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Abstract. Reasoning jointly on perception and action requires to in-
terpret the scene in terms of the agent’s own potential capabilities. We
propose a Bayesian architecture for learning sensorimotor representations
from the interaction between perception, action, and salient changes gen-
erated by robot actions. This connects these three elements in a com-
mon representation: affordances. In this paper, we are working towards
a richer representation and formalization of affordances. Current exper-
imental analysis shows the qualitative and quantitative aspects of affor-
dances. In addition, our formalization motivates several experiments for
exploring hypothetical operations between learned affordances. In partic-
ular, we infer affordances of composite objects, based on prior knowledge
on the affordances of the elementary objects.

Keywords: affordances, sensorimotor representations, developmental robotics

1 Motivation, Problem Statement

The grounding of robotic knowledge [19] is the problem of creating links be-
tween the entities and events in the observable environment and their symbolic
representations employed by a robot’s reasoning algorithms. Solving this prob-
lem would allow robots to autonomously discover their environment, without
the need of human intervention. Symbolic grounding cannot be achieved by a
process of observation alone, and requires interaction between the agent and its
environment.

In this paper, we study, develop, and experimentally evaluate sensorimotor
representations and scene interpretation processes based on visual and propri-
oceptive inputs when the robot physically interacts with objects. This enables
robots to understand their environment by interacting with it. Our architecture
builds models of objects based on perceptual clues and effects of robot actions
on them, which relate to the notion of affordance. We employ a Bayesian net-
work that represents with continuous and discrete variables the objects, actions,
and effects in the observable environment. We then perform structure learning
to identify the most probable Bayesian network that best fits with the observed
data. The discovered structure of the Bayesian network allows the robot to dis-
cover causal relationships in the environment using statistical data.

The remainder of the paper is structured as follows. In Section 2 we discuss
related work on the discovery of object affordances, and we introduce our specific
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contribution. Section 3 describes our technical approach, including an illustration
of the architecture employed for learning affordances. Experimental results are
presented in Section 4. We draw a conclusion Section 5 and present ideas for
future work.

2 Related work on object affordance discovery

From the seminal work of Gibson, the affordance of anything is a specific com-
bination of the properties of its substance and its surfaces taken with reference
to an animal [1]. Sahin et al. discuss on the former definition for the domain of
autonomous robot control. They introduce the acquired aspect of an affordance,
such that when an agent applies a behavior on an entity, an effect is generated [2].

At the same time, several efforts have spawned from the domain of develop-
mental robotics, for exploring and learning robots’ environment. The approach
was based on a cycle of exploration-manipulation, initialized with a collection
of minimal knowledge and innate capabilities. These works studied the discov-
ery of meaningful discrete motion primitives [10] or sequences thereof [8], using
stochastic and deterministic [16] approaches. This allowed a robot to learn ob-
ject affordances and the predictors that anticipate the effects that these action
primitives create.

Stoytchev [4] suggested that the autonomous learning of affordances by a
robot provides representations of the observed objects, actions, and effects that
are grounded in the environment. This hinted that the affordances can be used
to create grounded symbolic representations for the observed entities and events,
both in the physical and abstract world.

Montesano et. al. [3] modeled affordances with Bayesian networks. The unsu-
pervised learning of affordances was formulated as a structure learning algorithm,
where affordances were encoded in the probabilistic relations between actions,
object features and effects.

Hermans et al. [6] suggested to learn affordances in 2 steps: first generating
object attributes from the observed visual features, and then linking these ob-
ject attributes to affordances. In their case, they employed 2D visual features of
objects (shape, color, material) and weight features to learn and predict affor-
dances such as pushable, rollable, graspable, liftable, dragable, carryable, and
traversable.

Similarly, Jain et al. attempted to estimate the affordances of previously
unknown tools, based on the assumption that functional features remain dis-
tinctive and invariant across different tools used to perform similar tasks [7].
The proposed system learns bi-directional causal relationships between actions,
functional features and the effects of tools, and uses a Bayesian network to model
the probabilistic dependencies in the observation data.

Zhu et al. [9] inferred the affordances of objects (with a particular interest
for tools) based on their resemblance to other objects observed while in use by a
human during a learning phase, using RGB-D data. They made the hypothesis
that the object use demonstrated by the human was optimal.
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The main novelty of this paper consists in predicting the affordances of com-
binations of objects, based on prior knowledge on the affordances of the con-
stituent parts of the composite object. We employ a probabilistic architecture,
that generates a sensorimotor representation which encodes, through the learn-
ing of affordances, effects, objects and actions using the same formalism. The
architecture spans from low-level data acquired from sensors and actuators, up
to learning relations between higher-level representations. We use 3D visual fea-
tures, as well as force measurements to create a description of the objects and
effects generated through interactions with objects. Although we assume that the
agent has a limited innate set of sensors and motor capabilities, the architecture
allows for learning and extending these capabilities as well. We employed a con-
tinuous Bayesian network (as opposed to discrete Bayesian networks) to work
with the quantitative aspect of affordances (i.e. to measure, learn and predict
intensities of effects).

3 Technical Approach

Fig. 1 shows the proposed architecture for learning affordances. Measurements
from Visual perception and Environment interaction are considered as
the main inputs of our approach. Visual perception extracts, from clouds of
points, a set of clusters. Clusters are then tracked to generate object hypotheses
to interact with. A motivational system is in charge of selecting objects and
actions that will be applied on them. Proprioceptive feedback is retrieved in
the form of joint and force measurements. Effect detectors analyze the input
from perception and action tasks to extract salient changes. Sensorimotor
learning is the intersection between the two input processes and represents
the fusion between the perception and action components. Affordances learning
finds the correlations that build the final sensorimotor representation by relating
objects, actions and induced salient changes considered as effects. A long-term
storage is used to save the final representation and to provide a feedback for the
motivational system.

3.1 Visual perception

In order to interact with the environment, a segmentation process is performed
to identify the objects in the scene. Voxel Cloud Connectivity Segmentation
(VCCS), presented in [11], benefits from 3D geometry provided by RGB+D
cameras to generate an even distribution of supervoxels in the observed space.
The seeding methodology to find the supervoxels is based on 3D space and a flow-
constrained local iterative clustering which uses color and geometric features. As
this algorithm relies on strict partial connectivity between voxels, it guarantees
that supervoxels cannot flow across boundaries which are disjoint in 3D space.

Once we obtained the oversegmentation from supervoxels extraction, we im-
plemented the non-parametric clustering detailed in [12] to find the shape of the
object hypotheses based on the set of supervoxels.
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Fig. 1. Architecture of the proposed sensorimotor approach for affordance learning.

3.2 Affordances for sensorimotor representation

We consider an agent (robot) endowed with a set of innate actions A, and a
set of innate feature extractors P, that can be augmented through learning. In
addition, O is the set of all the objects in the environment, and E is the set of all
the possible observable effects. When the agent applies action a ∈ A to an entity
(object) o ∈ O in the environment, a salient change (effect) e ∈ E is generated,
we call this acquired relation an affordance [2].

From the agent’s perspective, a resulting affordance is defined as follows:

αagent = (e, (o, a)), for e ∈ E, o ∈ O, and a ∈ A (1)

more generally, this agent will gradually build a set of affordances Aff composed
of the affordances αi:

αagent
i = (ej , (ok, al)), for ej ∈ E, ok ∈ O, and al ∈ A (2)

An object ok is defined as the set of values for the n innate properties ex-
tractors ρ ∈ P:

ok = {ρ1(cluster), ρ2(cluster), ...ρn(cluster)}, (3)

where cluster represents the object hypothesis obtained by the visual perception
module.

Actions are a set of motor capabilities A = {a1, ..., am}, defined as:

ak(V ∗, γ, σak), (4)

being V ∗ the desired value for the robot control variables V , γ its proprioceptive
feedback and σak the particular action parameters.

Effects are a set of salient changes in the world ω detected by robot’s innate
detectors e:

E = {e1(ω), e2(ω), ..., eq(ω)} (5)

which means that effects can be related to objects and agents, allowing to detect
exteroceptive and proprioceptive changes.
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3.3 Affordance learning

Considering the statistical nature of acquiring affordances through environment
exploration, elements E, O and A in (1) can be represented as random variables
in a Bayesian Network (BN) G. Through the cycle of perception-interaction
we obtain instances of these variables generating a data set D. The problem of
discovering the relations between E, O and A can be seen as finding dependencies
between the variables in G, i.e., learning the structure of the corresponding BN
from data D. Using the BN framework we are capable of displaying relationships
between variables. The directed nature of its structure allows us to represent
cause-effects relationships and to combine the action and perception components
in a stochastic sensorimotor representation.

We implement a score-based maximization approach for finding the BN struc-
ture from D [13]. The score of a BN structure G is defined as the posterior prob-
ability given the data D, i.e. S(G,D) = P (G|D), we define S as the compression
rate of the data D with an optimal code induced by the BN. As the number
of independent and identical distributed random variables tends to infinity, no
compression of data is possible for a rate less than the Shannon entropy [18].

Information scoring functions for structure learning are based on compres-
sion [18]. The score of a BN G is related to the compression that can be achieved
over the data D with an optimal code induced by G. The quality of a BN can
be computed by:

S(G|D) = Slog−l(G|D)− f(N)|G| (6)

where the log-likelihood score Slog−l tendd to favor complete network struc-
tures, without providing reliable independence assumptions for the learned net-
work [14]. |G| denotes the network complexity, i.e. the number of parameters
in the network. f(N) is a non-negative penalization function. If f(N) = 1, (6)

becomes the AIC (Akaike Information Criterion) score; if f(N) = log(N)
2 , (6)

represents the BIC (Bayesian Information Criterion) score [14].
Bayesian inference in our discrete BN provides the probability that an affor-

dance αi is present. However, it does not provide a mechanism to quantify the
affordance w.r.t. the specific environment situations that triggered it.

We believe that by preserving the continuous aspect of the elements in the
affordance (1), we also maintain the necessary information for an affordance
quantifying approach, i.e., Bayesian inference over a Gaussian BN (GBN). Rela-
tions in (2) can be represented as a multivariate normal distribution of contin-
uous random variables, i.e., the affordance’s elements. Continuous variables are
modeled as linear regressions in a Gaussian BN, where the relevant parameters
of each local distribution are the regression coefficients (for each variable parent)
and the standard deviation of the residuals.

Structure learning is performed by identifying vanishing regression coeffi-
cients using two assumptions, event equivalence and parameter modularity, that
allow the construction of prior distributions for our multivariate normal parame-
ters [15]. As in learning of discrete BN strucures, we implemented a score function
to evaluate the quality of the continous BN. To do so, we used a score equivalent
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Fig. 2. The Baxter robotics platform used for our experiments. The RGB-D camera
used for perception is visible in the foreground.

to the Gaussian posterior density, which follows a Wishart distribution and is at
the core of the belief networks framework [17].

3.4 Sensorimotor learning results

Our Baxter experimental platform (Fig. 2) is equipped with 2 arms with 7 de-
grees of freedom. One electrical gripper is attached to each arm. For visual
perception, we use a Microsoft Kinect sensor that captures RGB-D data. For
environment interaction we use the left arm and its respective gripper.

In order to evaluate the generalization capabilities of the bayesian model
learned with our architecture, we implemented a discrete structure learning
for an experiment composed of: several objects represented by dominant color
(ρcolor), size (ρsize) and shape (ρshape); four innate actions: poke (apoke), push
(apoke), open gripper (aopen g) and close gripper (aclose g); and three types of ef-
fect detectors: feedback force in the end effector (ef ), distance between the grip-
per fingers (egr d), and one movement detector for each detected object (emvoi ).

We developed a hill-climbing based algorithm to search the optimal struc-
ture [13]. Two score functions were implemented: BIC and AIC as described in
section 3.3. In both cases, the learned BN structure is increasing the quality
of representation for the data when more interactions are made by the agent.
In addition, the resulting BN can better generalize the learned knowledge for
future interactions. Although the log-likelihood loss for both information-based
scores seems to be similar, the learned network from AIC score is less complex
than the one from BIC score, which influences the performance of BN inference
afterwards.

Applying inference over the learned BN, the robot can estimate probabil-
ity distributions for effect prediction P (E|O,A), feedback in action selection
P (A|O,E) or object recognition given its behavioral description P (O|A,E).

Using our proposed architecture (Fig.1), we defined our experiment on the
continuous framework as follows. The relevant object properties are the dominant
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Fig. 3. Learned Gaussian BN. All nodes are defined as continuous random variables.

color, visible area as size and object elliptical eccentricity as shape. Action grasp
is defined as grasp(pos), where pos is a parameter describing the position (w.r.t.
to object’s longitudinal component) where grasp is performed. The relevant effect
gripper state varies over the distance between gripper’s fingers.

Fig. 3 shows the Gaussian BN learned by our architecture. Interactions were
done on two different objects: a blue bar and a red bat of baseball. The learned
GBN models grasp-ability as present in both objects, but only the blue bar is
graspable for every configuration of the action. Grasp-ability on the red bat dis-
appears after passing the half of its length. A video demonstration can be found
at https://cloud.isir.upmc.fr/owncloud/index.php/s/9EKUq05D58Wiyfo.

4 Experiments with affordances of composite objects

The goal of our experiments is to identify a formalism that could infer the af-
fordances of composite objects, based on prior knowledge about the affordances
of the primary objects that constitute them. We state that Bayesian networks,
through structure learning, can not only discover affordances, but also capture
their quantitative aspect, by employing continuous variables in the representa-
tion of actions and effects, that are represented as continuous variables. The
experiments will help us demonstrate this.

Our experimental procedure is composed of four steps: (1) performing a cer-
tain action with a set of objects (separate and composite) and observing the
effects, (2) defining the random variables corresponding to the observed objects,
actions, and effects inside the Bayesian network, (3) feeding the interaction data
to the structure learning algorithm of the Bayesian network, and (4) interpreting
the structure of the Bayesian network that best fits the recorded data according
to calculations.

First, we consider the discovery of affordances. From our experiments, we can
interpret the model learned by the discrete Bayesian Network as a qualitative
aspect of an affordance, regarding the presence or absence of a relation between
the elements of an affordance (e.g. an object is push-able, i.e. it goes a certain
distance from its original location).

We further attempt to attach a quantitative dimension to the learned affor-
dance by representing its elements as continuous random variables. This allows
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Table 1. The objects used in the experiments, and the employed composition order.

Experiment 1 Experiment 2 Experiment 3

top object

bottom object

composite object

observed effect for the
cart

affordance
acquisition

affordance
maintenance

affordance loss

not only to predict that the affordance is present, but also to infer the parameter
values of its elements that influence this affordance (e.g. the effect of the push
action on the object is a function of the action’s input parameters).

Three experiments are analysed in this section, all related to the inference of
affordances of composite objects: (1) affordance acquisition, (2) affordance main-
tenance, and (3) affordance loss. Since our experiments focused on the composi-
tion of objects, we performed them on objects specifically designed for that: toys
that can assemble and disassemble. These experiments are detailed in the follow-
ing sections, and are illustrated in Table 1, which shows the objects employed,
as well as their composition method.

4.1 Affordance acquisition

Following the experiment description from Table 1, column Experiment 1, each
object is described by two elements: one describing the number of atomic percep-
tual properties that forms it, and the other the position of the atomic property
inside it (top or bottom). These properties allow to represent atomic objects
(with only one property) and possible composite objects. In this scenario, we
have two atomic perceptual properties wheel and cartFrame and together they
can combine to form a cart.

The robot performed random interactions with the action apoke and the
atomic objects wheel, cartFrame and with the composite object cart (50 in-
teractions with each object). The effect detector developed was based on the
distance that an object moves after the action is executed.

We use Gaussian random variables to represent the perceptual properties and
the distance effect. We use nominal variables to represent the action undertaken
(poke, no action), and the objects employed. The object composition was repre-
sented using 2 variables: objectBottom and objectTop, representing respectively
the atomic object at the bottom of the composite object, and the one on top.



Discovering and Manipulating Affordances 9

Figure 5 shows the resulting network after the learning process. We can notice
that the parameters influencing the distance, over which an object travels after
an interaction, are correctly inferred. The action poke influences this distance,
while the action noAction does not. The object at the bottom also influences
this distance: wheels roll further than the cartFrame after poking. The object
at the top is also linked to the distance variable, since the distance travelled by
the cart (i.e. wheels with cartFrame on top) differs from the one travelled by the
individual wheels.

Let us use the relationships learned in this example, to infer the affordances
of a similar composite object.

4.2 Affordance maintenance and loss

The second and third experiments consist in learning the correct structure of
the Bayesian network, so as to correctly predict the maintenance or loss of af-
fordances of atomic objects that form the composite object. In this example, we
will consider two new objects: the cart, and the blockLoad that we can put on or
under the cart (see Experiments 2 and 3 in Table 1). We feed the BN the data
obtained in the interactions with these new atomic objects (50 interactions with
each object), but not for their composition, and obtain the BN seen in Figure 4.

We stated the acquired nature of an affordance in eq. 2, and for this rea-
son, the inferred affordance will be considered an estimation until the robot,
by interaction, validates it. If we represent the composite object objcomposite =
{objectBottom = cart, objectTop = blockload}, we can obtain an estimation
of its affordance by calculating P (distance|objectBottom = cart, objectTop =
blockload) from the learned BN. In our experiment, the probability distribution
for this calculation is similar to P (distance|objectBottom = cart) showing ex-
perimentally that the estimated affordance movable of the composite object is
similar to the affordance of one of its elements.

In the BN represented in Figure 4, if the value of the objectBottom variable
is known, the variables distance and the objectTop are conditionally indepen-

Fig. 4. The Bayesian Network ob-
tained after feeding the interaction
data with the atomic objects cart
and blockLoad.

Fig. 5. Conditional linear Gaus-
sian network obtained after learn-
ing process.
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dent. This means that the upper part of a composite object does not influence
the distance that this composite object traverses after a poke action. This can
be interpreted as an affordance loss. On the other hand, the bottom part of a
composite object (i.e. objectBottom) does impact the distance it traverses after
a poke, suggesting that its affordance is maintained. This is confirmed experi-
mentally: after a poke, the atomic objects cart and blockLoad travel an average
distance of 45 centimeters and 9 centimeters, respectively. The composite object
with the cart at the bottom travels an average distance of 28.4 centimeters, while
the one with the blockLoad at the bottom travels an average distance of only 3.8
centimeters.

4.3 Discussion on the results

The goal of our ongoing experiments is to infer the relations that exist between
affordances, which would allow to refine the definition and formalization of an
affordance.

By decomposing an object offering a specific affordance into its constituent
parts, we may wonder what are the affordances of the obtained parts. Answer-
ing this question requires us to introduce a mathematical operator, which would
be able to estimate the affordances of an object obtained through the decom-
position of an object, or through the composition of objects. It is yet unclear
if this mathematical operator would apply to the objects and their properties
(identifying their affordances as a consequence), or if it would apply to the entire
affordance relation (E, (O,A)). This opens a whole new domain of inquiry about
the relations between affordances.

We designed three experiments in order to test our hypothesis. Following (2),
we can define a particular affordance for an object oi as αi = (ek, (oi, al)). Then,
we can decompose oi into two new objects o′i and o′′i , by dissecting its property
set in 2 complementary parts (%1, %2 ⊂ oi, %1 ∪ %2 = oi, %1 ∩ %2 = ∅), one for
each object, and padding them with null values:

o′i = {ρx|ρx ∈ %1} ∪ {ρy = null|ρy ∈ %2},
o′′i = {ρx|ρx ∈ %2} ∪ {ρy = null|ρy ∈ %1}.

(7)

Using the learned model from our proposed architecture, we can infer:

α′i = (ek, (o
′
i, al)), α

′′
i = (ek, (o

′′
i , al)). (8)

If the removal of a property does not influence the affordance of an object
(α′i ≡ αi), then this property can be considered as non salient for this particular
affordance. In addition, if we can rewrite αi as:

αi = (e1, (o
′
1 ⊗ o′′1 , a1)), (9)

the computation defined by the operator ⊗ suggests the existence of a combi-
nation of affordances. Experiments can help to discover the properties of this
composition operator.
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Let us represent the set of salient features from objects ox and oy for one of
their affordances as salientαi

(ox) and salientαj
(oy) respectively, where

αi = (ekx, (ox, alx)), αj = (eky, (oy, aly)). (10)

If ox and oy do not share salient features, salientαi
(ox) ∩ salientαj

(oy) = ∅,
and |salientαi

(ox)|+ |salientαj
(oy)| = n, we can construct a new object oxy by

selectively combining the salient properties of ox and oy,

oxy = salientαi
(ox) ∪ salientαj

(oy), (11)

which by definition should retain affordances αi and αj . We can empirically
discover the properties of affordances of this new object oxy w.r.t. the properties
of ox and oy.

Through these experiments (decomposition, composition and selective com-
position) we will be able to estimate the affordances of combined or de-composed
objects, and verify this estimation empirically, shedding light on the nature of
these affordance operators.

5 Conclusion and future work

We introduced a Bayesian architecture for learning sensorimotor representations
from the interaction between objects, robot actions, and the generated effects. In
particular, it employs Gaussian random variables that capture the quantitative
aspect of actions and effects.

We introduce the concept of primary objects to capture prior knowledge on
their affordances. We also introduce the concept of composite objects, for which
we want to identify a relationship between the objects they are composed of,
and the way they are assembled, in order automatically infer their affordances.
We performed experiments to infer the affordances of composite objects, based
on prior knowledge about the affordances of the primary objects that consti-
tute them. Results form the learned Bayesian network showed information re-
garding the acquisition, maintenance, and loss of affordances by the employed
primary objects, depending on their position in the composite object. The ob-
tained results suggest that it may be possible to define an operator acting on
the elements of affordances, which could predict the affordances of new objects,
obtained through the combination of known objects.

In our future work, we plan to identify the salient features of objects that en-
dow these objects with specific affordances. These salient features can be identi-
fied while performing object composition. In this case, a gained affordance would
be related to features acquired after object composition. Salient features can also
be identified during object decomposition. In this case, a lost affordance would
be related to features lost after object decomposition into constituent parts.

Although our approach is a statistically based learning technique, it would be
interesting to analyse other approaches that could provide statistically similar
results or improvement with fewer interactions. It would be interesting to employ
algorithms that can identify causal relationships between actions, object features
and effects with as few observations as possible (one or two).
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