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GWAS in the SIGNAL/PHARE clinical cohort restricts the association between the 

FGFR2 locus and estrogen receptor status to HER2-negative breast cancer patients 
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Abstract  

Genetic polymorphisms are associated with breast cancer risk. Clinical and epidemiological 

observations suggest that clinical characteristics of breast cancer, such as estrogen receptor 

or HER2 status, are also influenced by hereditary factors. To identify genetic variants 

associated with pathological characteristics of breast cancer patients, a Genome Wide 

Association Study was performed in a cohort of 9365 women from the French nationwide 

SIGNAL/PHARE studies (NCT00381901/RECF1098). Strong association between the FGFR2 

locus and ER status of breast cancer patients was observed (ER-positive n=6211, ER-

negative n=2516; rs3135718 OR=1.34 p=5.46x10-12). This association was limited to 

patients with HER2-negative tumors (ER-positive n=4267, ER-negative n=1185; rs3135724 

OR=1.85 p=1.16x10-11). The FGFR2 locus is known to be associated with breast cancer risk. 

This study provides sound evidence for an association between variants in the FGFR2 locus 

and ER status among breast cancer patients, particularly among patients with HER2-

negative disease. This refinement of the association between FGFR2 variants and ER-status 

to HER2-negative disease provides novel insight to potential biological and clinical 

influence of genetic polymorphisms on breast tumors.  
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Introduction  

Since the completion of the Human Genome Project, the Genome Wide Association Scan 

(GWAS) has become the tool of choice for the detection of associations between disease risk, 

and common genetic variation. The first breast cancer risk variants identified in the GWAS 

era were in the FGFR2 locus [1,2]. 

Further analyses, mainly in case-control and prospective cohorts, have reinforced this 

association as well as identified over 90 additional breast cancer risk loci [3]. GWAS studies 

with cases selected based on the estrogen receptor (ER) status of their tumors, and control 

subjects not affected by breast cancer, have shown divergent associations between ER+ and 

ER- tumors. In these analyses, variants in FGFR2are more strongly associated with ER+ 

disease [4-14], as opposed to ER- disease, when comparing cases to healthy controls.Few 

single studies, however, have sufficient detail or sample size to carry out case-only analyses 

to further explore the relationship between genetic variants and disease characteristics, 

particularly with respect to amplification of the HER2 gene.Therefore analyses by subtype 

are often secondary, based on findings of the primary analyses of overall breast cancer risk. 

Furthermore, these studies are now carried out in large consortia with the potential for 

heterogeneity in definitions of various case characteristics, particularly ER and HER2 status. 

For example, Broeks et al. [13] examined the association between low penetrance breast 

cancer loci and specific breast tumor subtypes in the context of the Breast Cancer 

Association Consortium  (BCAC). rs2981582 in the FGFR2 locus was significantly associated 

with ER+/PR+/HER2- breast cancer (ncases=7201, p = 2.2 x 10-29), less so with 

ER+/PR+/HER2+ cases (ncases=996, p=5.5x10-4), and no association was observed with 

triple negative breast cancer (ncases=1480, p=0.841) or ER-/PR-/HER2+ breast cancer 

(ncases=627, p=0.396). A case-only comparison of HER2 status was carried out within 

ER+/PR+ and ER-/PR- groups, and neither showed any association (p=0.23 and 0.15, 

respectively). 

In the present study, a case-only GWAS approach was used to study differences in the 

distribution of variants between breast cancer cases in a large, multi-center study with 

centralized data collection and handling, the SIGNAL/PHARE case-cohorts 

(NCT00381901/RECF1098).  
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Results  

Genotype data was generated from 9365 SIGNAL/PHARE participants. All subjects had 

greater than 95% genotyping success rate. 26 pairs of individuals were identified with 

Identity by State (IBS) > 30%, with the subject having the most complete genotype data 

from each pair retained for analyses. 551 further individuals were excluded from the 

present study due to PCA analyses. Finally, 61 subjects with missing clinical data were 

excluded.  A total of 8727 patients including 2516 patients with ER- breast cancer were 

analyzed. Furthermore, 5452 patients had HER2-negative breast cancer, of which 1185 

were ER-.  

The search for variants associated with ER status showed only one region with a highly 

significant association, corresponding to FGFR2 (best p-value for rs3135718 p-

value=6.0x10-12, Figure 1). Restricting our analyses to HER2-negative cases found that 

associations between variants at the FGFR2 locus remained significant at the genome-wide 

level (best p-value for rs3135724 = 5.2x10-11, Figure 2). Among HER2-positive tumors, the 

lowest p-value in the FGFR2 locus for the association with ER status was found for 

rs2981578 (p = 3.3x10-4 Table 1). The four variants in Table 1 were chosen to highlight the 

difference in associations between HER2+ and HER2- patients. Despite the smaller sample 

size among HER2-positive cases, this study has nearly 100% power to detect a per-allele OR 

=1.8 as observed among the HER2-negative tumors, and greater than 80% power to detect a 

per-allele OR ≈ 1.3. The observed direction of the association was consistent with 

observations in prior case-control studies, with for example the C allele of rs3135718 being 

more frequently reported among women with ER+ tumors.  

As mentioned previously, variants in the FGFR2 locus were the first identified via GWAS 

with respect to breast cancer risk. The most recent fine-mapping effort of the FGFR2 locus 

explored functional variants, and identified three separate independent sets of correlated 

highly associated variants (ICHAVs [18]). In the present analyses restricted to HER2-

negative tumors, rs3135724 was the SNP with the strongest association for ER status. 
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These data included rs2981579 and rs2981578, from ICHAVs 1 and 3 respectively (Table 1). 

Unfortunately, rs45631563 from ICHAV 2 was not included, and no SNPs showed significant 

linkage disequilibrium with this marker in the current 1000 genomes data 

(http://1000genomes.org accessed July 8, 2015). Therefore additional analyses were 

carried out including rs3135724, rs2981579, and rs2981578 in the same logistic regression 

model. In our analyses of HER2- breast cancer, we found no evidence for independent 

association between these variants and tumor ER status (data not shown).  
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Discussion  

The identification of variants associated with specific molecular subtypes of breast cancer 

was a primary aim of the prospective SIGNAL/PHARE cohort. In this high-powered GWAS 

performed in a case-cohort of breast cancer patients with detailed clinical data, further 

information with respect to variants in the FGFR2 locus and their influence on breast cancer 

were provided, particularly regarding tumor ER status. In addition, the association between 

variants in FGFR2 and ER status in breast cancer was stronger among patients with HER2- 

tumors. While not including an independent validation set is a drawback of our analyses, 

the large sample size allowed us to have sufficient power to fully define this association, and 

the p-values obtained were well below empirical estimations of significance thresholds 

(1.48x10-7) as well as the generic GWAS significance threshold of 5x10-8.   

Our hypothesis is that genetic variants that are associated with molecular subtypes will 

provide novel insights regarding disease etiology, and may lead to further developments 

regarding disease prevention and treatment. As our main focus was the construction of a 

clinical cohort, we have focused on collecting information with respect to histo-pathology 

and treatments, and patient follow-up. Therefore, we have not collected detailed 

information regarding epidemiological data such as body-mass index, reproductive history 

and menopausal status, or family history/BRCA mutations. The participants have been 

given a self-administered questionnaire with some of these variables, but as this 

questionnaire was administered after cancer diagnosis, we have chosen to not exploit these 

data at this time. 

We have focused on the FGFR2 locus, which showed the strongest association with ER 

status, particularly among HER- breast cancer patients. There is growing evidence that 

genetic variants may be more strongly associated with specific breast cancer subtypes. For 

the most part, these analyses are extensions of current prospective cohort and case-control 

analyses. For example, recent analyses by Michailidou et al. [3] included stratification by 

estrogen receptor status for the 77 variants included in their polygenic risk score. A number 
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of these variants showed differential associations with respect to estrogen receptor status. 

However as the authors state in their discussion, the number of estrogen receptor negative 

cases made accurately determining risk estimates difficult for this cancer subtype.Future 

analyses in our case-cohort will investigate other variants previously shown to influence 

breast cancer subtype. 

A potential limitation of our study is the use of an internal imputation process, as opposed 

to imputing to the commonly used 1000 Genomes data or the Michigan Imputation Server. 

As mentioned previously, this was our original study design prior to the availability of these 

resources. We have continued with this approach in order to avoid any potential population 

differences with respect to linkage disequilibrium between our population of French breast 

cancer cases and the populations that provided data for publicly available resources. This 

approach leads to a lower number of variants on the absolute scale, meaning that we may 

be unable to detect any additional variants not captured through genotyping with the 

Illumina Omni5, which captures over 80% of common variants among Caucasian 

populations, and strict quality filtering of data (See Methods section). 

For aspects of response to treatment, SIGNAL/PHARE has not yet accrued enough follow-up 

to fully explore the implication of variants on patient’s outcome. This will be of course an 

obvious next step of our analyses, particularly as pertains to response to hormone therapy 

and FGFR2 variants in ER+/HER- breast cancer patients.  

In conclusion, we further refine the influence of variants in the FGFR2 locus with respect to 

molecular characteristics of breast tumors, in that they are more strongly associated with 

estrogen receptor status among cancers without amplification of the HER2 gene.  
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Methods  

PHARE was a randomized phase 3 clinical trial comparing 6- and 12-month trastuzumab 

adjuvant exposure [15], which included a subset of 1,430 HER2-positive breast cancer cases 

with DNA available for GWAS analyses. SIGNAL was a prospective cohort specifically 

designed for GWAS analyses of 8,406 early breast cancer patients, enrolled at the time of 

the adjuvant chemotherapy from June 2009 to December 2013. The combined data set, the 

PHARE/SIGNAL study, included 9,365 breast cancer patients. Clinical and pathological 

characteristics were prospectively collected using standardized forms, and centralized at 

the French National Cancer Institute (INCa). For both studies, patients provided blood 

samples that were centralized at the Centre d’Etude du PolymorphismeHumain (CEPH) in 

Paris, France, for DNA extraction using standard protocols. Genotyping was carried out at 

the Centre National de Génotypage (CNG) in Evry, France.  

The original study plan called for a two-staged genotyping strategy using only study 

participants. This approach aimed at reducing the potential that population structure in 

French breast cancer cases would influence imputation, while maximizing the proportion of 

the genome covered. Briefly, all cases were genotyped using the IlluminaHumanCoreExome 

chip set, composed of over 264000 variants for a “GWAS Backbone” and over 244000 

“exome-centered” variants. Variants were filtered based on completion rates (<95% SNP 

success, N = 8122), departure from Hardy-Weinberg Equilibrium (HWE p<0.001, N = 

20357), and low minor allele frequency (MAF<0.001, N=200628). Principal Components 

Analysis (PCA) and k-means were then used to characterize the ancestry of the participants 

and only the main cluster of European individuals was included in the present analysis, to 

reduce risk of population stratification (See Figure S1). A random subset of 1449 

individuals from the main “European” cluster was selected for genotyping using the 

Illumina Omni5 chip set, composed of over 4M variants (See Figure S1). Complete (SNP 

success = 100%, N=2049173) Omni5 data were then filtered using similar cutoffs as the 

HumanCoreExome data, specifically HWE (p<0.001, N=91018) were then used to impute 
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missing genotypes from the remaining subjects genotyped using the HumanCoreExome 

array. SNPs with imputation quality score < 30% were excluded from analyses (N=783416), 

and finally variants with a MAF < 0.01 were excluded (N=82847). A total of 914144 SNPs 

were included in the GWAS analyses. Standard GWAS logistic regressions were carried out 

using the ProbABEL package [16]. Age at diagnosis and the first two principal components 

were included in regression analyses. 

Genome-wide significance levels were estimated using the effective number of tests based 

on linkage disequilibrium between all markers used in our population through the SimpleM 

function in R [17]. The number of effective markers is estimated at 345906, corresponding 

to a Bonferroni-corrected p-value threshold of 1.48x10-7.  
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Table 1. Selected variants at the FGFR2 locus and ER status among breast cancer cases 

 

    Overall HER2+ HER2- 

SNP 
I/G* (Rsq, 
Quality) OR (95% CI) p OR (95% CI) p OR (95% CI) p 

rs3135718 I (0.64, 0.89) 1.33 (1.23 - 1.45 6.0x10-12 1.19 (1.04 - 1.35) 7.9x10-3 1.47 (1.30 - 1.64) 2.0x10-10 

rs3135724 I (0.41, 0.84) 1.51 (1.33 - 1.69) 8.1x10-11 1.18 (0.97 - 1.41) 9.3x10-2 1.79 (1.49 - 2.13) 5.2x10-11 

rs2981578 G (NA, NA) 1.24 (1.16-1.32) 3.5x10-10 1.20 (1.09-1.33) 3.3x10-4 1.26 (1.14-1.38) 1.7x10-6 

rs2981579 G (NA, NA) 1.25 (1.16 - 1.33) 5.5x10-11 1.15 (1.03 - 1.27) 9.2x10-3 1.33 (1.20 - 1.47) 2.1x10-9 

* Imputed (I) or genotyped (G). Values reported from MACH output 
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 1 

Figure 1. Manhattan plot of associations between SNPs and ER status overall. 2 

P-values from logistic regression comparing estrogen receptor positive cases to estrogen 3 

receptor negative cases, controlling for age at diagnosis and first two principal components, 4 

are shown. rs3135718 on chromosome 10 at the FGFR2 locus shows the strongest 5 

association. 914144 SNPs were included in these analyses, with 6211 ER+ and 2516 ER- 6 

cases. The red horizontal line corresponds to the empirical significance threshold of 7 

1.48x10-7, while the blue horizontal line corresponds to an arbitrary level of 1.0x10-5. The 8 

inflation factor (λ) for these analyses is 1.02.  9 

Figure 2. Manhattan plot of associations between SNPs and ER status restricted to HER2- 10 

cases.  11 

P-values from logistic regression comparing estrogen receptor positive cases to estrogen 12 

receptor negative cases restricted to HER2- cases, controlling for age at diagnosis and first 13 

two principal components, are shown. rs2981578 on chromosome 10 at the FGFR2 locus 14 

shows the strongest association. The same 914144 SNPs were included in these analyses, 15 

with 4267 HER2-/ER+ and 1185 HER2-/ER- cases. The red horizontal line corresponds to 16 

the empirical significance threshold of 1.48x10-7, while the blue horizontal line corresponds 17 

to an arbitrary level of 1.0x10-5. The inflation factor (λ) for these analyses is 1.02.  18 

  19 
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Supplementary Figure 1: Locuszoom plot of chromosome 10 around the FGFR2 locus. Circles 

represent imputed SNPs, diamonds represent genotyped SNPs. Observed p-value is plotted 

along the left Y axis, recombination rate along the right Y axis. Shading from purple to yellow 

in filled shapes represents linkage disequilibrium with the highlighted SNP, in this case 
rs3135718. 


