Kim Thuat Nguyen
email: kimthuat.nguyen@cea.fr

Nouha Ouahla

Maryline Laurent
email: maryline.laurent@telecom-sudparis.eu

Nouha Oualha
email: nouha.oualha@cea.fr

Novel lightweight signcryption-based key distribution mechanisms for MIKEY

come L'archive ouverte pluridisciplinaire

Introduction

Multimedia Internet KEYing (MIKEY) [START_REF] Riyadh | An end-to-end secure key management protocol for e-health applications[END_REF] is a key management protocol which is intended for use with real-time applications. MIKEY provides different methods to establish a session key with multiple parties, in addition to the authentication of parties if required. For example, MIKEY pre-shared key method permits any two parties with a pre-shared secret to set up a secure communication. However, this mechanism suffers from scalability issues since it is unpractical to pre-distribute a common key for any two parties in large networks, e.g. the Internet of Things (IoT). To be scalable, public key encryption-based methods, where any two parties can establish security communications without any a priori shared common keys, have been proposed to be employed by MIKEY.

These different key distribution mechanisms can be classified into two categories: (i) a key exchange mode and (ii) a key transport mode. The MIKEY key exchange modes, such as, MIKEY-DHSIGN [START_REF] Arkko | Rfc 3830: Mikey: Multimedia internet keying[END_REF], MIKEY-DHHMAC [START_REF] Euchner | Hmac-authenticated diffie-hellman for multimedia internet keying (mikey)[END_REF], are usually based on the Diffie-Hellman (DH) key exchange [START_REF] Ralph C Merkle | Secure communications over insecure channels[END_REF]. These modes provide the perfect forward secrecy property, i.e. the compromise of long-term keying materials does not reveal previously derived session keys. Additionally, both communicating parties participate in the session key generation process. As a result, DH-based modes require at least two message exchanges to set up a common secret key. As another disadvantage, these modes do not support the establishment of group keys.

In key transport modes, on the other hand, the initiating party is responsible for the key generation. The generated keys are then encrypted using the public key of the responding party. Even if key transport modes do not provide perfect forward secrecy, they are more efficient in terms of computation and communication than DH-based modes. Indeed, only a half roundtrip is needed to set up a common key between two parties. Existing key transport modes of MIKEY generally employ a public key encryption algorithm to protect transferred keys, such as RSA [START_REF] Ignjatic | Mikey-rsar: An additional mode of key distribution in multimedia internet keying (mikey)[END_REF] or ECIES [START_REF] Fries | On the applicability of various multimedia internet keying (mikey) modes and extensions[END_REF] and an additionally public key signature algorithm to sign MIKEY message. In this paper, we propose to use more lightweight key transport modes built upon a signcryption scheme defined in [START_REF] Kim Thuat Nguyen | Lightweight certificateless and provably-secure signcryptosystem for the internet of things[END_REF], which is an authenticated encryption algorithm that combines encryption and signature procedures in an optimized manner. The signcryption scheme is based on Elliptic Curve Cryptography (ECC), thus inheriting multiple advantages of ECC in terms of performance. As mentioned in [START_REF] Fries | On the applicability of various multimedia internet keying (mikey) modes and extensions[END_REF], ECC-based schemes require smaller key sizes and offer better security per bit, when compared with known cryptographic algorithms like RSA. Moreover, the signcryption scheme in [START_REF] Kim Thuat Nguyen | Lightweight certificateless and provably-secure signcryptosystem for the internet of things[END_REF] offer the certificateless feature that allows to dispense the two parties with the provision of a digital certificate issued by a Public Key Infrastructure (PKI).

Our contribution: In this paper, we first introduce two novel key transport mechanisms for the standardized key management protocol MIKEY [START_REF] Arkko | Rfc 3830: Mikey: Multimedia internet keying[END_REF]. The main idea is to apply the certificateless elliptic curve Korean signature-based signcryption scheme, namely ECKSS, defined in [START_REF] Kim Thuat Nguyen | Lightweight certificateless and provably-secure signcryptosystem for the internet of things[END_REF] as the public key encryption algorithm to construct MIKEY messages. Then, we present experimental performance results of the two proposed key distribution methods by measuring the energy consumption and the execution time for each operation. Our solutions have been implemented and validated using the Openmote sensor platform [START_REF]Openmote platform[END_REF]. The experimental results show that our proposed extentions to MIKEY are suited for resource-constrained devices.

Paper outline: The rest of this paper is organized as follows. Section 2 surveys several existing ECC-based key transport solutions proposed for MIKEY and presents briefly related work on signcryption schemes. Section 3 provides several notations and recalls our proposed signcryption scheme provided in [START_REF] Kim Thuat Nguyen | Lightweight certificateless and provably-secure signcryptosystem for the internet of things[END_REF]. We describe in details our proposed key transport mechanisms for MIKEY in section 4. Section 5 discusses several security considerations needed for our proposals. The performance assessment of our proposals is given in section 6, while section 7 concludes our work.

Related work

As MIKEY [START_REF] Arkko | Rfc 3830: Mikey: Multimedia internet keying[END_REF] becomes more deployed, extensions to the base protocol have emerged [START_REF] Fries | On the applicability of various multimedia internet keying (mikey) modes and extensions[END_REF], [START_REF] Riyadh | An end-to-end secure key management protocol for e-health applications[END_REF], [START_REF] Boudguiga | Server assisted key establishment for wsn: A mikey-ticket approach[END_REF]. Several of these extensions brought additional key distributions methods to MIKEY, for instance based on Elliptic Curve Cryptography (ECC) [START_REF] Daniel | Ecc algorithms for mikey[END_REF]. Since ECC support requires smaller keys while keeping the same security level as other asymmetric algorithms like RSA, ECC usage is considered interesting for devices with limited performance and storage capabilities. ECC extensions to MIKEY offer new mechanisms for authentication, encryption and digital signature to provide secure key distribution. ECC-based mechanisms such as ECDH to extend the Diff-Hellman exchange [START_REF] Ralph C Merkle | Secure communications over insecure channels[END_REF], ECDSA or ECGDSA for digital signatures, Elliptic Curve Integrated Encryption Scheme (ECIES) and Elliptic Curve Menezes-Qu-Vanstone Scheme (ECMQV) to provide, respectively, integrated encryption and authenticated key exchange, have been defined in [START_REF] Daniel | Ecc algorithms for mikey[END_REF]. To the best of our knowledge, ECC-based signcryption mechanisms have not been proposed for MIKEY, even though these mechanisms have been present in the literature for many years, and many ECC-based signcryption mechanisms offer a good performance thanks to their optimized authenticated public key encryption besides the advantages of ECC.

Signcryption schemes allow to simultaneously perform the functions of both digital signature and encryption. Most of existing signcryption schemes are derived from popular signature schemes (refer to the survey in [START_REF] Yung | Practical signcryption[END_REF]). For examples, Zheng's scheme [START_REF] Zheng | Signcryption or how to achieve cost (signature & encryption)¡¡ cost (signature)+ cost (encryption[END_REF] is based on ElGamal encryption and signature schemes [START_REF] Elgamal | A public key cryptosystem and a signature scheme based on discrete logarithms[END_REF], and Shin et al.'s scheme [START_REF] Shin | New dsa-verifiable signcryption schemes[END_REF], called SCDSA+, is based on DSA (Digital Signature Algorithm) signature scheme [14]. Zheng's scheme requires complex interactive zero-knowledge proof to validate the non-repudiation and does not provide insider confidentiality. On the other hand, the security of Shin et al.'s scheme has not been formally proven. KCDSA (Korean Certificate-based Digital Signature Algorithm) [START_REF] Hoon | A study on the proposed korean digital signature algorithm[END_REF] is a variant of DSA, whose design allows to relieve the signature generation and verification procedures of modular inversions required in DSA. Two signcryption variants based on KCDSA have been proposed by Yum et al. in [START_REF] Dae | New signcryption schemes based on kcdsa[END_REF]. However, the first variant is confidentiality insecure in the insider model, while the second one is not semantically secure due to the disclosure of the hash of the message.

ECC-based signcryption schemes have also been proposed in several papers like [START_REF] Han | Ecgsc: elliptic curve based generalized signcryption[END_REF] and [START_REF] Tso | Ecdsa-verifiable signcryption scheme with signature verification on the signcrypted message[END_REF], which are both based on ECDSA. In [START_REF] Kim Thuat Nguyen | Lightweight certificateless and provably-secure signcryptosystem for the internet of things[END_REF], we have proposed a new signcryption scheme based on ECKCDSA, and we have formally proven the security of this scheme in the random oracle model, thus providing outsider/insider confidentiality and unforgeability, in addition to non-repudiation, while being more efficient in terms of communication and computation costs than existing signcryption schemes. Moreover, our scheme offers the certificateless feature, so certificates are not needed to verify initiator/responder's public keys. In this paper, we propose to extend the MIKEY base protocol with new key distribution methods based on our signcryption scheme [START_REF] Kim Thuat Nguyen | Lightweight certificateless and provably-secure signcryptosystem for the internet of things[END_REF], and we demonstrate the advantages and gains in terms of performance achieved by these methods.

Preliminaries

In this section, we introduce several notations and review briefly our elliptic curve-based signcryption scheme proposed in [START_REF] Kim Thuat Nguyen | Lightweight certificateless and provably-secure signcryptosystem for the internet of things[END_REF].

Abbreviations and Notations

The definitions and abbreviations, as described in Table 1, and used throughout the rest of this document are consistent with those used in the MIKEY standard [START_REF] Arkko | Rfc 3830: Mikey: Multimedia internet keying[END_REF].

P + Q Addition of

The certificateless elliptic curve Korean signature-based signcryption

In this subsection, we describe our certificateless signcryption scheme based on elliptic curve, named as ECKSS. The security of this scheme has been formally proved in the random oracle model [START_REF] Kim Thuat Nguyen | Lightweight certificateless and provably-secure signcryptosystem for the internet of things[END_REF].

Considered actors

We consider three main actors in our scenario presented in the following.

-Two parties: an Initiator (I) and a Responder (R), which respectively initiates the communication and responds to incoming requests. -A trusted Key Management Server (KMS), which is responsible for generating keying materials and that acts as the root of trust of the responder and initiator. The proposed solutions support also multiple KMSs i.e., the initiator or the responder may use a different KMS, but this multi-authority setting is considered as out of scope of the paper.

Security parameter generation process Depending on the security parameter as input, KMS first runs the Setup algorithm to define an elliptic curve E over finite field F p with a generator G, where p is the prime modulus. Two hash functions are also defined:

H 1 : {0, 1} * → Z p and H 2 : {0, 1} * → {0, 1}
* . (Enc, Dec) are the encryption and decryption algorithms of a symmetric cipher. Then, KMS executes the KeyGen algorithm to generate the keying material for I and R. KMS first chooses the master key as mk from Z p . Its public key is then calculated as P K KM S = mk.G. For an entity A with the identifier id A , KMS generates the public and private values of an entity A as follows.

-Compute V A = x A .G, where x A is a random number on Z p -Compute the private key for A: priv A = (mk+x A .H 1 (id A ||V A ||G||P K KM S)) -1 -Compute P A = priv -1 A .G -Set the public key of A as P K A = (P A , V A)
As we shall see, we can validate the public key of A by using the following equation:

P A = P K KM S + H 1 (id A ||V A ||G||P K KM S).V A (1)
ECKSS description The detailed procedure of ECKSS is described in the following:

-Signcrypt(priv I , P K I , P K R , M) → CT : To signcrypt a message M intended to R, I executes the following steps:

1. Choose randomly x ← Z p 2. Compute K = x.P K R 3. Generate a secret key: τ = H 2 (P K I ||P K R ||K) 4. Compute r = H 1 (P K I ||P K R ||K||M) 5. Compute s = priv I .(x -r) 6. Compute c = Enc τ (M) 7. Send the ciphertext CT = (r, s, c) to R
-Unsigncrypt(priv R , P K R , P K I , CT) → M : Upon receiving the ciphertext CT = (r, s, c) from I, R has to perform the following procedure:

1. Compute K = (s.priv -1 R).P K I + (r.priv -1 R).G . 2. Get the secret keys: τ = H 2 (P K I ||P K R ||K) 3. Compute Dec τ (c) = M 4. Verify that r = H 1 (P K I ||P K R ||K||M)
Note that I and R can be sure about the public values of the other party by verifying the equation (1). This feature makes ECKSS certificateless since it does not require certificates to authenticate the public keys.

Novel signcryption-based key distribution methods for MIKEY

In this section, we first present the payload and data type formats of a MIKEY key transport mechanism. Then, we clarify our design goals for proposing new key distribution methods for MIKEY. Finally, we give details on these extensions in respect to the original MIKEY payload formats.

Basic payload and message formats of a MIKEY key transport mechanism

Figure 1 describes the basic message composition of a MIKEY key transport method that uses a public-key encryption algorithm, for example, in the MIKEY-RSA [START_REF] Arkko | Rfc 3830: Mikey: Multimedia internet keying[END_REF] and MIKEY-ECIES [START_REF] Fries | On the applicability of various multimedia internet keying (mikey) modes and extensions[END_REF] modes. The mechanisms contain two message exchanges: the I MESSAGE and the R MESSAGE. The main objective of the Initiator's message is to distribute one or more TGKs and a set of security parameters in a secure manner. We recall the payload notions as defined in [START_REF] Arkko | Rfc 3830: Mikey: Multimedia internet keying[END_REF], in the following:

-HDR: The MIKEY header, which contains related data and information mapping to the specific security protocol used. -T: The timestamp, used to prevent replay attacks.

-RAND: The random byte-string, which is used as a value for the freshness of the session key generation process. As described in Figure 1, the MIKEY public key encryption method first chooses an envelope key env key. This key is then to be encrypted using the public key P K R of the Responder and conveyed in the PKE payload: PKE = E(P K R , env key). Then, the encr key and the auth key are derived from the envelope key, env key. These two keys are used to build the KEMAC payload where the encr key is used to encrypt the TGKs. The encrypted part is then followed by a MAC calculated using auth key over the entire KMAC payload. The whole MIKEY message is then integrity protected by the signature payload SIGNi.

Design motivations

The novel key transport mechanisms for MIKEY are designed to put forwards the following motivations:

-Performance and Efficiency: Our proposed ECKSS signcryption scheme is able to transport secret data in a secure manner without intensive calculation. Thus, ECKSS-based methods for MIKEY is able to address the same scenario as the other key establishment methods in MIKEY [START_REF] Fries | On the applicability of various multimedia internet keying (mikey) modes and extensions[END_REF]. In fact, existing MIKEY modes are intended for application-layer key management and multimedia applications. However, thanks to ECKSS lightweight computation requirements, the proposed methods can be considered in constrained environments such as IoT. We prove the feasibility of our proposed mechanisms in such environment in section 6. Furthermore, the mechanisms are based on elliptic curve cryptography (ECC). Additionally, when compared with existing ECC-based asymmetric methods of MIKEY, our proposed mechanisms are the most efficient while offering equivalent security guarantees. More details are provided in section 6.1. -PKI Independence: ECKSS can be applied in the context where no access to a public-key infrastructure (PKI) is available. Indeed, the validation of entity's public keys is realized in equation (1) without certificates. Moreover, as pre-shared master secrets are not required, the proposed ECKSS-based schemes should be as scalable as other existing asymmetric mechanisms of MIKEY.

The MIKEY-ECKSS mode specification

Figure 2 defines the message exchanges for our first proposal MIKEY-ECKSS.

Similarly to other MIKEY public key encryption methods such as MIKEY-RSA [START_REF] Arkko | Rfc 3830: Mikey: Multimedia internet keying[END_REF] or MIKEY-ECIES [START_REF] Fries | On the applicability of various multimedia internet keying (mikey) modes and extensions[END_REF], the main objective of the Initiator's message is to distribute one or more TGKs in a secure manner. This method reuses the defined payload in section 4.1 except the payload ECKSSi in the I MESSAGE. This payload transports actually the encrypted TGKs through the triple (r, s, c) as defined in section 3.2. To guarantee the integrity protection, we employ the payload SIGNi, which is a signature covering the entire I MESSAGE. As described in [START_REF] Arkko | Rfc 3830: Mikey: Multimedia internet keying[END_REF], the SIGNi payload will use either ECDSA or ECGDSA as the signature algorithm.

Initiator Responder Upon receiving the I MESSAGE, R first approves the integrity of the message by verifying the appended signature payload SIGNi. If the verification holds, it then uses the Unsigncrypt algorithm to decrypt the payload ECKSSi in order to obtain the values of TGKs. In case mutual authentication is required, the verification message, V, is calculated by building a MAC over the concatenation of the header HDR (the same as the one that was used in the I MESSAGE), the timestamps, the identities of the two parties, using the authentication key. The latter is derived from the received TGKs. Then, we append the V payload to the concatenation (HDR, T, [IDi, PKi], [IDr]) to form the R MESSAGE. However, as depicted in Figure 2, the R MESSAGE is optional.

I MESSAGE: HDR, T, RAND, [IDi|PKi], [IDr], {SP}, ECKSSi, SIGNi [Optional] R MESSAGE: HDR, T, [IDr], V

MIKEY-ECKSS-HMAC mode specification

In this subsection, we describe in detail our second key distribution extension for MIKEY. We call this mode MIKEY-ECKSS-HMAC, since this mode uses ECKSS to envelop the TGKs and HMAC to ensure the authentication of the messages exchanged. As we shall see, the use of the signature payload SIGNx still requires multiple exponentiations in the signature generation and verification processes, e.g. 3 modular exponentiations are needed if using ECDSA. As a result, MIKEY-ECKSS-HMAC is even more lightweight than MIKEY-ECKSS, which is suitable for constrained devices. We use the same notations for the payload names as defined in section 4.1. In the I MESSAGE, the ECKSSi payload contains the triple (r, s, c) as depicted in section 3.2. The KEMAC payload conveys the Hash Message Authentication Code (HMAC) of the entire MIKEY message. This technique is also employed in the MIKEY-DHHMAC method [START_REF] Euchner | Hmac-authenticated diffie-hellman for multimedia internet keying (mikey)[END_REF]. The HMAC value is calculated using the secret key k auth . This key is generated during the encryption of TGKs using the ECKSS algorithm. Indeed, we make modifications in step 4 of the Signcrypt algorithm and in step 2 of the Unsigncrypt algorithm (see section 3.2 for more details). Another secret key k auth in addition to τ is generated, as depicted in Table 2. This key is to be used in the creation of HMAC.

Signcrypt

Unsigncrypt 3) Generate a couple of secret keys: τ, k auth = H0(P KS||P KR||K)

2) Get the secret keys: τ, k auth = H2(P KI ||P KR||K)

Table 2. Modifications made to the Signcrypt and Unsigncrypt algorithms

Upon receiving the I MESSAGE, R first runs the Unsigncrypt algorithm to get the value of TGKs and k auth . The authentication key k auth is then used to verify that the I MESSAGE has not been modified by an attacker. Indeed, a MAC is calculated over the entire I MESSAGE using k auth . This value is then compared with the hashed value extracted from the KEMAC payload. On the other hand, the R MESSAGE's construction is optional as depicted in Figure 3. This message is only needed when mutual authentication between parties is required.

Security considerations

As this paper proposes two new methods for the MIKEY protocol, existing security considerations discussed in [START_REF] Arkko | Rfc 3830: Mikey: Multimedia internet keying[END_REF] apply here as well.

As mentioned in [START_REF] Arkko | Rfc 3830: Mikey: Multimedia internet keying[END_REF], one should select a secure symmetric cipher supporting at least 128 bits as a practical choice for the actual media protection. In our proposals, the payload ECKSSi carries the actual encrypted TGKs, the used encryption algorithm should also offer a security level of at least 128 bits. For the selection of hash functions, we recommend to work at least with SHA-256 [START_REF] Dang | Recommendation for applications using approved hash algorithms[END_REF] when constructing the ECKSSi payload and other payloads as well. This should be seriously taken into account in order to achieve the 128-bit level.

Similar to other key transport mechanisms, our proposed do not provide the perfect forward secrecy property. A Diffie-Hellman key distribution resolves this issue but requires the transmission of the R MESSAGE in order to set up a common secret key.

In order to provide the certificateless feature, our proposed methods rely on the binding of public values of communicating parties with the public keys issued by KMS. Thus, after validating a provided public value using equation (1), we can be sure that only KMS is able to generate such value. It also means that the KMS can read all traffic between any parties administrated by the KMS. However, we assumed that the KMS is a fully trusted party.

Performance Assessment

In this section, we first quantify the performance of our schemes. Then, we describe our testing environment and the used methodology to achieve the experimental measurements. Finally, we provide in detail the performance results in terms of energy consumption and the time execution of our proposals including the ECKSS algorithm and the two proposed MIKEY modes.

Comparison with related work

Table 3 illustrates the performances of our two proposed methods and multiple ECC-based MIKEY modes in related work. The table first identifies if the scheme is a key exchange method or a key transport method. Then, it shows if the scheme is independent to the public key infrastructure or not. This property means that a PKI-independent scheme does not require standard digital certificates to provide authentication between communicating parties and hence the scheme is discharged from complex operations during certificate verification, revocation and management processes. Then, the efficiency of each scheme is evaluated with respect to the computational cost demonstrated in terms of the number of expensive operations needed to generate the I MESSAGE and the R MESSAGE. Here, we consider the three most expensive operations for an ECC-based scheme: modular point multiplication (PM), modular inversion (I) and pairing operation (e). Furthermore, we provided also the name of the payload that requires these expensive operations. For example, in a PM column, the line "2 (PKE) + 1 (SIGNi)" means that two point multiplications are executed to build the PKE (public key encryption) payload and 1 other point multiplication is calculated to build the SIGNi (signature) payload. For simpler comparison, if not explicitly specified in each mode, we assume that SIGNi payload carries an ECDSA signature and its related data.

Mode

Type PKI I MESSAGE R MESSAGE PM I e PM I e MIKEY-DHSIGN [START_REF] Fries | On the applicability of various multimedia internet keying (mikey) modes and extensions[END_REF] KE Yes 1 (DH) + 1 (SIGNi) 1(SIGNi) 0 1 (DH) + 2 (SIGNi) 1 (SIGNi) 0 MIKEY-ECQMV [START_REF] Fries | On the applicability of various multimedia internet keying (mikey) modes and extensions[END_REF] Yes 1(ECCPT)+1 (SIGNi) 1 (SIGNi) 0 As we shall see, the first two modes in Table 3: MIKEY-DHSIGN and MIKEY-ECQMV, are two ECC-based key exchange methods proposed for MIKEY. These methods are based on the Diffie-Hellman key exchange [START_REF] Ralph C Merkle | Secure communications over insecure channels[END_REF]. Hence, the R MESSAGE is compulsory in order to setup a common secret key. On the other hand, in a key transport mechanism, I envelops and sends directly a secret key/message that can be used as a session key without the response from R. As our proposed schemes are key transport mechanisms, we only make direct comparison with other key/message distribution mechanisms proposed for MIKEY. As depicted in Table 3, MIKEY-ECIES [START_REF] Fries | On the applicability of various multimedia internet keying (mikey) modes and extensions[END_REF] seems to be our direct competitor in terms of performance since it is slightly more heavyweight than our first proposal MIKEY-ECKSS (with two more modular inversions to compute). In addition, MIKEY-ECKSS is more lightweight in the generation of the I MESSAGE which can be beneficial for a very resource-constrained initiator. Our second proposal MIKEY-ECKSS-HMAC is even more efficient than our first one. As such, it requires only 1 point multiplication for generating the I MESSAGE and 2 point multiplications for generating the R MESSAGE. Furthermore, both proposals do not require certificates to validate the public values of communicating parties, which is not the case in MIKEY-ECIES mode. MIKEY-SAKKE [START_REF] Groves | Mikey-sakke: Sakai-kasahara key encryption in multimedia internet keying (mikey)[END_REF] is also exempted from the use of PKI. However, this mode is much more expensive than our two methods since a pairing operation needs to be executed when receiving the R MESSAGE.

1 (PKE)+2 (SIGNi) 1 (SIGNi) 0 MIKEY-SAKKE [16] KT No 3 (SAKKE)+1 (SIGNi) 1 (SIGNi) 0 2 (SAKKE)+4 (SIGNi) 0 1 (SAKKE) MIKEY-ECIES [15] Yes 2 (PKE)+1 (SIGNi) 1 (SIGNi) 0 1 (PKE)+2 (SIGNi) 1 (SIGNi) 0 MIKEY-ECKSS No 1 (ECKSSi) + 1 (SIGNi) 0 0 2 (ECKSSi) + 2 (SIGNi) 0 0 MIKEY-ECKSS-HMAC No 1 (ECKSSi) 0 0 2 (ECKSSi) 0 0

Experimental tools and platforms

We implemented our assessment program in C for the operating system Contiki 3.0 [START_REF] Dunkels | Contiki-a lightweight and flexible operating system for tiny networked sensors[END_REF]. Based on the Relic library version 0.4.0 [START_REF]Relic toolkit -an efficient library for cryptography[END_REF], we evaluated our proposed MIKEY modes on the elliptic curves secg k256. Its domain parameters have been recommended by SECG [START_REF] Daniel | Sec 2: Recommended elliptic curve domain parameters[END_REF], which provides a security level of 128 bits. In addition, we opted for the sensor node Openmote to evaluate the required operations. Openmote [START_REF]Openmote platform[END_REF] is a low power wireless sensor module featured with 32 MHz Cortex-M3 microcontroller, a CC2520-like radio transceiver, 32 kB of RAM, 512 kB of ROM and an IEEE 802.15.4 radio interface. This platform supports 32 bit addressing and sufficient RAM and ROM capacities. Such features are needed in order to use a cryptographic library along with an application on top of it.

In our testing scenario, we encrypted data using AES in CBC mode. For MAC and message verification function, we used SHA-256 as secure hash algorithm, which provides digests (hash values) that are 256 bits. Furthermore, we transported each time a TGK with the size of 32 bytes in our tests. In each case, the experimental measurements have been obtained by calculating the average of 100 executions for each operation.

Methodology

For measuring the processing time, we used two timers provided in the rtimer library of Contiki [START_REF] Dunkels | Contiki-a lightweight and flexible operating system for tiny networked sensors[END_REF]. The first timer with 128 ticks per second was employed to measure the execution time of expensive operations. The second one is more powerful with 32768 ticks per second. It was used to measure the duration of the mote running on a specific mode.

On the other hand, in order to assess the energy consumption, we employed a software-based online energy estimation mechanism described in [START_REF] Dunkels | Software-based on-line energy estimation for sensor nodes[END_REF]. In this model, we can calculate the energy consumption E in Joule of an operation on Contiki using the following equation:

E = U * I m * t m (2)
where U is the supply voltage, I m is the hardware specific current draw, t m is the time duration and m means a particular mode (e.g. active power mode, low power mode, transmit mode and receiver mode). In our scenario, the value of U is typically 3V, as with two new AA batteries. Besides, the current draw of the sensor node in each mode is extracted from its data sheet [START_REF]Cc2538 data sheet[END_REF]. Concretely, we considered the following modes in our measurement: power mode 1 (cpu active mode), power mode 2 (low power mode), active-mode rx (receive mode) and active-mode tx (transmit mode). The consuming current draw for each mode are respectively: I pm1 = 0.6mA, I pm2 = 1.3µA, I rx = 20mA and I tx = 24mA, as described in [START_REF]Cc2538 data sheet[END_REF]. The time duration t m that the mote is in mode m, is measured using Powertrace and Energest power profile [START_REF] Dunkels | Powertrace: Network-level power profiling for low-power wireless networks[END_REF]. These latters are pre-loaded tools in the Contiki OS, which provide an accuracy up to 94% of the energy consumption of a device.

Experimental results of ECKSS

In this subsection, we provide the experimental results of our signcryption scheme ECKSS. required for an unsigncrypt are practically doubled since the algorithm to compute 2 point multiplications. We provide also in Table 4 the resources consumed by an entity to validate other party's public values. As we shall see, this process consumed the same order of magnitude of time and energy as the signcrypt algorithm. Such property is advantageous since the verification of certificates in a PKI-based scheme is usually complex and energy and time consuming. In Figure 4, we compare the performance of our ECKSS implementation with the standard algorithm ECIES, as specified in [START_REF] Brown | Standards for efficient cryptography, sec 1: elliptic curve cryptography[END_REF]. ECIES's implementation is provided in the Relic library [START_REF]Relic toolkit -an efficient library for cryptography[END_REF]. We remark that the total work load required by our scheme ECKSS is practically identical to the one of ECIES. As we can see in Table 3, ECKSS is more rapid in the data encryption process but slower in the data decryption process.

Experimental results of the proposed MIKEY modes

In this subsection, we describe the performance of our prototype implementations for the two proposed MIKEY modes.

In MIKEY-ECKSS's implementation, we use ECDSA as the signature algorithm. Table 5 provides the performance of ECDSA algorithms on the Openmote platform. These experimental results are measured based on the implementation of ECDSA provided in [START_REF]Relic toolkit -an efficient library for cryptography[END_REF]. As we can see, ECKSS is even slightly more efficient than ECDSA both in the generation and verification processes. This fact Algorithm Time(s) Energy (mJ) ECDSA signature generation 2.75 6.3 ECDSA signature verification 5.83 13.6 Table 5. Energy consumption and time execution of ECDSA algorithms on the Openmote platform is understandable since our proposal is exempted from two modular inversions compared to the ECDSA algorithm.

Additionally, to be more adapted to resource-constrained devices, we replace the timestamps payload by an incremental counter payload. This counter is used together with the random number (carried in RAND payload) to mitigate the replay attacks. If it is the first time that I communicates with R, the counter is set to 0. It is increased by 1 after every successful key/data transportation. 6 demonstrates the average time and energy consumption for generating the I MESSAGE and R MESSAGE, respectively. The measures show that the MIKEY-ECKSS-HMAC mode is approximately two times more efficient than the MIKEY-ECKSS mode. The performance gap between them lies in the cost of creating the SIGNi payload. As such, instead of certificates and signatures, MIKEY-ECKSS-HMAC uses a keyed hash message authentication code (carried by the KEMAC payload) to guarantee the integrity of the messages exchanged.

Mode

Figure 5 provides a graphical view of the performance of our proposals in comparison with the MIKEY-ECIES mode. The performance of the latter are roughly estimated by summing the experimental results of the two algorithms ECIES and ECDSA given in Figure 4 and Table 5. As we shall see, the MIKEY-ECIES mode has a slightly higher computational cost in comparison with our proposed modes. However, it requires certificates to validate the public keys. This constraint could be very costly for a sensor node, since the verification of certificates is usually complex and consuming in time and energy.

Conclusion

In this paper, we proposed two novel signcryption-based key transport methods for MIKEY. Both methods are relieved from the dependance on a public key infrastructure thanks to their certificateless feature, and are more lightweight in terms of computation when compared with existing ECC-based key transport mechanisms proposed for MIKEY. The performance of the proposed methods have been demonstrated by experimental implementations on the Openmote sensor platform. The results confirmed that our proposed MIKEY extensions are feasible on resource-constrained devices. Hence, they can be used not only as key distribution mechanisms for real-time applications but also as lightweight key distribution solutions for the Internet of Things applications.

Fig. 1 .

 1 Fig. 1. Basic message format for a MIKEY public key encryption method

Fig. 2 .

 2 Fig. 2. Elliptic curve Korean signature-based signcryption key distribution method for MIKEY

IFig. 3 .Figure 3

 33 Fig. 3. HMAC-authenticated Elliptic Curve Korean signature-based signcryption key distribution method for MIKEY

Fig. 4 .

 4 Fig. 4. Performance comparison of our proposal ECKSS with the algorithm ECIES

Fig. 5 .

 5 Fig. 5. Performance comparison of our proposed MIKEY modes and MIKEY-ECIES mode

Table 1 .

 1 two elliptic curve points P and Q. Abbreviations

	t.P	Addition of P with itself t times.
	s||t	Concatenation of two strings s and t.
	⊥	Error symbol.
	KMS Key Management Server
	I	Initiator
	R	Responder
	HMAC Hash Message Authentication Code
	MAC Message Authentication Code
	TEK Trafic-Encrypting Key
	TGK TEK Generation Key

Table 3 .

 3 Performance comparison of our propositions and ECC-based MIKEY modes in related work

	Meaning of abbreviations: PM: Modular point multiplication; I: Modular Inversion; e: Pairing oper-

ation; PKI: Public Key Infrastructure; KE: Key Exchange; KT: Key Transport.

Table 4 .

 4 Table 4 shows the execution time and energy cost of ECKSS algorithms on the elliptic curve secg k256 over the Openmote platform. The results reveal that even for a really lightweight signcrypt algorithm with only one point multiplication, it requires up to 2.6 s to compute and consumes 5.6 mJ. The resources Energy consumption and time execution of ECKSS algorithms on the Openmote platform

	Algorithm	Time (s) Energy (mJ)
	ECKSS Signcrypt	2.64	5.6
	ECKSS Unsigncrypt	5.8	12.4
	Public Key Validation 3.12	6.6

Table 6 .

 6 Energy consumption and time execution of our proposed MIKEY modes on openmote

		I MESSAGE	R MESSAGE
		Time (s) Energy (mJ) Time (s) Energy (mJ)
	MIKEY ECKSS	5.6	11.9	11.4	24.3
	MIKEY ECKSS HMAC	2.6	5.6	5.7	12.2
	Table