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oach for evaluating the contribution of the variance of discrete input variables to the variance of model 
mposition. Until recently only the continuous kernel approach has been applied as a metamodeling 
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 asymtotic convergence rate. Some simulations on a test function analysis and a real case study from 
l approach outper-forms the continuous kernel one for evaluating the contribution of moderate or most 
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1. Introduction

In the literature many works about reliability analysis approa-
ches in general, and sensitivity analysis (SA) methods more spe-
cially, are related to different problems such as the important case
of non-independent random inputs [6] and have various applica-
tion domains such as maritime industry [19] or environment [14].
In most cases, a mathematical modeling of the studied system is
frequently revealed to be useful when the variations of input
parameters in a model imply a large variability of the results with
some impacts on their accuracy. In this context, the probabilistic
way is of interest to encompass the variation in the input para-
meters of the model. SA methods are then useful to conduct such a
study since they aim to evaluate how the variation of input
parameters contributes to the variation of the output of a model.
Particularly, works in SA have highlighted the encountered inter-
esting aspect concerning the evaluation of the influence of discrete
(categorical or ordinal) inputs. Indeed, in system reliability studies,
several models involving in various engineering contexts have
input discrete variables. And, one of the reliability engineering
issues is to accurately evaluate the influence of such parameters.

Amongst various SA approaches, let us consider a well-known
method based on the analysis of variance (ANOVA) decomposition
.fr (T. Senga Kiessé),
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of model f for quantifying the influence of input Xi;i ¼ 1;2;…;kAT on
the output YAR. That method consists of the calculation of sen-
sitivity indices given by [18] such that

Si ¼
VfEðY jXiÞg

VðYÞ ; Sij ¼
VfEðY jXi;XjÞg

VðYÞ ;… ð1Þ

The measure of first order Si evaluates the contribution of the var-
iation of Xi to the total variance of Y, the measure of second order Sij
evaluates the contribution of the interaction of Xi and Xj on the
output, and so on. Various statistical tools as splines, generalized
linear or additive model, polynomial are useful in a metamodeling
approach for providing an estimation of conditional expectation Eð
Y jXiÞ and, consequently, of the main effect sensitivity measure Si
[4]. In the framework of the non-parametric smoothing, some
methods as the continuous kernel-based estimation [16] or the
State-Dependent Parameter estimation [13] are good choices for
estimating EðY jXiÞ. About the two estimation methods, [15,20] are
respectively one of the original references of nonparametric and
state-dependent parameter estimates. Nowadays [11] have shown
that continuous kernel estimation is equal or better than the SDP
estimation in terms of performance. However until recently in the
literature the continuous kernel estimation is evenly applied on
continuous input variables as on discrete ones while discrete kernel
estimation suitable for discrete functions is now known [7].

The discrete associated kernel method was developed for
smoothing discrete functions as probability mass functions (pmf)
or count regression functions on a discrete support T such as
T¼N, the set of positive integers, or T¼Z, the set of integers. For
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a fixed target x on discrete support T and a smoothing parameter
h40, this method is based on the definition of the discrete asso-
ciated kernel Kx;hð�Þ which is a pmf of random variable (rv) K x;h

with support Sx satisfying

xASx ðA1Þ;
lim
h-0

EðK x;hÞ ¼ x ðA2Þ;

lim
h-0

VðK x;hÞ ¼ 0 ðA3Þ:

These three assumptions, fulfilled by both continuous and discrete
kernels, insure good asymptotic properties for the corresponding
kernel estimator [10]. Thus, for ða; xÞAN� T and h40, an exam-
ple of discrete associated kernel is the discrete symmetric trian-
gular one with rv K a;x;h on support Sx ¼ fx�a;…; x�1; x; x þ1;…
; xþag with a pmf given by

PrðK a;x;h ¼ zÞ ¼ ðaþ1Þh�jy�xj h
Pða;hÞ ; zASx;

with Pða;hÞ ¼ ð2aþ1Þðaþ1Þh�2
Pa

k ¼ 1 k
h a normalizing constant.

From the discrete kernel methodology, a discrete non-parametric
estimator of EðY jXiÞ was proposed by [1] adapted from the con-
tinuous version of [12,22] as follows:

bmnðx;hÞ ¼
Xn
i ¼ 1

YiKx;hðXiÞPn
j ¼ 1 Kx;hðXjÞ

;

with the arbitrary sequence of smoothing parameters h¼ hðnÞ40
fulfilling limn-1hðnÞ ¼ 0 and Kx;hð�Þ a discrete associated kernel as
defined previously.

In this paper the non-parametric regression estimator bmn using
a discrete symmeric triangular kernel is investigated as a novel
approach in SA methods for providing estimated sensitivity indi-
ces for discrete input variables Xi. Thus, the discrete kernel esti-
mation approach is studied as a contribution to reliability analysis
for model with discrete input parameters. To illustrate the per-
formance of discrete kernel approach in comparison to continuous
kernel approach, some simulations are realized using Ishigami test
function and an application is proposed on a real case from agri-
cultural. That latter concerns the evaluation of the influence of
some parameters on the environmental impacts generated during
the Hemp Crop production by farmers [2].
2. Non-parametric discrete triangular regression

This section presents first a review of the non-parametric
univariate regression estimator using symmetric discrete trian-
gular kernel with the asymptotic expansion of its global squared
error as presented by [3]. Herein, the optimal convergence rate of
the discrete triangular regression estimator is added.

Assume that ðX1;Y1Þ; ðX2;Y2Þ;…; ðXn;YnÞ are n independent
copies of (X,Y) defined on TðDZÞ � R. We are interested in the
non-parametric regression model

Y ¼mðXÞþϵ;

wheremð�Þ ¼ EðY jX ¼ �Þ is an unknown regression function and the
random covariate X is independent of the unobservable error
variable ϵ's assumed to have zero mean and finite variance. For
aAN, a fixed point xAT and a smoothing parameter h40, let us
consider the discrete non-parametric estimator bmn of m defined in
(2) using a discrete triangular symmetric kernel such that

bmnða; x;hÞ ¼
Xn
i ¼ 1

YiKa;x;hðXiÞPn
j ¼ 1 Ka;x;hðXjÞ

: ð2Þ

First, about some asymptotic properties of estimator bmnða; x;hÞ in
(2), the asymptotic part of its mean integrated squared error MISE
2

[21] defined by

MISEf bmnðx; a;hÞg ¼
X
xAT

Varf bmnðx; a;hÞgþ
X
xAT

Bias2f bmnðx; a;hÞg:

is given by

AMISEf bmnðx; a;hÞg ¼
h2

4
V2ðaÞ

X
xAT

W2ðxÞþf1�hAðaÞg2
X
xAT

VarðY jX ¼ xÞ
nf ðxÞ :

This last expression is obtained by calculating asymptotic bias and
variance of bmnðx; a;hÞ in (2) using the following expansions of the
modal probability and variance of the discrete symmetric trian-
gular kernel:

PrðK a;x;h ¼ xÞ ¼ 1�2hAðaÞþOðh2Þ and VarðK a;x;hÞ ¼ 2hVðaÞþOðh2Þ;
with AðaÞ ¼ a log ðaþ1Þ�Pa

k ¼ 1 log ðkÞ and VðaÞ ¼ fað2a2þ3aþ1Þ =
6glog ðaþ1Þ�Pa

k ¼ 1 k
2log ðkÞ (refer to [3] for more details). Then,

an asymptotical optimal bandwidth hopt is obtained by minimizing
the asymptotic part AMISE of bmnða; x;hÞ in (2) such that

bhoptða;nÞ ¼
AðaÞPxATVarðY jX ¼ xÞ=f ðxÞ

A2ðaÞPxATVarðY jX ¼ xÞ=f ðxÞþnV2ðaÞPxATW
2ðxÞ

� C0n�

with

C0 ¼
AðaÞPxATVarðY jX ¼ xÞ=f ðxÞ

V2ðaÞPxATW
2ðxÞ

:

Finally, we get the following inequality:

AMISE bmnðx; a;hoptÞ
� �� n�1 C2

0

n
V2ðaÞ

X
xAT

W2ðxÞ
"

þ 1�C0

n
AðaÞ

� �2X
xAT

VarðY jX ¼ xÞ
f ðxÞ

#
rn�1 C2

0V
2ðaÞ

X
xAT

W2ðxÞ

þ 1þ C0AðaÞ
� �2h iX

xAT

VarðY jX ¼ xÞ
f ðxÞ

!

where AMISE f bmnðx; a;hoptÞg tends to 0 as n-1. Thus, for aAN,
the optimal asymptotic root MISE of estimator bmn with kernel
Ka;x;h is Oðn�1=2Þ resulting in

mðxÞ ¼ bmnðx; a;hoptÞþOðn�1=2Þ; xAT:

Note that the discrete kernel estimation and the resulting asymptotic
expansions of estimator's bias and variance depend on two pre-
conditions: discrete random variable and smooth hypothesis. For
xAT, a discrete associated kernel satisfying assumptions (A1)–(A3)
has asymptotically the same behavior that a Dirac type kernel
DxðyÞ; yASx, such that DxðyÞ ¼ 1 at y¼x and 0 for any yax. That
explains also the good asymptotic properties of the corresponding
estimator.
3. Non-parametric kernel estimator for sensitivity analysis

This section aims at building the estimator of ANOVA decom-
position of the model Y ¼ f ðX1;X2;…;XkÞ given by

Y ¼ f 0þ
Xk
i ¼ 1

f iðXiÞþ
X
io j

f ijðXi;XjÞþ⋯þ f 12…kðX1;X2;…;XkÞ; ð3Þ

where each term is defined by

f 0 ¼ EðYÞ; f i ¼ EðY jXiÞ� f 0; f ij ¼ EðY jXi;XjÞ� f i� f j� f 0;… ð4Þ
Non-parametric kernel estimation of such model originates in the
work of [11] for continuous case. The multidimensional version of
non-parametric regression estimator bmn is presented for the cal-
culation of Sobol indices when measuring the contribution of two
or more variables to the variance of Y.



3.1. Multivariate non-parametric regression

Let us consider x¼ ðx1; x2;…; xdÞ> ATdDNd a target vector and
H¼Diagðh11;…;hddÞ a bandwidth matrix with hii40 such that H
�Hn goes to the null matrix 0d as n-1. Assume
ðXk;YkÞ; k¼ 1;2;…;n, be a sequence of iid random vectors defined
on Td � R with mð�Þ ¼ EðYk jXk ¼ �Þ. The multivariate non-
parametric regression estimator bmd

n of m can be defined by

bmd
nðx;HÞ ¼

Xn
k ¼ 1

YkKx;HðXkÞPn
l ¼ 1 Kx;HðXlÞ

; ð5Þ

where the multivariate associated kernel Kx;Hð�Þ ¼∏d
i ¼ 1K

½i�
xi ;hii

ð�Þ is
defined as a product of univariate associated kernel K ½i�

xi ;hii
with its

corresponding rv K ½i�
xi ;hii

on support Sxi ;hii , for all i¼ 1;2;…; d.
Therefore, according to assumptions (A1), (A2) and (A3) for uni-
variate associated kernel, the multivariate associated kernel of
support Sx;H ¼ �d

j ¼ 1 Sxi ;hii is a pmf satisfying

xASx;H; EðK x;HÞ ¼ xþaðx;HÞ; CovðK x;HÞ ¼ Bðx;HÞ;
where K x;H denotes the rv with pmf Kx;H and both aðx;HÞ ¼
ða1ðx;HÞ;…; adðx;HÞÞ> and Bðx;HÞ ¼ ðbijðx;HÞÞi;j ¼ 1;…;d tend,
respectively, to null vector 0 and null matrix 0d as H-0d [17].

For a¼ ða1; a2;…; adÞTANd, the multivariate estimator bmd
n using

discrete symmetric triangular kernel Ka;x;Hð�Þ ¼∏d
i ¼ 1K

½i�
ai ;xi ;hii

ð�Þwith
an optimal bandwidth matrix Hopt such as hopt;ii � C1n�1=d (with
constant C1) satisfies

mðxÞ ¼ bmd
nðx; a;HoptÞþOðn�1=ðdþ1ÞÞ; xATd:

Remark 2. The asymptotic convergence rates Oðn�1=2Þ in uni-
variate case and Oðn�1=ðdþ1ÞÞ in multivariate case only hold for
discrete random variables which satisfied proper smooth hypoth-
esis. The previous convergence rates do not hold for continuous
random variables where the asymptotic root MISE of non-
parametric regression estimator is Oðn�2=5Þ in univariate case and
Oðn�2=ð4þdÞÞ in multivariate case [11].

The data-driven bandwidth matrix selection procedure is an
extension of univariate cross-validation criterion to multivariate
case called least squared cross-validation criterion (LSCV). Thus,
the optimal bandwidth matrix is obtained by Hcv ¼ arg minHAH

LSCV ðHÞ such that

LSCVðHÞ ¼ 1
n

Xn
k ¼ 1

fYk� bmd
n;�kðXk;HÞg

2
;

with bmd
n;�k an estimate computed as bmd

n in Eq. (5) by excluding Xk

and H is a set of bandwidth matrices H.

3.2. Kernel estimator of ANOVA decomposition

From Eq. (4), the estimator of f0 can be obtained by

bf 0 ¼ E bmd
nðx;HoptÞ

n o
¼ EXk fKx;HðXkÞgPn

l ¼ 1 Kx;HðXlÞ
Xn
k ¼ 1

Yk ¼ 1
n

Xn
k ¼ 1

Yk

which is the arithmetic average of Yk; k¼ 1;2;…;n. The terms of
first order fi in the decomposition of the response model equation
in (4) are estimated by

bf iðxi;hiiÞ ¼ 1
n

Xn
k ¼ 1

Kxi ;hii ðXk
i ÞYk�1

n

Xn
k ¼ 1

Yk ¼ 1
n

Xn
k ¼ 1

Kxi ;hii ðXk
i ÞYk

with Kxi ;hii ðXk
i Þ ¼ Kxi ;hii ðXk

i Þ�1. In the same way, the terms of sec-
ond order fij in (4) are estimated as follows:

bf ijðxi; xj;HÞ ¼ bEðYk jXk
i ;X

k
j Þ�bf i�bf j�bf 0 ¼ 1

n

Xn
i ¼ 1

Kx;HðXkÞYk
3

with Kx;Hð�Þ ¼ Kx;Hð�Þ�K ½i�
xi ;hii

ð�Þ�K ½j�
xj ;hjj

ð�Þ�1, x¼ ðxi; xjÞ and
H¼Diagðhii;hjjÞ; where Kx;Hð�Þ is the multivariate associated ker-
nel defined in Eq. (5) as a product of univariate associated kernel
K ½i�
xi ;hii

ð�Þ and K ½j�
xj ;hjj

ð�Þ.
Now we can obtain the estimated terms of the variance decom-

position. From Eq. (3) we first express the decomposition of the total
variance of model output Y such as

VðYÞ ¼
Xk
i ¼ 1

Viþ
X
io j

Vijþ⋯þV12…k;

where each variance term is given by

Vi ¼VfEðY jXiÞg;Vij ¼VfEðY jXi;XjÞg�Vi�Vj;…

We then get the estimated variance terms by

bVðYÞ ¼ EXk f bmd
nðx;hÞg

2
�bf 20; cVi ¼ EXk fbf iðxi;hiiÞg2;cVij ¼ EXk fbf ijðxi; xj;hii;hjjÞg2;…

It finally ensues the calculation of the estimated Sobol indices such as
for main effect sensisitivity indices in Eq. (1) we get

bSi ¼ cVibVðYÞ
¼ SiþOðn�1=ðdþ1ÞÞ

1þOðn�1=ðdþ1ÞÞ-Si as n goes to 1:

Indeed, we have f 0 ¼ bf 0þOðn�1=2Þ and f i ¼ bf iðxi;hoptÞþOðn�1=2Þ
then bVðYÞ ¼VðYÞþOðn�1=ðdþ1ÞÞ and cVi ¼ViþOðn�1=ðdþ1ÞÞ.
4. Simulations on Ishigami test function

In this section we propose to evaluate the application of both
discrete and continuous kernel estimation procedures to a test
function. We used the terms in the ANOVA decomposition calcu-
lated as follows. In the discrete case

f 0 ¼
X

x1 ;x2 ;…;xk

f ðx1; x2;…; xkÞ ∏
k

i ¼ 1
PrðXi ¼ xiÞ

f iðxiÞ ¼
X

x1 ;…;xi� 1 ;xiþ 1 ;…;xk

f ðx1; x2;…; xkÞ ∏
k

j ¼ 1;ja i
PrðXj ¼ xjÞ� f 0

f ijðxi; xjÞ ¼
X

x1 ;…;xi� 1 ;xiþ 1 ;…;xj� 1 ;xjþ 1 ;…;xk

f ðx1; x2;…; xkÞ � ∏
k

la i;la j

PrðXl ¼ xlÞ� f i� f j� f 0
⋮ ð6Þ

where
PrðXi ¼ xiÞ ¼ 1=ðq�pþ1ÞIXi ¼ xi ; xiAT¼ fp; p�1;…; q�1; qgDZ, is
the discrete uniform distribution with IA the indicator function of
any given event A that takes the value 1 if the event A occurs and
0 otherwise. Then, the variance terms in decomposition result in

VðYÞ ¼ Varff ðXÞg ¼
X

x1 ;x2 ;…;xk

ff ðx1; x2;…; xkÞg2 ∏
k

i ¼ 1
PrðXi ¼ xiÞ� f 20

Vi ¼ Varff iðXiÞg ¼
X
xi

ff iðxiÞg2PrðXi ¼ xiÞ

⋮ ð7Þ

4.1. Ishigami function

The test function considered is the Ishigami one [5] given by

Y ¼ f ðX1;X2;X3Þ ¼ sin ðX1Þþ I sin 2ðX2Þþ JX4
3 sin ðX1Þ

where Xi; i¼ 1;2;3, are iid variables on ½�π;π� assumed to be dis-
crete and uniformly distributed such as T¼ f�3; �2; �1;0;1;2;3g.
The kernel estimator bmn in (2) using discrete symmetric triangular



kernel is applied in comparison to the continuous version of bmn

using the Gaussian kernel on support Sx ¼R given by

Kx;hðtÞ ¼
1ffiffiffiffiffiffi
2π

p exp �1
2

x�t
h

� �2
( )

; tASx:

In practice we will use the parameter value a¼1 for discrete sym-
metric triangular kernel since it was proved to be the best in terms
of performance [8].

The ANOVA decomposition of Y for Ishigami function is given
by

Y ¼ f 0þ f 1ðX1Þþ f 2ðX2Þþ f 3ðX3Þþ f 12ðX1;X2Þþ f 13ðX1;X3Þ
þ f 23ðX1;X3Þþ f 123ðX1;X2;X3Þ:

Based on the decomposition of model output Y in (3) and (6), we
have

f 0 ¼
X

x1 ;x2 ;x3 AT

f ðx1; x2; x3Þ ∏
3

i ¼ 1
PrðXi ¼ xiÞ ¼

X
x2 ;x3 ATX

x1 AT

sin ðx1ÞPrðX1 ¼ x1Þþa sin 2ðx2Þ
X
x1 AT

PrðX1 ¼ x1Þ
(

þbx43
X
x1 AT

sin ðx1ÞPrðX1 ¼ x1Þ
)
¼ a

X3
x2 ¼ �3

sin 2ðx2ÞPrðX2 ¼ x2Þ

¼ 2a
7

X3
x2 ¼ 1

sin 2ðx2Þ

with PrðXi ¼ xiÞ ¼ ð1=7ÞIXi ¼ xi ; xiAT, the discrete uniform distribu-
tion. We successively obtain

f 1ðx1Þ ¼
X

x2 ;x3 AT

f ðx1; x2; x3Þ ∏
3

i ¼ 2
PrðXi ¼ xiÞ ¼

X
x2 ;x3 AT

sin ðx1Þþa sin 2ðx2Þþb sin ðx1Þ
X3
x3 ¼ 1

x43PrðX3 ¼ x3Þ
( )

PrðX2 ¼ x2Þ

� f 0 ¼ 1þ2b
7

X3
x3 ¼ 1

x43

!
sin ðx1Þ
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Fig. 1. Plot of centered Ishigami test function (grey dots) and

4

then

f 2ðx2Þ ¼
X

x1 ;x3 AT

a sin 2ðx2ÞPrðX1 ¼ x1ÞPrðX2 ¼ x2Þ� f 0 ¼ a sin 2ðx2Þ� f 0

and f 3ðx3Þ ¼ 0.
For interaction term between different parameters, we have

f 13ðx1; x3Þ ¼
X
x2 AT

f ðx1; x2; x3ÞPrðX2 ¼ x2Þ� f 0� f 1� f 3

¼ b x43�
2
7

X3
x3 ¼ 1

x43

!
sin ðx1Þ

and f 12ðx1; x2Þ ¼ f 23ðx2; x3Þ ¼ 0.
It results in the following decomposition of the variance of Y by

using the expressions in (7),

VðYÞ ¼ 2
7

1þa2þ2b2

7

X3
x3 ¼ 1

x83þ
4b
7

X3
x3 ¼ 1

x43

( ) X3
x2 ¼ 1

sin 2ðx2Þ� f 20

V1 ¼
2
7

1þ2b
7

X3
x3 ¼ 1

x43

!2 X3
x1 ¼ 1

sin 2ðx1Þ

V2 ¼
2
7

X3
x2 ¼ 1

fa sin 2ðx2Þ� f 0g
2

V13 ¼
4b2

49

X3
x3 ¼ 1

x43�
2
7

X3
x3 ¼ 1

x43

!2
8<:

9=; X3
x1 ¼ 1

sin 2ðx1Þ

and V3 ¼V12 ¼V23 ¼ 0.
Finally, the main effect sensitivity indices in (1) are S1 ¼ 0:42,

S2 ¼ 0:19, S3 ¼ 0 and S13 ¼ 0:26 when considering I¼5 and J¼0.1.
Note that these values are obviously some approximations of the
main effect sensitivity measures of the continuous versions of the
same variables defined on ½�π;π�. Thus, in the continuous case,
we have S1 ¼ 0:40, S2 ¼ 0:29, S3 ¼ 0 and S13 ¼ 0:31.

Fig. 1 illustrates the discrete kernel regression applied for
estimating the univariate conditional moment EðY jXiÞ with dis-
crete inputs Xi. One can see that the inputs X1 and X2 have a main
effect on Y while X3 has a null main effect with a globally flat
pattern of EðY jX3Þ.
0 1 2 3 −4 −3 −2 −1 0 1 2 3

X2 X3

−20

−10

0

10

20

non-parametric discrete kernel estimation (black dots).



4.2. Results

The discrete triangular symmetric regression estimator and the
continuous Gaussian kernel regression estimator are applied. In
addition for first order indices, a comparison is realized by using
symmetric discrete triangular kernel with modified parameter a0
AN such that for xAT¼ f�3; �2; �1;0;1;2;3g

a0 ¼ 1�
a¼ 0; if x¼ �3
a¼ 1; if xAT⧹f�3g:

(

This modification was proposed by [9] as a solution to boundary
bias effect.

To evaluate the performance of estimators, we use a MC
strategy:

(i) the random generation of a number N¼100 samples ðX1;X2;

X3Þ of size nAf250;500;750;1000g,
(ii) for each sample, the software calculation of the average first

order Sobol indices Si ¼ ð1=NÞPN
j ¼ 1 S

ðjÞ
i ; i¼ 1;2;3; and their

confidence interval by considering the 5% and 95% percentiles.

The error criterion used is the mean absolute error (MAE)
defined as

MAE jðSiÞ ¼
1
N

XN
j ¼ 1

j Si� Ŝ
ðjÞ
i j ;

where Ŝ
ðjÞ
i is the j-th adjustment of main effect sensitivity indice Si.

At last, note that for both discrete and continuous kernel estima-
tors, the bandwidth choice is realized using cross-validation (CV)
procedure defined as follows. For a given discrete kernel Kx;h with
xAT and h40, the CV procedure is useful for finding an optimal
bandwidth hcv ¼ arg minh40 CV ðhÞ minimizing the function h↦
CVðhÞ such that

CVðhÞ ¼ 1
n

Xn
i ¼ 1

fYi� bmn;� iðXiÞg2:

The leave-one-out kernel estimator bmn;� iðXi;hÞ of bmnðx;hÞ is cal-
culated by excluding Xi such as

bmn;� iðXi;hÞ ¼
Xn
ja i

Y iKx;hðXiÞPn
ja i Kx;hðXjÞ

:

The score function CV is an estimator asymptotically unbiased of
Table 1
Average first order Sobol indices Si calculated by discrete and continuous kernel
estimations applied to Ishigami test function.

Input n Discrete triangular Continuous Gaussian
parameters kernal estimator kernal estimator

with a¼1 with a0 ¼ 1
Si MAEi Si MAEi Si MAEi

250 0.411 0.035 0.424 0.037 0.399 0.035
X1 500 0.408 0.021 0.424 0.022 0.397 0.032

750 0.416 0.017 0.424 0.018 0.427 0.022
1000 0.417 0.016 0.423 0.015 0.424 0.015

250 0.219 0.045 0.244 0.043 0.219 0.046
X2 500 0.223 0.031 0.234 0.033 0.235 0.034

750 0.229 0.027 0.232 0.028 0.230 0.026
1000 0.230 0.024 0.231 0.025 0.236 0.029

250 0.009 0.009 0.025 0.025 0.003 0.003
X3 500 0.005 0.005 0.012 0.012 0.001 0.001

750 0.004 0.004 0.008 0.008 0.002 0.002
1000 0.003 0.003 0.006 0.006 0.001 0.001
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the term depending on parameter h40 in the mean integrated
squared error of estimator bmnðx;hÞ.

Looking at the results presented in Table 1, the discrete trian-
gular symmetric kernel estimator is competing to the continuous
Gaussian kernel estimator in terms of MAE for evaluating the main
effect of parameters X1 and X2. In contrast the main effect of
parameter X3 close to 0 is better estimated by the continuous
kernel estimator than the discrete kernel estimator. Further,
Table 2 shows some results regarding the sensitivity indices for
interaction terms between different parameters. Similar to Table 1
the discrete triangular kernel estimator outperforms the con-
tinuous Gaussian one and both estimators detect the strong
interaction between parameters X1 and X3. Finally, as the sample
size n increases, the errors provided by the two estimators con-
verge monotonically towards 0 except for the interaction term X1

X3 due to the number of simulations N¼100.

4.2.1. Potential boundary bias for estimated indices Si
The boundary bias of kernel estimator occurs when there is

large probability mass close to the boundary. The accuracy of the
estimated sensitivity indices did not seem to be improved by
applying discrete kernel estimator with symmetric triangular
kernel a0 ¼ 1 used for solving boundary bias. Looking at Table 1,
the values of criterion MAE i were globally closed by using discrete
symmetric triangular kernels with a¼ 1 and a0 ¼ 1. However, the
sensitivity indices values were over-estimated using modified
parameter a0 ¼ 1 while they were under-estimated using para-
meter a¼ 1 in comparison with the analytical values, in particular
for the main effect S1. Finally, the potential impact of boundary
bias was not clearly perceptible but this may be worth exploring,
especially regarding at a largest sample size nZ1000.

4.2.2. Effects of simulation number N
For estimating first order Sobol indices, in what follows we are

interested in the influence of the number of simulation by
increasing N from 100 to 200. Figs. 2 and 3 reports the comparison
of MAEðSiÞ; i¼ 1;2;3 , for N¼100 and 200, respectively, and sam-
ple sizes nAf100;200;…;2000g. In Fig. 2 corresponding to N¼100,
the behavior of the curves of criterion MAE i did not show clearly
which estimator provided the better performance for approx-
imating S1 while discrete estimator outperformed the continuous
for S2 and continuous estimator is better for S3. Further, the error
criterion MAEi for the three parameters was not monotonically
decreasing as sample size n was increasing.
Table 2
Average second order Sobol indices Sij calculated by discrete and continuous kernel
estimations applied to Ishigami test function.

Interaction
terms

n Discrete triangular ker-
nel estimator with a¼ 1

Continuous Gaussian ker-
nel estimator

Ŝ ij
MAEij Ŝ ij

MAEij

250 0.014 0.023 0.034 0.045
X1X2 500 0.005 0.024 0.010 0.024

750 0.008 0.013 0.006 0.019
1000 0.001 0.009 0.006 0.016

250 0.285 0.037 0.357 0.097
X1X3 500 0.286 0.014 0.351 0.091

750 0.289 0.033 0.350 0.090
1000 0.286 0.027 0.351 0.091

250 0.045 0.045 0.062 0.062
X2X3 500 0.022 0.030 0.031 0.031

750 0.015 0.015 0.022 0.022
1000 0.010 0.010 0.015 0.015



Fig. 2. Comparison of MAE for N¼100 repetitions on Sobol indices for input parameters ðX1;X2;X3Þ of Ishigami test function by using non-parametric discrete kernel
estimations (green line) in comparison with non-parametric continuous kernel estimation (blue line). (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

Fig. 3. Comparison of MAE for N¼200 repetitions on Sobol indices for input parameters ðX1 ;X2;X3Þ of Ishigami test function by using non-parametric discrete kernel
estimations (green line) in comparison with non-parametric continuous kernel estimation (blue line). (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
By increasing the number of simulations N from 100 to 200 in
Fig. 3, one can see more clearly than in the previous figure that the
convergence rates of the discrete kernel estimator were globally
faster than that of the continuous kernel estimator for both S1 and
S2 but not for S3. Further, the error criterion MAE i was now
monotonically decreasing regarding at parameter X3 and only for
discrete kernel estimator regarding at parameter X1 but not at all
regarding at X2. Thus the results would be better by increasing
N4200. However, an optimal number of simulation N which
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would provide a monotonically decreasing error criterion for dis-
crete and continuous kernel estimators must be found. For this
study we will keep N¼100 in the following section for the illus-
tration on the real case.

Note that about the computational effort, it is very little
(around 17 s for one simulation with sample size n¼ 1000) for
both continuous and discrete kernels. Further, there is not any big
difference between the two kernel approaches if the same number
of samples are used.



Table 3
Average first order Sobol indices Si calculated by kernel estimations and Monte
Carlo simulation applied Hemp Crop production system, parameters having integer
positive values are written in bold.

Impact categories Parameters Kernel estimator with
a¼ 1

Monte
Carlo

Si Si

Cont. Discr.
Clay content of the
soil

0.182 0.201 0.244

Eutrophication Quantity of nitrogen
fertilizer

0.108 – 0.118

Allocation method 0.057 0.057 0.083

Ecological Engine release year 0.368 0.375 0.363
toxicity Engine rated power 0.108 0.150 0.098

Working speed 0.076 – 0.072

Human Engine release year 0.402 0.404 0.397
toxicity Engine rated power 0.111 0.153 0.103

Working speed 0.082 – 0.082
5. Simulations on a real case study

The real case study aims at evaluating the input parameters of
processes involving in the Hemp Crop production which mostly
influence the outcomes of a Life cycle assessment (LCA). LCA is a
tool which aims at assessing environmental impacts over all whole
life cycle of a product, i.e. from the extraction of raw materials to
end of life as well as recycling by including fabricating and utili-
zation. The processes involving at each step of a life cycle system
are described by some numerical or analytical models. The out-
comes considered herein are environmental impacts on human
health (human toxicity) and marine or terrestrial ecosystem
(eutrophication, ecological toxicity). Three models are used in this
study (fuel consumption model for agricultural operations,
exhaust emissions models from engines used for agricultural
operations, and direct field emissions models from the crop) for
the Hemp Crop production corresponding to a total of 52 input
parameters, amongst them some discrete parameters uniformly
distributed on support N such as the release year of agricultural
engine, the engine rated power or the clay content of the soil. Note
that a parameter name allocation method is presented but it is a
qualitative parameter with coded values 1 or 2 . For more details,
the complete study is presented in [2]. In this part, the first order
Sobol indices of some discrete input parameters are only studied.
For the second order Sobol indices, a complete work is in progress
on this real case study which requires a multivariate estimation
mixing continuous and discrete kernels.

Some direct MC simulations are used in comparison to kernel
methods for estimating the conditional expectation EðY jXÞ where
the response Y is an environmental impact indicator. Similarly to
the previous part, a MC strategy is applied: to obtain similar
results of Sobol indices, we use N¼100 replications of sample size
n¼1000 for kernel methods while we use N¼500 of sample size
n¼5000 for direct MC simulations. Table 3 presents the results of
main effect sensitivity Sobol indices of the three most influential
(discrete and continuous) input parameters obtained. Note that
the discrete kernel method is applied only on discrete parameters.

In this case study, the estimated values of Sobol first order
indices cannot be compared to theoretical values, we can just
compare between them the Sobol indice values provided by the
three methods. It appears that the three methods provide some
results of same order. In particular, the discrete kernel estimation
provides some values greater than continuous kernel estimation,
except for the allocation method parameter which is not
7

influential. Thus, the results provided by discrete kernel method
are confirmed.
6. Concluding remarks

This work is interested in discrete kernel estimation approach
as a novel approach in reliability analysis suitable when discrete
input parameters involved in a model. It pursues various works in
sensibility analysis framework on the application of (continuous)
non-parametric kernel method for estimating sensitivity indices
calculated from ANOVA decomposition. The studied discrete non-
parametric kernel method is appropriate only for discrete or
ordinal variables, not for real continuous cases. The discrete
approach is proposed as a competing approach more suitable for
discrete input parameters than continuous non-parametric kernel
method. First, the theoretical asymptotical convergence rate of the
discrete kernel estimator is better than that of the continuous
kernel estimator. Then, the realized simulations point out that the
discrete approach is faster than continuous one in the sense of
average MAE for moderate or most influential input parameters.
However, the discrete kernel approach seems to be limited when
estimating the main influence of discrete input parameters having
a weak contribution to the variance of the model output, in
comparison to continuous approach which provides better esti-
mation in this case. The boundary bias was treated in this work
but may be something worth exploring in the future as well, to
further verify and improve the estimation accuracy of the pro-
posed approach. In addition, a minimum number of simulations
depending on sample sizes needs to be found to insure that the
error criterion used is monotonically decreasing.

The aspect of curse of dimensionality is not included in this
work. Thus, some future prospects will be to investigate multi-
variate estimation mixing continuous and discrete kernels when
evaluating the influence of both discrete (count and categorical)
and continuous input variables.
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