x] = 4 u]

v[y]

The following command shows that there exists an elimination procedure (a close
algorithm is detailed by Boulier (2006)) which takes as input 1) a set of differential
polynomials, 2) a ranking. It returns a list of regular differential chains which provide
many structural informations on the solutions of the input system of PDE.

> ideal := RosenfeldGroebner(sys,R);

ideal := [regular_differential_chain]

> ideal := ideal[1]:

> Equations(ideal, solved);

-u[x] u[y] u + u[x] u[y] 2

[v[x, x] = u[x], v[y] = -1/4 ------------------------, u[x] = 4 u,

u

2

u[y] = 2 u]

In particular, the computed regular differential chain permits to expand solutions
of the initial system into formal power series, from given initial values. Initial values
cannot be chosen freely. The constraints they must satisfy are provided by the regular
differential chain: a property quite related to the issue of consistent initial values for
numerically solving differential-algebraic equations.

> iv := [u=c[0]^2, u[y]=sqrt(2)*c[0], u[x]=2*c[0], v=c[1], v[x]=c[2]];

2 1/2

iv := [u = c[0] , u[y] = 2 c[0], u[x] = 2 c[0], v = c[1], v[x] = c[2]]

> sols := PowerSeriesSolution(ideal, 3, iv);

/ 1/2\

| 2 1/2 2 | 2

sols := [v(x, y) = c[1] + |1/2 c[0] 2 - ----| y + c[2] x + 1/2 c[0] y

\ 2 /

1/2 3 2 1/2 2 3

1/2 2 2 y x y 2 x y x

+ 2 c[0] x y + c[0] x + ------- + ---- + --------- + ----,

12 2 2 3

2

2 1/2 y 1/2 2

u(x, y) = c[0] + 2 c[0] y + 2 c[0] x + ---- + 2 x y + x ]

2

Our example is very particular because all solutions are polynomials. Indeed, the above
polynomials are solutions of our input system.

> expand (eval (sys_diff, sols));

[0, 0, 0]

1.3. Novelty and Structure of This Paper

The main result of this paper is Theorem 26, which states equivalent conditions for
a set of differential polynomials, to be a regular differential chain. Among these condi-
tions, a ⇒ b is known, b ⇒ a was only published in Lemaire (2002) and deserves a
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better exposition, while a ⇔ c and a ⇔ d are new. Theorem 26 relies on Theorem 13,
which states equivalent conditions for a set of usual polynomials, to be a regular chain.
These equivalent conditions are all known. However, some of the published proofs are
incomplete, some other ones were only published in conference papers and/or rely on
definitions which are not consistent with ours. For this reason, a complete set of proofs
for Theorem 13 is provided. Our proofs are original since they completely avoid any
reduction to the zerodimensional case.

This paper is organized as follows. Section 2 presents some algebraic preliminaries.
Section 3 recalls two major Theorems on triangular sets. Section 4 then adapts two
well-known algorithms (pseudodivision and resultant) to the context of triangular sets.
Section 5 focuses on a particular class of triangular sets — the regular chains — and
proves Theorem 13. So far, all presented notions are useful for differential algebra but
not specific to it. In Section 6, basic notions of differential algebra are introduced. Last,
Section 7 presents our main result.

2. Preliminaries

An element a of a ring R is a zerodivisor if there exists some nonzero b ∈ R such
that a b = 0. Therefore zero is a zerodivisor (Zariski and Samuel, 1958, I, 5, page 8). An
element a which is not a zerodivisor of R is said to be a regular element of R.

Some propositions of this paper involve statements such as “a polynomial f is zero (or
a zerodivisor) in R/A (R being a ring, A being an ideal of R) if and only if f is reduced to
zero (by some reduction process)”. The word “zero” is used twice, here, but has different
meanings. The expression “f is zero in R/A” should actually be written “the image of f
by the canonical ring homomorphism R → R/A is zero” or, “f belongs to the ideal A”.
Similarly, the expression “f is a zerodivisor in R/A” should actually be written “the
image of f by the canonical ring homomorphism R → R/A is a zerodivisor” or, “f is a
zerodivisor modulo the ideal A”. These are the properties for which we want a decision
procedure: testing zero needs not be obvious in this context. The other expression “f is
reduced to zero” means that the reduction process, which is a computational procedure,
transforms f to zero, syntactically: in this context, testing zero is straightforward.

In this paper, a very important operation on ideals is the saturation of an ideal A by
some h ∈ R (more precisely, by the multiplicative family of R generated by h). It is the
ideal

A : h∞ = {f ∈ R | ∃ d ≥ 0 , hd f ∈ A} .

We have A ⊂ A:h∞. This construct somehow encodes the “division by h” since f ∈ A:h∞

whenever h f ∈ A : h∞. If q is a primary ideal of a ring R (Zariski and Samuel, 1958,
III, 9, page 152) and p =

√
q is its associated prime ideal, then q : h∞ = q if and only if

h /∈ p and q : h∞ = R if h ∈ p. Therefore, in Nötherian rings, where every ideal A has
an irredundant representation A = ∩ri=1qi as an intersection of primary ideals (Zariski
and Samuel, 1958, IV, 4, The Lasker-Nöther Theorem, page 208), the ideal A : h∞ is the
intersection of the primary ideals qi such that h /∈ √qi. The ideals pi =

√
qi are called

the associated prime ideals of A (Zariski and Samuel, 1958, IV, 5, page 211).
Therefore, since, in Nötherian rings, the set of the zerodivisors of R/A is the union of

the associated prime ideals of A (Zariski and Samuel, 1958, IV, 6, Corollary 3 to Theorem
11, page 214), we see that
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(1) A : h∞ = A if and only if h is a regular element of R/A;
(2) h is a regular element of R/(A : h∞) = R/A : h∞, provided that h is not zero in

R/A;
(3) if all primary components of A share some common property then all primary

components of A : h∞ share also this property. We will meet two examples: 1) the
case of A being a radical ideal (all its primary components are prime) and 2) the
case of A being unmixed (all its associated prime ideals have the same dimension).

In Section 6, we will consider differential polynomial rings which contain differential
ideals, i.e. ideals stable under derivation. Such a ring R is not Nötherian but every
radical (called perfect by Ritt) differential ideal A of R has an irredundant representation
A = ∩ri=1pi as an intersection of prime differential ideals (Ritt, 1950, I, 16, page 13). Ritt
calls these ideals the essential prime divisors of A. By analogy with commutative algebra,
we will call them the associated differential prime ideals of A. If A is not radical, the
structure of the set of the zerodivisors of R/A is not clear in general. However,

(1) the set of the zerodivisors of R/A contains the union of the associated differential
prime ideals of

√
A (with equality if A is radical) 1 ;

(2) A : h∞ = A if and only if h is a regular element of R/A;
(3) h is a regular element of R/A : h∞, provided that h is not zero in R/A.
(4) if A is radical and all its associated differential prime ideals share some common

property then A : h∞ is radical and all its associated differential prime ideals share
this same property.

3. Triangular Sets

Let K be a commutative field of characteristic zero. We are concerned with a triangular
set A = {p1, . . . , pn} in a polynomial ring R = K[t1, . . . , tm, x1, . . . , xn]. The set is
triangular in the sense that each polynomial pk introduces at least one variable, its leading
variable xk, which is such that deg(pk, xk) > 0 and deg(pk, xk+1) = · · · = deg(pk, xn) = 0
for each 1 ≤ k ≤ n. The initial of pk, denoted ik, is the leading coefficient of pk w.r.t. its
leading variable; the separant of pk is the polynomial sk = ∂pk/∂xk, for each 1 ≤ k ≤ n.

The following Theorem is (Boulier et al., 2006, Theorem 1.6). It could mostly be
viewed as a corollary to Macaulay’s unmixedness Theorem, whose importance in the
theory addressed in this paper was first pointed out by Morrison (1995, 1999).

Unmixed ideals are defined in (Zariski and Samuel, 1958, VII, 7, page 196). Without
entering details, let us stress that if an ideal A is unmixed (or equidimensional), then
its algebraic variety is unmixed-dimensional. However, the converse is false. The theory
addressed in this paper does require the ideal to be unmixed, not only its radical nor its
variety.

The ideal (A) : h∞ mentioned in the next Theorem, is often denoted (A) : I∞A , or
sat(A), in the literature.

1 Consider for instance the differential ideal A = [u2, u v] in some ordinary differential polynomial ring R,
which is ideal of R generated by u2, u v, u u̇, u̇ v + u v̇, . . . Its radical is the differential ideal [u], which is

its own unique associated differential prime ideal and one sees that u is a zerodivisor in R/A. However,

the differential polynomial v also is a zerodivisor in R/A, though it does not belong to any associated
differential prime ideal of

√
A.
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Theorem 1. Let A be a triangular set of K[t1, . . . , tm, x1, . . . , xn] such that xk is the

leading variable of pk for 1 ≤ k ≤ n. Let h denote either the product of its initials or the

product of its separants and A = (A) : h∞.

Then, the ideal A is unmixed. Moreover, if p is an associated prime ideal of A then

dim p = m and p ∩K[t1, . . . , tm] = (0).

Proof. Sketched. Consider A′ = (A, pn+1) in R′ = R[xn+1] where pn+1 = hxn+1 − 1.

Use the “principal ideal theorem” (Zariski and Samuel, 1958, VII, 7, Theorem 22, page

196) and the structure of h in order to prove that, if p′ is an isolated prime of A′ then

dim p′ = m and p′ ∩ K[t1, . . . , tm] = (0). Use then Macaulay’s unmixedness theorem

(Zariski and Samuel, 1958, VII, 8, Theorem 26, page 203) in order to prove that all

associated prime ideals of A′ are isolated. Last, use the behaviour of the irredundant

primary decomposition of A′ under passage to residue class ring over R′/(pn+1) (Zariski

and Samuel, 1958, IV, 5, page 213) and contraction (with respect to the localization at h)

(Zariski and Samuel, 1958, IV, 10, Theorem 17, page 225) to prove that these properties

of A′ apply to A. 2

The following Theorem was first published by Boulier et al. (1995) with an incomplete

proof. The first complete proof is due to Morrison (1995, 1999). The scheme of proof is

a close variant of the one originally suggested by Daniel Lazard.

Theorem 2. (Lazard’s Lemma)

Let A = {p1, . . . , pn} be a triangular set of K[t1, . . . , tm, x1, . . . , xn], such that xk is

the leading variable of pk for 1 ≤ k ≤ n. Let h denote the product of the separants of A

and A = (A) : h∞.

Then A is radical. Moreover, if p is an associated prime ideal of A then dim p = m

and p ∩K[t1, . . . , tm] = (0).

Proof. The last sentence of the Theorem is a corollary to Theorem 1. We thus only need

to prove that A is radical. Denote A0 the ideal (A):h∞ in R0 = K(t1, . . . , tm)[x1, . . . , xn].

We prove below that R0/A0 is a direct sum of fields, hence a ring which does not involve

any nilpotent element and a ring equal to its own total quotient ring. By Theorem 1, the

rings R0/A0 and R/A have the same total quotient ring. Thus R/A does not involve any

nilpotent element and A is radical.

We prove by induction on n that R0/A0 is a direct sum of fields. This ring can be

constructed incrementally as Sn defined by:

S0 = K(t1, . . . , tm) , Si = Si−1[xi]/(pi) : s∞i ,

where si = ∂pi/∂xi is the separant of pi. The basis n = 0 is trivial. The general case

n > 0. Assume Sn−1 is a direct sum of fields K1 ⊕ · · · ⊕Kr. Then Sn is isomorphic to

the direct sum (1 ≤ j ≤ r) of the rings Kj [xn]/(pn) : s∞n . Thus, in Kj [xn], the ideal

(pn) : s∞n is generated by the product of the irreducible simple factors of pn. It is thus

the intersection of the maximal ideals m` generated by these factors. According to the

Chinese Remainder Theorem (Zariski and Samuel, 1958, III, 13, Theorem 32, page 178),

Kj [xn]/(pn) : s∞n is isomorphic to the direct sum of the fields Kj [xn]/m`. Since direct

sums are associative the ring Sn is a direct sum of fields. 2
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4. Iterated Pseudodivision and Resultant

4.1. The Iterated Pseudodivision

Let R be a polynomial ring over a commutative field K of characteristic zero, A =
{p1, . . . , pn} be a triangular set of R, with leading variables x1, . . . , xn and A = (A) : h∞

where h denotes the product of the initials of A.
One denotes prem(f, g, x) the pseudoremainder of a polynomial f , by a polynomial g

such that deg(g, x) > 0 (it is the polynomial r(x) mentioned in (Zariski and Samuel, 1958,
I, 17, Theorem 9, page 30)). One may now define the pseudoremainder of a polynomial f
by a triangular set A as follows:

prem(f,A) = prem(. . . prem(f, pn, xn), . . . , p1, x1)

Lemma 3. Let f and be any polynomial and g = prem(f,A). Then

deg(g, xk)< deg(pk, xk) (1 ≤ k ≤ n) . (1)

Moreover, there exists a power product hf of initials of A and polynomials v1, v2, . . . , vn
such that

hf f = g + v1 p1 + v2 p2 + · · ·+ vn pn . (2)

4.2. The Resultant of two Polynomials

The iterated resultant of a polynomial f by a triangular set A is defined, as expected,
using the usual resultant of two polynomials. We first need to recall basic properties of
this usual resultant in order to cover some cases which are usually not considered, such as
one of the two polynomials being zero. Let f and g be two polynomials of R[x], where R
is a unitary ring of characteristic zero:

f = am x
m + · · ·+ a1 x+ a0 , g = bn x

n + · · ·+ b1 x+ b0 .

If f or g is zero, then the resultant of f and g is taken to be zero. Assume f and g
are nonzero. Then, the resultant of f and g is the determinant of the Sylvester matrix
S(f, g) of f and g, which has dimensions (m + n) × (m + n) and rows, from top down
xn−1 f, . . . , x f, f, xm−1 g, . . . , x g, g. See (Basu et al., 2003, 4.2, page 105).

Lemma 4. Assume f is nonzero and n = 0 (i.e. g = b0). Then res(f, g, x) = gm. In
particular, if m = 1 then res(f, g, x) = g.

Proof. Expand the determinant of the Sylvester matrix, which is diagonal. 2

Lemma 5. Assume R is a domain and let K denote its fraction field. Let f and g be
two polynomials of R[x], not both zero. Then res(f, g, x) = 0 if and only if f and g have
a common factor in K[x].

Proof. The Lemma is clear if f or g is zero. Otherwise, see (Basu et al., 2003, 4.2,
Proposition 4.15, page 106). 2
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Lemma 6. Let R be a domain, f and g be two polynomials in R[x]. Assume g is nonzero

and let r = ct x
t + · · · + c1 x + c0 be the pseudoremainder of f by g. If f is zero or r is

zero then res(f, g, x) = res(g, r, x) = 0. Otherwise,

res(f, g, x) = (−1)mn bmax(0,m−t−(m−n+1)n)
n res(g, r, x) .

Proof. If f is zero then r is zero and both resultants are zero. Assume f is nonzero.

If r is zero, then res(g, r, x) = 0 and there exists a polynomial q ∈ R[x], such that

bm−n+1
n f = q g. Thus f is a multiple of g in K[x], where K denotes the fraction field

of R. By Lemma 5, we have res(f, g, x) = 0. Assume f and r are nonzero. The proof is

then essentially that of (Basu et al., 2003, 4.2, Lemma 4.17, page 107). 2

Lemma 7. Let R be a domain, f , g and h be polynomials in R[x]. Then res(f g, h, x) =

res(f, h, x) res(g, h, x).

Proof. The lemma obviously holds if any of the three polynomials is zero. Assume none

of them is zero. Here is a scheme of proof for this well-known formula: 1) establish the

formula which relates resultants to the roots of the input polynomials over the algebraic

closure of R (Basu et al., 2003, 4.2, Theorem 4.16, page 107) 2) then follow (Cox et al.,

2005, 3, Exercise 3, page 79). 2

Lemma 8. Let R be a ring. If f and g are nonzero polynomials of R[x] then there exists

two polynomials u, v ∈ R[x] with deg(u) < n and deg(v) < m such that res(f, g, x) =

u f + v g.

Proof. See (Basu et al., 2003, 4.2, Proposition 4.18, page 108). 2

The following Lemma generalizes (Basu et al., 2003, 4.2, Proposition 4.20, page 109)

and deserves a proof.

Lemma 9. Let f, g be two polynomials of R[x] such that m ≥ n. Let φ : R→ S be a ring

homorphism, such that φ(am) 6= 0. Extend φ to a ring homomorphism R[x]→ S[x]. Then

there exists a nonnegative integer α such that φ(res(f, g, x)) = φ(am)α res(φ(f), φ(g), x).

Proof. If g is zero, then so is φ(g) and both resultants are zero. Assume g nonzero.

Developing the determinant of S(f, g) w.r.t. its last row, we see that any monomial of

the resultant admits a coefficient of g as a factor. Thus, if φ(g) is zero, i.e. if φ maps all

the coefficients of g to zero, then res(f, g, x) = 0 and the Lemma holds.

Assume g and φ(g) are nonzero. If the ring homomorphism φ, which does not annihilate

am, does not annihilate bn either, then S(f, g) = S(φ(f), φ(g)) and the Lemma is proved.

Assume deg(φ(g)) = t < n. Then the Sylvester matrix S(φ(f), φ(g)) appears as the

(m+ t)× (m+ t) submatrix of φ(S(f, g)) (Fig. 1) at the bottom-right corner. Developing

the determinant of φ(S(f, g)) w.r.t. its n− t first columns, we see that φ(res(f, g, x)) =

φ(am)n−t res(φ(f), φ(g), x). 2
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φ(S(f, g)) =



φ(am) · · · · · · · · · φ(a0) 0 · · · · · · 0

0
. . .

. . .
. . .

...
...

. . . φ(am) · · · · · · · · · φ(a0) 0 0
...

. . .
. . .

. . . 0

0 · · ·
. . . 0 φ(am) · · · · · · · · · φ(a0)

0 0 φ(bt) · · · · · · φ(b0) 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · · · · 0 φ(bt) · · · · · · φ(b0)



.

Fig. 1. The image by φ of the Sylvester matrix S(f, g).

4.3. The Iterated Resultant

Let R be a polynomial ring over a commutative field K of characteristic zero, A =
{p1, . . . , pn} be a triangular set of R, with leading variables x1, . . . , xn. One defines the
resultant of a polynomial f by a triangular set A as follows:

res(f,A) = res(. . . res(f, pn, xn), . . . , p1, x1)

Proposition 10. Let A be a triangular set and f, g be two polynomials.
Then res(f g,A) = res(f,A) res(g,A).

Proof. By Lemma 7. 2

Proposition 11. Let f be a polynomial and A be a triangular set. Then there exist
polynomials u, v1, v2, . . . , vn such that

u f = res(f,A) + v1 p1 + v2 p2 + · · ·+ vn pn . (3)

Moreover, if f does not depend on xk, . . . , xn for some 1 ≤ k ≤ n, then there exists a
formula (3) such that u, v1, . . . , vk−1 do not depend on xk, . . . , xn and vk = · · · = vn = 0.

Proof. By Lemmas 8 and 4. 2

Remark. If f does not depend on xn then prem(f,A) = prem(f,A \ {pn}). This is
however not true for the resultant (Lemma 4). A question which then naturally arises is:
what about defining it inductively as Chen et al. (2007) i.e. as res(f,A) below?

res(f,A) = f if f ∈ K[t1, . . . , tm] ,

res(f,A) = res(res(f, pn, xn), A) if deg(f, xn) > 0 ,

res(f,A) = res(f,A \ {pn}) if deg(f, xn) = 0 .

10



Though res(f,A) 6= res(f,A) in general, both have the same squarefree part. In the
next sections, all Propositions relying on res(f,A) are only concerned with the possible
vanishing of this resultant. These Propositions thus still hold if one replaces res(f,A) by
res(f,A). However, Proposition 10 does not.

5. Regular Chains

The concept of regular chain was introduced by Kalkbrener (1993); Chou and Gao
(1993); Yang and Zhang (1994). It was much studied in the former team of Daniel Lazard
and, more recently, in the group of Marc Moreno Maza. In Theorem 13, the equivalence
a ⇔ b was already proved in (Aubry et al., 1999, Theorem 6.1) (with a proof which
implicitly assumes Theorem 1). The implication a ⇒ c is proved in (Chen et al., 2007,
Lemma 4) (with another definition of zerodivisors). The implication c ⇒ a is proved in
(Boulier et al., 2011, Lemma 5). The equivalence a⇔ d is proved in (Chen et al., 2007,
Theorem 1). In order to establish our main result (Theorem 26) on sound bases, it is
thus necessary to state Theorem 13, with a complete set of proofs, relying on coherent
definitions. Observe also that our proofs are original in the sense that they completely
avoid any reduction to the zerodimensional case.

Let R be a polynomial ring over a commutative field K of characteristic zero, A =
{p1, . . . , pn} be a triangular set of R, with leading variables x1, . . . , xn and A = (A) : h∞

where h denotes the product of the initials of A.

Definition 12. A triangular set is said to be a regular chain if the initial ik of pk is
regular in R/(p1, . . . , pk−1) : (i1 · · · ik−1)∞ for 2 ≤ k ≤ n.

Theorem 13. Let A be a triangular set. The following conditions are equivalent:
a A is a regular chain;
b for any polynomial f , we have prem(f,A) = 0 if and only if f is zero in R/A;
c for any polynomial f , we have res(f,A) = 0 if and only if f is a zerodivisor in R/A;
d res(ik, A) 6= 0 for each 2 ≤ k ≤ n.

From now on, all Propositions aim at proving Theorem 13.

Proposition 14. If a triangular set A satisfies any of Conditions a, b or c then the
ideal A is necessarily proper.

Proof. If A = R then every element of R/A is zero and a zerodivisor. Thus Condition a
cannot hold. Moreover, if f is any nonzero element of K[t1, . . . , tm] then prem(f,A) 6= 0
and res(f,A) 6= 0. Thus Conditions b and c cannot hold either. 2

5.1. Regularity Testing modulo the Ideal

5.1.1. c⇒ a

Proposition 15. Let f be a polynomial and A be a triangular set such that A is a proper
ideal. If res(f,A) 6= 0 then f is regular in R/A.

Proof. We have u f = res(f,A) in R/A (Proposition 11) and res(f,A) ∈ K[t1, . . . , tm].
The proof then follows from Theorem 1. 2
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Proposition 16. Let A be a triangular set such that A is a proper ideal. Assume that,
for any f regular in R/A, we have res(f,A) 6= 0. Then A is a regular chain.

Proof. Let 1 ≤ k ≤ n be an index. The initial ik of pk is regular in R/A, since A is
saturated by the product of its initials. Thus by assumption, res(ik, A) 6= 0. We need
to show that ik is regular in R/(p1, . . . , pk−1) : (i1 · · · ik−1)∞. Decompose res(ik, A) =
res(rk, {p1, . . . , pk−1}) where rk = res(ik, {pk, . . . , pn}). Then res(rk, {p1, . . . , pk−1}) 6= 0.
Thus, by Proposition 15, rk is regular in R/(p1, . . . , pk−1) : (i1 · · · ik−1)∞. Since ik does
not depend on xk, . . . , xn, the polynomial rk is a power of ik. Thus ik is regular in
R/(p1, . . . , pk−1) : (i1 · · · ik−1)∞. Thus A is a regular chain. 2

In summary, let us assume Condition c holds. Then A is proper by Proposition 14.
Condition c implies, as a particular case, that the hypothesis of Proposition 16 is satisfied.
Thus Condition a holds.

5.1.2. a⇒ c
Proposition 17. Let f be a polynomial and A be a regular chain. If res(f,A) = 0 then f
is a zerodivisor in R/A.

Proof. The Proposition holds if f is zero. Assume f is nonzero and res(f,A) = 0. The
proof is by induction on n.

Basis: the case n = 1 (note R = K[t1, . . . , tm, x1]). Then res(f,A) = res(f, p1, x1).
Since this resultant is zero, f and p1 have a common factor in K(t1, . . . , tm)[x1], by
Lemma 5. This factor provides, at least, one associated prime ideal of A which contains f .
Thus f is a zerodivisor in R/A.

General case: n > 1. Denote R′ = K[t1, . . . , tm, x1, . . . , xn−1], A′ = {p1, . . . , pn−1}
and A′ the ideal (p1, . . . , pn−1) : (i1 · · · in−1)∞ of R′. Denote r = prem(f, pn, xn). There
exists a nonnegative integer α such that

iαn f = q pn + r , deg(r, xn) < deg(pn, xn) . (4)

By Lemmas 6 and 7, we have res(f,A) = ± res(in, A)β res(r,A) for some nonnegative
integer β. Since A is a regular chain, in is regular in R′/A′. Thus, by induction hypothesis,
res(in, A

′) 6= 0. By assumption res(f,A) = 0. Thus res(r,A) = 0.
Decompose now res(r,A) = res(s,A′) with s = res(r, pn, xn). Since res(r,A) = 0 we

have res(s,A′) = 0. Thus, by induction hypothesis, s is a zerodivisor in R′/A′. Thus
there exists an associated prime ideal p′ of A′ such that s ∈ p′.

Denote φ the canonical ring homomorphism R′ → R′/p′. We have φ(res(r, pn, xn)) = 0,
deg(r, xn) < deg(pn, xn) and φ(in) 6= 0 since in is regular in R′/A′ by the regular chain
condition. Moreover, the ring R′/p′ is a domain since p′ is prime. Thus Lemma 9 applies
and res(φ(r), φ(pn), xn) = 0. Thus φ(r) and φ(pn) have a common factor in K ′[xn]
where K ′ denotes the field of fractions of R′/p′. This common factor provides 2 , at least,
one associated prime ideal p of A which contains r.

2 Let M ′ be the multiplicative family formed by the nonzero elements of R′/p′ so that K′ = (R′/p′)M′

(with the notation of (Zariski and Samuel, 1958, IV, 9, Quotient rings, page 221)). Denote ψ the canon-

ical ring homomorphism R′/p′ → K′. We have (extending homomorphisms between ground rings to
polynomial rings)

R
φ−−−−−→ R′/p′[xn]

ψ−−−−−→ K′[xn] .
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Thus f ∈ p, using (4) and the fact that in /∈ p since it is regular in R/A. Thus f is a
zerodivisor in R/A. 2

Corollary 18. Let A be a regular chain and 1 ≤ k ≤ n. Then the initial ik is regular in
R/A. In particular, res(ik, A) 6= 0.

Proof. Since A is a regular chain, r = res(ik, {p1, . . . , pk−1}) is different from zero, by
Proposition 17. Since res(ik, A) is a power of r, we have res(ik, A) 6= 0. Thus ik is regular
in R/A by Proposition 15. 2

In summary, assume Condition a holds. Then A is proper by Proposition 14. Then
Condition c holds by Propositions 15 and 17.

5.2. Membership Testing to the Ideal

5.2.1. a⇒ b

Proposition 19. Let f be any polynomial. If prem(f,A) = 0 then f is zero in R/A.

Proposition 20. Assume A is a regular chain and let f be any polynomial. If f is zero
in R/A then prem(f,A) = 0.

Proof. Given any index 2 ≤ ` ≤ n, let r` = res(i`, A) and u`, v`,1, v`,2, . . . , v`,`−1 be
polynomials free of x`, . . . , xn such that, according to Proposition 11, we have

u` i` = r` + v`,1 p1 + v`,2 p2 + · · ·+ v`,`−1 p`−1 . (5)

Since A is a regular chain, all resultants r` are nonzero, by Corollary 18.
We assume f is zero in R/A and g = prem(f,A) 6= 0 and we seek a contradiction. By

Lemma 3, we have deg(g, x`) < d` = deg(p`, x`) for 1 ≤ ` ≤ n. Since g ∈ A, there exists
nonnegative integers α1, . . . , αn and polynomials v1, . . . , vn such that

iα1
1 · · · iαn

n g = v1 p1 + v2 p2 + · · ·+ vn pn . (6)

Multiply both sides of (6) by uα1
1 · · ·uαn

n and use (5). There exists some nonzero poly-
nomial hg ∈ K[t1, . . . , tm] (one may take hg = rα1

1 · · · rαn
n ), some index 1 ≤ k ≤ n and

some polynomials w1, . . . , wk such that

hg g =w1 p1 + w2 p2 + · · ·+ wk pk︸ ︷︷ ︸
F

(wk 6= 0) .

The ideal A of R is mapped to the ideal A/p′ = (φ(pn)) : (φ(i1) · · ·φ(in))∞ of R′/p′[xn], which is itself

mapped to the ideal (ψ(φ(pn))) of K′[xn]. The common factor between ψ(φ(pn)) and ψ(φ(r)) generates
an ideal whose associated prime ideals are extended ideals w.r.t. ψ. These ideals contain φ(r). Follow

ψ−1: the corresponding contracted ideals are associated prime ideals of A/p′ by (Zariski and Samuel,

1958, IV, 10, Theorem 17, page 225). Follow φ−1: the associated prime ideals of A/p′ are the images
by φ of associated prime ideals of A by (Zariski and Samuel, 1958, IV, 5, Remark concerning passage to
a residue class ring, page 213). These associated prime ideals of A contain r.

13



Consider the set E — which depends on g — of all such formulas F which evaluate to
some polynomial hg g 6= 0 with hg ∈ K[t1, . . . , tm]. By the argument above, E is not
empty. To any formula F of E , associate the index j(F ) defined as the highest index j
such that xj occurs in some wt or some pt. Among all formulas F of E , fix one such
that j(F ) is minimal. For short, denote j = j(F ), d = dj and pj = ij x

d
j + qj . In the

polynomials w1, w2, . . . , wk of F , substitute xdj → (pj − qj)/ij . Multiply both sides of
the equality by a suitable power iαj of the initial ij to clear denominators. Use again (5):
multiply both sides by uαj , replace (uj ij)

α on the left-hand side by rαj and update the
right-hand side. One obtains another formula

rαj hg g =w′1 p1 + w′2 p2 + · · ·+ w′k′ pk′︸ ︷︷ ︸
F ′

(w′k′ 6= 0)

that we may organize so that deg(w′t, xj) < d for t < j. The formula F ′ belongs to
E thus j(F ′) ≥ j. The substitution we have just performed involves polynomials free
of xj , . . . , xn. Thus j(F ′) ≤ j hence j(F ′) = j.

We have j(F ′) ≥ k′ since w′k′ 6= 0.
Assume j(F ′) = k′. Since deg(w′t, xj) < d and deg(pt, xj) = 0 for t < k′ = j and

w′k′ = w′j 6= 0, we have deg(rαj hg g, xj) ≥ d. This contradiction with the hypothesis
deg(g, xj) < d proves that the assumption cannot hold.

Assume j(F ′) > k′. One may reorganize F ′ as

rαj hg g = F0 + F1 xj + F2 x
2
j + · · ·+ Fd′ x

d′

j

for some d′ ≥ 0 so that each formula Ft is a linear combination of the polynomials
p1, p2, . . . , pk′ with polynomial coefficients, all free of xj . With other words, j(Ft) < j
for 0 ≤ t ≤ d′. Since g is nonzero, at least one of these Ft must evaluate to some nonzero
polynomial hence belong to E . This final contradiction with the minimality hypothesis
of j completes the proof of the Proposition. 2

In summary, assume Condition a holds. Then Condition b holds by Propositions 19
and 20.

5.2.2. b⇒ a
Proposition 21. Let A be a triangular set such that A is proper. If prem(f,A) = 0 for
each f ∈ A then A is a regular chain.

Proof. We assume the existence of an index 1 ≤ k < n such that the regular chain
condition is satisfied up to k while ik+1 is not regular in R/(p1, . . . , pk) : (i1 · · · ik)∞. We
prove the existence of a polynomial f ∈ A such that prem(f,A) 6= 0.

Let Ak = (p1, . . . , pk):(i1 · · · ik)∞ and Bk = Ak:i∞k+1. Since ik+1 is not regular in R/Ak,
we have Bk 6= Ak. Since A is proper, so is Bk. Let Rk = K[t1, . . . , tm, x1, . . . , xk] and q
be a primary component of Ak. By Theorem 1, we have q ∩Rk 6= (0). Thus there exists
some f ∈ Rk such that f ∈ Bk, f /∈ Ak. Since f ∈ Rk we have prem(f,A) = prem(f,Ak).
Since f /∈ Ak, we have prem(f,Ak) 6= 0 (Proposition 19). Since Bk ⊂ A, the proof is
completed. 2
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In summary, assume Condition b holds. Then A is proper, by Proposition 14. Thus

Condition b implies, as a particular case, the hypotheses of Proposition 21. Thus Con-

dition a holds, by Proposition 21.

5.3. a⇔ d

The following Proposition concludes the proof of Theorem 13.

Proposition 22. A triangular set A is a regular chain if and only if res(ik, A) 6= 0 for

2 ≤ k ≤ n.

Proof. Let 2 ≤ k ≤ n be an index. Recall res(ik, A) is a power of res(ik, {p1, . . . , pk−1})
since ik does not depend on xk, . . . , xn.

The implication ⇒ follows from Corollary 18.

The implication ⇐. Assume A is not a regular chain and let 2 ≤ k ≤ n be such

that {p1, . . . , pk−1} is a regular chain while ik is a zerodivisor in R/(p1, . . . , pk−1) :

(i1 · · · ik−1)∞. Then res(ik, {p1, . . . , pk−1}) = 0 (Proposition 15) thus res(ik, A) = 0. 2

5.4. Changing the Ordering

The following Proposition is involved in the proof of Proposition 33.

The notion of triangular set depends on some ordering on the variables. So far, this

ordering has been fixed through the numbering of the variables xk but we need a more

general definition for the following Proposition.

Let an ordering be defined over the variables. Then x is the leading variable of some

polynomial p if deg(p, x) > 0 and deg(p, y) = 0 for any variable y > x. Accordingly, it is

more accurate to view triangular sets as triangular lists.

Proposition 23. Let A = [p1, . . . , pn] be a regular chain w.r.t. any ordering such that

x1 < · · · < xn. Let be given a second ordering over the variables such that xj keeps being

the leading variable of pj for 1 ≤ j ≤ n. Let A′ be the list of the pj, by increasing leading

variable, w.r.t. this new ordering.

Then A′ is a regular chain.

Proof. It is sufficient to assume that the second ordering only permutes two variables, of

indices 1 ≤ k < ` ≤ n. We show A′ is a regular chain by proving it satisfies Definition 12.

We do not need to address the case of the initials of the polynomials pj such that

j < k or j > ` since the corresponding ideals (p1, . . . , pj−1) : (i1 · · · ij−1)∞ are the same,

w.r.t. both orderings.

Let k ≤ j ≤ ` be an index. The assumption that the new ordering preserves the

leading variables of the elements of A implies that the initial ij does not depend on xk
nor on x`. Using the fact that, if f does not depend on xi, res(f, pi, xi) = fdi , we

see that res(ij , A) = res(ij , A
′). The fact that A′ is a regular chain then follows from

Theorem 13. 2
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6. Differential Algebra Preliminaries

Reference books are the ones of Ritt (1950) and Kolchin (1973).
Let R = K{U} be a differential polynomial ring where K is a differential field of

characteristic zero, U is a finite set of differential indeterminates uk, endowed with a
finite set of derivations {δ1, . . . , δm}. Let Θ denote the multiplicative monoid of derivation
operators, generated by the m derivations and Θ∗ denote the set of the proper derivation
operators. Assume the infinite set of derivatives ΘU is ordered w.r.t. a ranking (Kolchin,
1973, I, 8, page 75) so that, given any differential polynomial f ∈ R \ K, its leading
derivative ld f (called leader by Kolchin), its initial and its separant ∂f/∂ ld f are well
defined.

A differential polynomial f is said to be partially reduced w.r.t. a differential polyno-
mial p /∈ K if f does not depend on any proper derivative of the leading derivative of p
(Kolchin, 1973, I, 9, page 77). In the sequel, A denotes a triangular set of n differential
polynomials of R \K, pairwise partially reduced.

In the sequel, we need to define the pseudodivision and the resultant of a differential
polynomial f by ΘA.

The differential polynomial g = prem(f,ΘA) (respectively g = res(f,ΘA)) is obtained
by computing a sequence f = f0, f1, . . . , f` = g of differential polynomials such that
fk+1 = prem(fk, θ p, ld θ p) (respectively fk+1 = res(fk, θ p, ld θ p)) where p ∈ A and θ ∈
Θ. We apply the traditional strategy: choosing a pair (θ, p), which needs not be uniquely
defined, such that the leading derivative of θ p is the highest derivative among all the
proper derivatives of the leading derivatives of A occuring in fk. The sequence of fk is
finite, because rankings are well-orderings (Kolchin, 1973, I, 8, page 75).

The case of the resultant calls a specific remark, related to the comment following
Proposition 11: if p is any differential polynomial of R \K and θ ∈ Θ∗, then the degree
of θ p in its leading derivative is 1, which implies that, given any f ∈ R, there exists a
finite subset A′ ⊂ ΘA such that res(f,ΘA) = res(f,A′). In particular, the resultant of f
w.r.t. the infinite set ΘA is well-defined. Of course, the same property holds also for the
pseudoremainder, but is more straightforward.

Let f /∈ K be any differential polynomial.
Then prem(f,Θ∗A) denotes the partial remainder of f by A (Kolchin, 1973, I, 9, page

77). The result is a differential polynomial g, partially reduced w.r.t. A, such that, for
some power product hf of separants of A, we have hf f ≡ g (mod B), where B stands
for the ideal of R generated by all proper derivatives of A whose leading derivatives are
less than or equal to the one of f .

Similarly, prem(f,ΘA) denotes the (full) remainder of f by A (Kolchin, 1973, I, 9,
page 79). The result is a differential polynomial g, partially reduced w.r.t. A, such that,
for some power product hf of initials and separants of A, we have

hf f ≡ g (mod B) , (7)

where B stands for the ideal of R generated by all derivatives of A (not necessarily
proper) whose leading derivatives are less than or equal to the one of f .

In the sequel, we will sometimes decompose g = prem(f,ΘA) as g = prem(g∗, A)
where g∗ = prem(f,Θ∗A) (this is actually Ritt and Kolchin way of presenting the full
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remainder). Strictly speaking, both computations are not completely equivalent. How-
ever, relation (7) holds in both cases. This permits us to perform this abuse in all proofs
which only rely on the existence of such a relation.

In the case m ≥ 2, there may exist subsets {p1, p2} ⊂ A, called critical pairs, such
that the leading derivatives θ1 u of p1 and θ2 u of p2 are derivatives of some common
differential indeterminate u. Define θ12 = lcm(θ1, θ2) (observe θ12 6= θ1, θ2 because of our
assumptions on A) and the ∆-polynomial associated to the critical pair as ∆(p1, p2) =
s1

θ12
θ2
p2 − s2 θ12θ1 p1 where s1, s2 are the separants of p1, p2. The critical pair is said to

be solved if we have prem(∆(p1, p2),ΘA) = 0. The set A is said to be coherent if all its
critical pairs are solved.

The following Theorem appears in (Rosenfeld, 1959, Lemma). It generalizes (Seiden-
berg, 1956, Theorem 6). A generalized version is available in (Kolchin, 1973, III, 8, pages
135-138) but Kolchin’s version does not clearly appear to be algorithmic. The ideals
[A] : h∞ and (A) : h∞ are denoted [A] :H∞A and (A) :H∞A by Kolchin.

Theorem 24. (Rosenfeld’s Lemma)
Let A be a triangular set of pairwise partially reduced differential polynomials and h

be the product of its initials and separants. If all critical pairs of A are solved (i.e. if A
is coherent), then every differential polynomial f ∈ [A] : h∞, which is partially reduced
w.r.t. A belongs to (A) : h∞.

7. The Main Theorem

Lemaire (2002) introduced the definition of regular differential chains and proved the
equivalence a⇔ b of Theorem 26. The other equivalences are new.

Definition 25. A triangular set A of pairwise partially reduced differential polynomials
is said to be a regular differential chain if it satisfies the following conditions:
1 the initial ik of pk is regular in R/(p1, . . . , pk−1) : (i1 · · · ik−1)∞ for 2 ≤ k ≤ n;
2 the separant sk of pk is regular in R/(A) : (i1 · · · in)∞ for 1 ≤ k ≤ n;
3 A is coherent (meaningful only if m ≥ 2).

In some other texts such as (Boulier and Lemaire, 2010, Definition 3.1), Condition 2
is replaced by: the separant sk of pk is regular in R/(A) : (i1 · · · ik)∞ for 1 ≤ k ≤ n,
known also as squarefree regular chain condition. Both conditions are actually equivalent
by Theorem 13 and the fact that res(sk, A) is a power of res(sk, {p1, . . . , pk}).

Theorem 26. Let A be a triangular set of pairwise partially reduced differential poly-
nomials, h be the product of its initials and separants and A = [A] : h∞. The following
conditions are equivalent:
a A is a regular differential chain;
b for any differential polynomial f , we have prem(f,ΘA) = 0 if and only if f is zero

in R/A;
c for any differential polynomial f , we have res(f,ΘA) = 0 if and only if f is a zerodi-

visor in R/A.
d res(ik, A) 6= 0 for each 2 ≤ k ≤ n, res(sk, A) 6= 0 for each 1 ≤ k ≤ n and A is coherent.

From now on, all Propositions aim at proving Theorem 26.
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Proposition 27. If a triangular set A of pairwise partially reduced differential polyno-
mials satisfies any of Conditions a, b or c then the differential ideal A is necessarily
proper.

Proof. If A = R then every element of R/A is zero and a zerodivisor. Thus the regular
chain condition involved in Condition a cannot hold. Moreover, if f is any nonzero
differential polynomial partially reduced w.r.t. A then prem(f,A) 6= 0 and res(f,A) 6= 0.
Thus Conditions b and c cannot hold either. 2

7.1. Membership Testing to the Ideal

Proposition 28. Let A be any set of differential polynomials of R \K, h be the product
of its initials and separants and A = [A] :h∞. If prem(f,ΘA) = 0 then f is zero in R/A.

7.1.1. a⇒ b
Proposition 29. Let A be a coherent triangular set of pairwise partially reduced differen-
tial polynomials, h be the product of its initials and separants, A = [A]:h∞, B = (A):h∞,
f be a differential polynomial and g = prem(f,Θ∗A).

Then f is zero in R/A if and only if g is zero in R/B.

Proof. The differential polynomial is zero in R/A if and only if g is zero in R/A. The
partial remainder g is partially reduced w.r.t. A. By Theorem 24 (Rosenfeld Lemma), g
is zero in R/A if and only if g is zero in R/B. 2

Proposition 30. Let A be a regular differential chain, h be the product of its initials
and separants, A = [A] : h∞ and f be a differential polynomial.

If f is zero in R/A then prem(f,ΘA) = 0.

Proof. Denote B1 = (A) : h∞ and B2 = (A) : (i1 · · · in)∞. Let us consider some f ∈ A
and denote g = prem(f,ΘA) (the full remainder of f by A). Since g is partially reduced
w.r.t. A, Theorem 24 (Rosenfeld’s Lemma) applies and g ∈ B1. Since the separants of A
are regular in R/B2, we have B1 = B2 thus g ∈ B2. Since g = prem(g,A) and A is a
regular chain, by Theorem 13, g = 0. 2

In summary, assume Condition a holds. Then Condition b holds by Propositions 28
and 30.

7.1.2. b⇒ a
Proposition 31. Let A be a triangular set of pairwise partially reduced differential
polynomials of R and h be the product of its initials and separants. Assume A = [A] :h∞

is proper.
Assume that, for any f which is zero in R/A we have prem(f,ΘA) = 0. Then A is a

regular differential chain.

Proof. Denote R1 the ring of the differential polynomials of R partially reduced w.r.t. A.
Let A1 = A ∩R1, B1 = (A) : h∞ and B2 = (A) : (i1 · · · in)∞ be three ideals of R1.

Consider some f ∈ R1. If prem(f,A) = 0 then f ∈ B2. Conversely, if f ∈ B2 then
f ∈ A and, by assumption, prem(f,ΘA) = prem(f,A) = 0. Therefore, by Theorem 13,
A is a regular chain and Condition 1 of Definition 25 holds.
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All the ∆-polynomials that can be formed using A belong to A. They are thus reduced
to zero by A through the pseudodivision process. Therefore A is coherent and Condition 3
of Definition 25 holds.

Thus Theorem 24 (Rosenfeld’s Lemma) applies and A1 = B1.
Last, we prove Condition 2 by establishing that B1 = B2 (this is indeed sufficient for

the separants of the elements of A which occur in h as factors, are regular in R/B1).
Let f ∈ R1. Then prem(f,A) = prem(f,ΘA). Thus, combining the assumption and
Proposition 28, we see, on the one hand, that prem(f,A) = 0 if and only if f ∈ B1. On
the other hand, we have proven that A is a regular chain so that Theorem 13 applies and
prem(f,A) = 0 if and only if f ∈ B2. Thus B1 = B2 and Condition 2 holds.

Thus A is a regular differential chain. 2

In summary, assume Condition b holds. Then A is proper by Proposition 27. Thus
Condition b implies, as a particular case, the hypotheses of Proposition 31. Thus Con-
dition a holds by Proposition 31.

7.2. Regularity Testing modulo the Ideal

In this section, we will sometimes consider finitely generated nondifferential ideals B
belonging to the polynomial ring R1 of the differential polynomials partially reduced
w.r.t. some given set A. In general R1 is a polynomial ring in infinitely many inde-
terminates. It is thus not Nötherian. However, since the finite bases of B only feature
finitely many indeterminates, it is always possible, in proofs, to restrict further R1 to
some polynomial ring in finitely many indeterminates, hence to a Nötherian ring, in
which the Lasker-Nöther Theorem applies. For simplicity, we will not explicitly perform
this restriction. We will thus allow ourselves to apply the Lasker-Nöther Theorem to the
finitely generated ideals B of R1.

The following Theorem is proved in Boulier et al. (2009).

Theorem 32. Let A be a coherent triangular set of pairwise partially reduced differential
polynomials, h be the product of its initials and separants, A = [A] : h∞, R1 be the ring
of the differential polynomials partially reduced w.r.t. A and B = (A) : h∞ in R1.

Then A and B are radical and there is a one-to-one correspondence between the asso-
ciated differential prime ideals P1, . . . ,Pr of A and the associated prime ideals p1, . . . , pr
of B, given by pi = Pi ∩R1 for 1 ≤ i ≤ r.

Proof. Since h contains each separant of A as a factor, Theorem 2 (Lazard’s Lemma)
applies and B is radical.

Let f be a differential polynomial such that fd ∈ A for some d ≥ 0. Let g =
prem(f,Θ∗A) where Θ∗ denotes the set of all proper derivation operators (so that g
is the partial remainder of f by A). Then gd ∈ A. Since g is partially reduced w.r.t. A,
Theorem 24 (Rosenfeld’s Lemma) applies and gd ∈ B. Since B is radical, g ∈ B. Thus
g ∈ A and so does f . The differential ideal A is thus radical.

The intersection of a prime ideal of R and the subring R1 ⊂ R is a prime ideal of R1.
Therefore, B = ∩ri=1pi where pi = Pi ∩ R1 is prime for 1 ≤ i ≤ r. We thus only need
to prove that none of the pi is redundant. We assume p1 is redundant and we seek a
contradiction by proving that P1 is redundant too. Let f ∈ ∩ri=2Pi be a differential
polynomial and g = prem(f,Θ∗A). Since g ∈ R1, we have g ∈ ∩ri=2pi hence g ∈ B
since p1 is redundant. Thus f ∈ A by Proposition 29 and P1 is redundant. 2
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Proposition 33. Let A be a regular differential chain and A′ be a triangular set of

differential polynomials such that A ⊂ A′ ⊂ ΘA.

Then A′ is a regular chain.

Proof. Assume (easy case) that the leading derivatives of the elements of A′ \ A are all

greater than the leading derivatives of A, w.r.t. the ranking. By the fact that the initials

of A′ \A are the separants of A, the fact that the regular chain is squarefree (Condition 2

of Definition 25) and Definition 12, one concludes that A′ is a regular chain.

Assume now that some leading derivatives of A′ \ A are lower than some leading

derivatives of A. Since A is differentially triangular and its elements are pairwise partially

reduced, there exists another ordering on the leading derivatives of A′, which does not

change the leading derivatives of A′, and belongs to the easy case. W.r.t. this other

ordering, A′ is a regular chain.

Therefore A′ is a regular chain w.r.t. the ranking also, by Proposition 23. 2

The following Theorem contains Theorems 24 and 32 as a special case, by taking f = 0.

Theorem 34. Let A be a coherent triangular set of pairwise partially reduced differential

polynomials, h be the product of its initials and separants and A = [A] : h∞.

Let f be a differential polynomial, A′ ⊂ ΘA be the union of A and the elements of

ΘA involved in the computation of res(f,ΘA). Let R′ ⊂ R be the smallest polynomial

ring containing A′ and A′ = (A′) : h∞ in R′.

Then A′ = A ∩ R′, both ideals are radical, and there is a one-to-one correspondence

between the associated differential prime ideals P1, . . . ,Pr of A and the associated prime

ideals p′1, . . . , p
′
r of A′, given by p′i = Pi ∩R′ for 1 ≤ i ≤ r.

Proof. The algorithm applied to compute res(f,ΘA) ensures that A′ is triangular. Thus

Proposition 33 applies and A′ is a regular chain.

Since h contains each separant of A′ as a factor, Theorem 2 (Lazard’s Lemma) applies

and A′ is radical.

We have A′ ⊂ A ∩ R′. Consider some f2 ∈ A ∩ R′ and define g2 = prem(f2, A
′). The

set A′ contains enough differential polynomials to ensure that g2 is partially reduced

w.r.t. A. Thus g2 ∈ (A) : h∞ by Theorem 24 (Rosenfeld’s Lemma). Since (A) : h∞ ⊂ A′

we have g2 ∈ A′ hence f2 ∈ A′. Thus A′ = A ∩R′.
Using the same argument as in the proof of Theorem 32, this equality and the radicality

of A′ imply that A is radical.

The intersection of a prime ideal of R and the subring R′ ⊂ R is a prime ideal

of R′. Therefore A′ = ∩ri=1p
′
i where p′i = Pi ∩ R′ for 1 ≤ i ≤ r. We thus only need

to prove that none of the p′i is redundant. We assume p′1 is redundant and we seek a

contradiction by proving that P1 is redundant too. Using Theorem 32 and the fact that

(A) : h∞ ⊂ A′ we see that Pi ∩ R′ 6= (0) for 1 ≤ i ≤ r. We may thus consider some

nonzero f2 ∈ ∩ri=2Pi ∩ R′. Then f2 ∈ ∩ri=2p
′
i hence f2 ∈ A′ since p′1 is redundant.

Therefore f2 ∈ A and P1 is redundant. 2
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7.2.1. a⇒ c

Proposition 35. Let A be a regular differential chain, h be the product of its initials
and separants, A = [A] : h∞ and f be a differential polynomial.

Then res(f,ΘA) = 0 if and only if f is a zerodivisor in R/A.

Proof. Let A′ ⊂ ΘA be the union of A and the elements of ΘA involved in the compu-
tation of res(f,ΘA) and A′ = (A′) : h∞.

The algorithm applied to compute res(f,ΘA) ensures that A′ is triangular. Thus
Proposition 33 applies and A′ is a regular chain. Thus Theorem 13 applies and we have
res(f,ΘA) = res(f,A′) = 0 if and only if f is a zerodivisor in R/A′ i.e. if and only if f
belongs to an associated prime ideal of A′. Thus, by Theorem 34, res(f,ΘA) = 0 if and
only if f belongs to some associated differential prime ideal of A i.e. is a zerodivisor in
R/A. 2

In summary, assume Condition a holds. Then Condition c holds also, by Proposi-
tion 35.

7.2.2. c⇒ a

Proposition 36. Let A be a triangular set of pairwise partially reduced differential
polynomials and h be the product of its initials and separants. Assume A = [A] : h∞ is
proper. Assume that, for any differential polynomial f , we have res(f,ΘA) = 0 if and
only if f is a zerodivisor in R/A.

Then A is a regular differential chain.

Proof. Denote R1 the ring of the differential polynomials of R partially reduced w.r.t. A.
Let A1 = A ∩R1 and B2 = (A) : (i1 · · · in)∞ be two ideals of R1.
We first prove Condition 1 of Definition 25 holds, i.e. that A is a regular chain. Let

1 ≤ k ≤ n be an index. The initial ik is regular in R1/A1 since A1 = A1 : h∞. We need
to show that ik is regular in R/(p1, . . . , pk−1) : (i1 · · · ik−1)∞. Decompose res(ik, A) =
res(rk, {p1, . . . , pk−1}) where rk = res(ik, {pk, . . . , pn}). By assumption, res(ik, A) 6= 0
thus res(rk, {p1, . . . , pk−1}) 6= 0. Thus rk is regular in R/(p1, . . . , pk−1) : (i1 · · · ik−1)∞

by Proposition 15. Since ik does not depend on the leading derivatives of pk, . . . , pn, the
polynomial rk is a power of ik. Thus ik is regular in R/(p1, . . . , pk−1) : (i1 · · · ik−1)∞.
Thus A is a regular chain and Condition 1 holds.

Let f, g /∈ A such that f g ∈ A so that f is a zerodivisor inR/A. Let f ′ = prem(f,Θ∗A)
and g′ = prem(g,Θ∗A) be their partial remainders w.r.t. A. Since A is saturated by the
separants of A, we have f ′, g′ /∈ A and f ′ g′ ∈ A. Therefore, if f ∈ R1 is a zerodivisor in
R/A then it is a zerodivisor in R1/A1.

We now prove Condition 2 by establishing that the rings R1/A1 and R1/B2 have the
same set of zerodivisors (this is indeed sufficient for the separants of the elements of A,
which occur in h as factors, are regular in R1/A1).

Let f ∈ R1. Then res(f,ΘA) = res(f,A). On the one hand, according to our assump-
tions, res(f,A) = 0 if and only if f is a zerodivisor in R1/A1. On the other hand, we
have proven that A is a regular chain so that Theorem 13 applies and res(f,A) = 0 if
and only if f is a zerodivisor in R1/B2. Thus R1/A1 and R1/B2 have the same set of
zerodivisors, the separants of A are regular in R1/B2 and Condition 2 holds.
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Last, we prove Condition 3 holds i.e. that A is coherent. We have just proven above
that R1/A1 and R1/B2 have the same set of zerodivisors. This implies that they have
the same set associated prime ideals by (Zariski and Samuel, 1958, IV, 6, Corollary 3
to Theorem 11, page 214). They thus have the same radical. Since Condition 2 holds,
Theorem 2 (Lazard’s Lemma) applies and B2 is radical. Therefore,

√
A1 = B2. Let ∆ij

be any ∆-polynomial of A and f = prem(∆ij ,ΘA). We have f ∈ A1 hence f ∈ B2. Since
prem(f,A) = f and A is a regular chain, Theorem 13 applies thus f is zero. Thus A is
coherent and Condition 3 holds.

Thus A is a regular differential chain. 2

In summary, assume Condition c holds. Then A is proper by Proposition 27. Thus
Condition a holds by Proposition 36.

7.3. a⇔ d

The following Proposition concludes the proof of Theorem 26.

Proposition 37. A triangular set A of pairwise partially reduced differential polynomials
is a regular differential chain if and only if res(ik, A) 6= 0 for each 2 ≤ k ≤ n, res(sk, A) 6=
0 for each 1 ≤ k ≤ n and A is coherent.

Proof. Recall that, if there exists an index 1 ≤ k ≤ n such that f does not depend on
the leading derivatives of pk, . . . , pn, then res(f,A) is a power of res(f, {p1, . . . , pk−1}).

The implication⇒. Assume A is a regular differential chain. Then A is a regular chain
(Condition 1 of Definition 25) and res(ik, A) 6= 0 by Theorem 13. The separants of A
are regular in R/(A) : (i1 · · · in)∞ (Condition 2 of Definition 25) hence res(sk, A) 6= 0 for
each 1 ≤ k ≤ n by Theorem 13 again. Last, A is coherent (Condition 3 of Definition 25).

The implication ⇐. Assume A is not a regular differential chain. Then Condition 1, 2
or 3 of Definition 25 must fail. If Condition 3 fails then A is not coherent. Assume
Condition 3 holds for A. Then there exists some index 1 ≤ k < n such that {p1, . . . , pk−1}
satisfies Conditions 1 and 2 while {p1, . . . , pk} fails to satisfy one of them. If Condition 1
fails for {p1, . . . , pk} then k ≥ 2 and ik is a zerodivisor in R/(p1, . . . , pk−1):(i1 · · · ik−1)∞.
Thus, by Theorem 13, applied over {p1, . . . , pk−1}, we have res(ik, {p1, . . . , pk−1}) = 0
hence res(ik, A) = 0. Assume Condition 1 holds for {p1, . . . , pk}. Then Condition 2
must fail for {p1, . . . , pk} and by Theorem 13 again, applied over {p1, . . . , pk}, we have
res(sk, {p1, . . . , pk}) = 0, hence res(sk, A) = 0. 2
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nique, Palaiseau, France.

Ritt, J. F., 1932. Differential equations from the algebraic standpoint. Vol. 14 of American
Mathematical Society Colloquium Publications. American Mathematical Society, New
York.

Ritt, J. F., 1950. Differential Algebra. Vol. 33 of American Mathematical Society Collo-
quium Publications. American Mathematical Society, New York.

Rosenfeld, A., 1959. Specializations in differential algebra. Trans. Amer. Math. Soc. 90,
394–407.

Seidenberg, A., 1956. An elimination theory for differential algebra. Univ. California
Publ. Math. (New Series) 3, 31–65.

Wang, D., 1996. An elimination method for differential polynomial systems I. Systems
Science and Mathematical Sciences 9 (3), 216–228.

Wu, W., 1989. On the foundation of algebraic differential geometry. Mechanization of
Mathematics, research preprints 3, 2–27.

Yang, L., Zhang, J., 1994. Searching dependency between algebraic equations: an algo-
rithm applied to automated reasoning. Artificial Intelligence in Mathematics, 147–156.

Zariski, O., Samuel, P., 1958. Commutative Algebra. Van Nostrand, New York, Also
volumes 28 and 29 of the Graduate Texts in Mathematics, Springer Verlag.

24


