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Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne,

CNRS, Inserm, CREATIS UMR 5220, U1206, F69621, LYON, France
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Purpose: Exploiting the X-ray measurements obtained in different energy bins, spectral compu-
ted tomography (CT) has the ability to recover the 3D description of a patient in a material basis.
This may be achieved solving two subproblems, namely the material decomposition and the tomo-
graphic reconstruction problems. In this work, we address the material decomposition of spectral
x-ray projection images, which is a non-linear ill-posed problem.
Methods: Our main contribution is to introduce a material-dependent spatial regularization in
the projection domain. The decomposition problem is solved iteratively using a Gauss-Newton al-
gorithm that can benefit from fast linear solvers. A Matlab implementation is available online. The
proposed regularized weighted least squares Gauss-Newton algorithm (RWLS-GN) is validated on
numerical simulations of a thorax phantom made of up to five materials (soft tissue, bone, lung,
adipose tissue and gadolinium), which is scanned with a 120 kV source and imaged by a 4-bin pho-
ton counting detector. To evaluate the method performance of our algorithm, different scenarios are
created by varying the number of incident photons, the concentration of the marker and the confi-
guration of the phantom. The RWLS-GN method is compared to the reference maximum likelihood
Nelder-Mead algorithm (ML-NM). The convergence of the proposed method and its dependence on
the regularization parameter are also studied.
Results: We show that material decomposition is feasible with the proposed method and that
it converges in few iterations. Material decomposition with ML-NM was very sensitive to noise,
leading to decomposed images highly affected by noise and artifacts even for the best case scena-
rio. The proposed method was less sensitive to noise and improved contrast-to-noise ratio of the
gadolinium image. Results were superior to those provided by ML-NM in terms of image quality
and decomposition was 70 times faster. For the assessed experiments, material decomposition was
possible with the proposed method when the number of incident photons was equal or larger than
105 and when the marker concentration was equal or larger than 0.03 g.cm−3.
Conclusions: The proposed method efficiently solves the nonlinear decomposition problem for
spectral CT, which opens up new possibilities such as material-specific regularization in the pro-
jection domain and a parallelization framework, in which projections are solved in parallel.

I. INTRODUCTION

Spectral computed tomography (CT) is gaining increa-
sing attention. Exploiting X-ray measurements acquired
at multiple energies, this new imaging modality has the
ability to recover the concentration maps of the consti-
tuents of the tissues in a quantitative manner. While the
principle of dual-energy CT has been known for more
than 30 years, recent developments in energy selective
detectors have boosted the research in this area [1–9]. In
particular, it has been shown that photon counting de-
tectors can be used to image high Z contrast agents by
exploiting the K-edge energy discontinuity of their linear
attenuation coefficient (LAC) [10–12]. Therefore, cou-
pling spectral CT acquisition to the injection of contrast
agent is promising not only to increase the sensitivity of
standard CT but also to open new clinical applications
for X-ray imaging as a functional imaging tool, e.g., for
the characterization of the atherosclerotic plaque [13–15].

As in standard CT, spectral CT reconstruction re-
quires to solve an inverse problem. However, spectral
CT reconstruction can exploit measurements in different
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energy channels, which allows to recover the concentra-
tion of different materials [16]. A wide variety of appro-
aches for material reconstruction have been investigated.
Spectral CT material reconstruction can be divided into
image-based, direct inversion, and projection-based ap-
proaches.
The image-based approach is a pragmatic approach that
consists in the tomographic reconstruction of each of the
energy sinogram followed by a decomposition step. Alt-
hough it provides valuable results for multi-material de-
composition [17–19], it makes substantial assumptions
concerning the forward model that may results in image
artifacts and quantification inaccuracy. Development of
sophisticated correction schemes to alleviate this problem
is a topic of ongoing research [20–22].
Direct inversion and projection-based approaches both
rely on a mathematical description of the physics of
image formation. Direct inversion methods recover the
material density directly from the measured energy-
resolved sinograms while the projection-based met-
hods first decompose the energy-resolved sinograms into
material-specific sinograms and then perform a tomo-
graphic reconstruction of each of the decomposed sino-
grams. Direct inversion is probably the most elegant ap-
proach [23–26]. However, the resulting inverse problem
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is computationally demanding since data from all views
have to be processed at the same time. On the con-
trary, the projection-based approach allows independent
decomposition of each projection view, which can be pa-
rallelized and is computationally more tractable.

The decomposition step has led to various approaches,
some rely on parametric models while the others are ba-
sed on a physical model. On the one hand, a parame-
tric model avoids measuring the source spectrum and the
energy responses of the detector, which may be difficult
[27]. Despite its excellent decomposition quality [28–32],
this approach is more difficult to implement when three
materials or more are to be recovered. This can be a
serious drawback for K-edge imaging applications. On
the other hand, approaches relying on a physical model
of the imaging setup can be more easily applied to arbi-
trary numbers of materials [11].

In this paper, we present a new framework for the de-
composition of a single projection, assuming a physical
image formation model is known. The main contribution
of this work is to introduce material-specific regulariza-
tion in the projection domain.

Regularization is not a new idea in spectral CT which
is an ill-posed inverse problem. Different regularization
strategies have been investigated in order to improve the
signal-to-noise ratio of the reconstructions, e.g., statis-
tical penalties and spatial priors. Direct inversion ap-
proaches have the ability to incorporate spatial prior in
the image domain. Previous works include non-linear
edge-preserving statistical reconstruction [23], Gaussian
Markov random field regularization with positivity con-
strains [24], extension of the ART algorithm [25], and
TV-regularized primal-dual algorithm [26]. However, it
may be noted that these approaches may be computati-
onally expensive in terms of memory requirements and
computation time, and have mainly been limited to the
reconstruction of 2D slices exploiting a low number of
energy bins. Moreover, simplified forward models are
often used to moderate the computational cost of the re-
construction. Similarly, projection-based approaches fo-
cus on penalties in the image domain which are imposed
regularizing the tomographic problem. Edge preserving
regularization based on the Huber potential function has
been considered in [12, 33] while total variation/`1 spar-
sity constrains were used in [34].
However, to the best of our knowledge, regularization of
the decomposition step, which is nonlinear and perhaps
more difficult to solve than the tomographic step, was
only recently addressed [35, 36].

As proposed by Schlomka et al. [11], our forward mo-
del is nonlinear and takes into account the spectral re-
sponse of the detector. In this paper, we also regularize
each material projection image. Instead of considering
the processing of a single projection line, we consider
the decomposition of a 2D projection which is of inte-
rest for multi-line and 2D energy resolved detectors. In
order to take into account the noise statistics, we have
used a weighted least square data term. The inverse

TABLE I. Main mathematical notations

Variable Meaning Dimension
a Projected mass density (our unknown) R(S)
d Detector response function R(R,R)
i Output energy bin index N
j input energy bin index N
k iteration index N
m Basis functions index N
n Number of input photons R(R,S)
s Number of output photons R(R,S)
E Input energy R
I Number of output energy bins 1
J Number of input energy bins 1
M Number of basis functions 1
P Number of pixels 1
µ Linear attenuation R(R,Ω)
ρ Material mass density R(Ω)
τ Material basis function R(R)
Ω Object volume R3

u Detector pixel location R2

x Object voxel location R3

a Projected mass density image RPM
s Photon counts image RIP
H Hessian of R RMP×MP

J Jacobian of F RIP×MP

E Output energy R
R Regularizer R(RPM )
S Detection surface R2

F Forward model RIP (RPM )

problem is solved using a Gauss-Newton algorithm that
exploits second-order derivatives, which converges faster
than the most commonly used first- or zeroth-order al-
gorithms. Gauss-Newton minimization was successfully
applied to several medical imaging inverse problems [37–
40]. In this paper, it is implemented using explicit com-
putation of the Hessian, which is a sparse and structured
matrix. Hence, our algorithm can benefit from efficient
linear equation solvers. The formulation is presented in
a general framework, providing analytical formulas for
general regularization functionals. Our algorithm, which
is referred to as regularized weighted least square Gauss-
Newton (RWLS-GN), is validated on synthetic data and
the projection of a voxelized thorax phantom based on a
clinical CT volume. We provide results for different sce-
narios created by varying the number of incident photons
and the amount of contrast agent. To promote reprodu-
cibility of this research, the computer code (MATLAB
scripts) related to this study is available online [41].

II. THEORY

As depicted in figure 1, we consider a 3-dimensional (3-
D) object in a bounded domain Ω that is imaged by a 2-D
detector with a surface S. A summary of the notation
used throughout the paper is provided in table I.
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FIG. 1. Principle of acquisition and notations. Here, a co-
nical geometry is chosen as an illustration. Ω is the object
volume, S is the detector surface, ρm is the mass density of
the mth material, and am is projected mass density of the
mth material.

A. X-ray/matter interaction

Let n(E,u) denotes the number of photons of energy
E that reaches the detector at the pixel position u ∈
S. Neglecting scattering within the object, n follows the
Beer-Lambert law. Mathematically,

n(E,u) = n0(E,u) exp

[
−
∫
L(u)

µ(E,x) d`

]
(1)

where n0(E,u) is the source spectrum, L(u) is the acqui-
sition line that depends on the source emission geometry
(parallel, cone-beam, etc), and µ(E,x) is the local LAC
of the object at energy E and point x ∈ Ω. For simpli-
city, the source spectrum is assumed to be the same at
each pixel, i.e.,

n0(E,u) = n0(E), ∀u ∈ S (2)

B. Detection model

The mean signal recorded by a photon counting detec-
tor may be modelled by

s̄(E ,u) =

∫
R
d(E , E)n(E,u) dE (3)

where d(E , E) accounts for the detector response
function, E being the incident photon energy and E the
detected energy. The photons detected within the i-
th energy bin [Ei, Ei+1] are accumulated electronically

thanks to a counting circuit. The mean number of pho-
tons detected within the i-th energy bin is given by

s̄i(u) =

∫
R
di(E)n(E,u) dE (4)

where

di(E) =

∫ Ei+1

Ei
d(E , E) dE (5)

is the response function of the i-th bin of the detector.
Note that the detection model assumes that the value
measured at a given pixel is not correlated to the value
measured at neighbor pixels, i.e. charge sharing can be
neglected or is corrected for [42].

C. Object decomposition

It is assumed that the LAC can be decomposed as the
sum of M basis functions that are separable in energy
and space. We have

µ(E,x) =

M∑
m=1

ρm(x)τm(E), ∀x ∈ Ω (6)

where the τm are some well-chosen basis functions and
the ρm are the corresponding weights in the decomposi-
tion. Following the work of Alvarez and Macovski [16],
two approaches have emerged for the choice of the basis
functions: i) physics-based where τm models the physical
effects, e.g. photoelectric, Compton scattering, and, ii)
material-based where τm is the mass attenuation of the
constituents of the objects (in cm2.g−1). In the latter
approach, ρm is the mass density (in g.cm−3) of material
m. For the sake of simplicity but with no loss of gene-
rality, ρm is referred to as mass density in the following.
K-edge materials may be added with the two types of
basis [11].

D. Forward model

Substituting (6) into (1) and the obtained result into
(4), the mean measured signal may be written

s̄i(u) =

∫
R
n0(E)di(E) exp

[
−

M∑
m=1

am(u)τm(E)

]
dE

(7)

where

am(u) =

∫
L(u)

ρm(x) d` (8)

is the projection of the mass density ρm along the line
L(u) (see figure 1) that is expressed in g.cm−2 when a
material-based decomposition is performed. In the fol-
lowing, am is referred to as the projected mass density
(PMD).



4

E. Discretization

Let us assume that the detector consists of an array of
P pixels located at up, p ∈ {1, . . . , P}. Each of the pixels
counts photons in I different energy bins. Let s̄ ∈ RPI
and s ∈ RPI be the mean and measured photon counts
vector, which are defined by

s̄ =
[
s̄1,1 . . . s̄I,1 . . . . . . s̄1,P . . . s̄I,P

]>
(9)

s =
[
s1,1 . . . sI,1 . . . . . . s1,P . . . sI,P

]>
. (10)

In a similar way, let a ∈ RPM be the (unknown) vector
containing the PMD of each material in each pixel, which
is defined by

a =
[
a1,1 . . . aM,1 . . . . . . a1,P . . . aM,P

]>
. (11)

The discrete forward model can be formalized as

s̄ = F(a) (12)

where F(a) denotes the non-linear mapping induced by
(7).

The material decomposition problem is to recover the
PMD vector a from the measured data s given the known
forward mapping F . This is an ill-posed problem that
requires prior knowledge about the solution to stabilize
the inversion in the presence of noise.

F. Noise model

The measurements are assumed to be corrupted by in-
dependent Poisson noise, i.e.,

si,p ∼ P (λ = s̄i,p) , (13)

where P (λ) denotes the Poisson distribution of mean λ.
In order to investigate the influence of noise which is

related to the value of s̄i,p, we introduce the total number
of photons emitted by the source during the acquisition.
It is defined by

N0 =

∫
n0(E) dE (14)

The larger N0 is, the better the signal-to-noise ratio of
the measurements.

III. PROPOSED DECOMPOSITION METHOD

A. Variational approach

In this manuscript, we propose to recover the projected
mass vector within a variational framework, i.e., minimi-
zing the cost function

C(a) =
1

2
‖s−F(a)‖2W + αR(a) (15)

bq

-1.5 -1 -0.5 0 0.5 1 1.5

A
(b

q
)

0

0.5

1

1.5
`2

`1

Huber

FIG. 2. Potential functions used in this manuscript. The
quadratic potential function leads to the `2, while the Huber
function approximates the `1-norm . The Huber function is
depicted for ε = {0.5, 0.2, 0.05, 0.02}. Note that ψhuber(bq)

behaves as 1
2

b2q
ε

for bq � ε and as |bq| − ε for bq � ε

where W is a weighting matrix, R is the regularization
functional, and α is a global regularization parameter.
The weighting matrix is chosen as

W = diag

(
1

s

)
(16)

such that ‖s − F(a)‖2W is a weighted least squares
fidelity term adapted to data corrupted by Poisson noise.

One main difficulty of the inverse problem is the non
linearity of the forward mapping, which is addressed
by means of the Gauss-Newton algorithm described in
Section III C.

B. Regularization functional

Priors must be suited to the images of materials to be
recovered. For instance, a soft tissue image is expected
to be smoother than a bone image. We adopt the fol-
lowing regularizing functional, which allows the prior of
the different materials to be tuned independently:

R(a) =

M∑
m=1

βmRm(bm), with bm = Lmam, (17)

where βm, Rm, am = [am,1 . . . am,P ]> ∈ RP , and Lm ∈
RQm×P are the regularization parameter, the regulariza-
tion functional, the PMD, and a linear transform of the
m-th basis function (e.g., the derivative or the laplacian),
respectively.

Many different regularizing functionals, together with
many different transforms have been considered in the
past. In this manuscript, we limit our study to the follo-
wing cases.
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a. Material regularization functional We consider
the functionals that can be modeled by

Rm(bm) =

Qm∑
q=1

ψ(bq) (18)

where ψ : R 7→ R+ is a twice differentiable potential
function chosen to promote some image prior and bq =
(bm)q is the q-th component of bm. In particular, the
following two potential functions, illustrated in figure 2,
are considered:

• Quadratic. The quadratic potential function

ψquad(bq) = b2q (19)

can be chosen to promote smooth solutions. It le-
ads to the standard `2 penalization also known as
Tikhonov regularization:

Rquad
m (bm) = ‖bm‖22 (20)

• Huber. The Huber penalty functional can be chosen
to preserve edges in the solution. In particular, its
smooth approximation is defined by

ψhuber
m (bq) =

√
b2q + ε2 − ε. (21)

where ε is a parameter that can be tuned knowing
the order of magnitude of the bq’s. This choice for
ψ results in a `1-like penalization term:

Rhuber
m (bm) ≈ ‖bm‖1 (22)

b. Linear transform The choice for the linear opera-
tor Lm is restricted to discrete differential operators up
to second order, i.e.,

Lm ∈ {D(0),D(1),D(2)} (23)

where D(0) ∈ RP×P is the identity matrix, D(1) ∈ R2P×P

is the 2-D discrete gradient, and D(2) ∈ RP×P is the 2-D
discrete Laplacian. Any other linear operators could be
used as well. However, these choices lead to sparse Lm
matrices, which constitute a computational advantage as
detailed in Section VI.

C. Optimisation algorithm

We propose to minimize (15) using Gauss-Newton
(GN)’s method, which is a classical iterative method for
non-linear minimization. It starts with an initial guess
a(0) and builds new estimates with the following update
rule:

a(k+1) = a(k) + λ(k)δa(k). (24)

where δa(k) ∈ RPM is the so-called GN step and λ(k) ∈ R
is the step length.

The GN step is obtained solving

(J(k)>WJ(k) + αH(k))δa(k) = −g(k), (25)

where J(k) is the Jacobian matrix of F at the iterate a(k),
H(k) is the Hessian matrix of R at a(k), and g(k) is the
gradient of C at a(k) that is given by:

g(k) = −J(k)>W
1
2

[
s−F(a(k))

]
+ α∇R(a(k)). (26)

The step length is obtained minimizing the cost
function along the direction provided by the GN di-
rection. Mathematically, it is defined as

λ(k) = arg min C(a(k) + λ δa(k)) (27)

D. Computation of the Jacobian

The Jacobian matrix of the forward model introduced
in (25) is the IP × MP real-valued matrix that maps
variations in the unknown vector a onto variations in the
forward model s̄ = F(a). It is defined by

J =
∂s̄

∂a
(28)

Differentiating the forward model given in (7), it can be
shown that

∂s̄i,p
∂am,p′

=

{
0, for p 6= p′

ji,m,p, for p = p′
(29)

with

ji,m,p = −
∫
R
τm(E)n(E,up)di(E) dE. (30)

As a result, the Jacobian can be expressed as the block
diagonal matrix

J = diag
([
J1 . . . JP

])
(31)

where Jp ∈ RI×M is such that (Jp)i,m = ji,m,p. It is

noteworthy that J is a sparse matrix having only IMP
non-zero entries out of IMP 2. Physically, the many zeros
of J indicate that a change of the PMD in a particular
pixel does not affect the value measured at another pixel.

E. Computation of the gradient of the regularizer

Computation of the gradient of the regularizer R is
required by (26). By linearity of the gradient, we obtain
from the definition of the regularizer (17) that

∇R(a) =

M∑
m=1

βm∇Rm(Lmam), (32)
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where∇ is the gradient with respect to a, which is defined
by

∇ =
[

∂
∂a1,1

. . . ∂
∂aM,1

. . . . . . ∂
∂a1,P

. . . ∂
∂aM,P

]>
.

(33)
Since regularization is performed on each material in-
dependently, i.e. Rm only depends on am, we have
∂Rm

∂am′,p
= 0, ∀m′ 6= m. It is therefore convenient to in-

troduce the partial gradient w.r.t. the PMD of the m-th
material

∇m =
[

∂
∂am,1

. . . ∂
∂am,P

]>
. (34)

and to remark that the full gradient ∇Rm ∈ RMP is
simply obtained by inserting zeros into the partial gra-
dients ∇mRm ∈ RP . Precisely, ∇Rm = ∇mRm ⊗ em,
where em ∈ RM is the natural basis vector given by
em = [δ1,m . . . δM,m]> where δm′,m is the Kronecker
delta. Therefore, we have

∇R(a) =

M∑
m=1

βm∇mRm(Lmam)⊗ em. (35)

The latter equation is of particular interest when
closed-form formulas for ∇mRm are available. Applying
the appendix formula (A2) to the potential functions con-
sidered in (19) and (21), the following simple identities
are obtained:

∇mRquad
m (bm) = 2L>mbm (36)

and

∇mRhuber
m (bm) = L>m

[
b1√
b21+ε

2
. . .

bQ√
b2Q+ε2

]>
(37)

where bq = (Lmam)q.

F. Computation of the Hessian of the regularizer

The Hessian of the regularizer is required to compute
the GN update that solves (25). It is defined by:

H =
∂2R
∂a∂a>

. (38)

With the same reasoning as in the previous section, we
have

H(a) =
∑
m

βmHm(bm)⊗ em ⊗ e>m. (39)

where Hm ∈ RP×P is a shorthand for the Hessian of Rm
w.r.t. bm. At this point it is important to notice that H
is built from the M matrices Hm, each of size P × P .

Moreover, closed-form equations for Hm are obtained
applying the appendix equation (B2) to the potential
functions given in (19) and (21). We have :

Hquad
m (bm) = 2L>mLm (40)

0 20 40 60 80 100 120

n
0

0 20 40 60 80 100 120

d
i

E in keV
0 20 40 60 80 100 120

=
(i
n

cm
2
/g

)

100

101

102

FIG. 3. Top row: Spectrum of the x-ray source. Middle row:
detector response for each energy bin. Bottom row: mass
attenuation of the three materials considered in the numerical
experiments (gadolinium in green, bone in grey, lung tissue
in red, soft tissue in yellow, adipose tissue in cyan; lung and
soft tissues are superimposed).

and

Hhuber
m (bm) = ε2 L>mdiag

([
(b21 + ε2)−

3
2 . . . (b2Q + ε2)−

3
2

])
Lm

(41)

where bq = (Lmam)q.

IV. NUMERICAL SIMULATIONS AND IMAGE
ANALYSIS

A. Acquisition parameters

The source spectrum n0(E) was simulated using the
spekCalc software [43, 44], considering a tube voltage of
120 kV, a 12˚ anode angle, and a filter of 1.2 mm of Al. It
is depicted in the top row of figure 3. Measurements were
performed in I = 4 energy bins. The response function
di(E) of each of the 4 bins was computed according to (5),
where d(E , E) was simulated using the parametric model
provided by Schlomka et al. [11, (see appendix A.2)] and
choosing the following energy thesholds: E1 = 15 keV
, E2 = 36 keV, E3 = 60 keV, and E4 = 91 keV (see
figure 3). In order to investigate the robustness of our
decomposition method to noise, different total numbers
of photons were considered in the range N0 ∈ [104, 107]
photons.

The projections were simulated with RTK [45] using a
point x-ray source at 1.5 m from a 41×41 cm2 flat panel
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with 256 × 256 pixels. The ray casting used bi-linear
interpolation in each slice of the phantom following and
16× 16 rays were calculated and averaged per pixel.

B. Phantom generation

We used the thoracic-abdominal CT scan depicted in
figure 4a), which is part of the 3D-IRCADb database [46].
It is a 480× 370× 167 volume with a 0.961× 0.961× 1.8
mm3 voxel size and an 8-bit grayscale. We also used
the anatomical atlas represented in figure 4d). It was
obtained and provided by Kéchichian et al. [47] who seg-
mented the previously mentioned CT scan via vicinity
prior. Given both the CT and atlas volumes, the two
material mass density volumes depicted in figure 4b) and
c) were created as follows. First, segments were grouped.
For the three-material phantom, all the segments corre-
sponding to soft tissue[48] were grouped into the same
segment Ωsoft. For the five material phantom, Ωsoft did
not include adipose tissue[49] and lung tissue[50] that
were assigned to the segments Ωfat and Ωlung, respecti-
vely. For both phantoms, the bone segment Ωbone re-
mained unchanged. Second, the mass density in each
voxel was estimated from the CT images. A linear map-
ping between the 8-bit grayscale of the CT scan and
the mass density was assumed, i.e., ρm = λµCT. The
constant λ (in g.cm−3) was calibrated such that mean
value of the mass density of visceral fat is set to 0.95
g.cm−3. Third, the portal vein segment Ωportal was mar-
ked a uniform concentration cgd of gadolinium, which is
a promising spectral CT contrast agent [13, 33]. The
previous three steps result in the computation of three
volumes that were each projected onto the detector ac-
cording to (8) and the acquisition geometry L(u) des-
cribed in Section IV A. The resulting projected material
mass density image is displayed in figure 4d).

The mass attenuations of soft tissue, bone, and gado-
linium, as required in (7), were taken from the ICRU
report 44 [51]. They are depicted in figure 3 (bottom
row).

C. Image quality metrics

The quality of the decomposed images has been asses-
sed by means of two different objective performance me-
trics. First, the normalized euclidean distance has been
considered. Given the ground-truth image atruem and the
decomposed image adecm , the normalized Euclidean error
for the m-th material is defined as

errorm =
‖adecm − atruem ‖2
‖atruem ‖2

. (42)

The lower the normalized Euclidean error, the better.
We also define the total normalized Euclidean error as

errortot =
1

M

M∑
m=1

errorm. (43)

Second, the contrast-to-noise ratio (CNR) has been
considered. Given a region of interest Sroi ∈ S and a
background region Sback = S \ Sroi, we define the CNR
of the decomposed image adecm as

cnrm =
āroi − āback

(wroiσ2
roi + wbackσ2

back)1/2
, (44)

where āroi (āback) and σroi (σback) are the average and
standard deviation of adecm in the region-of-interest Sroi
(background Sback) and wroi (wback) is the partial surface
of Sroi (Sback) in the image. The larger the CNR, the
better.

D. Algorithm parameters

The quality of the reconstructed images depends dra-
matically on the choice of the regularization parameters α
introduced in (15). In order to fairly compare decompo-
sitions obtained from different acquisition scenarios, each
decomposition was performed for a set of regularization
parameters in the range log(α) ∈ [−2, 2], with a 0.5 step.
The best regularization parameter α? has been chosen to
obtain the lowest reconstruction error, for the phantom
with three materials, and then the same regularization
parameter has been used to assess the method for diffe-
rent phantom configurations. For the selection of the ma-
terial specific regularization parameters βsoft, βbone, βgd,
we evaluated the algorithm for values between 0.1 and 10
and found that the simple choice βsoft = βbone = βgd = 1
provided results close to the best ones (see supplemen-
tal data in table V at the end of the manuscript). The
hyperparameter ε was set to a small value ε = 0.01.

Our RWLS-GN algorithm has two stopping criteria. It
is interrupted either if i)the length step is small enough,
i.e., λ(k) < λstop or ii) the cost function decrease is small

enough, i.e., 1 − C(k)/C(k−1) < δstop. We chose λstop =
5 × 10−3 and δstop = 10−3. The initial guess a0 was
chosen as constant images with values in the range of the
expected values for each material, i.e., a0soft = 10 g.cm−2,
a0bone = 1 g.cm−2, and a0gd = 0 g.cm−2.

V. RESULTS

A. Comparison between ML-NM and RWLS-GN
methods

Our algorithm was compared to the reference method
described in [11], which relies on the maximization of
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Numerical phantom. (a) Slice of the 3D-IRCADb [46] thoracic-abdominal CT scan (in Hounsfield units). (b) Slice of
the 3-material phantom showing the mass density ρm (g.cm−3) of soft tissue in yellow, bone in gray, and gadolinium in green.
(c) Slice of the 5-material phantom showing the mass density ρm (g.cm−3) of soft tissue in yellow, bone in gray, gadolinium
in green, lung tissue in red, and adipose tissue in blue. (d) Anatomical atlas obtained segmenting the 3D-IRCADb volume
via vicinity prior [47], different colors indicate different labels. (e) Projection of the 3-material phantom in the coronal plane.
The projected material mass density am (g.cm−2) is displayed with the color code used in (b). (f) Projection of the 5-material
phantom in the coronal plane. Same color code as in (c).

a likelihood data fidelity term by means of the Nelder–
Mead method. It is referred to as ML-NM and imple-
mented using the fminsearch Matlab function, setting
the maximum number of iterations to 2000×M .

Ground truth images of the PMD of soft tissue, bone
and gadolinium are shown in the top row of figure 5. For
the best case scenario (number of incident photons of 107

and concentration of the marker 1 g.cm−3), decomposed
images provided by both the RWLS-GN and the ML-NM
methods are given in the middle row of figure 5. Diffe-
rence between decomposition and ground truth images
is shown in the bottom row of figure 5. While materials
were well separated when using RWLS-GN, the images
decomposed using ML-NM have poor quality. Large ar-
tifacts are observed in the soft and bone tissue images
and the gadolinium image is very noisy. For ML-NM,
the largest errors are related to the recovery of gado-
linium, which results in a dramatic cross-talk with the
soft and bone tissue images. For RWLS-GN, it can be
seen that the gadolinium image presents the lowest er-
ror and that the largest error occurred at borders of the
spine. Quantitatively, RWLS-GN led to errorsoft = 0.014,
errorbone = 0.271, errorgd = 0.071, and cnrgd = 3.42
for α? = 10−0.5, while ML-MN led to errorsoft = 1430,
errorbone = 1558, errorgd = 15, and cnrgd = 0.3627.

For the considered 256 × 256 images, a RWLS-GN ite-
ration requires about 2s on a standard laptop (2.6 GHz

i7 CPU and 16 GiB of RAM) which leads a decompo-
sition time of about 20s assuming 10 iterations before
convergence as observed in all the assessed experiments.
The ML-NM is much slower with a decomposition time
of about 1500s for the same images.

B. Convergence of the proposed RWLS-GN
algorithm

Convergence of the algorithm is shown in figure 6. The
method converged in around ten iterations. The step
length was above one in almost all iterations and the de-
crease of the cost function was close to one in all except
for the last iterations. Number of iterations for conver-
gence was between 10 and 15 for all scenarios considered
in this work.

C. Influence of the regularization parameter

The influence of the regularization parameter α is il-
lustrated in figure 7. Figure 7a shows the solution error
for the different materials as a function of α. The lowest
error for all materials was attained for similar values of α
in the range [0.1, 1]. Figure 7b and 7c shows underregu-
larized and overregularized images, respectively. When
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FIG. 5. Typical material decompositions. The projected mass densities (g.cm−2) are obtained considering the 3-material
phantom shown in figure 4b/4e. The gadolinium concentration cgd was set to 1 g.cm−3 and the number of incident photons N0

to 107 photons. (a) Ground truth images. (b) Images recovered by our GN-RWLS method for α? = 10−0.5 (best regularization
parameter). (c) Images recovered by the maximum likelihood Nelder–Mead (ML-NM) method described in [11]. (d) GN-RWLS
error. (e) ML-NM error.

regularization is not sufficient, images are noisy and the
method fails to decompose materials. On the contrary,
excessive regularization leads to oversmoothened images,
failing to properly decompose soft and bone tissue. Over-
all, the gadolinium image presented the best image qua-
lity and was more robust to the selection of the regulari-
zation parameter, and separation of bone and soft tissue
were more sensitive to the selection of α.

The optimal regularization parameter for all scenarios
is shown in table II. For a sufficiently large number of
photons (N0 ≥ 105) the optimal value log(α∗) was found
to be almost independent of the number of photons and
concentration of the marker (log(α∗) = 0 or −0.5, see
table II). For a low number of photons (N0 ≤ 105) the
method converged to unsatisfying solutions. In addition,
it was found that values of α in the range 0.1 and 1 led
to similar results in terms of image decomposition and
recovery of the concentration of the marker.

For the rest of the analysis in this work, the regulari-

TABLE II. Best regularization parameter. The table displays
log(α?)

XXXXXXXXXN0

cgd (g.cm−3)
1 0.3 0.1 0.03 0.01

107 -0.5 -0.5 -0.5 0.0 0.0
106 0.0 -0.5 0.0 0.0 0.0
105 -0.5 0.0 0.0 0.0 0.0

zation parameter α has been set to 10−0.5.

D. Influence of noise

The influence of noise has been assessed by varying the
number of incident photons from N0 = 107 to N0 = 104

for a concentration of the marker of cgd = 1 g.cm−3.
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FIG. 6. Convergence of the algorithm for α = 10−0.5, cgd = 1
g.cm−3, and N0 = 107 photons. (Top left) cost function C as
a function of the iteration number k. (Top right) total nor-
malized Euclidean error errortot as a function of the iteration
number k. (Bottom left) step length λ(k) vs iteration number

k. (Bottom right) cost function decrease C
(k−1)−C(k)

C(k−1) vs itera-
tion number. The red dashed lines indicate the values of the
chosen stopping criteria.

TABLE III. Total normalized Euclidean distance errortot for
different scenarios
XXXXXXXXXN0

cgd (g.cm−3)
1 0.3 0.1 0.03 0.01

107 0.12 0.13 0.21 0.49 1.26
106 0.19 0.21 0.33 0.75 1.97
105 0.33 0.39 0.61 1.45 4.00

For N0 = 107 materials were well separated and quan-
tification of the marker concentration was correct (see
figure 5). Lowering photons from N0 = 106 to N0 = 105

decreased image quality for bone and soft tissue while the
gadolinium image was less affected (see top and middle
rows in figure 8). For a number of photons N0 = 104,
material decomposition was not feasible.

These results are confirmed by the Euclidean distance
error (first column in table III) and contrast-to-noise ra-
tio of the marker (first column in table IV). Lowering the
number of photons from N0 = 107 to N0 = 105 increased
the error between two and three times but has limited
influence on the contrast-to-noise ratio of the marker.

regularization parameter ,
10-4 10-2 100 102

10-2

10-1

100

101

er
ro

r m

soft
bone
gd
sum

(a)

20 40 60 80 -20 0 20 40 0 2 4

(b)

10 20 30 0 1 2 3 0 0.5 1 1.5

(c)

FIG. 7. Influence of regularization. Measurements were si-
mulated for N0 = 107 photons and cgd = 1 g.cm−3. (a)
Normalized euclidean distance as a function of the regulariza-
tion parameter α. (b) Underregularized images recovered for
α = 10−4. (c) Overregularized images recovered for α = 102.

E. Influence of the contrast agent marker

The influence of the contrast agent marker was stu-
died by varying the marker concentration cgd from 1 to
0.01. Decomposed gadolinium images for different mar-
ker concentration and number of photons are shown in
figure 9. Marker concentrations of 1 g.cm−3 were well
recovered even for a low number of photons (N0 = 105).
Lowering the marker concentration to 0.1 had a large ef-
fect on image quality even for a large number of photons,
which is indicated by an increased decomposition error.
For concentrations below 0.01 g.cm−3, recovery of the
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FIG. 8. Influence of noise. Decomposed images for decreasing
number of incident photons: N0 = 106 photons (top), N0 =
105 photons (middle), and N0 = 104 photons (bottom). The
marker concentration was fixed to 1 g.cm−3.

TABLE IV. Contrast-to-noise ratio of the decomposed marker
image.

XXXXXXXXXN0

cgd (g.cm−3)
1 0.3 0.1 0.03 0.01

107 3.42 3.41 3.05 1.86 0.82
106 3.48 3.34 2.73 1.31 0.56
105 3.66 2.91 1.82 0.65 0.24

marker was not feasible.
Contrast-to-noise of the decomposed marker shows

that the recovery of the marker was more affected by mar-
ker concentration than by noise (see table IV). Contrast-
to-noise was similar to the best case scenario for cgd = 1
when N0 ≥ 105, cgd = 0.3 when N0 ≥ 106 and for
cgd = 0.1 when N0 ≥ 107.

F. Influence of the phantom

Robustness of the algorithm with respect to the
phantom is shown in figure 10. Results correspond to
different phantom compositions (soft tissue, bone tissue,
and gadolinium only or together with lung and adipose
tissue) and projection angles. In all cases, three materials
(soft tissue, bone tissue and gadolinium) are considered
for decomposition. Decomposition of the sagittal view is
found to be feasible considering the algorithm parame-
ters used to decompose the coronal view. For a phantom
with five materials (soft tissue, bone, lung tissue, adipose

0 1 2 0 0.1 0.2 -0.04 0 0.04 0.08

0 1 2 0 0.1 0.2 -0.05 0 0.05 0.1

0 0.5 1 1.5 0 0.2 0 0.2 0.4

FIG. 9. Decomposed gadolinium images obtained for de-
creasing marker concentrations cgd = {1, 0.1, 0.01} g.cm−3

(from left to right) and decreasing number of incident pho-
tons N0 ∈ {107, 106, 105} from top to bottom. In all cases
α = α?.

tissue and gadolinium) decomposed images are visually
similar to those from a phantom with only three ma-
terials (compare figure 5b and 10a and figure 10b and
10c). While the bone error is found to be higher in a
five-material phantom, it is interesting to note that the
gadolinium error is of the same order in both phantom
(about 0.07 for the coronal view and 0.2 for the sagittal
view).

VI. DISCUSSION AND CONCLUSION

This work presented a new and efficient method to
solve the nonlinear decomposition problem in spectral
X-ray imaging. The problem was solved using a Gauss-
Newton step that exploited sparsity of Jacobian and Hes-
sian operators.

It has been validated on numerical experiments of a
thorax phantom and has been compared to the ML-NM
algorithm. We showed that the proposed RWLS-GN met-
hod solves the nonlinear decomposition problem in an ef-
ficient manner. The algorithm converged in around ten
iterations for all scenarios. It was also shown to improve
the accuracy of the projected material maps. Decom-
posed material images presented high image quality, low
error and accurate concentration of the marker. On the
contrary, ML-NM decomposition was highly affected by
noise, leading to artifacts in bone and soft tissue images
and to a very noisy gadolinium image. For the assessed
experiments, RWLS-GN decomposition was feasible for a
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FIG. 10. Robustness of the decomposition setting α = 10−0.5.
From left to right, recovered soft tissue, bone, and gadolinium
images. (a) Decomposition of the 5-material phantom (coro-
nal view) leading to errorbone = 0.697, errorgd = 0.066, and
α? = 10−0.5. (b) Decomposition of the 3-material phantom
(sagittal view) leading to errorsoft = 0.019, errorbone = 0.330,
errorgd = 0.212, and α? = 10−1. (c) Decomposition of the 5-
material phantom (sagittal view) leading to errorbone = 0.701,
errorgd = 0.201, and α? = 10−1. In all cases, measurements
were simulated for N0 = 107 photons and cgd = 1 g.cm−3.

number of incident photons larger or equal thanN0 = 105

and for a marker concentration above 0.03 g.cm−3. In the
context of spectral CT, our method could exploit data re-
dundancy in the projection domain and be parallelized
across projections.

Most previous studies in spectral CT included regula-
rization in the tomographic problem [12, 33, 34]. These
methods decompose the data in a previous step and then
perform the tomographic problem by regularizing in the
image domain, which is a simpler but computationally
more expensive problem as it requires to project and
backproject the data at each iteration. In contrast, in
this work we tackle regularizing the nonlinear decom-
position problem, which has not been widely addressed.
This problem is nonlinear, harder to solve and it presents

some differences but it also offers some advantages that
can be exploited. The two main advantages are that the
problem is smaller (i.e. one projection at a time) and
that the forward operator (and also gradient and Hes-
sian operators) is very sparse. For instance the number
of nonzero elements in the Hessian is of the order of the
number of pixels instead of the square of the number of
pixels. The proposed algorithm exploits these features
by using sparse matrices to explicitly represent gradient
and Hessian operator and a Gauss-Newton step, which
has a higher convergence rate than the most widely used
linearized methods. At each iteration, the linear system
(25) can be efficiently solved using a Cholesky decompo-
sition. Fast solvers for the factorization of sparse matrix
are available. Their complexity depends on the spar-
sity (percentage of non-zero entries) of the matrix and
also the sparsity pattern (location of the non zero en-
tries). These solvers are perfectly adapted to the reso-

lution of (25) since the matrix H̃ = 2J>J + αH is both
sparse and structured. Indeed, it follows from (31) that
J>J = diag

([
J>1 J1 . . . J>PJP

])
, i.e., J>J is block dia-

gonal with a sparsity of M2P/M2P 2 = 1/P . Considering
P = 256 × 256 pixels, the sparsity (portion of non-zero
values) of J>J is 0.0015 %. Moreover, the matrix H is
build from the products of sparse banded matrices Hm,
hence it is also sparse banded.

This work has focused on the decomposition of spectral
X-ray images acquired under a particular projection an-
gle and may find direct applications in interventional ra-
diology. In this context, it could avoid the need of image
subtraction that is subject to motion artifacts. In the
context of spectral CT, its main advantage is that it
can be parallelized, processing each projection in paral-
lel. This has the potential to provide a fast method for
sinogram decomposition. Although it has been shown
that RWLS-GN decomposition is feasible for different
projection views and that it improves standard ML-NM
decomposition, its extension to spectral CT requires furt-
her investigation.

One of the main differences with previous studies in
the literature is that most of the approaches regularize
in the spatial domain and very few works have addressed
regularization in the projection domain. The proposed
algorithm included regularization on the projection dom-
ain and allowed the use of specific regularization functi-
onal for each material. The problem was solved using a
Gauss-Newton step with efficient computation of opera-
tors. The selection of the regularization parameter was
studied and the improvement brought by regularization
was highlighted for different experimental scenarios. The
gain of including regularization in the material decompo-
sition step was shown by comparing the proposed algo-
rithm to ML-NM, which led to unsatisfactory decompo-
sed images highly affected by noise and artifacts.

The proposed method allows the use of different regu-
larization functionals for each material and it is formu-
lated in a general framework for any choice of the ope-
rator. In this study, we selected Total Variation for the
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contrast material and first-order Tikhonov and second-
order Tikhonov for bone and soft-tissue, respectively.
These choices are based on assumptions that gadolinium
projection images should be piecewise constant and pro-
jection image for soft tissue is smooth. Nevertheless, ot-
her choices of regularization functionals could be more
suitable and provide better results, and should be inves-
tigated in future work.
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Appendix A: Gradient of the regularizer

We seek an expression for the gradient of the regulari-
zer R(b), b = La, with respect to a. Applying the chain
rule leads to:

∇aR(b) = L>∇bR(b), (A1)

where ∇a is the gradient w.r.t. the variable a and ∇b is
the gradient w.r.t. b. Differentiating R(b) =

∑
q ψ(bq)

with respect to b, we obtain

∇aR(b) = L>[ψ′(b1) . . . ψ′(bQ)]>. (A2)

Appendix B: Hessian of the regularizer

Applying the chain rule twice, it may be shown that
the Hessian of R(b) with respect to the variable a, for a
linear change of variable b = La, is given by (see equation
2.1 of Lebl [52])

Ha[R](b) = L>Hb[R](b)L (B1)

where Hb[R] is the Hessian of R(b) w.r.t. the variable
b. Since R(b) =

∑
q ψ(bq) we have

Ha[R](b) = L>diag ([ψ′′(b1) . . . ψ′′(bQ)])L. (B2)
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TABLE V. (Supplemental data). Quality of the decomposition for different hyperparameters {βsoft, βbone, βgd} and the best
global regularization parameter α?. In the simulations, we set N0 = 107 photons and cgd = 1 g.cm−3.

βsoft βbone βgd log(α?) error cnrgd
1 1 1 -0.5 0.12 3.42
1 0.1 0.1 0 0.12 3.42
1 0.1 10 -1 0.17 3.64
1 10 0.1 -1 0.14 3.33
1 10 10 -1.5 0.13 3.40

0.1 1 0.1 0 0.14 3.35
0.1 1 10 -1 0.15 3.68
10 1 0.1 -1 0.12 3.41
10 1 10 -1 0.12 3.52
0.1 0.1 1 0 0.13 3.57
0.1 10 1 -0.5 0.16 3.42
10 0.1 1 -0.5 0.13 3.45
10 10 1 -1.5 0.12 3.39
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