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Abstract

Syntax plays an important role in the task of predicting the semantic structure of a sentence.
But syntactic phenomena such as alternations, control and raising tend to obfuscate the relation
between syntax and semantics. In this paper we predict the semantic structure of a sentence using
a deeper syntax than what is usually done. This deep syntactic representation abstracts away
from purely syntactic phenomena and proposes a structural organization of the sentence that is
closer to the semantic representation. Experiments conducted on a French corpus annotated with
semantic frames showed that a semantic parser reaches better performances with such a deep
syntactic input.

1 Introduction

FrameNet (Baker et al., 1998) is an English resource containing a set of inter-related semantic frames,
each frame containing a set of semantic roles (frame elements in FrameNet’s terminology). Frames
offer semantic generalizations over individual predicates, since different lexical units can evoke the same
frame, and semantic roles offer generalizations over syntactic arguments. Hence FrameNet parsing can
be viewed as mixing predicate disambiguation and semantic role labelling.1

Although FrameNet is more semantically-oriented than other semantic role labeling resources such
as PropBank (Palmer et al., 2005), syntactic information has been shown to be decisive for predicting
(FrameNet) semantic roles since the early days of the task (Gildea and Jurafsky, 2002). Linking regular-
ities provide the theoretical justification of this result: there exist regularities in how semantic arguments
are realized in syntax. Yet it is well known that the mapping from syntactic arguments to semantic ones
is not straightforward. First, lexical idiosyncrasies can come into play, for instance the Addressee of
communication verbs may correspond to the indirect object for verbs like to say and to the direct object
for a verb like to inform. Second, it is also well known that surface syntax exhibits variation that can
obfuscate regularities. For instance though the Speaker is generally the subject of communication verbs,
this does not hold when the verb is passivized. This difference disappears if syntactic alternations are
neutralized, and the “canonical” diathesis of a verb is made explicit: the Speaker is the canonical subject
in both active and passive voices.

In this paper, we investigate the syntax-semantic interface in FrameNet annotated data, and study the
impact of using “deeper” syntactic features to predict semantic frames and roles. More precisely, we
take advantage of a deep syntactic dependency graphbank for French (Candito et al., 2014b; Ribeyre et
al., 2014), which provides a level of representation that abstracts away from purely syntactic variation.
The main contributions of the paper are (i) a comparison of the syntax/semantic regularities observed
when using plain “surface” syntax to those observed when using deep syntax and (ii) a study of how and
why the switch from surface to deep syntax impacts FrameNet semantic parsing. In the remaining of the

∗ All of his work has been done during his PhD at Alpage.
This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1In the following, we will use shorter terms than those of FrameNet terminology : we use the term trigger for a lexical unit
that can evoke a frame, the term role for frame element, and role filler for the sequence of words that instantiates a role.



paper we will use the terms Surface Syntactic Representations (SSR) and Deep Syntactic Representations
(DSR) to refer to surface syntactic trees and deep syntactic graphs.

Using abstract syntactic representations as an intermediate representation level between syntax and
semantics has been proposed in different theoretical frameworks, such as derived trees of Tree Adjoining
Grammars (Joshi and Schabes, 1997) or deep syntactic structures of the Meaning Text Theory (Mel’čuk,
1988). But we only found few works showing, empirically, that using such representations can effectively
help predict the semantic roles of predicates.Two of them concern PropBank semantic role labeling. The
early (Gildea and Hockenmaier, 2003) work shows that using CCG-derived predicate-argument features
predicted by a CCG parser improves the identification of core PropBank arguments. Vickrey and Koller
(2008) investigate the use of simplified syntactic paths and report a slight improvement when applying
transformation rules to simplify phrase-structure parses.

As far as FrameNet parsing is concerned, we don’t know of any work using more abstract syntactic
input than plain “surface” syntactic trees, whether phrase-structure (Gildea and Jurafsky, 2002) or de-
pendency trees (Johansson and Nugues, 2007; Das et al., 2014). We focus on French, first because of
the availability of the afore-mentioned DSR, and second because in the French FrameNet corpus (Dje-
maa et al., 2016) the annotated semantic roles are restricted to essential arguments. On the contrary,
both essential (“core”) and non essential participants are annotated in the English FrameNet, including
modifiers such as time, location, purpose etc... But syntactic variation such as syntactic alternations,
VP coordination, control etc... does concern primarily the most salient grammatical functions (subject,
direct object, indirect object etc...), which are typically the ones that essential arguments bear. Hence,
neutralizing syntactic variation is expected to have an impact primarily on essential semantic roles.

The structure of the paper is the following: in section 2, we present (i) the French FrameNet cor-
pus that we use, (ii) the deep syntactic representations whose impact for FrameNet parsing we wish
to investigate, (iii) we compare the syntax/semantic interface when using surface dependency trees and
deep dependency graphs and (iv) we compare such deep representations to other deep representations
proposed mainly for English. Section 3 and 4 are devoted to the frame-semantic parser and the deep-
syntactic parsing architecture we used. We present and discuss the frame-semantic parsing experiments
in section 5, and conclude in section 6.

2 Deep syntax and frame semantics

2.1 French FrameNet corpus

The French FrameNet annotated corpus (Djemaa et al., 2016) was produced within the ASFALDA ANR
project on French shallow semantic parsing2. Two corpora have been annotated with frames and roles:
the French Treebank (Abeillé and Barrier, 2004) (hereafter FTB) and the Sequoia Treebank (Candito and
Seddah, 2012b). The first one contains 18, 535 sentences from the Le Monde newspaper. The second
one is much smaller and was originally created for domain adaptation experiments for statistical parsing.
It contains 3, 099 sentences from a regional newspaper, from Europarl, from the European Medicine
Agency and from the French Wikipedia.

The French FrameNet corpus annotation is restricted to four semantic domains: commercial trans-
actions, cognitive stances, verbal communication and causality. For all lexical items of the lexicon,
associated with frames pertaining to these domains, the first 100 occurrences have been annotated. For
each occurrence to annotate, annotators were proposed the pertaining frames, plus a special null frame
for the cases in which the occurrence evoked a sense not pertaining to the four domains. We provide
quantitative characteristics of the corpus in Table 1. The semantic annotations cover 105 frames, and
the lexicon extracted from the annotations contains 1112 frame/lemma pairs (i.e. senses). The corpus
contains 15, 990 annotated frame occurrences (plus 8727 occurrences of the null frame3), 56.2% of
which correspond to verbal triggers and 33.0% to noun triggers.

2Version 1.0, https://sites.google.com/site/anrasfalda/
3The null frame is used to annotate words that would trigger a frame that has not been defined yet. Note that trigger

occurrences ahead of the first 100 occurrences do not bear any frame at all, and are not to be considered.



Nb. Sentences 21 634
Nb. Tokens 625 951
Nb. distinct annot. frames 105
Nb. distinct annot. lemma/frame pairs 1112

Nb. annot. frame occurrences 15 990
Nb. annot. role occurrences 24 147
Mean nb. annot. frames per lemma 18.3
Median nb. annot. frames per lemma 6

Table 1: Quantitative characteristics of the French FrameNet annotated corpus (excluding the null frame).

2.2 Deep syntactic representations
We now turn to the deep syntactic graphbank that we use as an alternative syntactic representation for
FrameNet parsing. DSRs are available for the two corpora that were annotated with frames and roles (the
Sequoia corpus and the French Treebank). The development set of the Sequoia corpus was used to set up
the deep syntactic annotation scheme, as well as a surface-to-deep syntax conversion module (Ribeyre
et al., 2014) based on a graph-rewriting tool (Ribeyre et al., 2012). While the DSRs were manually
validated for the full Sequoia corpus, those for the FTB sentences were automatically obtained using this
surface-to-deep syntax conversion module, described in section 4. The quality of the resulting DSRs is
high enough to use them as a reference for evaluation4.

Candito et al. (2014b) define DSRs as dependency graphs which abstract away from purely syntac-
tic variations, as far as verbal and adjectival predicates are concerned, making explicit their predicate-
argument structure. SSR and DSR differ on three aspects:

• Saturation: The predicate-argument structure of all verbs is saturated for verbs that are not the head
of a saturated clause (e.g. coordinated verbs, infinitival verbs). Any element that does not locally
depend on the verb but that would do so if the verb were the head of a clause is added as (deep)
dependent of the verb. First, this means that arguments shared by several verbs, e.g. in elliptic
coordinations or control verb constructions, are attached to all their deep governors. For instance in
Paul loves to eat pies, Paul is the subject of both loves and eat, and in Paul loves and often eats pies,
the two coordinated predicates loves and eats share the same subject Paul and direct object pies.
Second, noun-modifying verbs get the noun as deep syntactic dependents. For instance in People
born before 1969 fear the moon, the verb born gets People as subject.

• Syntactic alternations: Productive syntactic alternations are neutralized. Syntactic arguments of
verbs get their canonical grammatical function, which may differ from the observed grammatical
function. The most frequent alternations are the passive alternation, then middle and neuter alter-
nations, each marked with a se clitic. Other more marginal alternations are impersonal, impersonal
passive and causatives. Note that alternations frequently interact with predicate-argument structure
saturation. For instance, in Paul would like to get an interview and then be hired, Paul is added
as canonical subject of get but canonical object of hired. In noun-modifying participial clauses,
if the verb is transitive, the past participle is analyzed as a passive. For instance in People hired
after march are few, the verb hired gets People as canonical direct object (see also the verb poussée
(urged) in figure 1).

• Abstraction: Most grammatical markers are discarded. Auxiliaries in particular are replaced by
deep features on the lexical verb. Empty prepositions and complementizers are bypassed For in-
stance in Le chat sourit à la souris (The cat smiles to the mouse), the preposition à is discarded, and
the indirect object of the verb is the NP la souris (the mouse).

By extension, the subjects5 of adjectives are made explicit in the DSRs.
The DSRs are closer to predicate-argument structures than SSRs are, yet predicates are not disam-

biguated, and thus canonical grammatical functions are used and not semantic roles.
Figure 1 shows the SSR, DSR and FrameNet annotations for one sentence (the role fillers are reduced

to their syntactic head, cf. section 2.3). It can be seen, for instance, that the past participle poussée
4Ribeyre et al. (2014) report a 98.4 Fscore evaluated on manually validated DSRs for 200 sentences from the FTB.
5The subject of the adjective is either the noun it modifies in case of an attributive adjective, or the subject of the copular

verb in case of a predicative adjective.



(urged) modifies the proper noun EDF in both syntactic representations, but the noun is its canonical
direct object in the deep representation.

Poussée par le président , EDF offrit des tarifs compétitifs pour décider Péchiney à choisir Lille.
Urged by the president , EDF offered some rates competitive in order to convince Péchiney to choose Lille.
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Poussée par le président , EDF offrit des tarifs compétitifs pour décider Péchiney à choisir Lille.
FR Attempt suasion FR Purpose FR Cog. affecting
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Figure 1: Example of syntactic and semantic annotations for a sentence. Top: Surface and deep syn-
tactic representations (edges above: SSR, edges below: DSR). Verbs and adjectives are in blue. Tokens
discarded in the DSR are in gray. Grammatical functions added and/or normalized when switching from
SSR to DSR are in red. Bottom: frame and role annotations (from trigger to syntactic head of role
fillers), for three triggers (2 verbs and 1 preposition).

2.3 Syntax semantics interface
As already mentionned in the introduction, syntax is a major feature when predicting semantic roles.
Reducing the variety of syntactic features might therefore help fighting against data sparsity and improve
this prediction task. Because they are meant to neutralize syntactic variations, DSRs are good candidates
for such a reduction. In all the following, we will use as syntactic features the syntactic paths that link a
frame trigger to the syntactic head of each of its role fillers (the head is taken as the leftmost root of the
subtrees composing the role filler). In this section we will measure how much the use of DSRs helps to
reduce the variety of syntactic paths. In order to do so, we will compute the entropy of the probability
distribution of the syntactic paths that correspond to a role. Two entropies will be compared: the surface
syntactic entropy and the deep syntactic entropy.

Before defining surface and deep syntactic entropy, we need to define precisely the notions of semantic
path: deep syntactic path (DSP ) and surface syntactic path (SSP ). Given sentence S that contains an
occurrence of frame F having word t as trigger and which role R is filled by a sequence of tokens W
(the role filler, which may be discontinuous). We will call the tuple (t, R,W ) a semantic path of S.

We associate to every semantic path p = (t, R,W ) of sentence S a surface syntactic path SSP (p) and
a deep syntactic path DSP (p), which link the trigger to the head of the role filler W , noted h(W ).

SSP (p) is the shortest path linking t and h(W ) in the SSR of S. The SSR being a tree, such a path
exists and is unique, it is the sequence of dependencies that link t to h(W ). We represent it formally as a
sequence of tuples (direction,label), where direction is + if a dependency is traversed from the governor
to the dependent and - otherwise.

Defining DSP is not as straigtforward: the DSR being a graph, there can be several shortest paths6

from t to h(W ). We select a unique shortest path using the following hierarchy of grammatical functions
to rank paths of length one: suj > obj > ats/ato > a obj > de obj > p obj > mod.7 The left part
of Table 2 shows the five most frequent syntactic paths, when the trigger is a verb, using either surface or

6Actually, since deep syntax can form non connected oriented graphs, there can be no path at all between t and h(W ) (due
to errors in deep syntax or in semantic annotations). We use the special tag no path in such cases.

7With a > b meaning a has priority over b and a/b meaning a has the same priority as b.



surface syntax deep syntax
(+suj) 25.02% (+suj) 33.1%
(+obj) 17.01% (+obj) 32.79%
(-mod) 8.04% (+a obj) 4.73%

(+obj,+obj.cpl) 4.42% (-mod) 3.15%
(+a obj,+obj.p) 4.09% (+mod,+obj.p) 2.46%

Total 58.58% Total 76.23%

role synt. head syntax path

PERSUADER EDF surface (-obj.p,-mod,+suj)
deep (+suj)

COGNIZER Péchiney surface (+obj)
deep (+obj)

ACTION choisir surface (+a obj,+obj.p)
deep (+a obj)

Table 2: Left: Most frequent gold syntactic paths in training corpus, when the trigger is a verb. Right:
surface and deep paths for the FR cognizer affecting frame evoked by décider in the sentence of Figure
1.

deep syntax. We can see that the distribution of paths is much more compact when using deep syntax :
the first five paths represent more than 76% of deep paths, compared to 58% for surface paths. (obj) and
(suj) paths represent 42.03% of SSP but 65.89% of DSP (in order to reach that coverage with SSP ,
the 8 most frequent SSP are needed).

The right part of Table 2 shows the deep and surface paths corresponding to the roles of the
FR cognizer affecting frame evoked by décider in the sentence of Figure 1.

In order to measure the reduction of the variety of the syntactic realization when moving from surface
to deep syntax, we have computed the average entropy over all roles R of the probability distributions
P (p|R) where p is a path. These distributions have been estimated on the training corpus. The average
entropy when computed on surface syntax is equal to 1.65 and to 1.32 when computed on deep syntax.
This decrease is a direct measure of the normalizing effect of the deep syntactic frame we used. Note
though that an entropy reduction could be artificially obtained by neutralizing meaningful syntactic dis-
tinctions. Yet, the DSRs were designed following syntactic principles and experiments in section 5 are
intended to check that such a normalization is indeed beneficial for downstream semantic parsing.

2.4 Comparison with other deep representations
There has been various previous works proposing deeper syntactic annotation schemes that can repre-
sent information absent in plain constituency or dependency trees, such as long-distance dependencies,
subjects of control verbs, subjects of coordinated verbs etc. This additional information is sometimes
viewed as pertaining to semantic representations, sometimes retained as still syntactic.

English has been the first focus language, along with Czech thanks to the Prague Dependency Treebank
(Hajič et al., 2006). For English, several works automatically convert Penn Treebank constituency trees
into deeper representations, based on lexicalized grammar formalisms such as LFG, CCG or HPSG.
Cahill et al. (2004) automatically construct LFG f-structures from PTB trees, a work adapted for various
other languages including French (Schluter and van Genabith, 2008). Hockenmaier and Steedman (2007)
extracted a corpus of CCG derivations and dependency structures from the Penn Treebank. These two
kinds of deeper representations do capture long distance dependencies, subjects of non finite verbs,
argument sharing between coordinated verbs. When compared to the DSRs we use though, the main
missing trait is the neutralization of syntactic alternations, which we believe is a major source for the
syntactic path normalization effect described in section 2.38.

The Stanford dependencies (SD, De Marneffe and Manning (2008)) constitute another proposal for
obtaining dependencies not directly present in surface syntactic trees. The stanford parser comprises a
dependency extraction system, which can output several variants of typed word-to-word dependencies,
from plain dependency trees to more semantically-oriented graphs. The deepest variant (’collapsed with
propagation of conjunct dependencies’ variant) does cope with some of the aforementioned phenomena
such as subject of infinitival verbs or coordinated verbs. Compared with the DSRs for French, the major
differences are that syntactic alternations are not neutralized, and that all prepositions are collapsed and
injected in the labels (while only void prepositions are collapsed in the French DSRs).9

8Passive alternations is by far the most frequent alternation, and also happens to be rather easy to identify, so we hypothesize
that using such representations on top of passive neutralization would be an alternative to the DSRs we use.

9We actually did some unfruitful experiments on the English FrameNet data, comparing the use of syntactic features ex-



Taking a further step towards semantic representations, predicate-argument structure graphs such as
those used for the Broad-Coverage Semantic Dependency Parsing task at SemEval 2014 (Oepen et al.,
2014) are also very close to the DSRs we use, with respect to the covered linguistic phenomena. The
three datasets used in this shared task are (i) predicate-argument semantic graphs extracted from the
HPSG-grounded DeepBank of Flickinger et al. (2012), (ii) predicate-argument structures from the Enju
HPSG Treebank 10, and (iii) the Prague Czech-English Dependency Treebank (Hajič et al., 2012). These
three datasets differ in how far they differ from syntactic representations. While some traits are common
to the DSRs we use, one major difference lies in the more semantically-oriented labelling of the word-
word dependencies: the semantic arguments are simply numbered (arg0, arg1, etc...). We believe that
in the absence of word sense disambiguation at the level of predicates, this plain numbering obfuscates
syntactic clues that are crucial for FrameNet semantic role labelling. If we take a French example, the
verb convenir has two senses (among others), in which the arguments bear different FrameNet roles, and
which can be disambiguated by the canonical subcategorization frame: we have X(subject) convenir à
Y(a-object) meaning “X suits Y” versus X(subject) convenir de Y(de-object) meaning “X admit to Y”.

To sum up, while the various deep representations cited above do capture the topology of predicate-
argument structures, by coping with major phenomena such as control verbs or coordinated verbs, the
DSRs are appealing for framenet parsing for two reasons: first they are still syntactic in nature (they
are thus recoverable deterministically from surface syntax, cf. section 4), while a semantic graph would
represent a too sophisticated input for the task. Second, the DSRs use canonical grammatical functions,
which are both more abstract than surface grammatical function labels, but do not obfuscate important
syntactic clues for predicate and role disambiguation.

3 Semantic parser

The semantic prediction system (FastSem) is a baseline system based on a cascade of linear classifiers11.
For every word w of a sentence, we proceed in two steps. A frame identification step (which frame (if
any) does w trigger?) followed by a role identification step (which role (if any) is w the head of?). This
architecture is based on two strong independence hypotheses: frames are independent from one another
in a sentence and roles inside a frame are independent12.

We chose to use a simple architecture as our focus here is to assess whether normalized syntactic paths
help semantic parsing. It remains to be proved, although it can be easily supposed, that it would also
help with less naive hypotheses.

In the first step we use for each lexical unit a different linear classifier, each using the following
features: the fine- and coarse-grained PoS of the target word t, and for each word w of the sentence, its
lemma, its PoS (fine and coarse) and the syntactic path that links t to w. The classifier used for the second
step is frame specific. To predict the role of word f , we use as features the lemma and PoS (coarse and
fine) of f , t’s lemma and fine-grained PoS, the syntactic path between t and f , plus the combination of
the syntactic path and the lemma of t.

4 Predicting deep syntax

In order to evaluate the impact of deep syntax on semantic parsing in realistic conditions, we need to
obtain predicted deep syntactic representations. Although directly training a graph parser would be an
option (as in (Ribeyre et al., 2016)), we retain the rule-based architecture that was used to bootstrap
the deep syntactic annotations. Our motivation is to be able to apply the surface-to-deep rewriting rules
step-by-step, in order to study the impact of each phenomenon.

tracted from two variants of SD (basic versus collapsed with propagation of conjunct dependencies). We concluded that the
collapsed dependencies are not adapted for our purpose: they no not neutralize syntactic alternations, and multiply labels by
collapsing all prepositions. We could measure that this has the result of actually increasing the entropy of the syntactic paths
that correspond to a role. Preposition collapsing has a negative impact on predicting non essential semantic roles, such as
temporal or locative modifiers.

10See http://kmcs.nii.ac.jp/enju
11The classifier library used is LIBLINEAR (Fan et al., 2008).
12These hypothesis are known to be too strong. For instance Das et al. (2014) show that collectively predicting all role fillers

of a given frame occurrence improves performance.



Surface Conversion to deep syntax
dependency on predicted on gold

parser surf. parses surf. parses
UAS LAS UF1 LF1 UF1 LF1

trainjk 86.9 83.5 83.5 80.4 99.7 99.5
dev 87.5 84.1 84.1 81.0 99.7 99.4
test 86.6 83.3 83.5 80.5 99.7 99.5

Table 3: Parsing performance. Columns 2 and 3: unlabeled and labeled attachment scores of the (surface)
dependency parser. Last four columns: unlabeled and labeled F-scores after classification of il/se clitics
and conversion to deep syntax, applied either on the predicted surface dependency parses (columns 4
and 5) or on the gold dependency parses (last 2 columns). Results on the training set are obtained using
a 10-fold jackknifing. Results on the dev and test set are obtained using training on the full training
set.Punctuation tokens are taken into account.

The surface-to-deep syntax conversion module of Ribeyre et al. (2014) takes as input surface depen-
dency trees in which a few linguistic phenomena have already been made explicit, because they were
considered difficult to capture by a rule-based approach. This is in particular the case for the status of the
il and se clitics, which results from complex syntactic and lexical factors. In order to do so, we designed
two classifiers that predict the status of these clitics. We omit to describe here these classifiers as well as
their evaluation, for reason of lack of space.

The architecture of our deep syntactic parser is to apply sequentially (i) part-of-speech tagging and
lemmatization, (ii) surface dependency parsing and (iii) surface-to-deep syntax rewriting rules.

Tagging and syntactic parsing were performed with MACAON (Nasr et al., 2011), a tool suite for stan-
dard NLP tasks. The tagging is based on a CRF model whereas the dependency parser is a second order
graph-based parser, with standard features. We report parsing performance in Table 3 (first two colums).
The scores are comparable to the baseline scores obtained by the SPMRL shared task participants on
French (Björkelund et al., 2013), without any special handling of multi-word expressions.

The last step consists in applying the surface-to-deep syntax conversion module (Ribeyre et al., 2014).
This module uses OGRE (Ribeyre et al., 2012), a deterministic two-stage graph rewriting system.

The first stage follows the Single Pushout Approach (SPO) (Rozenberg, 1997), a widely used method
when dealing with graph rewriting system. This stage identifies graph patterns and applies rewriting
operations such as adding an edge, removing an edge, changing a label, and so on. This is done in one
pass and contrary to the SPO approach, the first stage is executed only once.

The second stage is a propagation step. During the first stage, the rewriting rules may have left what
we call triggers on edges. Those are special actions that, given a specific edge configuration, apply a
serie of rewriting steps using a fixed-point algorithm: when all possible rewritings have been done, the
algorithm terminates. It is especially helpful in case of linguistic phenomena interacting with each other.
In the SSR of the sentence John seems to want to give a book to Mary, for example, John is the subject
of seems and want is a dependent of seems and give a dependent of want. Ultimately, in the DSR, John is
the subject of both want and give. The interaction between raising and control verbs is obtained through
the propagation of rules of the form ”if V1 taking V2 as complement has or gets a final subject X then add
X as final subject of V2”. Moreover, the two-stage rewriting system ensures that the algorithm terminates
and the system is confluent. See (Ribeyre, 2016) for more details and proofs.

The surface-to-deep syntax module applies sequentially 5 sets of rewriting rules:
1. The first set converts tense auxiliaries into mood and tense features on the lexical verb.

2. The second set distributes dependents of coordinated predicates and identifies the final subject of
non finite verbs and by extension, of adjectives also, whether used as predicative complements or
noun modifiers.

3. Syntactic alternations are mainly handled in the third set, which identifies the canonical grammatical
functions for arguments of verbs (whether already present in the surface tree, or added by the second



Prec. Recall F-measure
Input SSR DSR SSR DSR SSR DSR

trigger detec. 89.3 89.4 88.7 88.7 89 89
frame selec. 81.1 81.2 80.6 80.6 80.8 80.9
role detec. 85.1 86.2 59.2 62.6 69.8 72.5
role selec. 77.9 80.9 54.2 58.7 63.9 68.1

Prec. Recall F-measure
SSR DSR SSR DSR SSR DSR
88.6 88.8 88.4 88.3 88.5 88.6
80.3 80.5 80.2 80 80.3 80.2
79.6 81.3 51.7 55.7 62.7 66.1
72 75.9 46.7 52 56.7 61.7

Table 4: FastSem results for all triggers, using gold (left) and predicted (right) SSR and DSR.

module).

4. The fourth set handles comparative and superlative constructions mostly.

5. The last set exclusively deals with bypassing the semantically empty words.

We provide the performance evaluation of DSR prediction step in Table 3. Columns 4 and 5 show the
result of the whole parsing architecture, where steps (i), (ii) and (iii) are predicted. The last two columns
show the result of applying step (iii) on gold SSR. Not surprisingly, the DSR built from gold SSR are
almost perfect. This is due to the fact that the deep syntactic corpus contains gold DSR for the small
Sequoia part only, the other part, which corresponds to the FTB, is made of pseudo-gold DSR obtained
by the application of step (iii) on gold SSR ! The table shows the sharp drop in quality when DSR are
computed on predicted SSR.

5 Experiments and discussion

We now turn to FrameNet parsing experiments, meant primarily to compare the use of surface versus
deep syntactic paths as features. All experiments were used using the same split.13 Feature engineering
was performed on the development set.

5.1 Evaluation metrics

The train, dev and test examples are made of the set of annotated frame occurrences of the train, dev
and test sets, including the null frame cases. For each setting, we trained word specific classifiers for the
frame selection step and frame specific classifiers for the role selection step. But, since selecting the null
frame is a rather easy task, we chose to evaluate each of the two steps using two different metrics. For
frame selection, we first evaluate the task of deciding whether a word triggers an actual frame or the null
frame. The results are reported in lines “trigger detection” of Table 4. The “frame selection” lines report
the precision, recall and F-scores of choosing a frame, computed when setting aside the triggers whose
gold frame is the null frame.

For role labeling, prediction and evaluation is made on heads of role fillers only. It is also broken in
two: we first evaluate the task of deciding whether a word plays a role or not with respect to the trigger
(reported in the “role detection” lines in the result tables). Then, for words that are actually head of role
fillers in gold data, we compute precision, recall and F-score of the head and role pairs predicted by our
semantic parser (reported in the “role selection” lines in the tables). Note that in both cases, the role is
counted as incorrect if the frame was not predicted correctly.

5.2 Results and discussion

The experiments conducted vary according to two dimensions: the use of surface vs. deep syntactic paths
(SSP or DSP) and whether they are predicted or gold. The predicted SSP are obtained using predicted
PoS, lemmas, morphological features and surface dependency syntax. The predicted DSP are obtained
by applying il/se classification and rewriting rules on predicted surface dependency trees (cf. section 4).
All results are computed on the test set.

The left part of Table 4 shows results using gold syntactic structure, whether surface or deep. As can
be seen, the results for the first three metrics slightly increase when switching from SSP to DSP, but

13The training set is the concatenation of the usual training sets of the Sequoia and FTB corpus. Same for the development
and test sets.



Prec. Recall F-measure
Input SSR DSR SSR DSR SSR DSR

frame selec. 80.1 80.7 80.1 80.7 80.1 80.7
role selec. 81.4 86.4 59.1 66.1 68.5 74.9

Prec. Recall F-measure
SSR DSR SSR DSR SSR DSR
80 80.5 80.8 80.9 80.4 80.7
75.7 80.3 51.6 59 61.3 68

Table 5: FastSem results for verbs, using gold (left) and predicted (right) SSR and DSR.

SSP DSP
all alt byp subj coo

gold 68.5 74.3 70.6 69.1 69.3 70.2

predicted 61.3 68 63.3 63.1 62.4 63.1

Table 6: FastSem F-measure for role selection with application of deep rewriting rule sets in isolation,
for verbal triggers. Rules are applied on SSP that are either gold (first row) or predicted (last row). The
first column reports the results when using SSP. The second when using DSP with all rules applied. See
text for description of the rule sets (alt) to (coo).

we obtain a 4.2 point improvement for the overall result of role selection when using DSP instead of
SSP (63.9 to 68.1). Because our DSR focus on the predicate argument structure of verbs and adjectives,
and because the number of adjectival triggers is marginal in the French FrameNet corpus, we chose to
provide, in Table 5, the same metrics as in Table 4, computed on verbal triggers only. As one can see,
using deep syntax provides substantial help for predicting roles: we obtain a 6.4 point improvement for
role selection for verbal triggers (68.5 to 74.9).

We now turn to a more realistic setting in which all features for the semantic parser are predicted:
lemmas, PoS, SSP and DSP. Not surprisingly, the results shown in Table 4 (all triggers) and 5 (verbal
triggers) are overall lower than when using gold features. However, switching from surface to deep
syntax leads to higher gain for predicted data than for gold data: 5.1 points (56.7 to 61.7) for all trigger,
instead of 4.2 for gold data and 6.7 points (61.3 to 68) instead of 6.4 on gold data for verbal triggers.
These results clearly show the benefit of using deep syntactic features.

The differences between SSP and DSP are of various kinds, as seen in section 2.2. We propose to
study the impact of each phenomenon, by applying in isolation each set of graph-rewriting rules of the
surface-to-deep syntax conversion module. More precisely, we applied in isolation (alt) the rules for syn-
tactic alternations, (byp) the bypassing of empty prepositions and complementizers, (subj) the addition
of subjects for non finite verbs and adjectives and (coo) the distribution of dependents to coordinated
predicates. We provide the results in Table 6, for the role selection task, computed on verbal triggers
only. It shows that every rule set contributes to a better prediction of the semantic structure.

5.3 Error analysis

In order to perform error analysis, we analyzed the changes in role selection when switching from SSP to
DSP (table 7). The number of corrected errors (W→C) is more than four times the number of introduced
errors (C→W). We reproduce below three cases of errors that were corrected when switching from
surface to deep syntax. They correspond to syntactic alternation (1), coordination of VPs (2) and control
verb (3). The trigger is in capital letters, and the (head of) role fillers we focus on are in bold:

C→C C→W W→C W→W
predicted 1163 47 218 481

gold 1362 48 203 316

Table 7: Improvements and degradations for role selection when switching from SSP to DSP, using either
gold syntax (first row) or predicted syntax (second row). Break-down of the non-null gold roles of the
dev set, when frames are correctly identified by both systems. C stands for correct, W stands for wrong.



G1 (frequent) G2 (medium) G3 (rare)
freq. range > 10% < 10% and > 1% < 1%

Prop. F1 Prop. F1 Prop. F1
SSR 42.1% 89.2 33.1% 78.3 24.8% 38.3
DSR 65.9% 92.3 14.3% 75 19.8% 23.5

Table 8: Role selection task results on the dev set, using gold frames triggered by verbs: break-down by
frequency (in the training set) of the gold syntactic path. “Prop.” columns provide the proportion of each
sub-group.

1. Cette thérapie a été DÉCIDÉE par le gouvernement
(This therapy has been decided by the government.)
thérapie: DSP=(+obj) SSP=(+subj) gouvernement: DSP=(+subj) SSP=(+p obj,+obj.p)

2. Grandier avait publié un pamphlet et S’OPPOSAIT fermement à la destruction des murailles.
Grandier had published a pamphlet and was firmly opposed to the destruction of the walls.
Grandier: DSP=(+subj) SSP=(-dep.coord,-coord,+subj)

3. Ils ont essayé de les PERSUADER de bouleverser le calendrier.
They have tried to them persuade to change the schedule.
Ils: DSP=(+subj) SSP=(-obj.p, -de obj, +subj)

We also took a closer look at the introduced errors. They mostly correspond to cases in which the role
filler has same surface and deep syntactic path, the path being rather unusual for the role filler. This may
indicate that increased regularity of the DSP makes role fillers with unusual syntactic path more difficult
to detect. We tried to assess this hypothesis by breaking-down the performance of the role selection task
by frequency of the syntactic paths between the head of the role filler and the trigger. Results are shown in
table 8. The frequent paths (G1) lead to better role prediction than the other two groups, and this is even
more true when using DSRs than SSRs (92.3 versus 89.2). This explains most of the improvements,
since this group represents a higher proportion when using DSRs than SSRs (65.9 versus 42.1). For
less frequent paths (G2 and G3), results are either slightly (G2) or much (G3) better when using SSRs
than DSRs, but these two groups represent a much lower proportion in the DSR paths than in the SSR
paths. To sum up, frequent paths are even more frequent when using DSRs, and thus lead to better role
prediction, whereas the non frequent paths exhibit the opposite trend.

6 Conclusion

In this paper we showed that frame semantic structure prediction can benefit from a deeper syntactic
representation, in which the syntactic paths between a verb and its arguments are normalized. This
reduces the variety of the syntactic realization of semantic roles, which we assessed by measuring a
decrease of the entropy of the syntactic paths of a given role. We then showed that a FrameNet semantic
parser can take advantage of this simpler syntax/semantic interface and reach better performance when
switching from surface syntax to deep syntax.
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and Zdeněk Žabokrtský. 2012. Announcing prague czech-english dependency treebank 2.0. In Proceedings
of the 8th International Conference on Language Resources and Evaluation (LREC 2012), pages 3153–3160,
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graphs: The case of french. In Proceedings of LREC 2016, may.

Corentin Ribeyre. 2016. Data-driven methods for syntax-semantic interface. Theses, Université Paris Diderot,
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