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Abstract

This paper addresses a scheduling problem with a cumulative, continuously-divisible and renew-
able resource with limited capacity. During its processing, each task consumes a part of this resource,
which lies between a minimum and a maximum requirement. A task is finished when a certain amount
of energy is received by it within its time window. This energy is received via the resource and an
amount of resource is converted into an amount of energy with a non-decreasing, continuous and
linear efficiency function. The goal is to minimize the resource consumption. The paper focuses on
an event based mixed integer linear program, providing several valid inequalities which are used to
improve the performance of the model. Furthermore, we give a minimal description of the polytope
of all feasible assignments to the on/off binary variable for a single activity along with a dedicated
separation algorithm. Computational experiments are reported in order to show the effectiveness of
the results.

keywords continuous scheduling, continuous resources, linear efficiency functions, mixed-integer pro-
gramming, valid inequalities, polyhedral combinatorics

1 Introduction

Most of the scheduling problems dealing with resource constraints assume a fixed duration and does not
allow the resource usage to vary over time. However, several extensions of existing problem, such as the
resource-constrained project scheduling problem or the cumulative scheduling problem, has been devel-
oped to tackle this issue. Among them there are the multi-mode resource-constrained project scheduling
problem [6], project scheduling with variable-intensity activities [9] or with work-content resources [8]
or the malleable tasks scheduling problem [7]. In this paper, we study a problem called the continuous
energy-constrained scheduling problem (CECSP), a generalization of the cumulative scheduling problem
which no longer assumes fixed duration and resource requirement.

In the CECSP, we are given as input a set of non preemptive tasks A = {1, . . . , n} and a continuously-
divisible resource, renewable and cumulative resource of capacity B. For each task, a release date ri and
a deadline di define an interval in which the task must be executed. At each time t during its execution,
each task consumes a quantity of resource bi(t) that has to be determined. This resource usage has to lie
between a minimum requirement, bmin

i , and a maximum requirement, bmax
i .

The particularity of the CECSP is that a task no longer have a fixed duration but instead an energy
requirement Wi needs to be fulfilled before the task deadline. This energy is computed from the task
resource usage, using an efficiency function fi

1. We assume these functions to be continuous, non-
decreasing and linear. An efficiency functions fi can be defined as follows:

fi(b) =

 0 if b = 0
ai ∗ b+ ci if bmin

i = 0 and b ∈]bmin
i , bmax

i ]
ai ∗ b+ ci if bmin

i 6= 0 and b ∈ [bmin
i , bmax

i ]

1Some authors call this function the power processing rate function [3, 4, 6].
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with ai > 0 and −ai ∗ bmin
i ≥ ci to ensure that fi(b) ≤ 0, ∀b ∈ [bmin

i , bmax
i ].

Therefore, to solve the CECSP, we have to find, for each task i ∈ A, its start time sti, its end time
eti and its resource allocation function bi(t), ∀t ∈ T = [mini∈A ri,maxi∈A di]. These quantities have to
satisfy the following constraints:

ri ≤ sti < eti ≤ di ∀i ∈ A (1)

bmin
i ≤ bi(t) ≤ bmax

i ∀i ∈ A, ∀t ∈ [sti, eti] (2)

bi(t) = 0 ∀i ∈ A, ∀t 6∈ [sti, eti] (3)∫ eti

sti

fi(bi(t))dt = Wi ∀i ∈ A (4)∑
i∈A

bi(t) ≤ B ∀t ∈ T (5)

The objective we are interested in is the minimization of the total resource consumption. In [5], the
authors shows that the problem of finding a feasible solution is NP-complete.

Example 1 Consider an instance with n = 3 and B = 5. The other data are displayed in Table 1a, and
a feasible solution is depicted in Fig. 1b.

i ri di Wi bmin
i bmax

i fi(b)

1 0 6 28 1 5 2b+ 1

2 2 6 32 2 5 b+ 5

3 2 5 6 2 2 b

(a) an instance of CECSP

21

3

B = 5

r1 r2r3
d1d2

d3 t

(b) the corresponding solution

Figure 1: An example of an instance and the corresponding solution for the CECSP

This solution is feasible since each task lies in its time window, all the constraints of maximum
and minimum requirements are satisfied and the total resource usage at each time does not exceed the
availability of the resource. Furthermore, the required energy is received by each task. For example, the
energy received by task 1 is (2 ∗ 5 + 1) + (2 ∗ 5 + 1) + (2 ∗ 1 + 1) + (2 ∗ 1 + 1) = 11 + 11 + 3 + 3 = 28, while
its total resource consumption is equal to 12.

Different elements of the problem addressed in this paper have been studied by several authors.
Unfortunately, the authors consider generally only a part of the problem and/or they assume a discrete
time setting. Our problem belongs to the category of problems where the resource usage may vary
continuously and such that the amount of resource required by a task may vary over time. Wȩglarz et
al. [6] call this model the processing rate vs resource amount model. Providing a general framework for
solving mixed discrete/continuous problems with concave processing rate functions, Józefowska et al. [4]
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show that once the sequence of sets of tasks to be scheduled in parallel is determined, the continuous
resource allocation can be made by a convex non-linear optimization problem.

The CECSP comes from an industrial problem occurring in the context of energy-consuming produc-
tion scheduling problem. In [1], a foundry application is presented and a solution method is proposed
using constraint programming and mixed integer linear programming. Due to the complexity of the
problem the authors consider a time discretization and do not take efficiency functions into account. Still
without considering efficiency functions but in a continuous time setting, Artigues and Lopez [2] propose
a constraint satisfiability test based on the energetic reasoning. Recently, Nattaf et al. [5] propose mixed
integer linear programs, constraint propagation algorithm and a hybrid branch and bound methods to
solve the problem with linear efficiency functions and considering continuous time.

This paper focuses on the on/off model from [5], providing several valid inequalities which are used to
improve the performance of the model in Section 2. Furthermore, a special set of inequality is described
in Section 3. These inequalities are used to give a minimal description of the polytope Z of all feasible
assignments to the on/off variable zie for a single activity. This section also describe a special separation
algorithm for these inequalities. Finally, computational results are presented in Section 4.

2 On/Off MILP formulation and valid inequalities

In the on/off formulation of [5], an event corresponds either to a task start or a task end time. These
events are represented by a set of continuous variables te and E = {1, . . . , 2n} represent the index set of
these events. The authors uses a binary variable zie to assign the different event dates to the start and
end time of the tasks. Indeed, zie is equal to 1 if and only if task i is in process during interval [te, te+1].
Finally, two continuous variables bie and wie are also defined. These variables stand for the quantity of
resource used by task i and for the energy received by i between events te and te+1.

The model is described below.

min
∑
i∈A

∑
e∈E\{2n}

bie (6)

te ≤ te+1 ∀e ∈ E \ {2n} (7)

rizie ≤ te ∀(i, e) ∈ A× E (8)

te ≤ smax
i (zie − zi,e−1) + (1− (zie − zi,e−1))|T | ∀(i, e) ∈ A× E \ {1} (9)

emin
i (zi,e−1 − zie) ≤ te ∀(i, e) ∈ A× E \ {1} (10)

te ≤ di(zi,e−1 − zie) + (1− (zi,e−1 − zie))|T | ∀(i, e) ∈ A× E \ {1} (11)

tf ≥ te+ ∀e, f ∈ E \ {1},

((zie − zi,e−1)− (zim − zi,m−1)− 1)
Wi

fi(bmax
i )

) f > e, ∀i ∈ A (12)∑
e∈E

zie ≥ 1 ∀i ∈ A (13)

e∑
e′=1

zie′ ≤ e(1− (zie − zi,e−1)) ∀(i, e) ∈ A× E \ {1} (14)

2n∑
e′=e

zie′ ≤ (2n− e)(1 + (zie − zi,e−1)) ∀(i, e) ∈ A× E \ {1} (15)

∑
i∈A

bie ≤ B(te+1 − te) ∀e ∈ E \ {2n} (16)

bie ≥ bmin
i (te+1 − te)− (bmin

i (di − ri)(1− zie)) ∀(i, e) ∈ A× E \ {2n} (17)

bie ≤ bmax
i (te+1 − te) ∀(i, e) ∈ A× E \ {2n} (18)

zie(b
max
i (di − ri)) ≥ bie ∀(i, e) ∈ A× E \ {2n} (19)∑

e∈E\{2n}
bie = Wi ∀i ∈ A (20)

wie ≤ aibie + ci(te+1 − te) ∀(i, e) ∈ A× E \ {2n} (21)

wie ≤Wizie ∀(i, e) ∈ A× E \ {2n} (22)

zi,2n = 0 ∀i ∈ A (23)

te ≥ 0 ∀e ∈ E (24)

bie ≥ 0 ∀(i, e) ∈ A× E \ {2n} (25)

wie ≥ 0 ∀(i, e) ∈ A× E \ {2n} (26)
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zie ∈ {0, 1} ∀(i, e) ∈ A× E (27)

total resource consumption is described by equation (6). Constraint (7) arbitrarily orders the events.
Inequalities (8)–(11) model the time window constraints. Constraint (12) ensures a minimum separation
between two events corresponding to the start and end time of a same task i. Constraint (13) stipulates
that each task has to be scheduled once while constraints (14) and (15) make sure a task is not preempted
during its execution. Finally, inequalities (16)–(19) model the resource constraints while inequalities (20)–
(22) represent resource conversion and energy requirement constraints.

2.1 Maximum interval between two events

Here, we describe the first set of inequalities we derive for the CECSP. In the following, we suppose an
event correspond to one and only one task start/end time. Such solution always exists since there is
2×#tasks events.

The inequalities define in this section aims to give an upper bound on the value of te+1 − te, ∀e ∈ E .
To do so, we study the time window of each task start and end time. The main idea relies on the fact
that an event must occur in each of these time windows. Therefore, we know there are at least two
consecutive events in the union of two consecutive time windows.

Let S be the set of all task time windows. We start by sorting each interval in S according to the
following rule: [S1x,S1y ] ≤ [S2x,S2y ]⇔ S1x < S2x ∨

(
S1x = S2x ∧ S1y ≤ S2y

)
And, then we have:

te+1 − te ≤ |Se ∪ Se+1| ∀e ∈ E \ {2n} (28)

Example 2 Consider the following intervals:

[

r1
]

smax
1

[

emin
1

]

d1
[

r2

]

smax
2

[

emin
2

]

d2
[

r3

]

smax
3

[

emin
3

]

d3

An ordering of these intervals is: [r1, s
max
1 ] ≤ [r2, s

max
2 ] ≤ [emin

1 , d1] ≤ [r3, s
max
3 ] ≤ [emin

2 , d2] ≤
[emin

3 , d3].
And then, we have the following constraints:
• t2 − t1 ≤ smax

2 − r1

• t3 − t2 ≤ d1 − r2

• t4 − t3 ≤ smax
3 − emin

1

• t5 − t4 ≤ d2 − r3

• t6 − t5 ≤ d3 − emin
2

We can then add these constraints to the model and/or use these upper bounds in constraint (17),
replacing bmin

i (di − ri) by bmin
i |Se ∪ Se+1|, ∀(i, e) ∈ A× E .

2.2 Maximum time of an event

A similar idea than the previous one is to use the time windows to order the event times and to compute
upper bounds on these dates. To do so, we sort the time window upper bounds, i.e. smax

i and di, ∀i ∈ A,
in increasing order. Then, since an event must occurred in each time window, i.e. before its upper bound,
we have an upper bound on each event.

Indeed, let UP be the sorted set of all time window upper bounds, then, we have the following:

te ≤ UPe ∀e ∈ E (29)

Example 3 Consider the intervals given in example 2. Then, we have the following constraints:
• t1 ≤ smax

1

• t2 ≤ smax
2

• t3 ≤ d1

• t4 ≤ smax
3

• t5 ≤ d2

• t6 ≤ d3

Like the previous inequalities, we can use these bounds either as additional constraints of the model,
or in constraints (9) and (11) as an alternative to T - an upper bound on the project duration - or both.
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2.3 Valid inequalities from knapsack problems

Since the minimum intensity of the activities can be positive, we can consider the following knapsack
type constraint for each e ∈ E \ {2n} from which one can easily derive valid inequalities:∑

i∈A+

bmin
i zie ≤ B, (30)

where A+ is the subset of activities with positive bmin
i values. One may add this set of constraints to the

initial formulation, and then let the solver to strengthen the LP relaxation by cutting planes for these
knapsack sets.

3 Polyhedral results and non-preemptive inequalities

In this section we describe some inequalities satisfied by all feasible solutions of the MIP formulation.

3.1 Non-preemptive inequalities

Since each activity must be processed without preemption, in any feasible schedule for each activity i,
the zie satisfy ∑

ek∈S
(−1)kzi,ek ≤ 1 (31)

where S = {e0, e1, . . . , e2`} is a subset of E∗ := E \ {2n} of odd cardinality.
Consider the polyhedron ZPi := {zi ∈ [0, 1]E

∗ | zi satisfies (13) and (31)}.
On the other hand, let ZQi := conv{zi ∈ {0, 1}E

∗ | zi satisfies (13)− (15)}.

Theorem 1 ZPi = ZQi

Proof We will use the Farkas lemma in order to derive a description of ZQi in terms of linear inequalities.
The vertices of ZQi are precisely the |E∗|-dimensional vectors

zk`i,e =

{
1 k ≤ e ≤ `
0 otherwise

∀k, ` ∈ E∗, k ≤ `.

Consider the linear system ∑
k≤`

zk`i,eλk` = z̄i,e, e ∈ E∗ (32)

∑
k≤`

λk` = 1 (33)

λ ≥ 0 (34)

Clearly, z̄i ∈ ZQi if and only if this system admits a feasible solution. By the Farkas lemma, the system
(32)-(34) admits a feasible solution if and only if for all µ satisfying the dual system

∑̀
e=k

µe + µ0 ≤ 0, k ≤ ` (35)

µ also satisfies the condition ∑
e∈E∗

µez̄i,e + µ0 ≤ 0. (36)

In order to prove our theorem, it suffices to find all the extreme rays of the cone (35), since they define all
the linear inequalities needed to describe ZQi. We will show that there is a one-to-one correspondence
between the extreme rays of cone (35), and the inequalities of ZPi. In order to find all the extreme rays
of the cone (35), it suffices to distinguish between 3 cases:
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µ0 = 1. Then for each e ∈ E∗, µe ≤ −1 follows from (35) by considering the inequalities for k = ` = e.
Then (36) yields ∑

e∈E∗
−zi,e ≤ −1,

which, by the Farkas lemma, is a valid inequality for ZQi. Notice that it is equivalent to (13).
µ0 = 0. Then we still have a cone, whose extreme rays are the negative unit vectors in RE∗ . These

extreme rays give the inequalities −zi,e ≤ 0, which are the non-negativity constraints valid for ZQi.
µ0 = −1. We argue that there is a one-to-one correspondence between the extreme points of the

polyhedron M ⊆ R|E∗| defined by ∑̀
e=k

µe ≤ 1, k ≤ ` (37)

and the inequalities (31).
First we claim that the coefficient vector of the left-hand-side of each inequality in (31) is an extreme

point solution of (37). Let S = {e0, e1, . . . , e2`} be a set of events with ei < ei+1 for i = 0, . . . , 2` − 1.
The corresponding vector µ̄ is defined as

µ̄e =

{
(−1)k, if ek ∈ S
0, if e ∈ E∗ \ S.

We claim that µ̄ is an extreme point solution of (37). To prove our claim, we exhibit a subsystem L of
(37) consisting of |E∗| linearly independent inequalities such that each inequality in L holds at equality
in µ̄. The subsystem contains the inequalities

e0∑
e=k

µe ≤ 1, k = 1, . . . , e0 − 1.

and
k∑

e=e2`

µe ≤ 1, k = e2`, . . . , |E∗|.

Further on, for each 3 consecutive events e2k, e2k+1, e2k+2 ∈ S, the set of inequalities

e2k+2∑
e=e2k

µe ≤ 1,

t∑
e=e2k

µe ≤ 1, t = e2k, . . . , e2k+1 − 1

e2k+2∑
e=t

µe ≤ 1, t = e2k+1 + 1, . . . , e2k+2 − 1

It is easy to verify that the above system consists of |E∗| linearly independent inequalities, and µ̄ satisfies
each of them at equality, which proves our claim.

Now we claim that any extreme point solution µ̄ of (37) is equivalent to an inequality in (31). First,
notice that the constraint matrix of (37) is totally unimodular, thus any vertex of this polyhedron is an
integral vector. Also observe that µ̄e ≤ 1 for all e ∈ E , since µe ≤ 1 is an inequality of (37) for each
e ∈ E∗. Let k1 be the first index such that µ̄e 6= 0. We claim that µ̄k1

= 1. Suppose not, i.e., µ̄k1
≤ −1

(recall that the coordinates of µ̄ are integers). Since µ̄ is an extreme point of M , there must exist a subset
L of |E∗| linearly independent inequalities from (37) that are satisfied at equality in µ̄. Observe that L
must contain an inequality involving the variable µk1 , otherwise this variable may be made arbitrarily
negative while still satisfying all inequalities in L, and thus µ̄ would not be an extreme point of M , a
contradiction. Since µ̄e = 0 for e < k1, such an inequality must be of the form

∑`1
e=k1

µe ≤ 1. Since it
must hold at equality in µ̄, and µ̄e ≤ 1 as we have already noticed, it follows that µ̄ must admit at least
two coordinates q1 and q2 such that k1 < q1 < q2 ≤ `1 with µ̄q1 = µ̄q2 = 1, and µ̄e = 0 for q1 < e < q2.
But then, µ̄ would violate the inequality

∑q2
e=q1

µe ≤ 1, a contradiction.

6



Polyhedral results and valid inequalities for the CECSP

So, the first non-zero coordinate of µ̄ has value 1. The next nonzero coordinate, say k2, cannot have
value 1 by the previous argument. So, it must be a negative integer. If it were smaller than −1, then the
sum of coordinates of µ̄ up to and including k2 would be a negative integer. But then we could argue as
above to show that k2 must be involved in an inequality α ∈ L, and then to reach a similar contradiction
as above. Therefore, the second nonzero coordinate of µ̄ must be −1. Moreover, α must involve a variable
µk3

of value 1 in µ̄, otherwise it cannot hold at equality in µ̄. Continuing this argument if µ still has
nonzero coordinates after k3, we recognize that µ has the pattern of 1/− 1 as in the inequalities (31). �

3.2 Separation algorithm for the non-preemptive inequalities

In this section we describe a polynomial time separation procedure for the inequalities (31).
Separation procedure. The main idea is that we find a longest path in a properly defined acyclic

digraph. There is a unique source and a unique sink node (indexed by 0 and 2n, respectively), and
there is a node for each event in E∗. The arcs fall in three categories: (i) there are ”starting arcs” from
node 0 to every node with index h ≤ 2n − 3, (ii) ”intermediate arcs” starting from some node h with
1 ≤ h ≤ 2n − 3, and ending at some node k with h + 2 ≤ k ≤ 2n − 1, and (iii) ”terminal arcs” starting
at some node h with 3 ≤ h ≤ 2n− 1 and ending in the sink node 2n. The cost of each starting arc is 0.
The cost of each intermediate arc (h, k) is cost(h, k) = z̄i,eh −min{z̄i,e` : ` = h + 1, ...k − 1}. Finally,
the cost of each terminal arc (h, 2n) is z̄i,eh .

To separate a vector z̄i ∈ RE∗ we compute the values

F (ek) = max{F (eh) + cost(h, k) : h = 1, .., k − 2}, (38)

where F (1) = F (2) = 0.
Then, for each F (ek) we compute F (ek) + z̄i,ek and compare it to the length of the longest path with

alternating sign pattern found so far. If it is greater, then we store it. In the end, we obtain the largest
value of a path.

The computation time for computing the cost of all the intermediate arcs from some fixed node h is
O(n). Since the number of arcs is O(n2), the time complexity of the entire separation procedure is O(n2).

4 Experiments

This section describes the computational results we obtain with the inequalities described in this paper.
The experiments are conducted on an Intel Core i7-4770 processor with 4 cores and 8 gigabytes of

RAM under the 64-bit Ubuntu 12.04 operating system. We use IBM CPLEX 12.6 with one thread and
a time limit of 1000 seconds for solving the MILP models.

We use the instances of [5]. These instances were generated according to the following framework.
First, the instances have been randomly generated with identity power processing rate functions, i.e.
fi(b) = b, ∀i ∈ A. We generated 5 instances of 10 tasks and 10 instances of 20, 25 and 30 tasks according
to the following framework. The resource availability B is set to 10 and all other data are randomly
generated in their corresponding interval: Wi ∈ [1, 1.25 ∗B], bmin

i ∈ [0, 0.25 ∗Wi], b
max
i ∈ [bmin

i , 2 ∗ bmin
i ],

ri ∈ [0, 0.5 ∗ n] and di ∈ [emin
i , emin

i + n]. Then, we transform them in order to obtain two families of
instances with power processing rate functions in the following way. For the first family, we randomly
generated the parameters of the function ai and ci, ∀i ∈ A, within interval [1, 10] and we set Wi to a
random number within [0, fi(Wi)]. For the second family, we randomly generate the parameters of the
function ai, within interval [1, 10], and ci is set to 0. The required energy Wi is set to fi(Wi). Experiments
are conducted on instances of Family 1 and Family 2.

For the first family, table 1 shows the percentage of instances solved optimally as well as the time
needed to solve them for some combinations of inequalities. The time is computed as follow: if the
instance is not solved after the time limit, then we set this value to 1000 seconds. In the table, we denote
by Int. or I. the maximum interval inequalities, by Time or T. the maximum time inequalities, by Knap.
or K. the inequalities from knapsack problems and by Preem. or P. the non-preemptive inequalities.

In this table, we can see, first, that the number of 10-task and 20-task instances solved is similar for
all tested combination of inequalities. For the 25-task instances, the results are more heterogeneous but
the best results are obtained using inequalities presented in this paper. Finally, the 30-task instances are
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XXXXXXXXineq.
#tasks 10 20 25 30

time(s) %opt time(s) %opt time(s) %opt time(s) %opt
Default 0,3 100 164,14 90,9 635,4 55,6 968 10

Int. 0,6 100 182,2 90,9 727,3 55, 6 851 20
T ime 0,5 100 167,3 90,9 629,5 88,9 961,4 20
Knap. 0,5 100 164,7 90,9 555,1 66,7 845,3 20

Preem. 0,3 100 330,9 72,7 822,4 44,4 914,8 10
I. & T. & K. 0,6 100 154 90,9 389,9 77,8 839,9 20

I. & T. & P. 0,6 100 179,8 90,9 454,4 77,8 813,8 60

I. & K. & P. 0,5 100 182,2 90,9 759,6 33,3 924,9 20

T. & K. & P. 0,5 100 170 90,9 705 66,7 816 50

I. & T. & K. & P. 0,9 100 278,9 81,8 510 88,9 802,8 50

Table 1: Instances of Family 1 optimally solved and time needed

XXXXXXXXineq.
#tasks 10 20 25 30

%feas. gap %feas. gap %feas. gap %feas. gap
Default 100 0,23 81,8 0,74 22,2 0,9 0 0

Int. 100 <0,01 100 0,15 44,4 0,69 0 0

Preem. 100 0,6 81,8 0,73 0 0 0 0

I. & K. & P. 100 0,09 100 0,68 44,4 0,88 10 0,92

Table 2: Instances of Family 2 solved and relative gap

solved better when the MILP is combined with these inequalities. The best result is obtained with the
maximum interval inequalities, the maximum time inequalities and the non-preemptive inequalities.

For the second family, only a few instances are solved optimally. Therefore, we present only the
percentage of instances for which a solution is found and the relative gap of this solution when the time
limit is reached. These results are presented in table 2. The notation are as in table 1.

5 Conclusion and further researches

In this paper, we have presented 4 set of inequalities improving the existing event-based MILP of [5].
In particular, one of these set is used to give a minimal description of the polyhedra of all feasible
assignements to the on/off binary variable for a single activity. Furthermore, for these inequalities, a
polynomial separation algorithm is provided. Finally, computational experiments show the effectiveness
of the proposed inequalities.

Further researches on this subject are numerous. In particular, find symmetry breaking inequalities
along with a minimal description of the polyhedra of all asymmetric feasible assignement of the on/off
variable not for a single activity but for all of them. The adaptation of this work to the Resource-
Constrained Project Scheduling Problem is also an interesting direction for aditionnal results.

References
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manufacturing processes, Springer-Verlag, Berlin/Heidelberg.
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