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BI-JACOBI FIELDS AND RIEMANNIAN CUBICS FOR

LEFT-INVARIANT SO(3)

LYLE NOAKES† AND TUDOR S. RATIU‡

Abstract. Bi-Jacobi fields are generalized Jacobi fields, and are used to efficiently compute ap-
proximations to Riemannian cubic splines in a Riemannian manifold M . Calculating bi-Jacobi fields 
is straightforward when M is a symmetric space such as bi-invariant SO(3), but not for Lie groups 
whose Riemannian metric is only left-invariant. Because left-invariant Riemannian metrics occur nat-
urally in applications, there is also a need to calculate bi-Jacobi fields in such cases. The present paper 
investigates bi-Jacobi fields for left-invariant Riemannian metrics on SO(3), reducing calculations to 
quadratures of Jacobi fields. Then left-Lie reductions are used to give an easily implemented numerical 
method for calculating bi-Jacobi fields along geodesics in SO(3), and an example is given of a nearly 
geodesic approximate Riemannian cubic.

Key words. Lie group, Riemannian manifold, Jacobi field, trajectory planning, mechanical system, 
rigid body, nonlinear optimal control, Riemannian cubic.

1. Introduction

For T >0 the velocity field x(1) of a C1 curve x : [0,T ]→M in a C∞ m-manifold

M is defined by x(1)(t) :=
d

dt
x(t). Take M to be a Riemannian manifold, with Rie-

mannian metric 〈 , 〉 and associated Levi-Civita covariant derivative ∇. The Jacobi
operator on C∞ vector fields X along a geodesic γ : [0,T ]→M is given by H(X) :=
∇2
tX+R

(
X,γ(1)

)
γ(1) where R is Riemannian curvature. A vector field X along γ

is a Jacobi field when HX=0. As is well-known [19], Jacobi fields comprise a 2m-
dimensional real vector space of fields along γ, and are the variational fields of variations
of γ through geodesics.

Whereas geodesics are critical points of the energy integral

∫ T

0

〈x(1),x(1)〉 dt,
Riemannian cubics are critical points of the higher order functional

J(x) :=

∫ T

0

〈
∇tx(1),∇tx(1)

〉
dt

where x : [0,T ]→M and its velocity field x(1) are prescribed at t= 0 and t=T . Equiva-
lently ([5, 10, 11]), a Riemannian cubic is a C∞ curve satisfying

∇3
tx

(1) +R
(
∇tx(1),x(1)

)
x(1) =0. (1.1)
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This Euler–Lagrange equation for Riemannian cubics resembles the Jacobi equation
HX=0 for X=∇tx(1), except that now X is defined along the Riemannian cubic x
which is usually not a geodesic (geodesics comprise a codimension 2m class of Rieman-
nian cubics). Most studies of Riemannian cubics focus on cases where M is highly
symmetrical, especially S3 and bi-invariant SO(3) ([10, 11, 12, 13, 14, 15, 17, 4, 2, 3]).

Geodesics are by far the simplest kind of Riemannian cubic, and the easiest to com-
pute. On the other hand all curves, including Riemannian cubics, are nearly geodesic
over sufficiently small time intervals. So in §3 of [17] it turns out to be useful to study
variations of geodesics through Riemannian cubics, and our starting point is the follow-
ing consequence of Lemma 3 in [17].

Proposition 1.1. Let Y be the variational field of a variation through Riemannian
cubics of the geodesic γ. Then Y is a bi-Jacobi field, namely H2Y =0.

This explains our interest in bi-Jacobi fields, as infinitesimal variations of geodesics
through Riemannian cubics. The bi-Jacobi fields comprise a 4m-dimensional vector
space containing the Jacobi fields.

In §4 of [17] it is shown how bi-Jacobi fields can be used to efficiently calculate
piecewise nearly cubic interpolants in M , and when M is a symmetric space (as in §5
and §6 of [17]) the bi-Jacobi fields are easily found. However it is not so easy to find the
bi-Jacobi fields in other cases of interest, such as SO(3) with a Riemannian metric that
is only left-invariant. The present paper focuses on this case, because of its interest in
applications [1, 8, 16]. The paper proceeds as follows.

In § 2 M is taken to be a general m-dimensional left-invariant Lie group G, and
the Jacobi operator H is left-Lie reduced to a composite I−1 ◦K ◦L. Here I is the
inertia transform corresponding to the left-invariant Riemannian metric, and K,L are
first order linear operators on curves in the Lie algebra g of G. More precisely, the
operator L is a Lax operator and K :=L◦I−ad(IV ) where V is the left-Lie reduction
of the velocity field γ(1). Then ω= Ad(γ)IV is constant, generalizing inertial angular
momentum from the case of left-invariant SO(3) (the well-known theorem from classical
mechanics stating that the spatial angular momentum is conserved).

There are m+1 elementary linearly independent Jacobi fields along γ, leaving an-
other 3m−1 linearly independent bi-Jacobi fields to be found. We find that bi-Jacobi
fields X correspond to solutions X̄,W1,W2,W3 : [0,T ]→g of the 4m-dimensional system
of ODEs:

LX̄=W1, KW1 = IW2, LW2 =W3, KW3 =0. (1.2)

Nonhomogeneous Lax equations of the form LY =W are solvable by quadrature. So
finding bi-Jacobi fields reduces via (1.2) to solving differential equations for Y : [0,T ]→g
of the form KY =W , where W : [0,T ]→g is given. This reduces (Theorem 2.9) to a
quadrature involving the fundamental solution Φ of a nonautonomous homogeneous
linear ODE on the orthogonal complement J of the kernel K of ad(ω). Then (Corol-
lary 2.10), Φ is computed in terms of Jacobi fields, and substitution for Φ in Theorem 2.9
gives the bi-Jacobi fields as quadratures in terms of Jacobi fields.

So computation of bi-Jacobi fields reduces to quadratures in terms of m−1 nonele-
mentary Jacobi fields. Now there are formulae in terms of elliptic functions for geodesics
in left-invariant SO(3) [20], and so the Jacobi fields (variational fields of γ through
geodesics) are computable by differentiation of families of geodesics with respect to
parameters. It therefore follows from Corollary 2.11 that the bi-Jacobi fields along
geodesics in left-invariant SO(3) are given by quadratures in terms of elliptic functions
(we thank Michael Pauley for pointing this out).
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Unfortunately the resulting formulae seem much too complicated for efficient imple-
mentation in a practical algorithm. So in § 4 we calculate bi-Jacobi fields along geodesics
in left-invariant SO(3) using numerical solutions of ODEs instead of quadratures. The
first step is to find a basis {Xi : 1≤ i≤6} of Jacobi fields, as follows. The Lie reduction
V of the elementary Jacobi field γ(1) is determined as a numerical solution of (2.4), and
then γ is a numerical solution of γ(1)(t) =γ(t)V (t). The other three elementary Jacobi
fields are expressed simply in terms of γ, and Lie reductions of nonelementary Jacobi
fields X5,X6 are particular numerical solutions of K ◦LX̄=0, where Lemma 4.1 is used
to compute K ◦L.

The basis of Jacobi fields then extends to a basis of bi-Jacobi fields by numeri-
cally solving K ◦LX̄i+6 = IX̄i for 1≤ i≤6. In Example 4.1 the basis of bi-Jacobi fields
is calculated in some 0.25 seconds on a 1.7GHz MacBook Air with 4GB of memory.
Figures 4.1, 4.2 show reductions of the Jacobi fields as curves in so(3)∼=E3 and Fig-
ures 4.3, 4.4 show reductions of the 6 remaining bi-Jacobi fields.

In § 5 these computations are applied in the framework of [17] to approximate
Riemannian cubics near a geodesic γ : [0,T ]→SO(3). Given a bi-Jacobi field X we
have a curve xX : [0,T ]→SO(3). At least when X is suitably small, xX approximately
satisfies the ODE (1.1) for a Riemannian cubic. In Example 5.1, X is only moderately
small, and xX is roughly similar but not extremely close to γ. The initial and terminal
values of xX and its derivative are also interpolated by a chart-based interpolant xch,
with very different results, as illustrated in Figure 5.2. Although xch agrees with xX
to first order at t= 0 and t= 5, xX appears to take a more roundabout route. An
approximation to a Riemannian cubic should normally produce a smaller value of J ,
and indeed J(xX) = 1.45<J(xch) = 5.25.

2. Some theoretical results

For any Ck-curve χ on an interval [a,b]⊂R, we use the notation χ(k) =
dk

dtk
χ. Let

G be a connected Lie group of finite dimension m with Lie algebra g.

Definition 2.1. The left-Lie reduction of a vector field X defined along a C∞ curve
x : [a,b]→G is the curve X̄ : [a,b]→g given by

X̄(t) :=dL(γ(t))−1e X(t)

where (momentarily) L stands for left-multiplication, and e∈G is the identity.

The left-Lie reduction of the velocity vector field x(1) along x is denoted by
V : [a,b]→g. The Lax operator along x is the first order linear differential operator L
on C∞ curves Y : [a,b]→g given by

(LY )(t) :=Y (1)(t)+ad(V (t))(Y (t)) = Ad(x(t))−1
d

dt
(Ad(x(t))Y (t)). (2.1)

Given any W : [a,b]→g, the solutions Y of the nonhomogeneous Lax equation LY =W
are found from

Y (t) = Ad(x(t))−1
(
C+

∫ t

0

Ad(x(s))W (s) ds

)
, where C ∈g. (2.2)

Suppose1 G has a bi-invariant Riemannian metric 〈 , 〉BI , and also a left-invariant
Riemannian metric 〈 , 〉. The inertia transform is the positive-definite 〈 , 〉BI -self-

1More generally G might have only a bi-invariant pseudo-Riemannian metric. For instance G
might be semisimple, with bi-invariant pseudometric generated by the negative of the Killing form.
The analysis proceeds similarly, but I is not necessarily positive-definite.
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adjoint linear automorphism I of g given by 〈v,I(w)〉BI := 〈v,w〉 for any v,w∈g. For
the Levi-Civita covariant derivative ∇ of 〈 , 〉, the left-Lie reduction of ∇vw, with v,w
left-invariant vector fields on G, is

1

2
([v̄,w̄]−h(v̄,w̄)). (2.3)

where (for now) h :g×g→g is symmetric bilinear and given by

h(v,w) := I−1([Iv,w]+[Iw,v])

for any v,w∈g. Formula 2.3 is found as in §3.2 of [9], with a sign change due to
the fact that the calculations in [9] are for right-invariant Riemannian metrics. The
extension of h in (2.3) to left invariant vector fields is denoted by the same letter
and is defined by h(v̄,w̄)(x) :=h

(
dL(x)−1e v̄(x),dL(x)−1e w̄(x)

)
. Consequently, denoting

as usual, ∇t := ∂
∂t +∇x(1) , the covariant derivative along the curve x, we obtain the

following.

Lemma 2.2. The left-Lie reduction of ∇tx(1) is V (1)−I−1[IV,V ].

As in [9] §3.3 (but for left-invariant metrics), from (2.3) one also gets the curvature
formula.

Lemma 2.3. The left-Lie reduction of the curvature is

R(u,v)w=−1

4

(
[[u,v],w]+[u,h(v,w)]− [v,h(u,w)]+h(u,[v,w])−h(v,[u,w]

)
−h(u,h(v,w))+h(v,h(u,w))−2h([u,v],w)).

Take x to be a geodesic γ : [0,T ]→G, i.e., ∇tγ(1) =0. By Lemma 2.2, this left-reduces
to the Euler equation

V (1)(t) = I−1[IV (t),V (t)]. (2.4)

By Equation (2.1),
d

dt
(Ad(γ(t))IV (t)) = Ad(γ(t))(IV (1)(t)+[V (t),IV (t)]) =0 by (2.4).

So ω := Ad(γ(t))IV (t) is constant. If ω=0 then γ is constant, which is of little interest.
Suppose from now on that ω 6=0. Consider the second order differential operator H :=
∇2
t +St defined on fields along γ, where St is the self-adjoint linear endomorphism given

by

St(X) :=R(X,γ(1))γ(1).

Lemma 2.4. For any vector field X defined along γ, the left-Lie reduction of HX is
I−1 ◦K ◦LX̄ where K is the first order linear differential operator on C∞ curves in g
given by K :=L◦I−ad(IV ).

Proof. By (2.3) the left-Lie reduction of ∇tX is X̄(1) +
1

2
[V,X̄]− 1

2
h(V,X̄). So by

(2.3) again, the left-Lie reduction of ∇2
tX is

X̄(2) +
1

2
[V (1),X̄]+

1

2
[V,X̄(1)]− 1

2
h(V (1),X̄)− 1

2
h(V,X̄(1))

+
1

2
[V,X̄(1)]+

1

4
[V,[V,X̄]]− 1

4
[V,h(V,X̄)]− 1

2
h(V,X̄(1))
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− 1

4
h(V,[V,X̄])+

1

4
h(V,h(V,X̄))

=X̄(2) +
1

2
[V (1),X̄]+

1

2
[V,X̄(1)]− 1

2
h(V (1),X̄)− 1

2
h(V,X̄(1))

+
1

2
[V,X̄(1)]+

1

4
[V,[V,X̄]]− 1

4
[V,h(V,X̄)]− 1

2
h(V,X̄(1))

− 1

4
h(V,[V,X̄])+

1

4
h(V,h(V,X̄))

=X̄(2) +
1

4
[h(V,V ),X̄]+

1

2
[V,X̄(1)]− 1

4
h(h(V,V ),X̄)− 1

2
h(V,X̄(1))

+
1

2
[V,X̄(1)]+

1

4
[V,[V,X̄]]− 1

4
[V,h(V,X̄)]− 1

2
h(V,X̄(1))

− 1

4
h(V,[V,X̄])+

1

4
h(V,h(V,X̄)),

where (2.4) is used to substitute for V (1) in the first line. Combining this with
Lemma 2.3, the left-Lie reduction of HX simplifies eventually to

X̄(2) +
1

2
[h(V,V ),X̄]+[V,X̄(1)]−h(V,X̄(1))−h(V,[V,X̄])

=I−1(X̄(2) +I[I−1[IV,V ],X̄]+I[V,X̄(1)]− [IV,X̄(1)]− [IX̄(1),V ]

− [IV, [V,X̄]]− [I[V,X̄],V ])

=I−1(L◦I−ad(IV ))◦L(X̄).

The operator H is also calculated in §3.4, §3.5 of [9] (for right-invariant Rieman-
nian metrics and without factorisation). As we see next, the factorisation in Lemma 2.4
reduces computation of Jacobi fields to solving nonhomogeneous linear differential equa-
tions of the form

KY =W (2.5)

for W : [0,T ]→g.
A Jacobi field is a vector field X along the geodesic γ for which HX=0. Equiva-

lently, by the factorisation in Lemma 2.4, LX̄=W where KW =0. So the Jacobi fields
along γ comprise a 2m-dimensional real vector space and, by Equation (2.2), can be
found by quadratures in terms of elements of ker(K). (Something similar is done for
bi-Jacobi fields in Lemma 2.7.)

The following elementary examples span an (m+1)-dimensional subspace of Jacobi
fields.

Example 2.1. Corresponding to Y =0∈ker(K) we have X̄(t) = Ad(γ(t))−1C where
C ∈g, namely X(t) =dR(γ(t))eC where R(x) denotes right-multiplication by x.

Example 2.2. Y =V (1)∈ker(K). Taking X to be the velocity field γ(1) defined along
γ we have X̄=V and LX̄=Y .

Proposition 2.5. For any Y ∈ker(K), 〈Y (t),V (t)〉 and 〈Y (t),IV (t)〉 are independent
of t.

Proof. Since I is self-adjoint with respect to the bi-invariant inner product,

d

dt
〈Y (t),V (t)〉= d

dt
〈Y (t),IV (t)〉BI = 〈IY (1)(t),V (t)〉BI +〈Y (t),IV (1)(t)〉BI
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= 〈[IV (t),Y (t)],V (t)〉BI +〈Y (t), [IV (t),V (t)]〉BI =0

by (2.4), bi-invariance, and because KY =0. Similarly,

d

dt
〈Y (t),IV (t)〉= d

dt
〈IY (t),IV (t)〉BI = 〈IY (1)(t),IV (t)〉BI +〈IY (t),IV (1)(t)〉BI

= 〈[IY (t),V (t)],IV (t)〉BI +〈IY (t), [IV (t),V (t)]〉BI =0.

So, by Example 2.2, ge,gm :g→R given by ge(v) := 〈I−1[Iv,v],v〉 and gm(v) :=
〈[Iv,v],v〉 are integrals of (2.4).

Definition 2.6. A bi-Jacobi field is a vector field X along γ for which H2X=0.

Bi-Jacobi fields comprise a 4m-dimensional real vector space including the Jacobi
fields.

Lemma 2.7. Computation of bi-Jacobi fields reduces by quadratures to solving equa-
tions of the form (2.5).

Proof. By Lemma 2.4, X is a bi-Jacobi field when there are C∞ functions
W1,W2,W3 : ]0,T ]→g for which

LX̄=W1, KW1 = IW2, LW2 =W3, KW3 =0.

The lemma follows, because the nonhomogeneous Lax equation is solved by (2.2).

Definition 2.8. Denote by J the 〈 , 〉BI-orthogonal complement in g of the kernel K
of ad(ω) :g→g. Let r be the nullity of ad(ω). For any v∈g write vK+vJ where vK∈K
and vJ ∈J . For t∈ [0,T ] set

• f(t) :=π◦Ad(γ(t))◦I−1 ◦Ad(γ(t))−1 :g→J , where π :g→J is 〈 , 〉BI-
orthogonal projection;

• g(t) := ad(ω)◦f(t)◦ ι :J →J where ι is the inclusion of J in g.

Denote by Φ : [0,T ]→EndR(J ) the solution of the nonautonomous homogeneous
linear ODE

Φ(1)(t) =−Φ(t)◦g(t) with Φ(0) =1J . (2.6)

Theorem 2.9. The general solution of (2.5) is

Y (t) = I−1Ad(γ(t))−1
(
κ+

∫ t

0

(Ad(γ(s))W (s))K ds+Φ(t)−1
(
ρ+

∫ t

0

Φ(s)h(s) ds

))
,

where κ∈K, ρ∈J , h : [0,T ]→J and

h(t) = ad(ω)◦f(t)

(
κ+

∫ t

0

(Ad(γ(s))W (s))K ds

)
+(Ad(γ(t))W (t))J .

Proof. Decompose Z(t) := Ad(γ(t))IY (t) into its K- and J -orthogonal compo-
nents, namely Z(t) =ZK(t)+ZJ (t).
If Y satisfies (2.5) then Z(1)(t) = ad(ω)◦f(t)Z(t)+Ad(γ(t))W (t). So,

ZK(t) =ZK(0)+

∫ t

0

(Ad(γ(s))W (s))K ds,
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and

Z
(1)
J (t) =g(t)ZJ (t)+h(t) (2.7)

where

h(t) : = ad(ω)◦f(t)ZK(t)+(Ad(γ(t))W (t))J

= ad(ω)◦f(t)

(
κ+

∫ t

0

(Ad(γ(s))W (s))K ds

)
+(Ad(γ(t))W (t))J

on substitution for ZK with κ :=ZK(0). The general solution of (2.7) is hence

ZJ (t) = Φ(t)−1
(
ZJ (0)+

∫ t

0

Φ(s)h(s) ds

)
. (2.8)

Therefore, if ρ :=ZJ (0), we get

Y (t) = I−1Ad(γ(t))−1
(
κ+

∫ t

0

(Ad(γ(s))W (s))K ds+Φ(t)−1
(
ρ+

∫ t

0

Φ(s)h(s) ds

))
.

Corollary 2.10. For ρ∈J , we have Φ(t)−1ρ= Ad(γ(t))I(LX̄ρ)(t) where Xρ is the
Jacobi field along γ satisfying Xρ(0) =0 and (LX̄ρ)(0) = I−1Ad(γ(0))−1ρ.

Proof. By Theorem 2.9,

Y ∈ker(K) ⇐⇒ Ad(γ(t))IY (t) =κ+Φ(t)−1
(
ρ+

∫ t

0

Φ(s)ad(ω)◦f(s)κ ds

)
,

where κ∈K and ρ∈J . So, for any ρ∈J , define Yρ∈ker(K) by Ad(γ(t))IYρ(t) :=

Φ(t)−1ρ. Define a field Xρ along γ by X̄ρ(t) := Ad(γ(t))−1
∫ t
0

Ad(γ(s))Yρ(s) ds. By
(2.2) and Lemma 2.4, Xρ is a Jacobi field, indeed the unique Jacobi field satisfying the
conditions in the corollary.

Corollary 2.11. The bi-Jacobi fields along the geodesic γ : [0,T ]→G are given by
quadratures in terms of γ and its Jacobi fields.

Proof. By Corollary 2.10, Φ is given by quadratures in γ and the Jacobi fields.
Therefore so are the bi-Jacobi fields, by Theorem 2.9.

3. The Euler–Poincaré formalism
The Euler–Poincaré formalism for G-invariant variational problems consists in re-

placing a G-invariant Lagrangian L on TG by a reduced Lagrangian defined on g, then
studying a reduced variational problem for curves in g. This formalism extends to
discretisations of the variational problem, as follows.

The Lagrangian, L, is approximated by a real-valued function on G×G, integration
is replaced by summation, and there is a discrete Euler–Lagrange algorithm based on
discrete Euler–Poincaré equations for sequences in G [18]. The discrete Euler–Lagrange
equations generate a flow that is symplectic with respect to a discrete symplectic form
on G×G constructed from the approximation to L. The discrete reduced Lagrangian is
a real valued function defined on G, and the associated discrete Euler–Poincaré equa-
tions preserve a Poisson structure on G induced from the discrete symplectic form,
namely solutions to the discretised problem are structure-preserving in the same way
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as solutions to the original continuous variational problem. This has advantages for
numerical approximations of solutions to the original problem, especially for long-term
behaviour where conservation laws are more or less enforced.

The Euler–Poincaré formalism extends to higher order Lagrangians [6, 7] where
Riemannian cubics are of central importance as examples. These papers focus on a
variational problem for a reduced Lagrangian, rather than reductions of solutions of
the Euler–Lagrange equation in [10, 11, 12, 13, 14, 15, 17] and in the present paper.
Although at some level the two points of view are equivalent, each has advantages
depending on the context.

In the context of [12, 15], it seems likely that structure-preserving numerical meth-
ods would be useful in studying asymptotic properties of Riemannian cubics. Consid-
ering the successes of the Euler–Poincaré formalism in constructing such methods for
first-order variational problems, it seems likely that the Euler–Poincaré formalism might
also be useful for long-term approximations of Riemannian cubics. This topic has not
been explored in the literature so far as we are aware, but [6, 7] provide a starting point.

On the other hand the aim of [17], and of the present paper, is to provide short-term
approximations of Riemannian cubics that are sufficiently explicit to satisfy boundary
conditions and interior point conditions for interpolation problems arising in engineering
applications. The simplest example is the boundary value problem described in § 1 with
stepsize T sufficiently small for the Riemannian cubic x to be nearly geodesic. More
generally, we may want to approximate near-geodesic natural cubic splines as in [17] for
arbitrary left-invariant Riemannian metrics.

It seems unlikely that such explicit approximations would be useful for studying
asymptotics of Riemannian cubics, or even for refined local estimates. Indeed, the
difficulty of satisfying boundary and interior point conditions is such that a trade-off
has to be made between accuracy of approximation and efficiency of computation, as
seen already in [17] for the case of bi-invariant Riemannian metrics. Since explicit
approximations are only needed and valid over intervals of moderate stepsize, their
long-term dynamics are of little importance. Considering the trade-off, standard nu-
merical techniques for initial-value problems are perfectly fit for purpose in calculating
approximations of arcs of Riemannian cubics, in the same way as in [17].

The present situation is somewhat2 analogous to approximating Euclidean elastic
splines by polynomial splines, where the calculation of polynomial segments is not a
particular issue once the polynomials are found, and the advantage of polynomials over
genuine elastica is due to their explicit nature which leads to manageable computations.

So, in the present context, the need is for sufficiently explicit approximations of arcs
of Riemannian cubics with sufficient accuracy to construct approximations to Rieman-
nian cubic splines. The present paper achieves this, enabling computations of splines
in G along the lines of [17]. We shall see, in § 4, a practical method to compute the
bi-Jacobi fields X needed to construct our approximations xX . Then examples are given
in § 5 for G=SO(3), illustrating the quality of approximation by the xX to Riemannian
cubics.

4. Computations of Bi-Jacobi fields in left-invariant Lie groups

Lemma 4.1.

K ◦LW =IW (2) +I[V,W (1)]+[V,IW (1)]− [IV,W (1)]

2Although Euclidean natural cubic polynomial splines already satisfy a variational condition, the
elastic variational condition is different, more difficult to satisfy, and preferable for some applications.
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+I[I−1[IV,V ],W ]+[V,I[V,W ]]− [IV, [V,W ]].

Proof. Substituting Y =LW =W (1) +[V,W ] in KY =L◦IY − [IV,Y ] = IY (1) +
[V,IY ]− [IV,Y ], we get

K ◦LW = I(W (1) +[V,W ])(1) +[V,I(W (1) +[V,W ])]− [IV,W (1) +[V,W ]]

= IW (2) +I[V (1),W ]+I[V,W (1)]+[V,IW (1)]+[V,I[V,W ]]

− [IV,W (1)]− [IV, [V,W ]]

and the lemma follows by substituting for V (1) using (2.4).

Example 4.1. Consider Euclidean 3-space E3 as a Lie algebra with respect to the cross-
product. The adjoint action on E3 defines an isomorphism of Lie algebras ad :E3→ so(3)
onto the Lie algebra so(3) of the rotation group G=SO(3), relative to the usual com-
mutator bracket of matrices. The Euclidean inner product 〈 , 〉E corresponds under
ad to a bi-invariant inner product on so(3), which extends, by left-translation, to a
bi-invariant Riemannian metric 〈 , 〉BI on SO(3).

1

2

3

Fig. 4.1. Transformed Reductions of Jacobi Fields X1,X2,X3 in Example 4.1

Let Ĩ be the positive-definite self-adjoint endomorphism of E3 whose matrix with
respect to the standard basis is diagonal with entries 1,1/2,1/3. Let I be the endo-
morphism of so(3) corresponding to Ĩ under ad. As in § 2, I defines a left-invariant
Riemannian metric 〈 , 〉 on SO(3), given by

〈v,w〉= 〈v,I(w)〉BI

for v,w∈ so(3).
Although quadrature formulae are available, it was more convenient to use numerical

methods to approximate the 〈 , 〉-geodesic γ : [0,5]→SO(3) with γ(0) the identity and
γ(1)(0) = ad(1/3,1,5/3). Mathematica’s NDSolve was used to solve the nonlinear ODE
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4

56

Fig. 4.2. Transformed Reductions of Jacobi Fields X4,X5,X6 in Example 4.1

7

8

9

Fig. 4.3. Transformed Reductions of Bi-Jacobi Fields X7,X8,X9 in Example 4.1

(2.4) for V , and again to solve the first order linear system γ(1)(t) =γ(t)V (t) with
variable coefficients. We have ω= ad(1/3,1/2,5/9).

As in Example 2.1 there are three Jacobi fields with left-Lie reductions X̄i=
Ad(γ(t))−1ad(ei)∈ so(3), with {e1,e2,e3} the standard basis of E3. Figure 4.1 shows
the images of the ad−1 ◦X̄i for i= 1,2,3, with labels near t= 0. Figure 4.2 shows the
image of ad−1X̄4, where X̄4 =V , as in Example 2.2.

Besides these elementary examples we see, first in Figure 4.2, images of
ad−1X̄5,ad−1X̄6 : [0,5] where X5,X6 are the Jacobi fields found from numerical solu-
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10

11

12

Fig. 4.4. Transformed Reductions of Bi-Jacobi Fields X10,X11,X12 in Example 4.1

tions of K ◦LX̄=0, with initial conditions

X̄5(0) = [ω,V (0)], X̄
(1)
5 (0) = [ω,V (1)(0)], X̄6(0) = [ω,X̄5(0)], X̄

(1)
6 (0) = [ω,X̄

(1)
5 (0)].

Then {X1,X2,X3,X4,X5,X6} is a basis of Jacobi fields along γ.

This extends to a basis {Xi : 1≤ i≤12} of bi-Jacobi fields by solving K ◦LX̄i+6 =

IX̄i with initial conditions X̄i(0) = X̄
(1)
i (0) =0 for 1≤ i≤6. Figures 4.3 and 4.4 show

the images of ad−1X̄i+6 for 1≤ i≤3 and 4≤ i≤6 respectively (with labels at t= 5 since
these curves all begin at 0).

5. Applications to Riemannian cubics in left-invariant SO(3)
From now on take G=SO(3) with a left-invariant Riemannian metric 〈 , 〉 corre-

sponding to a positive-definite diagonal 3×3 real matrix Ĩ, as in Example 4.1. Following
Example 8 of [17], define E :TSO(3)→SO(3) by E(z,w) :=z(1+v/2)(1−v/2)−1 where
z∈SO(3), w∈TSO(3) and v :=z−1w. Let γ : [0,T ]→SO(3) be a geodesic with respect
to the left-invariant Riemannian metric.

Definition 5.1. For any field X along a geodesic γ define xX : [0,T ]→SO(3) by
xX(t) :=E(γ(t),X(t)).

By Lemma 4 of [17], for some constant L depending only on γ, we have

‖∇3
tx

(1)
X +R(∇tx(1)X ,x

(1)
X )x

(1)
X ‖xX(t)≤L‖X‖22,∞,

namely the ODE (1.1) for a Riemannian cubic is satisfied by xX with O(‖X‖22,∞) errors.
For any C∞ curve x : [0,T ]→SO(3), Lemma 2.2 gives

J(x) =

∫ T

0

〈Ṽ (1)(t)− Ĩ−1((Ĩ Ṽ (t))× Ĩ Ṽ (1)(t)), ĨṼ (1)(t)−(ĨV (t))× Ṽ (t)〉E dt (5.1)
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which should be small (or at least critical) when x is a Riemannian cubic.

Example 5.1. In Example 4.1, let X be the Jacobi field along γ : [0,5]→SO(3),

given by X̄=
∑12
i=1aiX̄i where ai= (i−6)×10−2. Figure 4.4 shows t 7→xX(t)pr ∈E3

(blue) and t 7→γ(t)pr ∈E3 (red), where pr = (1,2,3)/
√

14∈S2 is a reference point. The
endpoints are labelled as 0 and 5. So xX appears roughly similar but not extremely
close to γ. We find

0

5

5

Fig. 5.1. Images of t 7→xX(t)pr and t 7→γ(t)pr in Example 5.1

xX(0) =

 0.996313 0.0664916 −0.0542162
−0.0631542 0.996131 0.0611071
0.0580696 −0.0574578 0.996658

,
xX(5) =

 0.854705 0.471478 0.217227
−0.478344 0.877865 −0.0232525
−0.201659 −0.0840353 0.975844

.
The left-Lie reductions of x

(1)
X (0) and x

(1)
X (5) are ad−1(0.312966,1.01025,1.66543) and

ad−1(0.204442,1.17616,2.24975), respectively. Chart based methods can also be used to
interpolate this data as follows. Let φ :U→φ(U) be a diffeomorphism, where U is open
in SO(3) and φ(U) is open in E3. Suppose that xX(0),xX(5)∈U , and let xE : [0,5]→E3

be the cubic polynomial satisfying

xE(0) =φ◦xX(0),x
(1)
E (0) =dφxX(0)x

(1)
X (0),xE(5) =φ◦xX(5),x

(1)
E (5) =dφxX(5)x

(1)
X (5).

Assuming xE([0,5])⊂φ(U), define xch(t) :=
(
φ−1 ◦xE

)
(t). Then xch and xX agree to

first order at t= 0 and t= 5.
Define the diffeomorphism ψ :UE→SO(3) by ψ(u) := (1+ad(u)/2)(1−ad(u)/2)−1,

where u∈UE and UE is open in E3. Set φ=ψ−1 and U :=ψ(UE). Then

φ(xX(0)) = (−0.0594444,−0.0562963,−0.065),



L. NOAKES AND T.S. RATIU 67

0

5

Fig. 5.2. Images of t 7→xX(t)pr and t 7→xch(t)pr in Example 5.1

dφxX(0)x
(1)
X (0) = (0.301651,1.05216,1.64719)

φ(xX(5)) = (−0.032781, 0.225911,−0.512253),

dφxX(5)x
(1)
X (5) = (0.767132,1.11021,2.3218).

Figure 5.2 shows the images of t 7→xX(t)pr (blue) and t 7→xch(t)pr (red), labelled 0 and
5 at endpoints. The curves are strikingly different, and the image of xch is apparently
much shorter with a sharp turn near t= 5. Closer examination shows that the velocities
at t= 0 do indeed agree.

We find J(xX) = 1.45407 and J(xch) = 5.24754. So, as should happen, by this mea-
sure the nearly cubic xX is much better than the chart-based interpolant.

6. Conclusion
Bi-Jacobi fields along geodesics in left-invariant Lie groups are shown to be com-

putable by quadratures from Jacobi fields. A practical method of computing bi-Jacobi
fields is given in terms of numerical solutions of ODEs for left-Lie reductions, and special
attention is given to the case of left-invariant SO(3). Building on this and results of a
previous paper, bi-Jacobi fields are used to construct approximations to nearly geodesic
Riemannian cubics.

Acknowledgement. We gratefully acknowledge a careful and critical reading by
the referee, including instructive and interesting remarks on Euler–Poincaré reduction
and numerical integrators.
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