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Abstract This work deals with an extension of the redu-
ced-order models (ROMs) that are classically constructed
by modal analysis in linear structural dynamics of com-
plex structures for which the computational models are
assumed to be uncertain. Such an extension is based on
a multilevel projection strategy consisting in introducing
three reduced-order bases (ROBs) that are obtained by
using a spatial filtering methodology of local displace-
ments. This filtering involves global shape functions for
the kinetic energy. The proposed multilevel stochastic
ROM is constructed by using the nonparametric prob-
abilistic approach of uncertainties. It allows for affect-
ing a specific level of uncertainties to each type of dis-
placements associated with the corresponding vibration
regime, knowing that the local elastic modes are more
sensitive to uncertainties than the global elastic modes.
The proposed methodology is applied to the computa-
tional model of an automobile structure, for which the
multilevel stochastic ROM is identified with respect to
experimental measurements. This identification is per-
formed by solving a statistical inverse problem.

Keywords High modal density · Reduced-Order
Model · Uncertainty quantification · Broad frequency
band · Structural dynamics

1 Introduction

An extension of the classical modal analysis for con-
structing a reduced-order model (ROM) in computa-
tional linear structural dynamics is presented. This ex-
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tension is based on a multilevel projection strategy. The
computational model is assumed to be uncertain. This
paper is a continuation of the work published in [1],
for which three new ingredients are presented: (i) the
methodology for the construction of the multilevel model
reduction is adapted for allowing the probabilistic model
of uncertainties to be implemented; (ii) the effective im-
plementation of a multilevel probabilistic model of uncer-
tainties and the statistical inverse problem for its exper-
imental identification; (iii) the experimental validation
of the methodology for a very complex computational
model of an automobile for which experimental measure-
ments have been performed for 20 manufactured cars of
the same type. The complete and detailed developments
can be found in [2].

Nowadays, it is well recognized that the predictions in
structural dynamics over a broad frequency band by us-
ing a computational model, based on the finite element
method [3; 4; 5], must be improved in taking into ac-
count the model uncertainties induced by the modeling
errors, for which the role increases with the frequency.
This means that any model of uncertainties must account
for this type of frequency evolution. In addition, it is
also admitted that the parametric probabilistic approach
of uncertainties is not sufficiently efficient for reproduc-
ing the effects of modeling errors. In such a framework,
the nonparametric probabilistic approach of uncertain-
ties can be used, but in counter part requires the intro-
duction of a reduced-order model for implementing it.
Consequently, these two aspects, frequency-evolution of
the uncertainties and reduced-order modeling, lead us to
consider the development of a multilevel reduced-order
model in computational structural dynamics, which has
the capability to adapt the level of uncertainties to each
part of the frequency band. This is the purpose of the
paper.

In structural dynamics, the low-frequency (LF) band is
generally characterized by a low modal density and by
frequency response functions (FRFs) exhibiting isolated
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resonances. These are due to the presence of long-wave-
length displacements, which are global (the concept of
global displacement will be clarified later). In contrast,
the high-frequency (HF) band is characterized by a high
modal density and by rather smooth FRFs, these being
due to the presence of numerous short-wavelength dis-
placements. The intermediate band, the medium-frequen-
cy (MF) band, presents a non-uniform modal density and
FRFs with overlapping resonances [6]. For the LF band,
modal analysis [7; 8; 9; 10; 11; 12; 13; 14] is a well-known
effective and efficient method, which usually provides a
small-dimension ROM whose reduced-order basis (ROB)
is constituted of the first elastic modes (i.e. the first
structural vibration modes). Energy methods, such as
statistical energy analysis [15; 16; 17; 18; 19; 20; 21; 22],
are commonly used for the HF band analysis. Various
methods have been proposed for analyzing the MF band.
A part of these methods are related to deterministic
solvers devoted to the classical deterministic linear dy-
namical equations [6; 23; 24; 25; 11; 26; 27; 28; 29; 30;
31; 32]. A second part are devoted to stochastic linear
dynamical equations that have been developed for tak-
ing into account the uncertainties in the computational
models in the MF band (which plays an important role in
this band), see for instance [33; 34; 35; 36; 37; 38; 39; 40].

In this paper, we are interested in the dynamical analy-
sis of complex structures over a broad frequency band.
By complex structure is intended a structure with com-
plex geometry, constituted of heterogeneous materials
and more specifically, characterized by the presence of
several structural levels, for instance, a structure that is
made up of a stiff main part embedding various flexible
sub-parts. For such structures, it is possible having, in
addition to the usual global-displacements elastic modes
associated with their stiff skeleton, the apparition of nu-
merous local elastic modes, which correspond to predom-
inant vibrations of the flexible sub-parts. For such com-
plex structures, which can be encountered for instance
in aeronautics, aerospace, automotive (see for instance
[41; 42; 43]), or nuclear industries, two main difficulties
arise from the presence of the local displacements. First,
the modal density can be very high as soon the low-
frequency band, yielding a high-dimension ROM when
the modal analysis is used (several thousands of elastic
modes can be required for such a low-frequency band).
Second, such ROMs may suffer from a lack of robustness
with respect to uncertainty, because of the presence of
the numerous local displacements, which are known to be
very sensitive to uncertainties. It should be noted that,
for such a complex structure, the engineering objectives
may consist in the prediction of the global displacements
only, that is to say on predicting the FRFs of observation
points belonging to the stiff parts.

There is not much research devoted to the dynamic anal-
ysis of structures characterized by the presence of nu-

merous local elastic modes intertwined with the global
elastic modes. In the framework of experimental modal
analysis, techniques for the spatial filtering of the short
wavelengths have been proposed [44], based on regular-
ization schemes [45]. In the framework of computational
models, the Guyan condensation technique [46], based
on the introduction of master nodes at which the inertia
is concentrated, allows for the filtering of local displace-
ments. The selection of the master nodes is not obvious
for complex structures [47]. Filtering schemes based on
the lumped mass matrix approximations have been pro-
posed [48; 49; 50], but the filtering depends on the mesh
and cannot be adjusted. In [16] a basis of global dis-
placements is constructed using a coarse mesh of a finite
element model, which, generally, gives big errors for the
elastic energy. In order to extract the long-wavelength
free elastic modes of a master structure, the free-interface
substructuring method has been used [32]. Other compu-
tational methods include image processing [51] for iden-
tifying the global elastic modes, the global displacements
as eigenvectors of the frequency mobility matrix [52], or
the extrapolation of the dynamical response using a few
elastic modes [53]. In the framework of slender dynamical
structures, which exhibit a high modal density in the LF
band, simplified equivalent models [54; 55] using beams
and plates, or homogenization [56] have been proposed.
Using these approaches, the construction of a simplified
model is not automatic, requires an expertise, and a val-
idation procedure remains necessary. In addition, these
approximations are only valid for the LF band.

For a complex structure for which the elastic modes may
not be either purely global elastic modes or purely local
elastic modes, the increase of the dimension of the ROM,
which is constructed by using the classical modal anal-
ysis, can be troublesome. The methodology that would
consist in sorting the elastic modes according to whether
they be global or local cannot be used because the elas-
tic modes are combinations of both global displacements
and local displacements.

Another solution would consist in using substructuring
techniques for which reviews can be found in [57; 58; 59]
and for which a state of the art has recently been done in
[60]. A brief summary is given hereinafter. The concept of
substructures was first introduced by Argyris and Kelsey
in 1959 [61] and by Przemieniecki in 1963 [62] and was
extended by Guyan and Irons [46; 63]. Hurty [64; 65] con-
sidered the case of two substructures coupled through a
geometrical interface. Finally, Craig and Bampton [66]
adapted the Hurty method. Improvements have been
proposed with many variants [67; 68; 69; 70; 71], in par-
ticular for complex dynamical systems with many ap-
pendages considered as substructures (such as a disk
with blades) Benfield and Hruda [72]. Another type of
methods has been introduced in order to use the struc-
tural modes with free geometrical interface for two cou-
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pled substructures instead of the structural modes with
fixed geometrical interface (elastic modes) as used in the
Craig and Bampton method and as proposed by Mac-
Neal [73] and Rubin [74]. The Lagrange multipliers have
also been used to write the coupling on the geometrical
interface [75; 76; 77; 78].

The substructuring techniques would require to discard
the component modes associated with flexible sub-parts,
hence removing their associated local displacements. Un-
fortunately, for the complex structures considered, there
is no clear separation between the skeleton and the sub-
structures for which the displacements would be local.
For instance, with fixed thickness, the curvatures of a
shell induce stiffened zones with respect to the rigidity
of the flat zones. Consequently, in addition to the various
embedded equipments within the structure, the complex
geometry of the structure is responsible for the fact that
there can be no separation of the several structural levels,
but rather a continuous series of structural levels. In such
conditions, the notion of local displacement is relative. It
should be noted that in contrast to the usual long-wave-
length global displacements of the LF band, the local
displacements associated with the structural sub-levels,
which can also appear in the LF band, are characterized
by short wavelengths, similarly to HF displacements. As
a result, for the complex structures considered, there is
an overlap of the three vibration regimes, LF, MF, and
HF.

Concerning the taking into account of uncertainties in
the computational model, the probabilistic framework is
well adapted to the construction of the stochastic mod-
els, to the stochastic solvers, and to solve the associated
statistical inverse problems for the identification of the
stochastic models (for the finite dimension and for the
infinite dimension). Hereinafter, we present a brief back-
ground that is limited to the probabilistic framework
for uncertainty quantification. Several probabilistic ap-
proaches can be used depending on the sources of uncer-
tainties in the computational model (model-parameter
uncertainties, model uncertainties induced by modeling
errors, and variabilities in the real dynamical system).

(i) Output-predictive error method. Several methods are
currently available for analyzing model uncertainties. The
most popular one is the standard output-predictive er-
ror method introduced in [79]. This method has a major
drawback because it does not enable the ROM to learn
from data.

(ii) Parametric probabilistic methods for model-parameter

uncertainties. An alternative family of methods for an-
alyzing model uncertainties is the family of paramet-
ric probabilistic methods for the uncertainty quantifi-
cation. This approach is relatively well developed for
model-parameter uncertainties, at least for a reasonably
small number of parameters. It consists in construct-
ing prior and posterior stochastic models of uncertain

model parameters pertaining, for example, to geome-
try, to boundary conditions, to material properties, etc
[80; 81; 82; 83; 84; 85; 86; 87; 88; 89; 90; 91; 92; 93; 94].
This approach was shown to be computationally efficient
for both the computational model and its associated
ROM (for example, see [95; 96]), and for large-scale sta-
tistical inverse problems [97; 98; 99; 100; 101; 102]. How-
ever, it does not take into account neither the model un-
certainties induced by modeling errors introduced during
the construction of the computational model, nor those
due to model reduction.

(iii) Nonparametric probabilistic approach for modeling
uncertainties. For modeling uncertainties due to model-
ing errors, a nonparametric probabilistic approach was
introduced in [103], in the context of linear structural
dynamics. The methodology is made up of two steps.
For the first one, a linear ROM of dimension n is con-
structed by using the linear computational model with
m degrees of freedom (DOFs) and a ROB of dimension
n. For the second step, a linear stochastic ROM is con-
structed by substituting the deterministic matrices un-
derlying the linear ROM with random matrices for which
the probability distributions are constructed using the
Maximum Entropy (MaxEnt) principle [104; 105]. The
construction of the linear stochastic ROM is carried out
under the constraints generated from the available in-
formation such as some algebraic properties (positive-
ness, integrability of the inverse, etc.) and some statisti-
cal information (for example, the equality between mean
and nominal values). This nonparametric probabilistic
approach has been extended for different ensembles of
random matrices and for linear boundary value problems
[106; 107]. It was also experimentally validated and ap-
plied for linear problems in composites [108], viscoelastic-
ity [109], dynamic substructuring [110; 111], vibroacous-
tics [41; 40], robust design and optimization [112], etc.
More recently, the nonparametric approach has been ex-
tended to take into account some nonlinear geometrical
effects in structural analysis [113; 114], but it does not
hold for arbitrary nonlinear systems, while the work re-
cently published [115] allows for taking into account any
nonlinearity in a ROM.

Recently, a new methodology [116] has been proposed
for constructing a stochastic ROM devoted to dynami-
cal structures having numerous local elastic modes in the
low-frequency range. The stochastic ROM is obtained by
implementing the nonparametric probabilistic approach
of uncertainties within a novel ROM whose ROB is con-
stituted of two families, one of global displacements and
another one of local displacements. These families are ob-
tained through the introduction, for the kinetic energy,
of a projection operator associated with a subspace of
piecewise constant functions. The spatial dimension of
the subdomains, in which the projected displacements
are constant, and which constitute a partition of the do-
main of the structure, allows for controlling the sepa-
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ration between the global displacements and the local
displacements. These subdomains can be seen as macro-
elements, within which, using such an approximation, no
local displacement is permitted. It should be noted that
the generation of a domain partition for which the gen-
erated subdomains have a similar size (that we call uni-
form domain partition), necessary for obtaining a spa-
tially uniform filtering criterion, is not trivial for com-
plex geometries. Based on the Fast Marching Method
[117; 118], a general method has been developed in or-
der to perform the uniform domain partition for a com-
plex finite element mesh, and then implemented for the
case of automobile structures [42]. In later work [1; 2],
the filtering methodology has been generalized through
the introduction of a computational framework for the
use of any arbitrary approximation subspace for the ki-
netic energy, in place of the piecewise constant approxi-
mation. In particular, polynomial shape functions (with
support the whole domain of the structure) have been
used for constructing a global-displacements ROM for
an automobile. This generalization allows for carrying
out an efficient convergence of the global-displacements
ROM with respect to the so-defined filtering (in contrast,
constructing several uniform domain partitions of differ-
ent characteristic sizes can be, in practice, very time-
consuming). In addition, a multilevel ROM has been in-
troduced. The ROB of this ROM is constituted of sev-
eral families of displacements, which correspond to the
several structural levels of the complex structure. More
precisely, a multilevel ROM has been presented for which
the ROB is constituted of three families, namely the LF-
, MF-, and HF-type displacements. Each family is ob-
tained by performing a spatial filterings of local displace-
ments. It should be noted that multilevel substructuring
techniques can be found in the literature [119; 120; 121],
whose purpose is to accelerate the solution of large-scale
generalized eigenvalue problems.
In the present paper, latter filtering methodology (in-
volving polynomial shape functions) is reused, but we
present a novel formulation for the construction of a
multilevel ROM, which allows for implementing a prob-
abilistic model of uncertainties that is adapted to each
vibration regime. This way, the amount of statistical fluc-
tuations for the LF-, MF-, and HF-type displacements
can be controlled using the multilevel stochastic ROM
that is obtained.

The objective of this paper is double. The first one is to
provide a multilevel stochastic ROM that is able to take
into account the heterogeneous variability introduced by
the overlap of the three vibration regimes. The second
one is to provide a predictive ROM whose dimension is
smaller than the dimension of the classical ROM con-
structed by using modal analysis. Both these objectives
are to be fulfilled by means of efficient methods that are
non-intrusive with respect to commercial software.

The paper is organized as follows. In Section 2, the ref-
erence computational model is introduced and the clas-
sical construction of the ROM is performed by using
modal analysis. Based on this deterministic ROM, the
classical stochastic ROM is then constructed by using
the nonparametric probabilistic approach of uncertain-
ties. In Section 3, the methodology devoted to the spa-
tial filtering of the global and of the local displacements
is presented. These developments are used in Section 4
for defining the multilevel ROM. In this section, the nu-
merical procedure is also detailed and the construction
of the multilevel stochastic ROM is given. Finally, in
Section 5, the proposed methodology is applied to an
automobile, for which the multilevel stochastic ROM is
identified by using experimental measurements. The re-
sults are compared to those obtained with the classical
stochastic ROM.

Notations

DOF: degree of freedom.
FEM: finite element model.
FRF: frequency response function.
HF: high frequency.
LF: low frequency.
MF: medium frequency (or mid frequency).
ROB: reduced-order vector basis.
ROM: reduced-order model.

C-NROM: classical nominal ROM.
C-SROM: classical stochastic ROM.
ML-NROM: multilevel nominal ROM.
ML-SROM: multilevel stochastic ROM.

Cp: Hermitian space of dimension p.
R

p: Euclidean space of dimension p.
Sc: vector subspace for the classical ROM.
Sg: vector subspace for the global-displacements ROM.
Sℓ: vector subspace for the local-displacements ROM.
St: vector subspace for the multilevel ROM.

SH: vector subspace for the scale-H ROM.
SL: vector subspace for the scale-L ROM.
SM: vector subspace for the scale-M ROM.
SR: vector subspace for the reduced kinematics.
SLM: vector subspace for the scale-LM ROM.

d: maximum degree of the polynomial approximation.
m: dimension of the FEM (number of DOFs).
n: dimension of Sc.
r: dimension of SR.
ng: dimension of Sg.
nℓ: dimension of Sℓ.
nt: dimension of St.
nH: dimension of SH.
nL: dimension of SL.
nM: dimension of SM.
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nLM: dimension of SLM.

[B]: ROB of SR such that [B]T [M][B] = [Ir ].
[Bℓ]: ROB of SR such that [Bℓ]T [Mℓ][Bℓ] = [Ir].
[Ip]: identity matrix of dimension p.
[M]: mass matrix of the FEM.
[Mℓ]: lumped approximation of [M].

[Φ]: ROB of the classical ROM.
[Φg]: global-displacements ROB.
[Φℓ]: local-displacements ROB.
[Φt]: ROB of the scale-t ROM.
[ΦH]: HF-type displacements ROB.
[ΦL]: LF-type displacements ROB.
[ΦM]: MF-type displacements ROB.
[ΦLM]: ROB of the scale-LM ROM.
[Ψ ]: ROB of the multilevel ROM.

2 Classical reduced-order model

In this section, we introduce the reference computational
model and we present the very well known modal analy-
sis method as well as the construction of the associated
stochastic ROM that is obtained by using the nonpara-
metric probabilistic approach of uncertainties [103]. This
way, basic notions that will be reused later are intro-
duced. In addition, the multilevel stochastic ROM pro-
posed in this paper will be compared to classical stochas-
tic ROM.

2.1 Reference computational model

The vibration analysis is performed over a broad fre-
quency band – denoted as B – by using the finite element
method. Let m denote the dimension (number of DOFs)
of the finite element model. For all angular frequency ω
belonging to B = [ωmin, ωmax], the m-dimensional com-
plex vector U(ω) of displacements is the solution of the
matrix equation,

(−ω2[M] + iω[D] + [K] )U(ω) = F(ω) , (1)

in which F(ω) is the m-dimensional complex vector of
the external forces and where, assuming the structure is
fixed on a part of its boundary, [M], [D], and [K] are the
positive-definite symmetric (m×m) real mass, damping,
and stiffness matrices.

2.2 Classical nominal reduced-order model

For all α = 1, . . . ,m the elastic modes ϕα with associ-
ated eigenvalues λα are the solutions of the generalized
eigenvalue problem,

[K]ϕα = λα[M]ϕα . (2)

The first n eigenvalues verify 0 < λ1 ≤ λ2 ≤ . . . ≤
λn < +∞ and the normalization that is chosen for the
eigenvectors is such that

[Φ]
T
[M][Φ] = [In] , (3)

in which [Φ] = [ϕ1 . . .ϕn], and where [In] is the identity
matrix of dimension n. Such a normalization with the
unit generalized mass is always adopted in this paper in
which several generalized eigenvalue problems are intro-
duced. In practice, only the first n elastic modes with
n ≪ m (associated with the lowest eigenvalues or the
lowest eigenfrequencies fα =

√
λα/2π in Hz) are calcu-

lated. The (m × n) real matrix [Φ] is the ROB of the
classical nominal reduced-order model (C-NROM). The
vector subspace spanned by the ROB of the C-NROM is
denoted by Sc. Using the C-NROM, displacements vec-
tor U(ω) belong to Sc and we have

U(ω) ≃ [Φ]q(ω) =

n
∑

α=1

qα(ω)ϕα , (4)

where the n-dimensional complex vector of generalized
coordinates q(ω) = (q1(ω) . . . qn(ω)) is the solution of
the reduced-matrix equation,

(−ω2[M] + iω[D] + [K] )q(ω) = f(ω) , (5)

in which f(ω) = [Φ]TF(ω), [D] = [Φ]T [D][Φ] is, in general,
a full matrix and where diagonal matrices [K] and [M]
are such that

[K] = [Φ]
T
[K][Φ] = [Λ] , [M] = [Φ]

T
[M][Φ] = [In] , (6)

in which [Λ] is the matrix of the first n eigenvalues.

2.3 Classical stochastic reduced-order model

The classical stochastic reduced-order model (C-SROM)
is constructed by using the nonparametric probabilistic
approach of uncertainties [103] within the C-NROM. In
this nonparametric approach, each nominal reduced ma-
trix of dimension n, say [A] (= [M], [D], or [K]), is re-
placed by a random matrix, [A] (= [M], [D], or [K]) for
which the probability distribution has been constructed
by using the maximum entropy principle [104; 105] under
the following constraints:

– Matrix [A] is with values in the set of all the positive-
definite symmetric (n× n) real matrices.

– E{[A]} = [A] , with E the mathematical expectation,
which means that the mean matrix is chosen as the
nominal matrix.

– E{||[A]
−1||2F } < +∞ for insuring the existence of a

second-order solution of the stochastic ROM where
||.||F is the Frobenius norm.

Introducing the Cholesky factorization [LA]
T [LA] of ma-

trix [A] in which [LA] is an upper-triangular matrix, the
construction of random matrix [A] is given by

[A] = [LA]
T
[Gn(δA)][LA] , (7)



6

where the randommatrix [Gn(δA)] (see [103]) is positive-
definite almost surely, for which its mean value is [In]
and which is parameterized by a dispersion parameter
δA defined by

δ2A =
1

n
E{||[Gn(δA)]− [In]||2F } . (8)

The hyperparameter δA of random matrix [Gn(δA)] has
to verify 0 < δ < δmax with δmax given by

δmax =

√

n+ 1

n+ 5
. (9)

Using the Monte-Carlo simulation method [122], the C-
SROM allows for computing the random displacements
vector U(ω) associated with U(ω),

U(ω) = [Φ]Q(ω), (10)

in which the random complex vector Q(ω) of the gen-
eralized coordinates is obtained by solving the random
matrix equation,

(−ω2[M] + iω[D] + [K] )Q(ω) = f(ω) . (11)

The classical ROM is built upon the use of the elastic
modes that are present in the frequency band of analysis,
B (or a frequency band slightly wider). In this manner,
the dimension of the computational model is reduced
while its accuracy is preserved for this band. For the
complex structures under consideration, numerous local
displacements are intertwined with the global displace-
ments. As a result, among the elastic modes present in
B, many have little contribution to the robust dynam-
ical response of the stiff skeleton of the structure that
is provided by the C-SROM. Consequently, we present
the construction of an adapted ROM that is based on a
ROB in which local displacements have been filtered.

3 Global-displacements reduced-order model

In this section, the construction of a new ROM is pre-
sented. It is based on the use of a global-displacements
ROB instead of the classical ROB made up of elastic
modes because the classical ROB can include numerous
local elastic modes. In Section 3.1, we present the con-
struction of an unusual mass matrix that is associated
with a reduced kinematics for the kinetic energy. In Sec-
tion 3.2, we use this mass matrix for obtaining unusual
eigenvectors that constitute the global-displacements ROB
(this unusual mass matrix is not used as the mass matrix
for computing the response of the dynamical system).
In section 3.3, an efficient and nonintrusive algorithm is
proposed for implementing the ROB. Finally, in Section
3.4, we give the construction of a ROB that is consti-
tuted of the complementary local displacements that are
neglected in the global-displacements ROM.

3.1 Reduced kinematics for the kinetic energy

In order to filter local displacements, a reduced kine-
matics is introduced for the mass matrix. This reduced
kinematics is intended to be such that the local displace-
ments cannot be represented. Instead of using the clas-
sical local shape functions of the finite elements for the
construction of the mass matrix, we propose the use of
r global shape functions, which span a vector subspace
denoted by SR and which constitute the columns of a
(m × r) real matrix [B]. These global shape functions
are polynomials for which the maximum degree is de-
noted by d and that are defined on the whole domain of
the structure. The construction of [B] is given in [1; 2]
and the dimension r of the reduced kinematics is written
as

r = (d+ 1)(d+ 2)(d+ 3)/2 . (12)

The value of degree d will allow for controlling the filter-
ing of the global displacements and of the local displace-
ments. In order to determine an appropriate value of d,
a convergence analysis will be carried out with respect
to both the deterministic and the stochastic quantities
of interest. In the present paper, the strategy proposed
consists in approximating the kinetic energy while keep-
ing the elastic energy exact. Such a construction is de-
tailed in [1; 2]). The mass matrix corresponding to this
reduced kinematics will be called the reduced-kinematics

mass matrix.

First, the kinetic energy Ek(V(t)) associated with any
time-dependent real velocity vector V(t) of dimension m
is given by

Ek(V(t)) =
1

2
V(t)

T
[M]V(t) . (13)

Let Vr(t) be the orthogonal projection of V(t) onto sub-
space SR with respect to the inner-product defined by
matrix [M]. Assuming the columns of [B] to be orthonor-
malized with respect to [M], the projector [P] that is such
that Vr(t) = [P]V(t) is written as

[P] = [B][B]
T
[M] . (14)

The rank of the (m×m) real matrix [P] is equal to r ≤ m.
The reduced kinetic energyEr

k(V(t)) = Ek(V
r(t)) is then

written as

Er
k(V(t)) =

1

2
V(t)

T
[Mr]V(t) , (15)

in which them-dimensional reduced-kinematics mass ma-
trix [Mr] = [P]

T
[M][P] is positive semidefinite with a

rank equal to r and can be written as

[Mr] = [M][B][B]T [M] . (16)

3.2 Global-displacements reduced-order basis

In order to span the global-displacements space denoted
by Sg (and which is a subspace of Rm), mass matrix [M]
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is replaced by [Mr] and yields the following generalized
eigenvalue problem (that differs from the one used for
computing the elastic modes and that cannot be used
for computing them),

[K]ψg
α = σg

α[M
r]ψg

α , (17)

in which the eigenvectors ψg
α consist of global displace-

ments and where σg
α are the associated eigenvalues. The

first r eigenvalues are such that 0 < σg
1 ≤ σg

2 ≤ . . . ≤
σg
r < +∞ and the eigenvalues of rank greater than r are

all infinite. Their associated eigenvectors are orthogonal
to vector subspace SR.

It should be noted that (i) the r eigenvectors ψg
α are

not orthogonal with respect to mass matrix [M] and (ii)
they will be used for the projection of the computational
model defined by Eq.(1), which involves mass matrix [M]
and not [Mr]. Let us introduce the (m× ν) real matrix,
[Ψg] = [ψg

1 . . .ψ
g
ν ], in which ν is a given truncation order

such that

ν ≤ r . (18)

The global-displacements ROB is defined by the first
eigenvectors of the dynamical system, which are con-
strained to belong to the vector space spanned by the
ν columns of the (m × ν) real matrix [Ψg]. The global-
displacements ROB is denoted by [Φg] whose columns
ϕg

α are written as

ϕg
α = [Ψg]rα , (19)

in which rα are the eigenvectors of the small-dimension
generalized eigenvalue problem,

([Ψg]T [K][Ψg]) rα = λg
α([Ψ

g]T [M][Ψg]) rα . (20)

Introducing the matrix [R] = [r1 . . . rng
], in which ng is a

given truncation order that will be defined after, matrix
[Φg] can be written as

[Φg] = [Ψg][R] . (21)

Using Eq. (20) yields

[Φg]
T
[K][Φg] = [Λg] , [Φg]

T
[M][Φg] = [Ing

] . (22)

The eigenvalues verify 0 < λg
1 ≤ λg

2 ≤ . . . ≤ λg
ν <

+∞. Only the first ng eigenvectors (associated with the

lowest frequencies fg
α =

√
λg
α/2π) are kept for defining

[Φg] = [ϕg
1 . . .ϕ

g
ng
]. The dimension ng of the global-

displacements subspace Sg is deduced from a cutoff fre-
quency, f c, for which ng verifies

fg
ng

≤ f c. (23)

In addition, ng satisfies the inequality,

ng ≤ ν . (24)

Cutting frequency f c is a data that must be chosen
greater or equal to the upper bound ωmax/2π of fre-
quency band B and that must be adjusted through the

analysis of the FRFs. It should be noted that trunca-
tion order ν cannot directly be deduced from the value√
σg
ν/2π because the eigenvalues σg

α are not the eigenfre-
quencies of the dynamical system. For ν ≤ r, the follow-
ing inequality can be proved,

λg
ν ≤ σg

ν , (25)

for which the difference between λg
ν and σg

ν can be sig-
nificant.

For brevity, no notation is introduced for the equations
related to the global-displacements ROM, which would
be similar to Eqs. (4) and (5) and which, anyway, would
not be used.

3.3 Numerical implementation for the construction of
the global-displacements ROB

As the mass matrix [Mr] is a full (m×m) matrix, this ma-
trix is not assembled. In addition, the eigenvalue problem
defined by Eq. (17) requires the knowledge of matrices
[M] and [K], which can involve problems for the commer-
cial software. The purpose of this section is to present
an efficient method for the construction of the global-
displacements ROB.

Let [Mℓ] be the diagonal matrix that is a lumped ap-
proximation of mass matrix [M]. For avoiding the use of
[M], the following approximation of [Mr] is introduced,

[Mr] ≃ [Mℓ][Bℓ][Bℓ]
T
[Mℓ] , (26)

in which the construction of [Bℓ] is similar to the one of

[B] (see Section 3.1) but is such that [Bℓ]
T
[Mℓ][Bℓ] =

[Ir]. The projector [P] defined by Eq. (14) is then ap-
proximated by

[P] ≃ [Bℓ][Bℓ]
T
[Mℓ] . (27)

Equation (26) consists in applying the reduced kinemat-
ics (associated with a given maximum degree for the
polynomial approximation) to a diagonal lumped ap-
proximation [Mℓ] of consistent mass matrix [M], instead
of applying it to [M]. Since a diagonal approximation
can be obtained by a kinematic reduction for which the
displacement field is constant over each finite element,
the error induced by Eq. (26) is related to the one ob-
tained by approximating the polynomial shape functions
by functions that are a constant in each finite element.
For a polynomial with a low degree, the spatial varia-
tion is slow and, as it is assumed that the FEM is con-
structed upon a fine mesh, such an approximation can
therefore be considered negligible. Nevertheless, in this
paper, high-degree polynomial shape functions have been
used. In order to estimate the maximum effect of such
an approximation given by Eq. (26) (for the case of high-
degree polynomial shape functions), a prior analysis has
been carried out, consisting in computing deterministic
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quantities of interest (such as moduli of FRFs in log-
scale) by two different global-displacements ROMs, one
with the lumped mass matrix and the other one with the
consistent matrix, and in comparing the results given by
the two ROMs, which have shown that the error is effec-
tively negligible.

A double projection method is presented, which allows
the explicit use of matrix [K]. It consists in projecting
Eq. (17) onto subspace Sc that is associated with the
classical ROB made up of the elastic modes. This sub-
space is supposed to provide, upon the use of a suffi-
ciently large value of the number n of elastic modes,
an accurate representation on frequency band B. Then,
without loss of model fidelity, such a projection can be
obtained by writing

Sg ⊆ Sc (28)

that is satisfied if ψg
α is written as

ψg
α = [Φ]sα , (29)

in which sα is a n-dimensional real vector that has to
be calculated as follows. By using Eq. (29), the projec-
tion of Eq. (17) yields the following reduced-dimension
generalized eigenvalue problem,

([Φ]T [K][Φ]) sα = σg
α([Φ]

T [Mr][Φ]) sα . (30)

The matrix [Φ]
T
[K][Φ] is the diagonal matrix [Λ] defined

in Eq. (6), which is available. By using Eq. (26), the full

matrix [Φ]
T
[Mr][Φ] can be computed as

[Φ]
T
[Mr][Φ] ≃ [N ][N ]

T
, (31)

in which the (n× r) real matrix [N ] that is defined by

[N ] = [Φ]
T
[Mℓ][Bℓ] (32)

is also available. Introducing [S] = [s1 . . . sν ] and using
Eq. (29), matrix [Ψg] can be rewritten as

[Ψg] = [Φ][S] . (33)

Denoting as [Σg] the diagonal matrix of the first ν eigen-
values σg

α and recalling the choice of a unit generalized
mass normalization, it can then be deduced that the re-
duced matrices involved in Eq. (20) are such that

[Ψg]
T
[K][Ψg] = [Σg] and [Ψg]

T
[M][Ψg] = [S]

T
[S] . (34)

Remark 1. Physical interpretation of the filtering strat-

egy. Introducing the (m×n) real matrix [Φr] = [P][Φ], we

obtain [Φ]T [Mr][Φ] = [Φr]T [M][Φr ]. The following inter-
pretation of Eq. (30) can be given. While reduced stiff-

ness matrix [Φ]T [K][Φ] is the projection of stiffness ma-
trix [K] onto the basis [Φ] of the elastic modes (including
both the global and the local displacements), the reduced

mass matrix [Φr ]
T
[M][Φr] is the projection of mass ma-

trix [M] onto displacements represented by matrix [Φr],
which belong to subspace SR and in which some local

displacements are filtered.

Remark 2. Computational efficiency. It should be noted

that the numerical rank, R , of [N ][N ]
T
is such that R ≤

r and R ≤ n. Similarly to Eq. (18), truncation order
ν must satisfy the inequality ν ≤ R. For solving the
generalized eigenvalue problem defined by Eq. (30), three
cases are considered.

– For r < n, a thin SVD (see [123]) of the (n× r) real
matrix [Λ]−1/2[N ] is performed for a lower cost.

– For r ≫ n, R = n is verified and matrix [N ][N ]T is
positive definite. For this case, the usual algorithms
are used.

– For the intermediate case for which R is close to n,
the SVD approach is more efficient in order to obtain
a good accuracy.

3.4 Local-displacements reduced-order basis

In the rest of the paper, it is assumed that the above nu-
merical implementation of the global-displacements ROB
is used. In this section, we present the construction of a
local-displacements ROB. The vector subspace associ-
ated with the local-displacements ROB, denoted by Sℓ ,
is the orthogonal complement of subspace Sg of Sc with
respect to the inner-product defined by matrix [M]. In
particular, Sc is the orthogonal direct sum of Sg with Sℓ,

Sc = Sg ⊕ Sℓ . (35)

Thanks to this definition of Sℓ , its ROB, denoted by [Φℓ],
satisfies the orthogonality condition

[Φg]
T
[M][Φℓ] = [0], (36)

as well as the following equality

[Φℓ] = [Φ][Qℓ], (37)

in which [Qℓ] is the (n×nℓ) real matrix of the coordinates
in the basis defined by [Φ], and where the dimension nℓ

is such that

nℓ = n− ng . (38)

Let [Qg] be the (n× ng) real matrix such that

[Qg] = [S][R] . (39)

Using Eqs. (21), (33), and (39) yield

[Φg] = [Φ][Qg] . (40)

From Eqs. (3), (36), (37), and (40), the following orthog-
onality property can be deduced,

[Qg]
T
[Qℓ] = [0] . (41)

Let [Z] be the (n×nℓ) real matrix whose columns are the
right-singular vectors associated with the nℓ zero singu-

lar values of the SVD of [Qg]
T
(and which, consequently,
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is an algebraic basis of the nullspace of [Qg]
T
). By con-

struction, matrix [Z] verifies

[Z]
T
[Z] = [Inℓ

] . (42)

Equation (41) is satisfied for [Qℓ] expressed as

[Qℓ] = [Z][U ] , (43)

in which [U ] is a (nℓ×nℓ) real matrix of coordinates in the
basis defined by [Z]. The local-displacements ROB rep-
resented by matrix [Φℓ] is then defined by the first eigen-
vectors of the dynamical system, which are constrained
to belong to the vector space spanned by the nℓ columns
of the (m × nℓ) real matrix [Φ][Z]. The columns ϕℓ

α of
[Φℓ] are thus written as

ϕℓ
α = [Φ][Z]uα , (44)

in which, thanks to Eqs.(6) and (42), it can be deduced
that the columns uα of [U ] are the eigenvectors of the
following standard eigenvalue problem,

([Z]
T
[Λ][Z])uα = λℓ

α uα . (45)

In this Section 3, a general method has been presented
for obtaining a global-displacements ROM, for which
the construction of the associated ROB depends on the
choice of parameters d (maximum degree of the polyno-
mial approximation), ν (truncation order), and f c (cut-
off frequency). The dimension ng of the ROM results
from the values of these parameters. Suitable values of
d and ν must be tuned in order to obtain a smaller
dimension ng ≤ n while preserving the fidelity of the
computational model. As higher frequencies are charac-
terized by vibrations of shorter wavelength, the choice
of the values for d and ν strongly depend on the value
of frequency f c. The construction of a ROB made up
of local displacements, which is complementary to the
global-displacements ROB, has also been proposed and
will be useful for the construction of a multilevel ROM.

4 Multilevel reduced-order model

4.1 Formulation of the multilevel ROM

In this section, the previous developments are used in the
construction of a multilevel ROM, for which three ROBs
associated with the low-, medium-, and high-frequency
bands (LF, MF, HF) are introduced. In contrast to the
HF band, the LF band is associated with long-wave-
length global displacements, while the MF band is a com-
bination of global and local displacements with more or
less short wavelength. For the complex structures consid-
ered, there is an overlap of the three vibration regimes.
For instance, numerous local elastic modes can be found
in the low-frequency band. The previously introduced
filtering strategy is therefore used in order to separate
the LF-, MF-, and HF-type displacements. The filtering

methodology presented in Sections 3.3 and 3.4 can be
represented by the following mapping,

F1 : (Sc ; d, ν, f
c) 7−→ (Sg ,Sℓ) , (46)

which will be used for defining the multilevel ROM. As
the classical ROM, the multilevel ROM is devoted to
the vibration analysis over whole band B, which can be
decomposed into the three following bands,

B = BL ∪ BM ∪ BH . (47)

We now present the basic ideas concerning the construc-
tion of the multilevel ROM based on the introduction
of three successive filterings, which are defined through
mapping F1 . We introduce the cutoff frequency f c

H for
which the value has to be chosen by considering the value
of the upper bound of BH . The (global-displacements)
vector subspace St , which includes the totality of the
remaining considered displacements and which is associ-
ated with the multilevel ROM, is given by

(St ,S⊥
t ) = F1(Sc ; dH, νH, f c

H) , (48)

in which the values of the parameters dH and νH are
tuned in order to obtain a decreased dimension while
preserving the fidelity of the ROM up to frequency f c

H.
It should be recalled that subspace Sc is assumed to be
associated with an accurate classical ROM over band B.
The (local-displacements) vector subspace S⊥

t , verifying
Sc = St⊕S⊥

t , is not used (the local displacements span-
ning this subspace are discarded in order to decrease the
dimension of the proposed ROM). For carrying out the
next filterings, similarly to the double projection method
associated with Eq. (28), the computational model is now
projected onto subspace St, which is supposed to be as-
sociated with a sufficiently accurate representation.

Similarly, we introduce the cutoff frequency f c
M which

is be chosen by considering the value of the upper bound
of BM . The (local-displacements) vector subspace, SH ,
associated with the HF vibration regime is given by

(SLM ,SH) = F1(St ; dM, νM, f c
M) , (49)

where SLM is the complementary (global-displacements)
subspace belonging to St . The values of the parameters
dM and νM are tuned such that the ROB associated
with SLM yields an adequate representation up to fre-
quency f c

M . We have the decomposition St = SLM⊕SH.

Finally, the cutoff frequency f c
L is introduced, which is

chosen by considering the value of the upper bound of
BL . The (global-displacements) vector subspace, SL , as-
sociated with the LF vibration regime, is given by

(SL ,SM) = F1(SLM ; dL, νL, f
c
L) , (50)

where SM is the complementary (local-displacements)
subspace belonging to SLM. The values of the param-
eters dL and νL are tuned such that the ROB associ-
ated with SL and mainly made up of global displace-
ments, yields a sufficiently accurate representation up
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to frequency f c
Lİt should be noted that, with a similar

manner as the previous one, the proposed construction
makes the assumption that subspace SLM constructed
with a higher polynomial degree (that has been tuned
for covering a broader) frequency band (LF ∪ MF)),
is associated with a sufficiently accurate representation
(for the LF band). Finally, we have the decomposition
SLM = SL ⊕ SM and consequently,

St = SL ⊕ SM ⊕ SH . (51)

4.2 Implementation of the multilevel nominal ROM

4.2.1 Numerical procedure

In this section, the numerical implementation is detailed.
We summarize the steps introduced in Sections 3.3 and
3.4 that are devoted to the construction of the global-
displacements ROB and of the local-displacements ROB.
Similarly to Eq. (46), the procedure is then compacted
in a mapping, F2 , which allows for defining the alge-
braic quantities associated with the multilevel ROM for-
mulated in Section 4.1. In the following, the steps for
calculating the outputs of mapping F2 are given.

For this, it is assumed that maximum degree d of the
polynomial approximation, truncation order ν, and cut-
off frequency f c are given and some new notations are
introduced in order to generalize the numerical proce-
dure. Let [Λ0] be a diagonal matrix of dimension n0

whose diagonal elements are strictly positive. Let [Q0]
be a (n1 × n0) real matrix for which n1 ≥ n0 and such

that [Q0]
T
[Q0] = [In0

]. Let [N0] be a (n1×rmax) real ma-
trix for which rmax ≥ r , with r = (d+1)(d+2)(d+3)/2.
These three matrices are the input parameters of map-
ping F2 in addition to the filtering parameters that are
d, ν, and f c. The outputs of mapping F2 will allow us
to define the construction of all the matrices involved in
the multilevel ROM. It should be noted that, aside from
the multilevel ROM, mapping F2 allows for constructing
the global- and the local-displacements ROBs defined in
Section 3 by using, as inputs the quantities [Λ0] = [Λ],
[Q0] = [In] with n1 = n0 = n, and [N0] = [N ].

The matrix [N0] is associated with a reduced kinemat-
ics for which the maximum degree of the polynomials is
greater or equal to d, and which can already have been
used during a previous filtering. Let [N0

r ] be the (n1× r)
matrix constituted of the first r columns of [N0]. In ad-
dition, the previous filtering is associated with a change
of basis defined by matrix [Q0]. Let [Nr] be the (n0 × r)
real matrix defined by

[Nr] = [Q0]
T
[N0

r ] . (52)

The eigenvectors sα and the associated eigenvalues σg
α

are calculated (similarly to Eq. (30)) as

[Λ0] sα = σg
α([Nr][Nr]

T
) sα . (53)

Introducing the matrix [S] = [s1 . . . sν ] and the ma-
trix [Σg] of the eigenvalues σg

α, the eigenvectors rα and
the associated eigenvalues λg

α are calculated (similarly to
Eq. (20)) as

[Σg] rα = λg
α([S]

T [S])rα . (54)

Dimension ng of the global-displacements ROB is the
maximum integer α verifying the inequality fg

α ≤ f c, in

which fg
α =

√
λg
α/2π. Then, matrix [Λg] is made up of

the ng eigenvalues λg
α. Let [R] be the matrix such that

[R] = [r1 . . . rng
] and let [Qg] be the matrix defined by

[Qg] = [S][R]. Introducing [C] = [Qg]
T
, the following

SVD is performed,

[C] = [UC ][ΣC ][VC ]
T
. (55)

The columns of [VC ] associated with the nℓ zero singular
values in [ΣC ] allow for obtaining the (n0 ×nℓ) real ma-
trix [Z] with nℓ = n0 − ng. Finally, the eigenvectors uα

and the associated eigenvalues λℓ
α are calculated (simi-

larly to Eq. (45)) as

([Z]
T
[Λ0][Z])uα = λℓ

α uα , (56)

which allows for obtaining the matrix [U ] = [u1 . . .unℓ
]

and the diagonal matrix [Λℓ] of the nℓ eigenvalues λℓ
α,

followed by the construction of matrix [Qℓ] = [Z][U ].

The procedure summarized hereinbefore allows the fol-
lowing mapping to be constructed,

([Λg], [Qg], [Nr], [Λ
ℓ], [Qℓ]) =

F2([Λ
0], [Q0], [N0]; d, ν, f c) , (57)

in which the outputs [Qg] and [Qℓ] verify the following
orthonormality properties,

[Qg]
T
[Qg] = [Ing

], [Qℓ]
T
[Qℓ] = [Inℓ

],

[Qg]
T
[Qℓ] = [0] . (58)

These properties can be deduced from Eqs. (20), (34),
(37), (41), (42), (43), (45), and from the fact that the
unit generalized mass normalization is used.

4.2.2 Construction of the reduced-order bases

First filtering. In Eq. (48), vector subspace St is obtained
by the projection onto Sc in which dH , νH , and f c

H are
the filtering parameters. Let nt be the dimension of the
multilevel ROM and let rH = (dH+1)(dH+2)(dH+3)/2.
The real matrices [Λt], [Qt], and [N t], respectively of
dimensions (nt × nt), (n× nt), and (n× rH) are defined
as the first three outputs of mapping F2 such that

([Λt], [Qt], [N t],∼,∼) =

F2([Λ], [In], [N ]; dH, νH, f c
H) , (59)
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in which [N ] = [Φ]
T
[Mℓ][Bℓ]. The symbol ∼ indicates

that the corresponding output variables are not calcu-
lated. The ROB [Φt] associated with St is given by

[Φt] = [Φ][Qt] , (60)

in which, thanks to Eq. (58), [Qt] verifies

[Qt]
T
[Qt] = [Int

] . (61)

Second filtering. In Eq. (49), vector subspaces SLM and
SH have their ROB defined through the following out-
puts of mapping F2 ,

([ΛLM], [QLM], [NLM], [ΛH], [QH]) =

F2([Λ
t], [Qt], [N t]; dM, νM, f c

M) , (62)

with dM ≤ dH, νM ≤ nt, and where (similarly to Eq. (58))
the following properties are verified,

[QLM]
T
[QLM] = [InLM

], [QH]
T
[QH] = [InH

],

[QLM]
T
[QH] = [0] , (63)

with nLM = dim(SLM) and nH = dim(SH). The ROBs
[ΦLM] and [ΦH] of subspaces SLM and SH are given by

[ΦLM] = [Φt][QLM] , [ΦH] = [Φt][QH] . (64)

Third filtering. In Eq. (50), vector subspaces SL and SM

have their ROB defined through the following outputs of
mapping F2,

([ΛL], [QL],∼, [ΛM], [QM]) =

F2([Λ
LM], [QLM], [NLM]; dL, νL, f

c
L) , (65)

with dL ≤ dM, νL ≤ nLM, and where (similarly to
Eq. (58)) the following properties are verified,

[QL]
T
[QL] = [InL

], [QM]
T
[QM] = [InM

],

[QL]
T
[QM] = [0] , (66)

with nL = dim(SL) and nM = dim(SM) . The ROBs
[ΦL] and [ΦM] of subspaces SL and SM are given by
[ΦL] = [ΦLM][QL] and [ΦM] = [ΦLM][QM] , which yields

[ΦL] = [Φt][QLM][QL] , [ΦM] = [Φt][QLM][QM] .
(67)

4.2.3 Construction of the reduced-order models

Scale-S reduced-order model. For S representing any one
of the symbols t , LM , H , L , and M , when using the
scale-S ROM, displacements vector U(ω) belong to the
subspace SS that is defined as the space spanned by the
columns of matrix [ΦS ], and are written as

U(ω) ≃ [ΦS ]qS(ω) . (68)

The nS-dimensional complex vector of generalized co-
ordinates qS(ω) is the solution of the reduced-matrix
equation,

(−ω2[MS ] + iω[DS ] + [KS ] )qS(ω) = fS(ω) , (69)

in which it can easily be proved that

fS(ω) = [ΦS ]
T
F(ω) , [MS ] = [ΦS ]

T
[M][ΦS ] = [InS

] ,

[DS ] = [ΦS ]
T
[D][ΦS ] , [KS ] = [ΦS ]

T
[K][ΦS ] = [ΛS ] .

(70)

Multilevel nominal reduced-order model. The (m × nt)
ROB of the multilevel nominal ROM (ML-NROM) is
represented by matrix [Ψ ] that is written as

[Ψ ] = [ [ΦL][ΦM][ΦH] ] . (71)

Using the ML-NROM, displacement vector U(ω) is ap-
proximated by

U(ω) ≃ [Ψ ]q(ω)

= [ΦL]qL(ω) + [ΦM]qM(ω) + [ΦH]qH(ω) , (72)

in which q(ω) = (qL(ω),qM(ω),qH(ω)) with qL(ω) in
CnL , qM(ω) in CnM , and qH(ω) in CnH . The complex
vector q(ω) is the solution of the reduced-matrix equa-
tion,

(−ω2[M ] + iω[D] + [K] )q(ω) = f(ω) , (73)

in which

f(ω) = [Ψ ]
T
F(ω) , [M ] = [Ψ ]

T
[M][Ψ ] ,

[D] = [Ψ ]
T
[D][Ψ ] , [K] = [Ψ ]

T
[K][Ψ ] . (74)

Let us define [WL] = [QLM][QL] , [WM] = [QLM][QM] ,
and [WH] = [QH] . Let ([A], [A]) representing any one of
the symbols ([M ], [M]), ([D], [D]), and ([K], [K]). From
Eqs. (64), (67), and (71), it can be deduced that a block-

writing of [A] = [Ψ ]
T
[A][Ψ ] can be written as

[A] =





[ALL ] [ALM ] [ALH ]
[AML] [AMM] [AMH]
[AHL ] [AHM ] [AHH ]



 , (75)

for which the matrix blocks are defined as follows. For I
and J in {L,M,H}, the (nI ×nJ ) real matrix [AIJ ] is
given by

[AIJ ] = [W I ]
T
[At][WJ ] , (76)

in which, thanks to Eq. (60), [At] = [Qt]
T
[A][Qt] with

[A] = [Φ]
T
[A][Φ]. Moreover, Eqs. (61), (63), and (66)

yield

[W I ]
T
[W I ] = [InI

] , [W I ]
T
[WJ ] = [0] if I 6= J , (77)

from which it can be deduced that [M ] = [Int
] .
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4.3 Multilevel stochastic reduced-order model

Similarly to the C-SROM, the multilevel stochastic ROM
(ML-SROM) is based on the nonparametric probabilistic
approach of uncertainties. This approach allows for tak-
ing into account both the model-parameter uncertainties
and the model uncertainties induced by the modeling er-
rors. The ML-NROM previously presented is based on
the use of three orthogonal ROBs represented by the
matrices [ΦL], [ΦM], and [ΦH], which are constituted
of LF-, MF-, and HF-type displacements, respectively.
For instance, as explained in Section 4.1, the LF-type
displacements consist of long-wavelength global displace-
ments, in contrast to the short-wavelength local displace-
ments of the HF band. When a small design change is
performed in the structure, the local displacements that
exist in the modified part of the structure are likely to
vary a lot, whereas the shape of the global displacements
is not really modified. Subsequently and as it is well
known, the local displacements are more sensitive to un-
certainties than the global displacements.

For each given random matrix [A] representing [M], [D]
or [K] of the ML-SROM, which is associated with the
corresponding deterministic matrix [A] representing [M ],
[D] or [K] of the ML-NROM, three dispersion hyperpa-
rameters, δLA , δMA , and δHA are introduced. These hyper-
parameters are intended to allow each type of displace-
ments to be affected by a particular level of uncertainties.
For S equal to L, M or H, the dispersion hyperparam-
eter δSA is such (see Eq. (8)) that

(δSA)
2
=

1

nS

E{||[GnS
(δSA)]− [InS

]||2F } . (78)

We define the random matrix [GA] with values in the
set of all the positive-definite symmetric (nt × nt) real
matrices, such that

[GA] =





[ GnL
(δLA) ] [ 0 ] [ 0 ]

[ 0 ] [GnM
(δMA )] [ 0 ]

[ 0 ] [ 0 ] [GnH
(δHA ) ]



 , (79)

in which the random matrices [GnL
(δLA)], [GnM

(δMA )],
and [GnH

(δHA )], with dimensions (nL×nL), (nM×nM),
and (nH × nH), are statistically independent and are
constructed similarly to the (n× n) random matrix [A]
defined by Eq. (7). Performing the Cholesky factorization

[A] = [LA]
T
[LA], in which [LA] is an upper-triangular

matrix, the random matrix [A] is constructed as

[A] = [LA]
T
[GA][LA] . (80)

The ML-SROM allows the random displacements vector
U(ω) associated with U(ω) to be obtained as

U(ω) = [Ψ ]Q(ω), (81)

in which the Cnt -valued random variable Q(ω) is the
solution of the random matrix equation,

(−ω2[M] + iω[D] + [K] )Q(ω) = f(ω) . (82)

For all ω in B, the random equation defined by Eq. (82)
is solved with the Monte-Carlo simulation method.

4.4 Comments about the construction and the
identification of the ML-SROM

A multilevel ROM has been presented for which the con-
struction depends on filtering parameters. Three filter-
ings are successively performed. For each filtering, the
filtering parameters have to be chosen such that the ap-
proximation is satisfactory for the considered frequency
band. The satisfaction criterion can be based either on
deterministic or on stochastic quantities of interest. In
Section 4.3, a multilevel stochastic ROM has been intro-
duced, for which the uncertainty is controlled by three
dispersion hyperparameters associated with each one of
the three families, namely, LF-, MF-, and HF-type dis-
placements, which constitute the ROB of the ROM. In
the framework of the nonparametric probabilistic ap-
proach of uncertainties (which uses a random matrix the-
ory), the dispersion hyperparameters allow for control-
ling the level of statistical fluctuations for each reduced
matrix of the ROM (around its mean matrix) . Thus,
the hyperparameters take into account uncertainty in a
global manner for each type of forces (the inertial forces,
the damping forces, and the elastic forces). The statis-
tical inverse identification (or calibration) of the hyper-
parameters of the ML-SROM depends on the filtering
parameters, which has been made for constructing the
ML-NROM. For example, one set of filtering parameters
can lead us to a low-dimension ROM with low eigen-
value density while another set of filtering parameters
can lead us to a high-dimension ROM with high eigen-
value density. With fixed dispersion hyperparameters,
the stochastic ROM with a high dimension is likely to
exhibit a higher level of uncertainty than the ROM with
a low dimension.

5 Application to an automobile structure

5.1 Problem definition

5.1.1 Experimental measurements: excitation force,

observation points, and frequency band of analysis

Experimental measurements of some FRFs have been
carried out for ne = 20 nominally identical cars over a
broad frequency band, B = 2π × [10 , 900] Hz. For each
car, the same excitation force is applied to one of the
engine fasteners and the acceleration (following a given
direction) is measured at two locations referenced as ob-
servation 1 that is far away from the excitation force and
as observation 2 that is close to the excitation force.

5.1.2 Computational model

The finite element model is very dense and complex, in-
cluding several kinds of elements (springs, bars, beams,
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plates, shells, volume elements), rigid bodies, and con-
straint equations. The total number of DOFs is m =
7, 872, 583. A view of the finite element model is dis-
played in Fig. 1.

Fig. 1 View of the finite element model of the automobile.

5.1.3 Modal density characterizing the dynamics and
definition of the LF, MF, and HF bands

An intensive computational effort has been carried out
for calculating the 24, 578 elastic modes that are in the
frequency band [0 , 2200] Hz. The graph of the modal
density corresponding to these 24, 578 elastic modes is
displayed in Fig. 2. From this calculation, it can be seen
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Fig. 2 Modal density calculated with the computational
model.

that there are 7, 258 elastic modes in frequency band
B. There are several possible definitions of the frequency
bands BL , BM , and BH for a complex dynamical system.
The definitions greatly depend on the use that is made
of the bands defined. In the present framework devoted
to the construction of a multilevel model reduction in
structural vibrations, we choose the approach proposed
in [40], which is based on the analysis of the graph of the
unwrapped phase as a function of the frequency in loga-
rithmic scale for observation 1 that is far away from the

excitation force and consequently, for which the propaga-
tion follows a long path. It is recalled that the unwrapped
phase corrects the radian phase angles by adding multi-
ples of ± 2π when absolute jumps between two consecu-
tive sampled frequencies are greater than or equal to the
jump tolerance of π radians. It is known that in the LF
range, the phase rotates of π around an eigenfrequency
while, in the HF band, the unwrapped phase decreases
quasilinearly. Figure 3 displays the graph of the un-
wrapped phase obtained with the computational model,
which is compared to the 20 graphs that correspond
to the experimental measurements. The analysis of this
figure allows for defining the following frequency bands
BL = [10, 70] Hz, BM =]70, 300] Hz, and BH =]300, 900]
Hz. There are 149 elastic modes in low-frequency band
BL , 1, 202 elastic modes in medium-frequency band BM ,
and 5, 897 elastic modes in high-frequency band BH , or,
in average, about 2.5 modes per Hz in BL , 5 modes per
Hz in BM , and 10 modes per Hz in BH . A modal density
of 2.5 modes per Hz is quite high for the LF band of such
a structure. This unusual feature is due to the presence
of numerous local displacements in addition to the usual
global displacements. For higher frequencies, the density
of local elastic modes keeps increasing, which yields a
large number of elastic modes for the modal analysis.
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Fig. 3 Graph of the unwrapped phase as a function of the
frequency in logarithmic scale for observation 1. Computa-
tional model (thick line) and 20 experimental measurements
(thin lines).

5.1.4 Damping model for the automobile

The damping matrix [D] does not correspond to the fi-
nite element discretization of physical damping and dis-
sipation phenomena. The damping model is introduced
at the ROM level. For each ROM, the damping matrix
is constructed by using a modal damping model. In the
LF band and in the MF band, a multi-parameter modal
damping model is fitted by using the experimental FRFs.
In the HF band, a one-parameter modal damping model
is identified by using the experimental FRFs, for which
the parameter is denoted by cH (for the details of such a
construction, see [2]). For the deterministic ROMs, three
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cases have to be considered in order to properly define
the damping model, depending on which ROM is used.

– The reduced damping matrix of the C-NROM in-
volved in Eq. (5) is defined by [D] = 2[Ξ(cH)][Λ]1/2.
The diagonal matrix [Λ] is defined by Eq. (6) and
[Ξ(cH)] is a (n×n) diagonal matrix of modal damp-
ing rates that depend on parameter cH, which has to
be identified with respect to the experimental mea-
surements, in a deterministic framework. In such a
case, Eq. (5) consists of a diagonal matrix equation.

– The reduced damping matrix of the scale-S ROM in-
volved in Eq. (69) is defined by the equation [DS ] =
2[ΞS(cH)][ΛS ]1/2. The diagonal matrix [ΛS ] is de-
fined by Eq. (70) and [ΞS(cH)] is a (nS×nS) diagonal
matrix of damping rates, which depend on parameter
cH that has to be identified with respect to the exper-
imental measurements, in a deterministic framework.
In such a case, Eq. (69) consists of a diagonal matrix
equation.

– Concerning the ML-NROM, reduced stiffness matrix
[K] involved in Eq. (73) is a full matrix. In order
to solve latter matrix equation, one possibility is to
perform a change of basis in order to diagonalize the
reduced matrices [K] and [M ]. Doing so leads us back
to scale-t ROM, for which the definition of the damp-
ing matrix [Dt] is given in the item just before.

For the stochastic ROMs, two cases have to be considered
in order to properly define the random matrix of the
damping model, depending on which stochastic ROM is
used.

– For constructing the random reduced damping ma-
trix [D] of the C-SROM involved in Eq. (11), Eq. (7)
is not used. In order to solve Eq. (11), the random
generalized eigenvalue problem associated with ran-
dom reduced matrices [K] and [M] is solved, which
yields the diagonal matrix, [Λ], of the random eigen-
values and the matrix, [Φ], of the associated random
eigenvectors. Equation (11) is then projected onto the
stochastic ROB [Φ]. In order to obtain a diagonal ma-
trix equation, random damping matrix [D] of the C-
SROM is then constructed similarly to deterministic
reduced damping matrix [D] of the C-NROM given
hereinbefore, except that diagonal matrix [Λ] is re-
placed by [Λ]. The parameter cH has to be identified
with respect to the experimental measurements, in a
stochastic framework.

– In Eq. (80), the definition given to the random damp-
ing matrix [D] of the ML-SROM involved in Eq. (82)
is not used. In order to solve Eq. (82), the random
generalized eigenvalue problem associated with ran-
dom reduced matrices [K] and [M] is solved, which
yields the diagonal matrix, [Σ], of the random eigen-
values and the matrix, [Ψ ], of the associated random
eigenvectors. Equation (82) is then projected onto the
stochastic ROB [Ψ ]. In order to obtain a diagonal ma-
trix equation, the random reduced damping matrix

[D] of the ML-SROM is then constructed similarly
to the deterministic reduced damping matrix [D] of
the ML-NROM given just before, except that diago-
nal matrix [Λt] is replaced by [Σ]. The parameter cH
has to be identified with respect to the experimental
measurements, in a stochastic framework.

5.1.5 Definition of the observations

Let U(1)(ω), . . . ,U(nj)(ω) be the nj scalar observations
that are made up of DOFs or combinations of DOFs
of the displacements vector U(ω). In this application,
we have nj = 2 (corresponding to the two experimental
observations). For each j, the computed observation is
defined as the modulus ω 7→ uc

j(ω) in dB scale,

uc
j(ω) = 20 log10|U(j)(ω)| , (83)

in which |.| is the modulus of a complex number. The
counterpart for the experimental measurements of the
k = 1, . . . , ne cars (with ne = 20) is denoted by ω 7→
ue
j,k(ω) for which the definition is the same as the defi-

nition of uc
j(ω).

5.1.6 Defining the objective function used for the

convergence analyses of the deterministic computational
ROMs

In order to define a distance between the computed FRFs
and the experimental FRFs, an objective function, Jd, is
defined by

J2
d =

1

nj

nj
∑

j=1

1

ne

ne
∑

k=1

1

|B|

∫

B

(uc
j(ω)− ue

j,k(ω))
2dω , (84)

with |B| = ωmax−ωmin . It should be noted that the con-
struction of Jd would remain unchanged if, in Eq. (84),
the displacements were replaced by their corresponding
accelerations.

5.1.7 Defining the objective function used for the

identification of the stochastic computational ROMs

The filtering parameters and the hyperparameters of the
stochastic computational ROMs have to be identified
with respect to the experimental measurements (solv-
ing a statistical inverse problem). Let Ue

j (ω) be the real-

valued random variable for which ue
j,1(ω), . . . , u

e
j,ne

(ω)

are ne independent realizations. Let U c
j (ω) be the real-

valued random variable corresponding to the determinis-
tic quantity uc

j(ω). The following objective function, Js ,
is introduced

Js =
1

nj

nj
∑

j=1

Js,j , (85)
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in which the objective function Js,j associated with ob-
servation j = 1, . . . , nj is written as

Js,j =
1

|B|

∫

B

OVL(U c
j (ω), U

e
j (ω)) dω . (86)

In Eq. (86), the function (X,Y ) 7→ OVL(X,Y ) is defined
by

OVL (X,Y ) = 1− 1

2

∫

R

|pX(x)− pY (x)| dx , (87)

in which X and Y are real-valued random variables, for
which pX and pY are the probability density functions.
Function OVL is known as the overlapping coefficient
[124]. For all j = 1, . . . , nj and all ω in B, nsim real-
izations of random variable U c

j (ω) are computed by us-
ing the Monte-Carlo simulation method. The probability
density functions are estimated by using the kernel den-
sity estimation method. It can easily be proved that the
values of Js, of Js,j for j = 1, . . . , nj, and of the OVL
function, are between 0 and 1 (with 1 meaning a perfect
match).

5.2 Classical nominal ROM and classical stochastic
ROM

In a first step, the dimension n of the C-NROM (de-
terministic) is calculated by performing a convergence
analysis of Jd as a function of n. For this value of n, the
C-NROM is used for computing the deterministic FRFs
that are compared to their experimental counterparts. In
a second step, for the value of n determined in the first
step, the hyperparameters of the C-SROM (stochastic)
are identified by maximizing the objective function Js.
Using the identified values of the hyperparameters, the
C-SROM is used for estimating the confidence regions
of the random FRFs, which are compared to the exper-
imental measurements.

5.2.1 First step: C-NROM

Convergence analysis of Jd as a function of n. The C-
NROM is obtained by using Eqs. (4) and (5). A conver-
gence analysis of the C-NROM is performed with respect
to its dimension n and to parameter cH that controls
the damping model. For each value of n, the optimal
value of cH is identified, in minimizing Jd. For each pair
(n , cH(n)), Fig. 4 displays the graph of Jd as a function
of n and shows that convergence is reached starting from
n = 7,000. Nevertheless, we choose n = 8,450 (for which
fn = 1,000 Hz), in order (1) to have subspace Sc suffi-
ciently rich for the construction of subspace St ⊆ Sc of
the multilevel ROM and (2) to have a classical ROM as-
sociated with eigenfrequencies covering more than whole
band B for obtaining a satisfying stochastic ROM.

Deterministic FRFs and experimental comparisons. The
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Fig. 4 Convergence of the C-NROM with respect to its
dimension: value of Jd for several values of n (black crosses).
Horizontal light-gray line: value of Jd for n = 8, 450.
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Fig. 5 Observation 1: experimental FRF measurements
(black lines), deterministic FRF using the C-NROM (gray
line)
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Fig. 6 Observation 2: experimental FRF measurements
(black lines), deterministic FRF using the C-NROM (gray
line)

FRFs provided by the C-NROM, associated with obser-
vation 1 (acceleration related to the displacement ω 7→
uc
1(ω)) and with observation 2 (acceleration related to

the displacement ω 7→ uc
2(ω)), are plotted in Figs. 5 and

6 and are compared to the ne = 20 experimental FRFs
(accelerations related to displacements ω 7→ ue

j,k(ω) with

k = 1, . . . , ne). These figures clearly show that

– the experimental variabilities strongly increase with
the frequency (it should be noted that the relative
important experimental variabilities in the LF band
for observation 1 that can be seen in Fig. 5 is due to
measurement noise).
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– significant differences between the prediction of the
computational model and the experimental measure-
ments can be observed, in particular in the MF band.

– the big experimental variabilities cannot be repre-
sented by a deterministic computational model, but
require the prediction of confidence regions with a
stochastic computational model.

5.2.2 Second step: C-SROM

Experimental identification of the C-SROM. The C-SROM

Fig. 7 Plot of function (δM, δK) 7→ Js(δM, δK) for the iden-
tification of hyperparameters δM and δK of the C-SROM.
Black dots: sampling points, black cross: optimal point.
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Fig. 8 Convergence of objective function Js (black line), of
Js,1 (dark-gray line), and of Js,2 (light-gray line) with respect
to number of simulations nsim.

is obtained by using Eqs. (10) and (11) for which the
dispersion hyperparameters and damping parameter cH
must be identified with respect to the experimental mea-
surements, by solving a statistical inverse problem. The
random damping matrix [D] of the C-SROM is the one
defined in Section 5.1.4 and consequently, there is no dis-
persion hyperparameter δD. The statistical inverse prob-
lem consists in computing the optimal values δoptM , δoptK ,

and copt
H

of the optimization problem defined as the max-
imization of the objective function Js with respect to
the three hyperparameters δM, δK, and cH in the set
of their admissible values. The optimization problem is

not convex and a trial method is used by introducing a
fine grid of the admissible set with a nonhomogeneous
distribution of the sampling points (that can be viewed
in Fig. 7). For each point (δM, δK) in the grid, cH 7→
Js(δM , δK , cH) is maximized yielding the optimal value
c⋆H(δM, δK). Figure 7 displays the graph of function (δM,
δK) 7→ Js(δM, δK , c⋆H(δM, δK)) calculated at the sam-
pling points of the grid. It can be seen that there is
a quasi-symmetry with respect to δM = δK axis. It
can then be deduced the optimal solution, for which
δoptM = 0.13 and δoptK = 0.11.

Concerning the calculation of the objective function, for
each sampling point of the grid, the value of the objective
function Js is estimated using nsim Monte-Carlo simula-
tions. Figure 8 presents the convergence of the objective
function Js as a function of nsim evaluated at the op-
timal point (δopt

M
, δopt

K
, copt

H
). It can be seen that, for a

reasonable precision of Js (of about 0.01), convergence
is reached quite fast for nsim = 40, which can be consid-
ered as a good compromise between the numerical cost
and the accuracy (it would make little sense to carry
out a very fine statistical estimation if not exploring the
parameter space with a sufficiently fine grid – and vice
versa).

Concerning the computational cost, for each independent
realization of random matrices [M] and [K] in Eq. (11),
the matrix equation is diagonalized (solving the general-
ized eigenvalue problem of reduced dimension associated
with the conservative dynamical system) for obtaining
an efficient resolution over (1) the frequency sampling
and (2) the sampling of parameter cH.

Confidence regions of the random FRFs and experimen-
tal comparison. The confidence region (corresponding

Fig. 9 Observation 1: experimental FRF measurements
(black lines), random FRF using the identified C-SROM
(gray region), and overlap function OVL (black line under-
neath)

to a probability level of 95%) of each FRF is computed
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Fig. 10 Observation 2: experimental FRF measurements
(black lines), random FRF using the identified C-SROM
(gray region), and overlap function OVL (black line under-
neath)

Fig. 11 Observation 1, zoom into band BL ∪ BM: experi-
mental FRF measurements (black lines), random FRF using
the identified C-SROM (gray region), and overlap function
OVL (black line underneath)

by using the identified C-SROM. A convergence anal-
ysis of the confidence region with respect to the num-
ber nsim of realizations in the Monte-Carlo simulation
method has been performed. A good convergence of the
confidence region is reached for nsim = 10, 000. The cor-
responding values of objective functions Js,1 and Js,2 for
the identified C-SROM are Js,1 = 0.62 and Js,2 = 0.56,
which yields Js = 0.59 (the statistical estimation is done
with nsim = 10,000). The results for observation 1 and
observation 2 are displayed in Figs. 9 and 10. On each
figure, it can be seen the confidence region, the 20 ex-
perimental measurements, and the OVL function ω 7→
OVL(U c

j (ω), U
e
j (ω)) defined by Eq. (87). This OVL func-

tion is plotted between two horizontal lines. The lower
horizontal line corresponds to the value 0 and the up-
per one to the value 1. In Figs. 9 and 10, it can be seen
that the C-SROM does not perfectly represent most of
the experimental FRFs in the LF and MF bands. This
can be explained by the discrepancies of the C-NROM
with respect to the experiments and by the too narrow

Fig. 12 Observation 2, zoom into band BL ∪ BM: experi-
mental FRF measurements (black lines), random FRF using
the identified C-SROM (gray region), and overlap function
OVL (black line underneath)

Fig. 13 Observation 1, zoom into band BL: experimental
FRF measurements (black lines), random FRF using the
identified C-SROM (gray region), and overlap function OVL
(black line underneath)

Fig. 14 Observation 2, zoom into band BL: experimental
FRF measurements (black lines), random FRF using the
identified C-SROM (gray region), and overlap function OVL
(black line underneath)

confidence regions provided by the C-SROM in the LF
band (and to a lesser extent in the MF band). This can
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be better seen in Figs. 11 and 12 that present a zoom of
Figs. 9 and 10 into band BL ∪ BM, and in Figs. 13 and
14 that present a zoom of Figs. 9 and 10 into band BL. It
can also be seen that OVL function confirms the not per-
fectly correct prediction of the C-SROM in the LF and
MF bands. The reason why such a one-level stochastic
model of uncertainties is not sufficient for predicting the
confidence regions in all the frequency band is that the
effects of uncertainties on the FRFs are not homogeneous
in the frequency band. It should be noted that, with this
one-level stochastic ROM, if one would want to obtain
broader confidence regions in the LF band, one could use
greater values for the dispersion hyperparameters but in
such a case, one would consequently obtain too broad
confidence regions in the HF band. The introduction of
a multilevel stochastic ROM allows for improving the
prediction as demonstrated in the next section.

5.3 Multilevel nominal ROM and multilevel stochastic
ROM

In a first step, a deterministic analysis is carried out in
order to find suitable filtering parameters, which affect
the reduction of the dimension of the model. In fact,
this deterministic analysis is not sufficient in itself, as
the final objective is the experimental identification of
the ML-SROM. Consequently, in a second step, all the
filtering parameters defining the multilevel ROB and all
the dispersion hyperparameters are simultaneously iden-
tified. To this end, first, a temporary choice of filtering
parameters defining the ML-NROM is done, based on
the deterministic analysis. Then, a sensitivity analysis
with respect to the dispersion hyperparameters allows
for decreasing the number of dispersion hyperparame-
ters to be identified. Based on this assumption, a 3D
coarse grid allows for finding initial values for the dis-
persion hyperparameters. All the other parameters being
fixed, the filtering parameters of the HF band and the
dispersion hyperparameter of the HF band are simulta-
neously identified in a precise way. Finally, defining the
values of the other filtering parameters independently of
the global optimization problem, the remaining disper-
sion hyperparameters are identified at a low cost. Using
the identified ML-SROM, the confidence regions of the
random FRFs are statistically estimated and are then
compared to the experimental measurements.

5.3.1 First step: ML-NROM

Convergence analysis of Jd as a function of dimension nt

deduced from a first filtering. For constructing the multi-
level ROM, the first step consists in defining the filtering
of local displacements, which is devoted to the reduction
of the final dimension nt of the proposed ROM. This step
corresponds to either Eq. (49) or Eq. (59). It depends
on the maximum degree dH of the polynomials of the

reduced kinematics of mass matrix [Mr], on truncation
order νH that is indirectly related to the upper bound
of the frequency band (through the value

√

σt
νH/2π in

which σt
α is the eigenvalue of rank α in Eq. (54), in-

volved in the mapping F2 in Eq. (59)) and to the cutoff
frequency f c

H. It should be noted that since by construc-

tion one has St ⊆ Sc , the frequency f t
nt

=
√

λt
nt
/2π ver-

ifies the inequality f t
nt

≤ fn. Therefore, choosing f c
H =

fn = 1, 000 Hz would automatically yield nt = νH. The
value of f c

H is taken as 925 Hz. It should be noted that
the scale-t ROM (given by Eqs. (68) and (69)) yields
the same response as the ML-NROM (by construction).
Exploring the possible values of parameters dH and νH
allows the construction of the ML-NROM to be adjusted.
It is recalled that λt

νH ≤ σt
νH . For fixed dH , some sam-

pling points are explored in a segment in which param-
eter νH verifies

f c
H ≤

√

σt
νH/2π ≤ 10× f c

H . (88)

Figure 15 presents a plot of function Jd with respect to
parameters dH and νH , with dH ranging from 2 to 40
and with the corresponding values of νH deduced from
Eq. (88). For νH ≥ 4,000, it can be seen that the value of
Jd is only subjected to small fluctuations. It should also
be noted that, in general, for a fixed νH between 2,500
and 4,000, the value of Jd is greater (i.e. is less good) for
a greater value of dH. This is due to the fact that for an
increasing value of dH, the value of νH has to increase in
order that the quantity

√

σt
νH/2π reach the upper bound

of the frequency band. Indeed, a larger maximum degree
dH means an increasing presence of local displacements,
which means more basis vectors kept in the construction
of the ROM.
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Fig. 15 Plot of function Jd with respect to parameters dH
and νH (lighter gray level meaning higher Jd)

Figure. 16 shows the convergence of the ML-NROM with
respect to its dimension nt. For this, the value of Jd is
plotted as a function of nt for several ROMs (all the sam-
pling points). Likewise, the convergence of the C-NROM
is given on the same figure, in order to put into evidence
the faster convergence of the ML-NROM towards a value
corresponding to a reasonable accuracy, compared to the
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Fig. 16 For the C-NROM, graph of n 7→ Jd(n) (black
crosses) and graph of n 7→ Jd(8,450) (horizontal light-gray
line). For the ML-NROM, graph of nt 7→ Jd(nt) (gray dots).

C-NROM. This is explained by the fact that the ML-
NROM lacks local displacements (and thus has a lower
dimension), which are not really important for repre-
senting the dynamical responses. For a low maximum
degree dH of the polynomials (and for a low truncation
order νH), the lower dimension nt that is obtained for the
ROM is associated with more important modeling errors.
For constructing the ML-NROM, a good compromise be-
tween the value of nt and the accuracy associated with
the value of Jd is sought. In fact, the purpose of the mul-
tilevel ROM is to better represent the variabilities of the
experimental measurements in the frequency band (i.e.
to obtain random FRFs that are able to represent the
experimental measurements) and consequently, the iden-
tification of parameters dH and νH depends on the val-
ues taken by the dispersion hyperparameters of the ML-
SROM (coupled problem). The previous exploration of
the possible values of parameters dH and νH is thus not
sufficient. Nevertheless, it allows for defining a subregion
in which the global identification (taking into account
the coupling of the dispersion hyperparameters with the
filtering parameters) of the ML-SROMwill be restrained.
Concerning the computational cost, one sampling point
involves solving an eigenvalue problem of dimension νH
(associated with Eq. (20) or Eq. (54)). In addition, it im-
plies solving, for each value of the maximum degree dH
of the polynomials, an eigenvalue problem of dimension
n (associated with Eq. (30) or Eq. (53)), which can be
solved at a lower cost if dH (and thus column dimension
rH of matrix [N t] in Eq. (59)) is low, through a SVD (as
explained in Remark 2 of Section 3.3). Furthermore, for
each value of maximum degree dH of the polynomials,
the matrix [N t], which is constructed in Eq. (52) within
the use of mapping F2 in Eq. (59), can be obtained by
extracting the first rH columns of a matrix [N t] asso-
ciated with a reduced kinematics of dimension rH,max

that satisfies rH,max ≥ rH for all considered values of
rH. This way, the construction of matrix [Bℓ] and the
matrix product with (m × n) matrix [Φ] are done once
and for all.

Deterministic FRFs and experimental comparisons. Fig-

100 200 300 400 500 600 700 800 900

−90

−80

−70

−60

−50

−40

−30

−20

Frequency (Hz)

A
cc

el
er

at
io

n 
(d

B
,m

/s
2 )

Fig. 17 Observation 1: experimental FRF measurements
(black lines), deterministic FRF using the identified ML-
NROM (gray line)
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Fig. 18 Observation 2: experimental FRF measurements
(black lines), deterministic FRF using the identified ML-
NROM (gray line)

ures 17 and 18 show the deterministic FRFs obtained us-
ing the ML-NROM with dH = 34 and νH = 4,250, which
are the estimated optimal values obtained by solving the
global stochastic optimization problem presented in the
next section. It can be seen that the ML-NROM, with
reduced dimension nt = 4,232, yields a satisfactory pre-
diction with respect to that of the C-NROM.

5.3.2 Second step: ML-SROM

Global experimental identification of all the parameters

defining the ML-SROM. For the inverse identification of
the ML-SROM, the global stochastic optimization prob-
lem requires identifying the successive input parameters
(filtering parameters) of function F1 in Eqs. (48), (49),
and (50) used for defining the ML-NROM. Based on the
ML-NROM, the ML-SROM is constructed upon disper-
sion hyperparameters δLK , δLM , δMK , δMM , δHK , and δHM
that also have to be identified. The random reduced
damping matrix [D] of the ML-SROM is defined in Sec-
tion 5.1.4 and consequently, this random matrix is not
controlled by dispersion hyperparameters δLD, δMD , and
δHD . The cutoff frequencies f c

L and f c
M are chosen as the

upper bounds of bands BL and BM, that is to say f c
L =

70 Hz and f c
M = 300 Hz. It is recalled that f c

H = 925 Hz.
To sum up, in addition to cH and to the 6 dispersion
hyperparameters, the ML-SROM is defined by the 6 fil-
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tering parameters, (dH , νH), (dM , νM), and (dL , νL).

Construction of a first version of the ML-NROM. First,
from the numerical exploration of parameters (dH , νH)
in a deterministic framework as described in latter sec-
tion (see also Fig. 15), a first version of the scale-t ROM,
given by dH = 20 and νH = 3,900, is chosen. Then, suc-
cessive numerical explorations of the parameters (dM , νM)
and (dL , νL) are carried out in a similar manner by us-
ing the scale-LM and scale-L ROMs (these ROMs were
introduced in Section 4.2.3). These explorations yield
(dM = 12, νM = 800) and (dL = 6, νL = 275). It should
be noted that the coupling with the dispersion hyperpa-
rameters to be identified is, at this step, not taken into
account.

Sensitivity analysis of the ML-SROM with respect to the

dispersion hyperparameters. A sensitivity analysis of the
ML-SROM associated with latter definition of the ML-
NROM is carried out. It shows that for a given scale S
equal to L, M or H, the influence of parameters δSM and
δSK (associated with the statistical dispersion of reduced
mass and stiffness matrices) is similar. Therefore, only
3 dispersion hyperparameters δL , δM , and δH have to
be identified: δL = δLK = δLM , δM = δMK = δMM , and
δH = δHK = δHM .

First identification of the hyperparameters of the ML-
SROM using a coarse 3D grid. A first identification is
carried out using a coarse δL × δM × δH grid, for which
the boundaries are deduced from the previous sensitiv-
ity analysis. The 3D grid is constituted of 540 sampling
points, defined by the cartesian product of the following
sets δL × δM × δH:

δL = ( 0.15 , 0.20 , 0.25 , 0.30 , 0.35 , 0.40 , 0.45 , 0.50 , . . .

0.55 , 0.60 ) ,

δM = ( 0.10 , 0.15 , 0.20 , 0.25 , 0.30 , 0.35 , 0.40 , . . .

0.45 , 0.50 ) ,

δH = ( 0.05 , 0.07 , 0.09 , 0.11 , 0.13 , 0.15 ) . (89)

As for the C-SROM, only nsim = 40 Monte-Carlo simu-
lations are used for estimating the objective function Js
associated with each sampling point. The optimal point
found is δL = 0.25 , δM = 0.25 , δH = 0.11 , which is
sufficiently far from the grid boundary. Concerning the
computational cost, similarly to the C-SROM, for each
independent realization of random matrices [M] and [K]
in Eq. (82), the matrix equation is diagonalized, by solv-
ing an eigenvalue problem of dimension nt. In addition,
damping parameter cH is identified for each sampling
point. It should be noted that, compared to dimension
n = 8,450 of the classical ROM, the final dimension
nt = 4,232 of the identified multilevel ROM allows for
obtaining a nonnegligible gain of about a factor of ten
(the complexity of a full eigenvalue problem being ap-

proximatively cubic).

Precise and simultaneous identification of the filtering

parameters of the HF band and of the dispersion hy-
perparameter of the HF band. We are now interested in
adjusting the values of parameters (dH , νH) , responsi-
ble for the dimension nt of the ML-NROM. Supposing
these filtering parameters are sufficiently big, the choice
of their values does not influence the random FRFs in
the LF and MF bands (which have already converged
with respect to them). The influence of parameter δM

(and especially of parameter δL) is not preponderant for
the random response in the HF band. Consequently, fix-
ing the values of δL and δM that have been identified in
the coarse 3D grid, the ML-SROM is identified with re-
spect to filtering parameters (dH , νH) and to dispersion
hyperparameter δH, simultaneously. It should be noted
that the identification does not consist, at this step, in
picking the parameters that maximize the objective func-
tion Js. Rather, it consists in finding a set of parameters
for which Js is close to its maximum but under the con-
straint of a reasonably small dimension nt for the ROM.
Anyway, it should be recalled that Js is only estimated
using nsim = 40 realizations. After this step, the param-
eters that are chosen are dH = 34, νH = 4,250, and
δH = 0.078.

Final stage for the global identification of the ML-SROM.
Parameters (dL , νL) , (dM , νM) , δL , and δM remain to
be identified. In order to avoid a 6-dimensional costly
optimization problem, the 4 filtering parameters are left
unchanged. It should be noted that these parameters
control the overlap of subspaces SL , SM , and SH of
the multilevel ROM, associated with the LF-, MF-, and
HF-type displacements. Also, if parameters (dL , νL) and
(dM , νM) tended towards infinity, then there would be
no overlap of subspaces SL , SM , and SH. Qualitatively,
subspace SL is supposed to be composed of long-wave-
length global displacements, without numerous local dis-
placements. Therefore, based on these physical consider-
ations, it is more suitable to force the values of filtering
parameters (dL , νL), and (dM , νM) outside the global
stochastic identification problem of the ML-SROM. Then,
parameters δL and δM of the ML-SROM are identi-
fied by estimating objective function Js at the sampling
points of a given 2D grid, the other parameters being
fixed. After this final stage, the identified values are δL =
0.4 and δM = 0.22. For the identified ML-SROM, the
values of objective functions Js,1 and Js,2 are Js,1 = 0.65
and Js,2 = 0.64, hence Js = 0.65. Such a value corre-
sponds to a nonnegligible improvement with respect to
the C-SROM.

Confidence regions of the random FRFs and experimen-

tal comparisons. The random FRFs associated with
the identified ML-SROM are plotted in Figs. 19 and 20.
It can be seen that, despite the discrepancies of the ML-
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Fig. 19 Observation 1: experimental FRF measurements
(black lines), random FRF using the identified ML-SROM
(gray region), and OVL function (black line underneath)

Fig. 20 Observation 2: experimental FRF measurements
(black lines), random FRF using the identified ML-SROM
(gray region), and OVL function (black line underneath)

NROM (which are similar to those of the C-NROM), the
ML-SROM is able to represent most of the experimental
FRFs (unlike the C-SROM).

This improvement is due to the increased flexibility of
the ML-SROM with respect to the C-SROM, particu-
larly concerning the capability to adapt the level of un-
certainties to each frequency band. It should be noted
that, in general, on one hand the variability of the real
system is low in the LF band and that, on the other
hand, the robustness of the computational models is bet-
ter in this band. In the present case, in the LF and MF
bands, the modeling errors are more important than the
level of variabilities of the real system, hence the large
confidence intervals provided by the ML-SROM in these
bands. Figures 21 and 22 display a zoom of Figs. 19 and
20 into band BL ∪ BM and, Figs. 23 and 24 display a
zoom of Figs. 19 and 20 into band BL. It can be seen
that the OVL function confirms the improved prediction
of the ML-SROM in the LF and MF bands.

Fig. 21 Observation 1, zoom into band BL ∪ BM: experi-
mental FRF measurements (black lines), random FRF using
the identified ML-SROM (gray region), and OVL function
(black line underneath)

Fig. 22 Observation 2, zoom into band BL ∪ BM: experi-
mental FRF measurements (black lines), random FRF using
the identified ML-SROM (gray region), and OVL function
(black line underneath)

5.4 Sensitivity analysis

5.4.1 Proposed ML-SROM

A sensitivity analysis of the ML-SROM with respect to
the dispersion hyperparameters is presented. The objec-
tive of such a sensitivity analysis is to quantify the role
played by each dispersion hyperparameter that is related
to a given type of displacements. Using the identified pa-
rameters of the ML-SROM and successively setting to
zero 2 dispersion hyperparameters out of the 3 hyperpa-
rameters δL , δM , δH allow for quantifying the individ-
ual contribution of each scale L , M , H of displacements
in the random responses. The random responses are ob-
tained by using the identified ML-SROM and by setting,
successively, δM = δH = 0 (see Fig. 25 for observation 1
and Fig. 28 for observation 2), δL = δH = 0 (see Fig. 26
for observation 1 and Fig. 29 for observation 2), and
δL = δM = 0 (see Fig. 27 for observation 1 and Fig. 30
for observation 2). In each figure, the vertical lines indi-
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Fig. 23 Observation 1, zoom into band BL: experimen-
tal FRF measurements (black lines), random FRF using the
identified ML-SROM (gray region), and OVL function (black
line underneath)

Fig. 24 Observation 2, zoom into band BL: experimen-
tal FRF measurements (black lines), random FRF using the
identified ML-SROM (gray region), and OVL function (black
line underneath)

Fig. 25 Observation 1: random FRF using the identified
ML-SROM but for which δM = δH = 0 is imposed.

cate the boundaries between the LF, MF, and HF bands.
Figures 27 and 30 show, for instance, that adding uncer-
tainties to the HF-type displacements yields the presence
of uncertainties in the LF and MF bands. It is explained
by the fact that, since dH is greater than dM, some HF-

Fig. 26 Observation 1: random FRF using the identified
ML-SROM but for which δL = δH = 0 is imposed.

Fig. 27 Observation 1: random FRF using the identified
ML-SROM but for which δL = δM = 0 is imposed.

Fig. 28 Observation 2: random FRF using the identified
ML-SROM but for which δM = δH = 0 is imposed.

type displacements are likely to be present in the LF and
MF bands.
However, despite the absence of MF-type displacements
in the HF band, Figs. 26 and 29 show, for instance,
that adding uncertainties to the MF-type displacements
yields the presence of uncertainties in the HF band. This
is due to the fact that the LF-, MF-, and HF-type dis-
placements are not orthogonal with respect to the stiff-
ness matrix.

5.4.2 Naive ML-SROM

A sensitivity analysis is carried out by using a naive
ML-SROM that is defined as follows. The vector basis
associated with subspace SL is given by the 149 elastic
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Fig. 29 Observation 2: random FRF using the identified
ML-SROM but for which δL = δH = 0 is imposed.

Fig. 30 Observation 2: random FRF using the identified
ML-SROM but for which δL = δM = 0 is imposed.

modes that belong to frequency band BL, the vector ba-
sis associated with subspace SM is given by the 1,202
elastic modes that belong to frequency band BM, and
the vector basis associated with subspace SH is given by
the next 7,099 elastic modes. Note that this ML-SROM
corresponds to choosing filtering parameters (dL , νL),
(dM , νM), and (dH , νH) as going to infinity (no filter-
ing). The sensitivity analysis of this stochastic ROM is
carried out using the same set of combinations of the
dispersion hyperparameters as in the previous section.
Figures 31, 32, and 33 depict the random FRFs obtained
for observation 1 while Figs. 34, 35, and 36 depict the
random FRFs obtained for observation 2. It can be seen
that, for this naive ML-SROM, the introduction of uncer-
tainties for one given vector basis induces the presence
of uncertainties for the corresponding frequency band,
while practically none elsewhere. This stochastic ROM
is thus not well adapted for modeling uncertainties of a
complex dynamical system for which the LF, MF, and
HF vibration regimes overlap.

5.5 Remark concerning the use of the proposed
multilevel ROM

The filtering parameters allow for separating the differ-
ent regimes of vibration (LF, MF, and HF), which can
exist in the frequency band of analysis. These regimes
can directly be viewed by using the deterministic com-

Fig. 31 Observation 1: random FRF using the naive ML-
SROM for which δM = δH = 0 is imposed.

Fig. 32 Observation 1: random FRF using the naive ML-
SROM for which δL = δH = 0 is imposed.

Fig. 33 Observation 1: random FRF using the naive ML-
SROM for which δL = δM = 0 is imposed.

putational model for which the classical ROM is con-
structed as the first step of the multilevel ROM and con-
sequently, allows for analyzing the dynamical behaviors.
The filtering parameters are strongly connected to all
the geometrical and mechanical properties, but do not
induce some problems with respect to the prediction ob-
jectives, taking into account the proposed methodology
that allows for fixing the values of the filtering param-
eters without using experiments. The hyperparameters
that are introduced in the probabilistic models of uncer-
tainties can either be used for performing a sensitivity
analysis with respect to the level of uncertainties if ex-
periments are not available or be identified if experiments
are available. In this last case, for a class of dynamical
systems (such as a class of popular automobiles corre-
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Fig. 34 Observation 2: random FRF using the naive ML-
SROM for which δM = δH = 0 is imposed.

Fig. 35 Observation 2: random FRF using the naive ML-
SROM for which δL = δH = 0 is imposed.

Fig. 36 Observation 2: random FRF using the naive ML-
SROM for which δL = δM = 0 is imposed.

sponding to a given level of technologies), the identified
hyperparameters can generally be reused (without addi-
tional identifications) for similar dynamical systems.

Concerning the numerical cost of the proposed multi-
level ROM, for a big computational structural dynamics
model (for instance with 10 million of DOFs), which is
analyzed over a very broad frequency band (LF, MF,
and HF bands), the stochastic analysis (including the
identification procedure) requires the introduction of a
ROM in order the calculations to be tractable, in par-
ticular if such a model is used for robust design. For ob-
taining the C-SROM, one needs to solve Eq. (2) for the
first eigenvalues/eigenvectors (offline stage), which can
be costly (large-scale generalized eigenvalue problem).

When the Monte-Carlo method is used a a stochastic
solver (that is the case in the paper), each realization
of the C-SROM implies solving a full eigenvalue prob-
lem of dimension 8,450. For obtaining the ML-SROM,
one reuses the eigenvalues/eigenvectors calculated for the
C-SROM. All the following calculations devoted to the
construction of the multilevel ROM (offline stage) have
a negligible cost in comparison to the large-scale gener-
alized eigenvalue problem of Eq. (2). Then, each realiza-
tion of the ML-SROM implies solving a full eigenvalue
problem of dimension 4,232. Due to the roughly cubic
complexity of a full eigenvalue problem, the ML-SROM
allows for obtaining a speed factor of about 10 compared
to the C-SROM. Nevertheless, the ML-SROM requires
more parameters to be identified. Still, for this case, the
identification of the ML-SROM remains cheaper.

6 Conclusions

A general method has been presented for the construc-
tion of a multilevel stochastic ROM devoted to the ro-
bust dynamical analysis of complex systems over a broad
frequency band. The complex systems are constituted
of several structural scales. In the low-frequency range,
these scales induce the presence of numerous short-wave-
length local displacements that are intertwined with the
usual long-wavelength global displacements. The pro-
posed multilevel ROM is based on the construction of
three orthogonal ROBs whose displacements are either
LF-type, either MF-type, or HF-type displacements, and
which are associated with the overlap of the LF, the MF,
and the HF vibration regimes. The construction of these
ROBs relies on a filtering strategy that is based on the
introduction of global shape functions for the kinetic en-
ergy. It is admitted that the local displacements are more
sensitive to uncertainties than the global displacements.
Combining the use of the nonparametric probabilistic
approach of uncertainties with the constructed multi-
level ROB allows for constructing a multilevel stochas-
tic ROM, for which each type of displacements can be
assigned to a specific level of uncertainties. As an appli-
cation, the multilevel stochastic ROM of an automobile
is constructed and is identified by using experimental
measurements. Such an approach allows for obtaining a
smaller dimension for the stochastic ROM as well as an
improved prediction, with respect to a classical stochas-
tic ROM.
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(English edition) 5:65–87.

7. Bathe KJ, Wilson EL (1976) Numerical methods in the
finite element method. Englewood Cliffs, New Jersey:
Prentice-Hall.

8. Meirovitch L (1990) Dynamics and Control of Structures.
Wiley, New York.

9. Argyris J, Mlejnek HP (1991) Dynamics of Structures.
North-Holland, Amsterdam.

10. Geradin M, Rixen D (1997) Mechanical Vibrations, Sec-
ond edition: Theory and Applications to Structural Dy-
namics. Wiley, Chichester.

11. Ohayon R, Soize C (1998) Structural acoustics and vi-
bration. Academic Press, San Diego.

12. Craig RR, Kurdila AJ (2006) Fundamentals of Structural
Dynamics. Wiley, 2nd Edition, John Wiley and Sons,
Hoboken.

13. Bathe KJ (2013) The subspace iteration
method - revisited. Comp Struct 126:177–183.
doi:http://dx.doi.org/10.1016/j.compstruc.2012.06.002

14. Casciati S, Faravelli L (2014) Quantity vs. quality
in the model order reduction (MOR) of a linear
dynamical system. Smart Struct Syste 13(1):99–109.
doi:http://dx.doi.org/10.12989/sss.2014.13.1.099

15. Lyon RH, DeJong RG (1995) Theory and Application
of Statistical Energy Analysis. Butterworths-Heimann,
Boston.

16. Langley RS, Bremner P (1999) A hybrid method
for the vibration analysis of complex structural-
acoustic systems. J Acoust Soc Am 105(3):1657–1671.
doi:http://dx.doi.org/10.1121/1.426705

17. LeBot A (2002) Energy transfer for high frequencies
in built-up structures. J Sound Vib 250(2):247–275.
doi:http://dx.doi.org/10.1006/jsvi.2001.3933

18. Maxit L, Guyader JL (2003) Extension of SEA
model to subsystems with non-uniform modal en-
ergy distribution. J Sound Vib 265 (2):337–358.
doi:http://dx.doi.org/10.1016/S0022-460X(02)01459-1

19. Langley RS, V. Cotoni V (2004) Response vari-
ance prediction in the statistical energy analysis of
built up systems. J Acoust Soc Am 115(2):706–718.
doi:http://dx.doi.org/10.1121/1.1642621

20. Langley RS (2007) On the diffuse field reciprocity re-
lationship and vibrational energy variance in a random
subsystem at high frequencies. J Acoust Soc Am 121(2):
913–921. doi:http://dx.doi.org/10.1121/1.2409484

21. Cotoni V, Langley R, Shorter P (2008) A
statistical energy analysis subsystem formula-
tion using finite element and periodic struc-
ture theory. J Sound Vib 318(4-5):1077–1108.
doi:http://dx.doi.org/10.1016/j.jsv.2008.04.058

22. Ragnarsson P, Pluymers B, Donders S, W. Desmet
W (2010) Subcomponent modelling of input parame-
ters for statistical energy analysis by using a wave-
based boundary condition. J Sound Vib 329(1):96–108.
doi:http://dx.doi.org/10.1016/j.jsv.2009.08.033

23. Morand HJP (1992) A modal hybridization
method for vibroacoustic studies at medium fre-
quencies. J Acoust Soc Am 92(4):2365–2366.
doi:http://dx.doi.org/10.1121/1.404855
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86. Schuëller GI (2005) Uncertainties in Structural Mechan-
ics and Analysis - Computational Methods. Special issue
of Computer and Structures 83(14):1031-1150.
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