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I. INTRODUCTION

A. Problem and model

Similarity-based clustering is a standard approach to label items in a dataset based on some measure of their resemblance. In general, given a dataset {x i } i∈[n] ∈ X n , and a symmetric measurement function s : X 2 → R quantifying the similarity between two items, the aim is to cluster the dataset from the knowledge of the pairwise measurements s ij := s(x i , x j ), for 1 ≤ i < j ≤ n. This information is conveniently encoded in a similarity graph, which vertices represent items in the dataset, and the weighted edges carry the pairwise similarities. Typical choices for this similarity graph are the complete graph and the nearest neighbor graph (see e.g. [START_REF] Luxburg | A tutorial on spectral clustering[END_REF] for a discussion in the context of spectral clustering).

Here however, we will not assume the measurement function s to quantify the similarity between items, but more generally ask that the measurements be typically different depending on the cluster memberships of the items, in a way that will be made quantitative in the following. For instance, s could be a distance in an Euclidean space or could take values in a set of colors (i.e. s does not need to be realvalued). Additionally, we will not assume knowledge of the measurements for all pairs of items in the dataset, but only for O(n) of them chosen uniformly at random. Sampling is a well-known technique to speed up computations by reducing the number of non-zero entries [START_REF] Achlioptas | Fast computation of low rank matrix approximations[END_REF]. The main challenge is to choose the lowest possible sampling rate while still being able to detect the signal of interest. In this paper, we compute explicitly this fundamental limit for a simple probabilistic model and present three algorithms allowing partial recovery of the signal above this limit. Below the limit, in the case of two clusters, no algorithm can give an output positively correlated with the true clusters. Our three algorithms are respectively a belief propagation algorithm and two spectral algorithms based on the non-backtracking operator and the Bethe Hessian. Although these three algorithms are intimately related, so far, a sketch of rigorous analysis is available only for the spectral properties of the non-backtracking matrix. From a practical perspective however, belief propagation and the Bethe Hessian are much simpler to implement and show even better numerical performance.

To evaluate the performance of our proposed algorithms, we construct a model with n items in k predefined clusters of same average size n/k, by assigning to each item i ∈ [n] a cluster label c i ∈ [k] with uniform probability 1/k. We assume that the pairwise measurement between an item in cluster a and another item in cluster b is a random variable with density p a,b . We choose the observed pairwise measurements uniformly at random, by generating an Erdős-Rényi random graph G = (V = [n], E) ∈ G(n, α/n). The average degree α corresponds to the sampling rate: pairwise measurements are observed only on the edges of G, and α therefore controls the difficulty of the problem. From the base graph G, we build a measurement graph by weighting each edge (ij) ∈ E with the measurement s ij , drawn from the probability density p ci,cj . The aim is to recover the cluster assignments c i for i ∈ [n] from the measurement graph thus constructed.

We consider the sparse regime α = O(1), and the limit n → ∞ with fixed number of clusters k. With high probability, the graph G is disconnected, so that exact recovery of the clusters, as considered e.g. in [START_REF] Jog | Information-theoretic bounds for exact recovery in weighted stochastic block models using the renyi divergence[END_REF], [START_REF] Chen | Information recovery from pairwise measurements: A shannon-theoretic approach[END_REF], is impossible. In this paper, we address instead the question of how many measurements are needed to partially recover the cluster assignments, i.e. to infer cluster assignments ĉi such that the following quantity, called overlap, is strictly positive:

max σ∈S k 1 n i 1(σ(ĉ i ) = c i ) -1 k 1 -1 k , (1) 
where S k is the set of permutations of [k]. This quantity is monotonously increasing with the number of correctly classified items. In the limit n → ∞, it vanishes for a random guess, and equals unity if the recovery is perfect. Finally, we note an important special case for which analytical results can be derived, which is the case of symmetric clusters:

∀a, b ∈ [k] p a,b (s) := 1(a = b)p in (s) + 1(a = b)p out (s), (2) 
where p in (s) (resp. p out (s)) is the probability density of observing a measurement s between items of the same cluster (resp. different clusters). For this particular case, we conjecture that all of the three algorithms we propose achieve partial recovery of the clusters whenever α > α c , where

1 α c = 1 k K ds p in (s) -p out (s) 2 p in (s) + (k -1)p out (s) , (3) 
where K is the support of the function p in + (k -1)p out . This expression corresponds to the threshold of a related reconstruction problem on trees [START_REF] Mézard | Reconstruction on trees and spin glass transition[END_REF]. In the following, we substantiate this claim for the case of k = 2 symmetric clusters, and discrete measurement distributions. Note that the model we introduce is a special case of the labeled stochastic block model of [START_REF] Heimlicher | Community detection in the labelled stochastic block model[END_REF]. In particular, for the case k = 2, it was proven in [START_REF] Lelarge | Reconstruction in the labeled stochastic block model[END_REF] that partial recovery is information theoretically impossible if α < α c . In this contribution, we argue that this bound is tight, namely that partial recovery is possible whenever α > α c , and that the algorithms we propose are optimal, in that they achieve this threshold. Note also that the symmetric model ( 2) contains the censored block model of [START_REF] Abbe | Decoding binary node labels from censored edge measurements: Phase transition and efficient recovery[END_REF]. More precisely, if p in and p out are discrete distributions on {±1} with p in (+1) = p out (-1) = 1 -, then α c = (1 -2 ) -2 . In this case, the claimed result is known [START_REF] Saade | Spectral detection in the censored block model[END_REF], and to the best of our knowledge, this is the only case where our result is known.

B. Motivation and related work

The ability to cluster data from as few pairwise comparisons as possible is of broad practical interest [START_REF] Chen | Information recovery from pairwise measurements: A shannon-theoretic approach[END_REF]. First, there are situations where all the pairwise comparisons are simply not available. This is particularly the case if a comparison is the result of a human-based experiment. For instance, in crowdclustering [START_REF] Gomes | Crowdclustering[END_REF], [START_REF] Yi | Crowdclustering with sparse pairwise labels: A matrix completion approach[END_REF], people are asked to compare a subset of the items in a dataset, and the aim is to cluster the whole dataset based on these comparisons. Clearly, for a large dataset of size n, we can't expect to have all O(n 2 ) measurements. Second, even if these comparisons can be automated, the typical cost of computing all pairwise measurements is O(n 2 d) where d is the dimension of the data. For large datasets with n in the millions or billions, or large dimensional data, like high resolution images, this cost is often prohibitive. Storing all O(n 2 ) measurements is also problematic. Our work supports the idea that if the measurements between different classes of items are sufficiently different, a random subsampling of O(n) measurements might be enough to accurately cluster the data. This work is inspired by recent progress in the problem of detecting communities in the sparse stochastic block model (SBM) where partial recovery is possible only when the average degree α is larger than a threshold value, first conjectured in [START_REF] Decelle | Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications[END_REF], and proved in [START_REF] Mossel | Stochastic block models and reconstruction[END_REF]- [START_REF] Mossel | A proof of the block model threshold conjecture[END_REF]. A belief propagation (BP) algorithm similar to the one presented here is introduced in [START_REF] Decelle | Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications[END_REF], and argued to be optimal in the SBM. Spectral algorithms that match the performance of BP were later introduced in [START_REF] Krzakala | Spectral redemption in clustering sparse networks[END_REF], [START_REF] Saade | Spectral clustering of graphs with the bethe hessian[END_REF]. The spectral algorithms presented here are based on a generalization of the operators that they introduce.

C. Outline and main results

In Sec. II, we describe three closely related algorithms to solve the partial recovery problem of Sec. I-A. The first one is a belief propagation (BP) algorithm approximating the Bayes optimal solution. The other two are spectral methods derived from BP. We show numerically that all three methods achieve the threshold [START_REF] Jog | Information-theoretic bounds for exact recovery in weighted stochastic block models using the renyi divergence[END_REF]. Next in Sec. III we substantiate this claim for the spectral method based on the non-backtracking operator.

II. ALGORITHMS

A. Belief propagation

We consider a measurement graph generated from the model of Section I-A. From Bayes' rule, we have:

P({c i }|{s ij }) = 1 Z (ij)∈E p ci,cj (s ij ) , (4) 
where Z is a normalization. The Bayes optimal assignment, maximizing the overlap (1), is ĉi = argmax P i , the mode of the marginal of node i. We approximate this marginal using belief propagation (BP):

P i (c i ) ≈ 1 Z i l∈∂i k c l =1 p ci,c l (s il )P l→i (c l ) , (5) 
where ∂i denotes the neighbors of node i in the measurement graph G, Z i is a normalization, and the P i→j (c i ) are the fixed point of the recursion:

P i→j (c i ) = 1 Z i→j l∈∂i\j k c l =1 p ci,c l (s il )P l→i (c l ) . (6) 
In practice, starting from a random initial condition, we iterate (6) until convergence, and estimate the marginals from (5). On sparse tree-like random graphs generated by our model, BP is widely believed to give asymptotically accurate results, though a rigorous proof is still lacking. This algorithm is general and applies to any model parameters p ab . For now on, however, we restrict our theoretical discussion to the symmetric model [START_REF] Achlioptas | Fast computation of low rank matrix approximations[END_REF]. Eq. ( 6) can be written in the compact form P = F (P), where P ∈ R 2mk and m = |E| is the number of edges in G.

The first step in understanding the behavior of BP is to note that in the case of symmetric clusters (2), there exists a trivial fixed point of the recursion (6), namely P i→j (c i ) = 1/k. This fixed point is uninformative, yielding a vanishing overlap. If this fixed point is stable, then starting from an initial condition close to it will cause BP to fail to recover the clusters. We therefore investigate the linearization of (6) around this fixed point, given by the Jacobian J F .

B. The non-backtracking operator

A simple computation yields

J F = B ⊗ I k - 1 k U k , (7) 
where I k is the k × k identity matrix, U k is the k × k matrix with all its entries equal to 1, ⊗ denotes the tensor product, and B is a 2m × 2m matrix called the non-backtracking operator, acting on the directed edges of the graph G, with elements for (ab) and (cd) ∈ E:

B (a→b),(c→d) = w(s cd )1(a = d)1(b = c) , ∀s, w(s) := p in (s) -p out (s) p in (s) + (k -1)p out (s) . (8) 
Note that to be consistent with the analysis of BP, our definition of the non-backtracking operator is the transpose of the definition of [START_REF] Krzakala | Spectral redemption in clustering sparse networks[END_REF]. This matrix generalizes the nonbacktracking operators of [START_REF] Saade | Spectral detection in the censored block model[END_REF], [START_REF] Krzakala | Spectral redemption in clustering sparse networks[END_REF] to arbitrary edge weights. More precisely, for the censored block model [START_REF] Abbe | Decoding binary node labels from censored edge measurements: Phase transition and efficient recovery[END_REF], we have s = ±1 and w(s) = (1 -2 )s so that B is simply a scaled version of the matrix introduced in [START_REF] Saade | Spectral detection in the censored block model[END_REF]. We also introduce an operator C ∈ R n×2m defined as

C i,j→l = w(s jl )1(i = l) . (9) 
This operator follows from the linearization of eq. ( 5) for small P l→i . Based on these operators, we propose the following spectral algorithm. First, compute the real eigenvalues of B with modulus greater than 1. Let r be their number, and denote by v 1 , ..., v r ∈ R 2m the corresponding eigenvectors. If r = 0, raise an error. Otherwise, form the matrix

Y = [v 1 • • • v r ] ∈ R 2m×r
by stacking the eigenvectors in columns, and let X = CY ∈ R n×r . Finally, regarding each item i as a vector in R r specified by the i-th line of X, cluster the items, using e.g. the k-means algorithm.

Theoretical guarantees for the case of k = 2 clusters are sketched in the next section, stating that this simple algorithm succeeds in partially recovering the true clusters all the way down to the transition (3). Intuitively, this algorithm can be thought of as a spectral relaxation of belief propagation. Indeed, for the particular case of k = 2 symmetric clusters, we will argue that the spectral radius of B is larger than 1 if and only if α > α c . As a simple consequence, whenever α < α c , the trivial fixed point of BP is stable, and BP fails to recover the clusters. On the other hand, when α > α c , a small perturbation of the trivial fixed point grows when iterating BP. Our spectral algorithm approximates the evolution of this perturbation by replacing the non-linear operator F by its Jacobian J F . In practice, as shown on figure 1, the non-linearity of the function F allows BP to achieve a better overlap than the spectral method based on B, but a rigorous proof that BP is asymptotically optimal is still lacking.

C. The Bethe Hessian

The non-backtracking operator B of the last section is a large, non-symmetric matrix, making the implementation of the previous algorithm numerically challenging. A much smaller, closely related symmetric matrix can be defined that empirically performs as well in recovering the clusters, and in fact slightly better than B. For a real parameter x ≥ 1, define a matrix H(x) ∈ R n×n with non-zero elements:

H ij (x) =    1 + l∈∂i w(s il ) 2 x 2 -w(s il ) 2 if i = j - xw(sij ) x 2 -w(sij ) 2 if (ij) ∈ E , ( 10 
)
where ∂i denotes the set of neighbors of node i in the graph G, and w is defined in [START_REF] Abbe | Decoding binary node labels from censored edge measurements: Phase transition and efficient recovery[END_REF]. A simple computation, analogous to [START_REF] Saade | Spectral detection in the censored block model[END_REF], allows to show that (λ ≥ 1, v) is an eigenpair of B, if and only H(λ)v = 0. This property justifies the following picture [START_REF] Saade | Spectral clustering of graphs with the bethe hessian[END_REF]. For x large enough, H(x) is positive definite and has no negative eigenvalue. As we decrease x, H(x) gains a new negative eigenvalue whenever x becomes smaller than an eigenvalue of B. Finally, at x = 1, there is a one to one correspondence between the negative eigenvalues of H(x) and the real eigenvalues of B that are larger than 1. We call Bethe Hessian the matrix H( 1), and propose the following spectral algorithm, by analogy with Sec. II-B. First, compute all the negative eigenvalues of H(1). Let r be their number. If r = 0, raise an error. Otherwise, denoting v i , ..., v r ∈ R n the corresponding eigenvectors, form the matrix

X = [v 1 • • • v r ] ∈
R n×r by stacking them in columns. Finally, regarding each item i as a vector in R r specified by the i-th line of X, cluster the items, using e.g. the k-means algorithm.

In the case of two symmetric clusters, the results of the next section imply that if α > α c , denoting by λ 1 > 1 the largest eigenvalue of B, the smallest eigenvalue of H(λ 1 ) is 0, and the corresponding eigenvector allows partial recovery of the clusters. While the present algorithm replaces the matrix H(λ 1 ) by the matrix H(1) and is therefore beyond the scope of this theoretical guarantee, we find empirically that the eigenvectors with negative eigenvalues of H(1) are also positively correlated with the hidden clusters, and in fact allow better recovery (see figure 1), without the need to build the non-backtracking operator B and to compute its leading eigenvalue. This last algorithm also has an intuitive justification. It is well known [START_REF] Yedidia | Bethe free energy, kikuchi approximations, and belief propagation algorithms[END_REF] that BP tries to optimize the so-called Bethe free energy. In the same way B can be seen as a spectral relaxation of BP, H(1) can be seen as a spectral relaxation of the direct optimization of the Bethe free energy. In fact, it corresponds to the Hessian of the Bethe free energy around a trivial stationary point (see e.g. [START_REF] Saade | Spectral clustering of graphs with the bethe hessian[END_REF], [START_REF] Saade | Matrix completion from fewer entries: Spectral detectability and rank estimation[END_REF]).

D. Numerical results

Figure 1 shows the performance of all three algorithms on model-generated problems. We consider the symmetric problem defined by (2) with k = 2, 3, fixed p in and p out , chosen to be Gaussian with a strong overlap, and we vary α. All three algorithms achieve the theoretical threshold. While all the algorithms presented in this work assume the knowledge of the parameters of the model, namely the functions p a,b for a, b ∈ [k], we argue that the belief propagation Fig. 2. Clustering of toy datasets using belief propagation. Each dataset is composed of 20000 points, 200 of which come labeled and constitute the training set. We used the Euclidean distance as the measurement function s, and estimated the probability densities p ab on the training set using kernel density estimation (middle row). Although these estimates are very noisy and overlapping, belief propagation is able to achieve a very high accuracy using a random measurement graph G of small average degree α (top row). For comparison, we show in the third row the result of spectral clustering with the normalized Laplacian, using a 3-nearest neighbors similarity graph (see e.g. [START_REF] Luxburg | A tutorial on spectral clustering[END_REF]) built from G, i.e. using only the available measurements.

algorithm is robust to large imprecisions on the estimation of these parameters. To support this claim, we show on figure 2 the result of the belief propagation algorithm on standard toy datasets where the parameters were estimated on a small fraction of labeled data.

III. PROPERTIES OF THE NON-BACKTRACKING OPERATOR

We now state our claims concerning the spectrum of B. We restrict ourselves to the case where k = 2 and p in and p out are distributions on a finite alphabet.

Claim 1: Consider an Erdős-Rényi random graph on n vertices with average degree α, with variables assigned to vertices c i ∈ {1, 2} uniformly at random independently from the graph and measurements s ij between any two neighboring vertices drawn according to the probability density: p ci,cj (s) = 1(c i = c j )p in (s) + 1(c i = c j )p out (s) for two fixed (i.e. independent of n) discrete distributions p in = p out on S. Let B be the matrix defined by ( 8) and denote by

|λ 1 | ≥ |λ 2 | ≥ • • • ≥ |λ 2m |
the eigenvalues of B in order of decreasing magnitude, where m is the number of edges in the graph. Recall that α c is defined by (3). Then, with probability tending to 1 as n → ∞:

(i) If α < α c , then |λ 1 | ≤ α αc + o(1). (ii) If α > α c , then λ 1 = α αc + o(1) and |λ 2 | ≤ α αc + o(1).
Additionally, denoting by v the eigenvector associated with λ 1 , Cv is positively correlated with the planted variables (c i ) i∈ [n] , where C is defined in [START_REF] Saade | Spectral detection in the censored block model[END_REF].

Note that for the censored block model, our claim implies Theorem 1 in [START_REF] Saade | Spectral detection in the censored block model[END_REF]. The main idea which substantiates our claim is to introduce a new non-backtracking operator with spectral properties close to those of B and then apply the techniques developed in [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF] to it. We try to use notations consistent with [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF]: for an oriented edge e = u → v = (u, v) from node u to node v, we set e 1 = u, e 2 = v and e -1 = (v, u). For a matrice M , its transpose is denoted by M * . We also define

σ i = 2c i -3 for each i ∈ [n].
We start by a simple transformation: if t is the vector in R E defined by t e = σ e1 and is the Hadamard product, i.e. (t x) e = σ e1 x e , then we have

B * x = λx ⇔ B X (t x) = λ(t x) , (11) 
with B X defined by B X ef = B f e σ e1 σ e2 . In particular, B X and B have the same spectrum and there is a trivial relation between their eigenvectors. With X e = σ e1 w(s e )σ e2 , we have:

B X ef = X e 1(e 2 = f 1 )1(e 1 = f 2 )
. Moreover, note that the random variables (A f = σ f1 σ f2 ) f ∈E are random signs with P(A f = 1) = 1/2 and the random variables (X f ) f ∈E are such that [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF]. More precisely, we define P the linear mapping on R E defined by (P x) e = Y e x e -1 (i.e. in matrix form P ef = Y e 1(f = e -1 )). Note that P * = P and since Y 2 e = 1, P is an involution so that P is an orthogonal matrix. A simple computation shows that (B Y ) k P = P (B Y ) * k , hence (B Y ) k P is a symmetric matrix. This symmetry corresponds to the oriented path symmetry in [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF] and is crucial to our analysis. If (τ j,k ), 1 ≤ j ≤ 2m are the eigenvalues of (B Y ) k P and (x j,k ) is an orthonormal basis of eigenvectors, we deduce that

EX f = EX 2 f = 1 
(B Y ) k = 2m j=1 τ j,k x j,k (P x j,k ) * . ( 12 
)
Since P is an orthogonal matrix (P x j,k ), 1 ≤ j ≤ 2m is also an orthonormal basis of R E . In particular, [START_REF] Decelle | Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications[END_REF] gives the singular value decomposition of (B Y ) k . Indeed, if t j,k = |τ j,k | and y j,k = sign(τ j,k )P x j,k , then we get (B Y ) k = 2m j=1 t j,k x j,k y * j,k , which is precisely the singular value decomposition of (B Y ) k . As shown in [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF], for large k, the decomposition (12) carries structural information on the graph.

A crucial element in the proof of [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF] is the result of Kesten and Stigum [START_REF] Kesten | A limit theorem for multidimensional galton-watson processes[END_REF], [START_REF]Additional limit theorems for indecomposable multidimensional galton-watson processes[END_REF] and we give now its extension required here which can be seen as a version of Kesten and Stigum's
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 1 Fig.1. Performance in clustering model-generated measurement graphs in the symmetric case[START_REF] Achlioptas | Fast computation of low rank matrix approximations[END_REF]. The overlap is averaged over 20 realizations of graphs of size n = 10 5 , with k = 2, 3 clusters, and Gaussian p in , pout with mean respectively 1.5 and 0, and unit variance. The theoretical transition (3) is at αc ≈ 2.63 for k = 2, and conjectured to be at αc ≈ 5.5 for k = 3. All three methods achieve the theoretical transition, although the Bethe Hessian (H) and belief propagation (BP) achieve a higher overlap than the non-backtracking operator (B).
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 2 (p in (s) -p out (s))2 p in (s) + p out (s) = 1 α c .We now define another non-backtracking operator B Y . First, letting(s)= pout(s) pin(s)+pout(s) ∈ [0, 1], we define the sequence of independent random variables { Ỹe } e∈E with P( Ỹe = +1|s e ) = 1 -P( Ỹe = -1|s e ) = 1 -(s e ), so that E[ Ỹe |s e ] = w(s e ). We define Y e = Ỹe σ e1 σ e2 and finally B Y ef = Y f 1(e 2 = f 1 )1(e 1 = f 2 ) , so that E[B Y |G, {s e } e∈E ] = B X . It turns out that the analysis of the matrix B Y can be done with the techniques developped in
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work in a random environment. We write N * = {1, 2, . . . } and U = ∪ n≥0 (N * ) n the set of finite sequences composed by N * , where (N * ) 0 contains the null sequence ∅. For u, v ∈ U , we note |u| = n for the lenght of u and uv for the sequence obtained by the juxtaposition of u and v. Suppose that {(N u , A u1 , A u2 , . . . )} u∈U is a sequence of i.i.d. random variables with value in N × R N * such that N u is a Poisson random variable with mean α and the A ui are independent i.i.d. random signs with P(A u1 = 1) = P(A u1 = -1) = 1 2 . We then define the following random variables: first s u such that P(s u |A u = 1) = p in (s u ) and P(s u |A u = -1) = p out (s u ), then X u = A u w(s u ) and Y u = A u Ỹu where P( Ỹu = 1|s u ) = 1 -P(Y u = -1|s u ) = 1 -(s u ). We assume that for all u ∈ U and i > N u , A ui = s ui = X ui = Y ui = 0. N u will be the number of children of node u and the sequence (s u1 , . . . , s uNu ) the measurements on edges between u and its children. We set for u = u 1 u 2 . . . u n ∈ U ,

. . Y u1...un . We define (with the convention 0 0 = 0) ,

Then conditionnaly on the variables (s u ) u∈U , M t is a martingale converging almost surely and in L 2 as soon as α > α c . The fact that this martingale is bounded in L 2 follows from an argument given in the proof of Theorem 3 in [START_REF] Heimlicher | Community detection in the labelled stochastic block model[END_REF].

In order to apply the technique of [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF], we need to deal with the -th power of the non-backtracking operators. For not too large, the local struture of the graph (up to depth ) can be coupled to a Poisson Galton-Watson branching process, so that the computations done for M above provide a good approximation of the -th power of the non-backtracking operator and we can use the algebraic tools about perturbation of eigenvalues and eigenvectors, see the Bauer-Fike theorem in Section 4 in [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF].

IV. CONCLUSION

We have considered the problem of clustering a dataset from as few measurements as possible. On a reasonable model, we have made a precise prediction on the number of measurements needed to cluster better than chance, and have substantiated this prediction on an interesting particular case. We have also introduced three efficient and optimal algorithms, based on belief propagation, to cluster modelgenerated data starting from this transition. Our results suggest that clustering can be significantly sped up by using a number of measurements linear in the size of the dataset, instead of quadratic. These algorithms, however, require an estimate of the distribution of the measurements between objects depending on their cluster membership. On toy datasets, we have demonstrated the robustness of the belief propagation algorithm to large imprecisions on these estimates, paving the way for broad applications in real world, large-scale data analysis. A natural avenue for future work is the unsupervised estimation of these distributions, through e.g. an expectationmaximization approach.