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Abstract—We present the general principles of a dynamical
sequential fusion strategy for multibiometric systems allowing
reducing the cost associated to the use of different modalities
while preserving a good performance compared to that of a
global fusion system. We have implemented this strategy in the
BMEC (BioSecure Multimodal Evaluation Campaign) 2007 cost-
sensitive evaluation. We show that this approach was very robust
to the occurrence of missing data thanks to its adaptive
implementation.

Keywords—Multi-biometrics, fusion, cost
evaluation, incremental fusion, missing values.
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L INTRODUCTION

Multi-biometrics has already been the subject of important
studies and surveys [1,2]. Fusion of multimodal scores, if
performed carefully, provides in all cases an improvement in
terms of performance compared to the use of a single modality
[3]. Multi-biometrics is also claimed to bring extra advantages,
such as robustness to forgeries and to missing values when for
some reasons we do not have at disposal the score value of one
of the modality at hand. On the other side, multimodality has a
cost as additional sensors are needed, both in enrollment and
test phases; it also reduces user convenience and is time and
complexity consuming. It is therefore interesting to evaluate
the merits and limits of multi-biometrics in terms of
performance as well as induced cost. This was one of the
objectives of the BioSecure Multimodal Evaluation Campaign
(BMEC 2007) [4] organized in 2007 by the BioSecure [5]
Network of Excellence. This multimodal biometric evaluation
campaign was composed of two pre-defined scenarios: access
control and mobile scenario. More details on the corresponding
Multimodal Database as well as the experimental results of
BMEC 2007 can be found at [4].

We will focus in this paper on the access control scenario
and more particularly on one of the two proposed evaluation
schemes: cost-sensitive score fusion. The aim of this cost-
sensitive evaluation scheme was to consider the fusion task as
an optimization problem whose goal is to achieve the highest
performance with a minimal cost. We refer to “cost” as the
price paid for acquiring and processing more information, e.g.,
requesting more samples from the same device or using more
biometric devices (which entails longer processing time).

In this paper we present the system that we submitted to the
cost-sensitive evaluation of the access control scenario of

BMEC 2007. It is based on a dynamical sequential fusion
architecture. The aim of the proposed fusion architecture is to
reduce the cost of a multi-biometric system in using the least
number of systems as possible. The architecture is sequential
because systems are used one after another, and dynamical
because the number of systems used depends on each access. In
Section 2 of this paper we will describe the methodology we
introduced in order to build such architecture. In Section 3, we
will present in more details the cost-sensitive evaluation and
the implementation of our methodology to this context while
our results are exposed in Section 4.

II.  DYNAMICAL SEQUENTIAL FUSION STRATEGY TO REDUCE
THE COST

In presence of several systems, the most frequent strategy in
the literature is to fuse the scores provided by all the systems
simultaneously to take the final decision, without making any
distinctions on the values of the different scores. At the
opposite, the general idea that underlies our methodology is to
use the different modalities sequentially. By multi-biometrics
we mean using different biometrics (like face and iris for
instance) or using different realizations of the same modality
(like the scores obtained on the 5 or 10 fingerprints of the same
person). Similarly to the multistage approach introduced in
[6,7] in the general case of multiple classifiers, we propose to
introduce a hierarchy in the different systems leading therefore
to classifiers of increasing complexity (a single modality
system, then a fusion of two modalities system etc...) as shown
in Fig. 1. More precisely, the idea is to use a single system (at
the beginning reduced to one single modality, this system will
correspond at further steps to the fusion of modalities) as long
as this system allows taking a decision that will induce no
errors (or very few errors).

As presented in [6], we do not consider the classical “2-
classes” decision that is accepting or rejecting a user identity
thanks to a unique threshold on the scores of the system. In our
strategy, at each stage of our architecture, three decisions are
possible: acceptance, rejection or no-decision. This is possible
thanks to the use of two different thresholds as shown in Fig. 2
and explained in more details in the following section. In the
case of “no-decision” we add an extra modality (and then extra
information) to try to take the decision. Our strategy consists in
choosing this additional modality in such a way that it is the
most complementary to the existing system (i.e. it corresponds
to the lowest value of the resulting fusion error).
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Figure 1. Incremental architecture scheme.

As several modalities are available (in BMEC 2007, there
are 8 possible scores for each client access), we must order the
different modalities and their fusion in order to optimize the
above described methodology. This is done on a development
set on which we have at disposal the client and impostor scores
for each modality. This way, our sequential fusion strategy is
able to dynamically adapt and choose the systems depending
on the context and the difficulty to take the decision. It thus
allows reducing the cost while still keeping the advantages of
multi-biometric systems in terms of performance for difficult
cases and also in terms of forgeries detection.

The sequential architecture, described in Fig. 1, is defined
by two aspects: a given ordering of monomodal systems and
the decision rules at each step.

The incremental system is dynamical because for each
access, the number of systems used can be different depending
on the step at which the decision is taken. The only thing that is
fixed in advance thanks to the development database is the
ordering of modalities.

III. TRAINING METHODOLOGY TO BUILD THE SEQUENTIAL
FUSION STRATEGY

We will now describe in more detail the two steps of the
training methodology we have settled in order to build the
system. The available data are scores from each biometric
system. In some cases, quality measures can also be available
and used in the decision rules.

Step 1: Determining monomodal systems’ ordering

The ordering of the monomodal systems in the incremental
architecture consists in the choice of the sequence of modalities
to be considered.
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Figure 2. Client and impostor scores distributions.

We select the first system using the following criteria:

* good individual performance
* good complementarity with other systems

To study the complementarity between individual biometric
systems, we consider the performance of 2 or several
monomodal systems using a simple fusion method: fusion by
average of independently normalized scores using MinMax [8].
The less the EER (Equal Error Rate), the more the systems are
complementary.

At each step, we choose the next system among the
remaining systems using the same two criteria.

Step 2: Determining rules of decision at each step

Once the ordering of monomodal systems is fixed, we
determine the rules of “decision” at a given step and the rules
of “transition” to the next step.

The rules of decision are defined using high and low
thresholds corresponding to quasi-certain areas (see Fig. 2) on:

* the score of the modality acquired at this step and the
associated quality measures if available

* the fusion score of all monomodal systems available at
this step and the previous steps.

At the first stage (see Fig. 1), in order to define the high and
low thresholds associated to the chosen monomodal system
according to Step 1 we observe the shape of its client and
impostor scores distributions (see Fig. 2) on the development
set.

We then determine areas of quasi-certain decision using
high (t,) and low (t;) thresholds represented by vertical lines on
Fig. 2. The 2 quasi-certain areas ]-oo; t;] and [t,;+oo[ are
determined so that only one class (client, impostor) is present.
Those high and low thresholds allow to take a decision by



using only the considered monomodal system (that is without
performing fusion) when a score belongs to the 2 previously
mentioned intervals.

At stage 2, the chosen monomodal system according to step
1, is analyzed in term of client and impostor distributions to see
whether it is possible to take a decision. In that case no fusion
is necessary; otherwise we fuse the score of modality and the
score of modality 2 in Fig. 1 and study again the client and
impostor distributions to determine the two thresholds.

All the rules of the architecture are defined using this kind
of double thresholding but in some cases, as explained above,
being applied to a monomodal system score and in other cases
to a score from a fusion system.

Both the ordering of the monomodal systems and rules are
fixed empirically on the development set that should be
representative of the population of the application. Rules
should not be over fitted to the development set in order to
allow a good generalization on an unknown evaluation set.

When evaluating our architecture, we will compare our
sequential architecture to a “classical” fusion system using all
available monomodal biometric systems. This so-called
“reference” fusion system is a fusion method based on
Gaussian Mixture Models (GMM) [9]. Client and impostor
scores likelihoods are modeled by 2 different GMMs as
described in [10]. The posterior probability of the client class is
then computed using Bayes rule and used as the final score.

IV. EXPERIMENTS AT BMEC 2007 IN THE COST-SENSITIVE
EVALUATION

A. The cost-sensitive protocol

As already said, the cost-sensitive evaluation is a score-
level fusion evaluation. The objective is to optimize at the same
time the multimodal system’s performance and its cost. Such
cost can be seen as the financial cost of devices used for
biometric data capture as well as the processing time to capture
and process such data. For each multimodal access, 8 scores are
available:

* 1 face score

* 1 iris score

* 6 fingerprint scores for 6 different fingers obtained from
the same fingerprint recognition algorithm.

For each score, quality measures are given. Quality
measures are available for both the reference image and the test
image:

* For face images, 14 quality algorithms give 14 quality
measures for the reference image and 14 quality measures
for the test image.

* For iris images, 3 quality algorithms give 3 quality
measures for the reference image and 3 quality measures
for the test image.

* For each of the 6 fingerprint images, 1 quality algorithm
gives 1 quality measure for the reference image and 1
quality measure for the test image of each finger.

For this evaluation, the value of the costs has been fixed by
the organizers. The global cost is defined by a weight
coefficient of 1 for each new biometric modality used (face,
iris, fingerprint), a weight of 0.3 for each additional finger in
the fingerprint modality. For example, using only one modality
corresponds to a cost of 1, using face and iris corresponds to a
cost of 2 (1+1), using 2 fingerprint scores corresponds to a cost
of 1.3 (1+0.3) and using all scores corresponds to a cost of 4.5
(1+1+1+5%*0.3).

For evaluation, it is important to distinguish between two
data sets, i.e., the development and the evaluation sets. The
development set was released to the participants and is used for
algorithm development, e.g., finding the optimal parameters of
an algorithm, including setting the global decision threshold. In
this evaluation, the development set consists of 51 persons with
2 client scores and 412 impostor scores each. The evaluation
set consists of 156 persons with 2 client scores and 504
impostor scores each. For unbiased performance assessment,
the population of users in these two data sets is disjoint and the
evaluation set remained sequestered by the organizers. More
details on the precise protocol can be found on BMEC 2007
web site [4].

In Table 1, the performance of the 8 monomodal systems
on the development set and on the evaluation set are presented.
On the development set we consider the EER criterion (Equal
Error Rate) in order to fix a threshold which will be used on the
evaluation set. Then, Performance on the evaluation set is
measured by HTER (Half Total Error Rate).

We can observe in Table 1 that the performance of the
different systems are surprising compared to habits. Indeed
fingerprint and iris have poor performance whereas they are
considered as very reliable modalities. Those results are due to
the bad quality of the database and particularly to some sensing
characteristics. Indeed, fingerprints have been acquired with a
thermal sensor that gives bad quality images with distortions
compared to those obtained through commonly used optical
sensors. Iris images in this database are also of very bad quality
due to some defect of the sensors.

B.  Our proposed incremental fusion architecture submitted
at BMEC 2007

Step 1.0rdering of the system

The architecture has been designed on the development set.
The ordering of 8 systems in the incremental architecture is:
Face, Fingerprint2 (right index), Iris, Fingerprintl (right
thumb), Fingerprint5 (left index), Fingerprint3 (right middle),
Fingerprint4 (left thumb) and Fingerprint6 (left middle). The
ordering has been defined using each system’s performance
separately (See Table 1) and also its complementarity with
others by considering fusion of 2 or more systems as shown in
Table 2 and Table 3.

Face is chosen to be the first biometrics because:

* The face system’s performance is among the best on the
development set

* Fusion of face with the other modalities gives good
performance as shown in Table 2.



TABLE L.

PERFORMANCE OF THE 8§ MONOMODAL SYSTEMS ON DEVELOPMENT AND EVALUATION SETS

Face Iris Fingl | Fing2 | Fing3 | Fing4 | Fing5 | Fingb
EER (%) on the development set 8.98 1446 | 1741 9.13 16.12 | 19.49 12.5 13.37
HTER (%) on the evaluation set for a priori 10.23 18.90 19.18 10.98 18.18 19.25 13.68 17.56

threshold corresponding to EER on the
development set

TABLE IL. PERFORMANCE OF FUSION OF FACE WITH OTHER SYSTEMS. THE FUSION METHOD USED IS MINMAX NORMALISATION AND AVERAGE OF SCORES.
Fusion of face with Iris Fingl Fing2 Fing3 Fing4 Fing5 Fing6
EER (%) on the development set 491 6.83 1.98 3.94 4.69 3.05 2.95

TABLE III. PERFORMANCE OF FUSION OF FACE AND FINGERPRINT 2 WITH OTHER SYSTEMS. THE FUSION METHOD USED IS MINMAX NORMALISATION AND
AVERAGE OF SCORES.
Fusion of face and fingerprint 2 with Iris Fingl Fing3 | Fing4 | Fing5 | Fing6
EER (%) on the development set 1.79 1.98 2.71 1.93 2.88 1.97

The second biometrics used is Fingerprint2 (right index)
because it has good performance (see Table 1) and good
complementarity with face (see Table 2).

When comparing Table 2 and Table 3 we can see that
fusing 3 systems is not always better than fusing only 2
systems (face and fingerprint2). In order to have a better
performance for fusion, we could have used a complex fusion
method as GMM presented in the previous part, or we could
have weighted the 3 systems. However, the use of this simple
fusion method allows seeing that iris is the most
complementary modality with face and fingerprint 2. This is
the reason why iris is chosen to be the third biometrics used in
the sequential architecture.

Following this methodology, we chose the final ordering of
systems used in the sequential architecture submitted to BMEC
2007 cost sensitive evaluation.

Step 2. Definition of decision rules at each step of the
incremental architecture

Ordering of modalities has been chosen in order to use first
the best systems. We now need to define the decision rules at
each step.

At the first step, only one modality is available: face.
Quality measures (14 measures) are also available for face
system, more details about quality measures can be found in
[4]. Fig. 3 presents the distribution of face scores versus one of
the face quality measure (quality measure 2) which gives
indication on the brightness. Decision on Face consists in high
and low decision thresholds for which the face system allows a
quasi-certain decision as shown in Fig. 3 with the two vertical
lines. The lines correspond to high (t,=75) and low (t=10)
thresholds that determine 2 quasi-certain areas J-oo; t;] and
[tn;+oo[: scores below 10 and scores higher than 75. In these
two areas, there is no overlap between clients and impostors

distributions. As explained in Section 2, those two thresholds
allow classifying part of the scores using only face.

Also, dashed lines in Fig. 3, illustrate the use of quality
measures in the definition of decision rules. For example, for
this measure, we can observe that the high threshold (t;) can be
rather set to 55 if the quality measure has a value below 50.
This additional rule allows classifying more data using only the
face modality.

An example of rule of decision for the first step of our
sequential architecture is:

e Ifface score is > t,=75 , then accept

e Ifface score is < t=10, then reject

* If face score is > t,q=55 and quality is < 50, then accept
(quality adapted rule)

* Otherwise no decision is taken and we go to the next step.

At each of the other next steps, two kinds of decision are
made: decision on the new modality alone using high and low
threshold as for face, and decision on the fusion of all the
previous systems. For example at the third step, the fusion of
Face, Fingerprint 2 and Iris is also used to take a decision using
high and low “quasi-certain” thresholds on the fused score.

At each step, if one or several biometric scores are missing
(due to acquisition errors or in score computation by biometric
systems), the corresponding rules are not used. If no rules can
be used (the conditions are not verified), we directly move to
the next step. At the last step, if all scores are available but
none of the rules allows taking a decision, we use a “classical”
fusion method as follows. If one or several scores are missing,
we use the simple MinMax [8] method that independently
normalizes each score before taking their average. If all scores
are available, we use the “reference” method using GMM-
based fusion as described in section III.
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Figure 3. Face score distribution vs. quality measure.

V. RESULTS OF OUR SEQUENTIAL FUSION ARCHITECTURE
AT BMEC 2007

In this section we present the results of our sequential
fusion strategy at the cost-sensitive evaluation of BMEC 2007.
We also compare it to the “classical” fusion method based on
GMM and using all the available scores that we also submitted
as a point of comparison. We do not compare our system to all
the other participant systems. For information on the results
and comparison of all the submitted systems the reader should
refer to [4].

The cost-sensitive evaluation allows studying two different
aspects of multibiometric systems:

* cost minimization of a multibiometric system (reduction
of the number of modalities acquired and used)

* estimation of biometric systems robustness to missing
values (missing values correspond to impossibility to
acquire or to process a biometric sample)

As described above, cost is estimated depending on the
number of biometric systems used. Robustness to missing
values is studied using 5 different evaluation datasets. Indeed,
the organizers have provided 5 different evaluation datasets
corresponding to different percentages of missing values. In
each case, the organizers have randomly “hidden”, respectively
0%, 10%, 20%, 30% and 40% of the scores of each system.

In Fig. 4, each curve corresponds to 5 points associated to
the 5 different percentages of missing values (0%, 10%, 20%,
30% and 40%). Only points of each curve corresponding to
original data with no artificially missing values (0%) are
indicated by a symbol (o, A, », ¥V, «, 0, 0, * ...). It thus
allows reporting the evolution of performance when the
percentage of missing data increases (starting from the
extremity with the previously mentioned symbols).

Performance on evaluation set corresponds to HTER (Half
Total Error Rate) with an a priori threshold computed with the
EER (Equal Error Rate) criterion on the development set.
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Figure 4.  Performance of systems versus cost depending on missing

values on evaluation set.

In Fig. 4, we can identify 3 zones:

* Zone 1 corresponds to monomodal systems when being
considered individually.

* Zone 2 corresponds to fusion systems using all the
monomodal biometric systems.

* Zone 3 corresponds to fusion systems that tend to
minimize dynamically the cost as proposed by our
architecture.

On the upper left side of Fig. 4, systems in Zone 1
correspond to monomodal systems. As already mentioned in
Table 1, monomodal systems’ performance varies
approximately from 10% to 20% on the evaluation set as
shown in Fig. 4. All those systems have a cost equal to 1 when
no data are missing and the cost decreases as data is missing.
We can also see in Fig. 4, that monomodal systems of Zone 1
are extremely sensitive to missing values as expected. The
HTER of the 8 monomodal systems is strongly affected by
missing values, going from 10% or 20% to 50% or 60% for the
maximum of missing values, when the average cost on all the
accesses reaches 0.5.

On the lower right side of Fig. 4, in Zone 2 at the opposite
of what we observe in Zone 1, the system has a very good
performance but a high cost. The system in this zone is a
classical fusion system based on GMM using all the available
scores, therefore the cost is maximal but the performance is
very good. We can also see that, at the opposite of monomodal
systems in Zone 1, system performance in Zone 2 is very
slightly degraded by missing values. The HTER of GMM-
based fusion system goes from 0.9% to 3.81% when 40% of
values are missing. At the same time, the cost decreases (from
4.4 t0 2.9) due to missing values.

The objective of the evaluation is to reach the lower left
corner of Fig. 4 by having at the same time a good performance
and a low cost. Then, we can see that Zone 1 is “better” in case



of no missing values but Zone 2 is “better” in case of missing
values.

Zone 3 corresponds to our fusion system using dynamical
selection of monomodal systems for fusion. Our system is
comparable to monomodal systems when no values are missing
with a slightly better performance but a slightly higher cost.
We notice that the real interest of those systems is that they are
very stable when values are missing, both in terms of
performance and cost. The cost is always around 2 and the
HTER remains between 8% and 9%. We notice that the global
cost increases slightly when the percentage of missing values
increases. It is due to the fact that for some accesses, the
“strong” modalities (the best modalities in terms of our criteria
in Step 1) are missing and then the strategy needs to use
“weaker” modalities and therefore more systems.

Depending on the application, the needs in terms of
performance and cost are different. Fig. 4 allows choosing the
best type of systems for an application considering the three
“zones” that appear. Indeed:

Zone 1 is interesting for applications needing a low cost
even with higher error rates. Zone 1 can only be used when no
or very few values are missing and there are no advantages of
using a multimodal system, with regards to enrolment problems
or problems of robustness to forgeries.

Zone 2 is interesting for applications requiring a very high
performance even at the price of a high cost. It can also be used
when data are missing and it keeps the advantages of
multimodality (robustness to forgeries, robustness to enrolment
problems, ...)

Zone 3 is very interesting in applications requiring
simultaneously to reduce the cost and to keep a good level of
performance, and particularly when data are missing. The
sequential architecture, in Zone 3, also has other advantages
compared to individual monomodal systems (Zone 1) due to
the multibiometric aspect:

* depending on the application, we can change the rules in
order to adapt the cost to the context

* multibiometrics also leads to a more robust system to
forgeries

* it is particularly suited for situations in which one
modality cannot be used (in case of missing values), since
it allows considering other modalities in replacement.

It is thus a very flexible architecture, reactive to situations
of actual acquisition scenarios.

VI. CONCLUSION

In this article we presented a new incremental and
dynamical fusion strategy that we submitted to the BMEC 2007
cost-sensitive evaluation. We have shown, on this rather
unrealistic situation, that this strategy allows to get a good level
of performance while reducing significantly the cost over
methods performing global fusion (fusion of all the 8 available
scores). Moreover, this method can be used when data are
missing, as it adapts to the context for each client access and it
keeps the advantages of multimodality (robustness to forgeries,

to enrolment problems, increase of performance). Of course
this evaluation is not representative of a possible application (8
modalities for each client access is unrealistic) but this
theoretical framework was interesting to stress the interest of
our strategy which can be used with profit in more practical
situations where reducing the cost in the fusion scheme is an
important issue.
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