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Abstract

Recently, there has been an increasing interest of life insurers to assess their portfolios own
mortality risk. The new European prudential regulation, namely Solvency II, emphasized the
need to use mortality and life tables that best capture and reflect the experienced mortality,
and thus policyholders’ proper risk profile, in order to adequately quantify the underlying risk.
Therefore, building a mortality table based on the experience from the portfolio is highly rec-
ommended and, for this purpose, various approaches have been introduced in the literature.
Although, such approaches succeed in capturing the main feature, it remains difficult to assess
the mortality when the underlying portfolio lacks of sufficient exposure.

In this paper, we propose to graduate the mortality curve using an adaptive procedure based
on the local likelihood, which has the ability to model the mortality patterns even in presence
of complex structures and avoid to rely on experts opinion. However, such a technique fails at
proposing a consistent yet regular structure when for portfolios with limited deaths. Although
the technique borrows the information from the adjacent ages, it is sometimes not sufficient to
produce a robust life tables. In presence of such a bias, we propose to adjust the corresponding
curve, at the age level, based on a credibility approach. This consists on reviewing, as new
observations arrive, the assumption on the mortality curve.

We derive the updating procedure and investigate the benefits of using the latter instead of
a sole graduation based on real datasets. Moreover, we look at the divergences in the mortality
forecasts generated by the classical credibility approaches including Hardy-Panjer, the Poisson-
Gamma model and Makeham framework on portfolios originating from various French insurance

companies.
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1 Introduction

For insurers, the assessment of the experienced mortality is of paramount importance. The new
regulation and norms, Solvency II, shed light on the need of life tables that best reflect the experience
of insured portfolios own mortality so as to reliably quantify the underlying risk. Insurers, in France
for example, are used to rely on regulatory life tables for pricing and reserving purposes, which
are sometimes too conservative. The use of inadequate life tables, being too conservative would
considerably affect the financial profitability of the life insurance businesses as well as the insurer
competitiveness. Among others, from a Solvency II perspective, using too conservative tables leads
to two major impacts: (i) an increase of Best Estimate technical provisions (and thus a decrease
of Basic Own-Funds); (ii) an increase of the base figure used for calculating the capital charge for
mortality risk.

A natural and straightforward approach to handle this issue is to use the available data at
the portfolio level and build an entity-specific mortality table. However, practitioners may face
technical difficulties related to the size of the portfolios and the heterogeneity of the guarantees
(for the same underlying risk). For instance, an insurer may have a fairly big portfolio but with
policyholders holding different insurance contracts: pure endowment contracts, unit-linked contracts
with minimum death guarantees, loan insurance and so on. In such a case, it is difficult to build
a mortality table based on the sole experience of each product or guarantee. More precisely, the
constructed table may not be able to represent the mortality profile of the policyholders thus failing
in capturing the underlying risk profile. This should also be the case even if the mortality table
is periodically updated with the incoming new data. Especially, the latter may induce significant
impacts on the technical reserves if the table has to be updated more frequently over time. Also, if
one draws a mortality table only based on the experience stemming from one product or guarantee,
she shall have the face a problem of heterogeneity. The latter arises not only at the portfolio level but
also for individual ages. In fact, the mortality profile is highly dependent on the age of the individuals
and some age groups being poorly represented may alter the quantification of the mortality risk at
each individual age.

In this paper, we consider an insurer with exposures to different policies and aiming at estab-
lishing an experience-based mortality table for each policy and age level, as individuals may differ
substantially in their endowment for biometric risk (as showed by some empirical mortality studies,
e.g. see Vaupel et al. (1979) and Hougaard (1984) among others). As a first step, we consider a
graduation principle to build mortality rates at the insured portfolio level. There are usually two
sorts of methods: non-parametric and parametric, see Forfar et al. (1988a) and Debon et al. (2006)
for a comprehensive introduction to the use of both graduation techniques. The nonparametric
framework is very useful in practice especially when there is sufficient data. This method relies on
the use of kernel estimation techniques which were first used for graduation by Copas and Haberman
(1983) and Ramlau-Hansen (1983). In the current work, we use local kernel-weighted log-likelihood
techniques to graduate the observed mortality with attained age. It was considered in Tomas (2011,
2012), which introduced adaptive smoothing parameters choice with an application in life insurance.
Local likelihood techniques have the ability to model the mortality patterns even in presence of
complex structures and avoid to rely on experts opinion.

The graduated mortality can be then used as such to project future insurance liabilities related
to the underlying population. However, the evolution of the flow of data related to latest available
information is not taken into account. This should be, for example, used to update the graduated

mortality. However, if one decides to redo a graduation procedure including the new data, the



forecasts are likely to be unstable; adding potential volatility to the underlying reserves and capital
charges.

Therefore, the primary contribution of this paper is the incorporation of heterogeneity into the
graduated mortality table model by introducing an unobserved variate for individual differences in
each attained age. Such an approach has been considered in Salhi et al. (2016) but with different
graduated curve. The latter uses a parametric model, i.e. Makeham law, to first built the mortality
curve and then applies a credibility to the portfolio-sensitive parameter. Other approach have been
also introduced in the literature but work directly on the death counts, e.g. Hardy and Panjer (1998)
and Bithlmann and Gisler (2005) among others. Uunlike the classical approaches that focus on the
update of the aggregate deaths recorded over the whole portfolio, the proposed adjustment approach
is intended to enhance the predictive ability of the graduated mortality using a credibility-based
revision at the age-level and not on the aggregate portfolio level. By doing so, we implicitly account
for the heterogeneity observed at the age-level and has beneficial outputs in pricing and reserving
fields when considering the insurance guarantees according to the age.

This note is organized as follows. Section 2 has still an introductory purpose. It specifies the
notation and assumptions used in the following. We also describe the graduation procedure based on
the local-likelihood approach and recall some statistical inference results used in the sequel. Section 3
introduces the credibility approach to the graduated mortality mortality. We specify the model and
make connection with the recent literature and derive the main tools needed to fully characterize
the next period prediction of mortality rates when a (multiplicative) credibility factor is taken into
account. Finally, Section 4 presents an application with experience data originating from French

insurance companies. Finally, some remarks in Section 5 conclude the paper.

2 Notation, Assumptions and Preliminaries

2.1 Notation and Assumptions. We suppose that we have at our disposal age-specific mortality
statistics originating from K portfolios (or companies) over the period [1,T;], with i € {1,--- , K}.
For each portfolio i, we let Lfm denote the number of individuals at attained age x during calendar
year t and D} , represents the number of deaths recorded from an exposure-to-risk E , measuring
the time during which individuals are exposed to the risk of dying. To each of the observations j, we
associate the dummy variable §; indicating if the individual j dies or not over one year. That is, for
eachj=1,..., L;Vt, and age-band [z, + 1], §; = 1 if individual j dies and null otherwise. Next, we
define the time lived by individual j before her (x + 1)*" birthday by 7; and assume that we have at

i

t » individuals. Then, it is straightforward

our disposal i.i.d. observations (d,,7;) for each of the L
that:

Li, Li,

— . — It -
g T;=FE;, and E 0j =D, for i=1,... K.
=1 =1

Furthermore, we assume that the age-specific forces of mortality are constant within bands of time
and age, but allowed to vary from one band to the next, 4,0;:_1”775_&_E = gpfv}t for0<7<land0<¢< 1.
We also denote by p;, ; the probability that an individual aged z in calendar year ¢ originating from
company i reaches age x + 1, and by ¢}, , = 1 — p., , the corresponding probability of death.

Under the assumption of piecewise constant forces of mortality, we have for integer ages x and
calendar years ¢, p;t = exp(—gpi,}t) and cp;’t = —log (pi’t) Moreover, the likelihood can be expressed
in the following form: .

x,t

ﬁ(@i,t) = exp(—E;,t ‘Pi,t) (‘P;,t)



The associated log-likelihood is then given by
£(<P§;,t) = log ﬁ(‘P;,t) = _E:i7t Lﬂfm + D;,t log @;,t .

Maximizing the log-likelihood ¢(i% ;) gives @, , = D% ,/E% , which coincides with the central death
rates ﬁzgt Then it is apparent that the likelihood ¢ (gpi’t) is proportional to the Poisson likelihood
based on the following assumption

D;;,t ~ P(E;yt ‘Pi;,t) . (HO)

Thus, it is equivalent to work on the basis of the true likelihood or on the basis of the Poisson
likelihood as recalled in Delwarde and Denuit (2005). Accordingly, under the assumption of constant
forces of mortality between integer values of = and ¢, we consider, henceforth, (HO) to take advantage
of the Generalized Linear Models (GLMs) framework.

In the sequel we frequently use the following notation. Let D%, = /% D. ,and E,, = S EE,
be respectively the company specific time aggregated death counts and exposures. For convenience,
we write D? = (D ~,D. )T and Ef = (E!

T, 07 T, e 100

- 7E;n )" the vectors of aggregated deaths

and exposures for company ¢ and also denote ¢* = (npil., e ,<p;",)—r. Thus, the bullet indicates the

summation over the corresponding index in the notation introduced above.

2.2 Local Likelihood Smoothing of Mortality Tables. The crude estimates of mortality for
each company 7 might be subject to random fluctuations. Typically, the latter may arise when the
underlying exposure to risk is small. Therefore, the common practice in life insurance is whether to
graduate mortality using a parametric approach or use some non-parametric smoothing techniques,
see Forfar et al. (1988a) and Debon et al. (2006) for a comprehensive introduction to the use of
graduation techniques. Here, we consider a non-parametric graduation method of experienced data
originating from each company following the approach introduced in Tomas and Planchet (2013a,b).
We use the hypothesis of Poisson distributed deaths as in (H0O) and assume that the intensity <p§:7t

ref

e as follows:

of the portfolio 7 is related to a reference ¢

o, =exp(f(z)) it (1)

where f is an unspecified, smooth and deterministic function of the age x. The latter allows to link
the mortality of the company 4 to the baseline at the attained age level . We define an estimator
@;t of gai,’t based on the data from the i’th subgroup. To do so, a non-parametric estimation of
f is needed as developed in Tomas and Planchet (2013a,b). More formally, we consider the local
kernel-weighted log-likelihood method to estimate the smooth function f(z). Such an approach
was used to graduate life tables with attained age context in Delwarde et al. (2004), Debén et al.
(2006) and Tomas (2011). One of the key advantages of such an approach is its ability to model the
mortality patterns even in the presence of complex structures and avoid to rely on experts opinion
in graduating mortality, thanks to the flexible functional form of the regression curve. The starting
point of our estimation is the specification of the GLM under the assumption (HO) that allows to

write the first moment of D, as follows:
log E[D;)t} = log E;,t + log ‘P;,t = log E;,t + log (p;ei + f(z), (2)

where the term log E. ; is an offset. Such a model has been widely considered in the literature.

For example, in Currie (2013), the function f has the parametric form f(z) = 8y + S,z for some



unknown parameters 3, and §,. In our case, there is no model assumption about f. The natural
extension of this idea is to suppose that for each age zy, with k = 1,--- ,n, f(zz) is a p'* degree
polynomial in z;’s, where z; is an element in the neighborhood of z;. Formally, denoting x; =
(1,33;€ -z, (o — xj)p)T and 8' = (BO, e ,ﬂp)T we can write f(zy) in the following form
flzp) = ij,Bi. Next, to estimate 3¢, we maximize the likelihood of the model. To do this, we add
a weight on the observations at each age. Following Tomas (2012), we use a non-negative weight
function, i.e. w; = w;(xy), that depends on the distance between the observations and the fitting

point z;, i.e.

_ Jwillzy —axl/h), if |zj —xpf/h <1,
wy = (3)
0, otherwise,

where h is a smoothing parameter determining the radius of the neighborhood of xj used in the
smoothing. It gives the bandwidth of the neighbor used in the kernel. For instance, the smallest
h the thiner is the wvoisinage that contributes to the likelihood at each attained age. Examples of
the weighing function w; are given in Tomas (2011, Table 1). In our case we consider a Gaussian
kernel and use these weights on the characterization of the likelihood. Accordingly, it follows that
the log-likelihood, for portfolio 4, under the assumption (HO) writes:

L(B'DLE, (w));) = D3 wi(DL x] B — EL oifes B —log DL 1+ Di log B ,¢icf),
t=1 j=1
= Z‘*’J El .‘Pffexj s ) +C1,

where C' is a constant offset which does not depend on the parameters 3°. Hence, taking the

derivative with respect to each (p), for p=1,--- 1, leads to the following system of equations,
n
S wilws — @) (DS, 4 — By uple #) =0,
which can be rewritten in a matrix notation as follows:
(X)) TWH(D' - ¢) =0, (4)

with ¢° being non-linearly dependent on 8", X' is the matrix

1 o —a (z1—x) - (3 — )"
xio| D e 8
and W? is the weight matrix with elements Wy,; given as wy,; = wj for k = 1,--- ,n. The solution

of the above equation, i.e. estimations, must be obtained numerically using an iterative algorithm
as Nelder-Wedderburn, Newton-Raphson algorithms or the fisher scoring methodology, see Tomas
(2011) for further development. From these, we can get the estimation of 3° and " denoted, hence-
forth, by ,Z\")'Z and '



2.3 Inference of the Graduated Mortality. The aim of this subsection is to characterize the
statistical feature of the estimators considered above. We recall some results from Tomas (2011) well
known in the nonparametric smoothing literature, see e.g. Tibshirani and Hastie (1987) and Wand
and Jones (1994), regarding particularly the variance of the graduated mortality and the expected
behavior of these estimations. Accordingly, using theoretical results concerning bias and variance
the estimator @Z is shown to be asymptotically design-unbiased and consistent. It is, for instance,
recalled in Tomas (2011) that the smoothed mortality rates QADZ are unbiased estimators of ¢ in the

sense that:
E[@)] ~ . (6)

The above approximation is based on the inspection of the mean squared errors, which are commonly
used to assess the bias of the estimation in such a framework. Expressions of the latter are available
in the classical textbooks and the readers is referred to (Tomas 2011, Sec. 3.2.) which provides an
approximation to the bias of the estimator ngz Unlike the linear model fitting, there is no exact
expression for moments of @; due to the non-linearity in Equation (4). Using a multivariate version
of Taylor series expansion around B" allows to use classical results on the inference of the estimated
parameter Bl. Note that this approximation depends on the bandwidth of the neighborhood h used
in the kernel. More precisely, the bias is decreasing with the bandwidth. This is, particularly,
reasonable in practice, because a large bandwidth induces a miss-fitting of the local polynomials
and hence also the sum of squared residuals. To derive the second order moment of @i, a variance
approximation based on Taylor linearization is also generally suggested and shown to be consistent,
see Loader (2006). More precisely, we have the following expression for the variance:

Var(@') = @'@8's'T, (7)

with ” ® ” being the pointwise division operator. Here, the matrix S’ is given as follows:

§' = : : : : ’ )
Sli (xn) Sé(xn) Sé(xn) Sil(xn)

with rows s®(z;) " = (s¢(z;), sh(x;), -, st (z;)) = (XTTWIXH)"IXITW! where W' is the weight

matrix and X° is given in Equation (5)

2.4 Small Sized Porfolios and Heterogeneity. It is worth mentioning that the relational
(proportional) model considered in Equation (1) implicitly accounts for differential mortality that
may arise due to portfolio specific features, e.g. particular socioeconomic groups involved, income
level, etc. Indeed, insured portfolios show a typical behavior compared to a national mortality.
The mortality of insured population is significantly lower than the national population from which
it is drawn. However, when it comes to the study of the mortality at a single portfolio level, some
stylized facts arise, which might compromise the efficiency of the graduation procedure. For instance,
insured population are generally of small size, so none or very few deaths are observable at some ages.
Therefore, the use of the model (1) and the local-likelihood based estimation procedure advocates
using the information stemming from the adjacent ages to construct the mortality curve. This
learning procedure will enhance the determination of the mortality at a given age. However, when

successive ages lack of information, the approach exposed above will need a large bandwidth h for the



estimator to access distant ages with sufficient and reliable information. By doing so, we increase the
bias surrounding the smoothed curve. In fact, as noted above, the mean of squared errors measuring
the bias due to the local regression increase with the bandwidth h.

Due to these different sources of uncertainty we suppose that the true mortality curve ¢!, for
T =2y ,T,, is known up to an unobservable multiplicative factor . In other words, the port-
folios examined should be regarded as a sample of the reference. Estimates based on the data will
be subject to sampling errors and the smaller the group is, the greater will be the relative random
errors in the number of deaths and the less reliable will be the resulting estimates. This argument is
extended to include the bias stemming at the attained age level due the consideration exposed above.
Thus, if one has estimated the curve using the non-parametric approach, the true curve is an adjust-
ment of the latter as multiplied by the random and non-observable parameter ©¢. This reasoning is
closely related to the multiplicative frailty model that was introduced by Vaupel et al. (1979). This
concept is well established in biostatistics and survival analysis, see e.g. Hougaard (1984) and Aalen
(1988) among others. In the actuarial literature frailty models have also been used. An overview of
the use of frailty models to handle the heterogeneity phenomenon in life insurance is given in Olivieri
(2006). In our case, we address this problem using the credibility theory, see Biihlmann and Gisler
(2005) for more details.

3 Company-Specific Relative Risk Level

We suppose that there are K companies, with a portfolio of observed individuals of ages ranging from
x1 to x,,. Here, the n;’s might be all different to be in line with the insurance practices. This kind
of information structure is similar to the so-called unbalanced framework used in actuarial science.
For the sake of readability, without loss of generality, we will henceforth assume similar observed age
groups for all companies, i.e. n =n; = --- = ng. With a slight variation to the model, however, it

can be easily extended to the unbalanced case.

3.1 The credibility model. Given the specific parameterization of the problem, one may think of
the K portfolios as a subset of the reference population and thus each population is characterized by
a risk profile. The latter is due to the heterogeneous sizes of the portfolios as well as the underlying
guarantees (for the same underlying risk). These sources of heterogeneity might also induce an
age varying risk profile within the same portfolio. Therefore, for a company i, we let the vector
O’ = diag(©% ,---, 0% ) be her relative risk level. For z € {1, -+ ,2,}, each O, characterizes the
age-specific risk level, which are unobservable random variables.

The primal objective is to characterize the force of mortality of each company 7 at a specific age
x through the proportional relationship introduced in Subsection 2.2, i.e.

Soi = @ia’ (1)

ref
zj

where ot = (ag,, -+ , @, ) such that for j = 1,--+ ,n, we have a,, = f(z;)¢i!. This model suggests
that for each company ¢, the age-specific experienced force of mortality varies around the baseline
gz, which can be seen as a reference or best-estimate mortality. This fluctuation is modeled by a
heterogeneity parameter ©F capturing the individual properties (heterogeneity) of each company at
attained age x. Thus, using new incoming data should allow to update the the next period mortality
¢! by adjustment following model in Equation (1). The approach is to first find an estimator '

of pi = O!a, for each company i using the likelihood-based approach introduced in Section 2.



Henceforth, the notation 3.|©% refers to the estimation of the quantity c, = f(z)@:f, which, by
abuse of language, referred to as the estimated mortality conditional on the risk profile. Nielsen
and Sandqvist (2000) and Gustafsson et al. (2006) proposed a similar framework to quantify the
operational risk, where an adequate quantity related to losses from different lines of business share
a common baseline. In our setting, we generalize their approach to the case where the mortality
is structured by age (line of business) and intensities of mortality are dependent within the same
group. Indeed, the random variables @;1, cee @; are assumed to be dependent, namely, the force of
mortality of one age does directly impact those of other ages. This is mainly due to the graduation
of mortality at a given age, which weights up over the adjacent age groups, see Section 2. This
dependency will be explored later on this section. Finally, in order to characterize the next period
mortality level, we make use of the credibility theory. For this purpose and using the usual credibility

setting, we shall make the following assumptions:

(A1) The random vectors ©° are independent across companies and ages. Moreover, for i =
1,---,K, ©)’s are identically distributed with E[@!] = I,, and Var(®’) = o, where o is a

diagonal matrix with elements o, and I,, is the identity matrix.
(A2) The random vectors (o', ©%),i=1,---, K, are independent across companies
i .-+, are conditionally independent given ©®°.
A3) ¢, O dit lly ind dent (CX

The first assumption (A1) ensures that the baseline mortality produces the a priori expected number
of deaths under the model assumption (HO), in the sense that E[D,] = E[O,a,] = a,. The
assumptions (A2) means that the risk profiles are independent over portfolios. In other words,
the successive realizations of the mortality intensity (so as the death counts) for any portfolio are
independent of each other except through the risk parameter. Finally, assumption (A3) translates the
dependency of the mortality over ages. The latter is only captured by the vector ®. Conditionally
on the latter the forces of mortality at the age level are independent.

As noted before, @*|@ is the conditional local-likelihood estimator of the intensity in Equation (1)
based on the data from the i" portfolio as developed in Section 2. In view of the the assumptions
(A1)-(A3), it is important to recall that conditional on the knowledge of the risk profile ® the
theoretical properties of ngZ are identical to those the of local-likelihood estimator considered in
Subsection 2.3. This will be used, among others, in the following lemma, in order to state some
fundamental features of the dependence structure.

[A revoir la notation pour le produit]

Lemma 1 Under assumptions (A1), (A2) and (A3) and the notation above, we have
(i) The first order moment of ' is given by

El¢] = a. (2)
(i) The variance matriz of $'|0", denoted £(O") = Var(@'|©%), is given by
$i(@) = i S'ST. (3)
Hence, the variance £ = Var(@') can be written as

¥ = (S'S" +0)a (4)



(iii) The covariance of . with @ is given by
Cov (90;) 9/52) = (Uwa;)zeémv (5)
with 0, = j if x = x; and e; is the vector with all 0’s except for a 1 in the jth coordinate.

Proof. To show these results, we make an intensive use of the law of total variance.
(i) Equation (2) is a direct consequence of assumption (A1) which gives E[¢¢|0@!] = O'a.
(i) The conditional variance *(©") is directly derived from the calculus in Subsection 2.3. Hence,

to check (4), the law of total variance gives
¥ = E[Var(¢'|©")] + Var(E[3'|©)),
=E[3'|®S'S'T +a®Var(@) =a® (S'S'T + o).
(iii) Finally, to prove (5), notice that Cov(s%, @'|©%) = 0. Thus,

Cov(gl, ') = Cov(E[¢!(2)|©], E[3'|©]) + E[Cov(s, '|0")],
= Cov(0%a, 0 @ @) = (0,0,)%es,,

xx)

where the last equality follows from the independence assumption in (Al). H

3.2 The next-period linear per-age mortality estimator. The goal is to predict the future
force of mortality for each company i at the age level. Therefore, we will be looking for the in-
homogeneous credibility predictor corresponding to the linear estimators of ¢¢. We thus solve the

following optimization problems:
o 2
min B [(% o —TP) ] : (6)

where 06737 € R and ¢!, € R™. This formulation suggests adjusting the next period force of mortality
at a given age using the information stemming from the other age groups. This should enhance the
prediction for ages with low or sparse information using the credibility in ages of high information.
Based on Proposition 1, we can easily derive the inhomogeneous credibility estimators of ¢’. Indeed,

we state the following proposition.

Proposition 1 The point estimate of the linear factors in (6) can be written as follows

i iy T i i\2gviy—1

ho=1n—cl) a and cl = (0.0.) (E) " es,. (7)
The next period predicted mortality (estimator) @' of @' is given by

P = (I, — (a(Ei)_laa)T)a + (a(Ei)_laa)Tg’éi. (8)

Proof. Let us first derive the intercept cfm. To do this, we develop the expectation in Equation (6)
and take the derivative with respect to c&x. This yields to the following equality:

cio + (ch) TE[@] = 1.

%
T

On the other hand, differentiating the expectation in Equation (6) with respect to the vector c



gives rise to the following variance
Var (), — (c3)7@').
needed to fully characterize the solution. The latter can be computed using results in Lemma 1.

Indeed, we can write:
Var (¢} — (ch)T@") = Var(p}) - 2(c,) TCov(p}, &) + ()T (c}) T
Taking the derivative with respect to the vector (cZ) ' yields
2Cov(pl, ') — 28ict = 0.

The terms % and Cov(gt,@") are given in Lemma 1, which concludes the proof. W
Note that we are able to estimate all the components needed to characterize the next-period
intensity [,Bi, except for the variance o’. Remarking that (,'51 is an estimator of ¢! = a ® O, we can
write ©F = @Z @ a, with 7 @7 being the pointwise division operator. Therefore, a natural choice of
the estimator of o is
5=(0'-1,) (6 -1,). 9)

We can now derive the

Lemma 2 The optimal credibility estimator of ©®° is given by

O = (I, - (a(x)"oa) )1, + (=) 'oa) 'O,

and the next period prediction of @' can be approzimated by o ® e

Remark 1 The adjustment procedure described in Proposition 1 and Lemma 2 can written for each

individual age x in the following form:
&; =(1- Z;:)ax + Z;@;Zm
where 2% is the credibility factor that can be written in the following form:

(ax)QUzz

(02)?0? + @5 [Is* ()2

i
2y =

Here, recall that ||s'(z)|* = > (s;(x))2 and measures the reduction in variance of the smoothed

mortality curve @',

Remark 2 All the ingredients required to implement the credibility approach in Lemma 2, in order
to predict the next-period estimator, are already determined. However, we still need to characterize
an estimation for a. To do this, we borrow the same procedure considered in Nielsen and Sandquist

(2000), which amend to estimate v as linear weighted average over the portfolios.

4 Numerical Analysis

4.1 Source of Data. The data come from studies conducted by Institut des Actuaires. These

studies include in total 14 portfolios covering the period 2007—2011 with each companies contributing

10



data for at least 4 of a possible 5 years. Table 1 presents the observed characteristics of the male
population of the portfolios. For this dataset, we are considering respectively T; = 3 and T; = 4
for all companies. The remaining years serve to test the predictive feature of the model through an
in-sample analysis. The considered analysis follows similar lines as in Salhi et al. (2016), which also
exploits the same dataset. Therefore, the age band for all companies ranges from x = 30 to 95 years
old. Figure 1 shows the age distribution of the portfolios, i.e. the aggregate number of individuals

exposed to risk at each attained age. It graphically depicts the heterogeneity observed between the

portfolios with insured holding different policies. On the other hand, the baseline mortality ¢! is a
market table, denoted IA2013, constructed for the French insurance market provided by Institute

des Actuaires, see Tomas and Planchet (2013c). Before proceeding to the implementation of the

Table 1: Observed characteristics of portfolios population.

Period of observation Mean age  Average Mean age .
Size

Beginning End In Out ©xposure at death
P1 01/01/07 12/31/11 36.96 39.74 2.77 68.78 616390
P2 01/01/07 12/31/11 69.3 73.35 4.05 80.34 7589
P3 01/01/07 12/31/10 40.16  43.1 2.94 71.77 80086
P4 01/01/07 12/31/11 375 41.13 3.63 54.08 93165
P5 01/01/07 12/31/11 36.9 39.1 2.2 59.31 21540
P6 01/01/07 12/31/10 48.5  52.11 3.62 82.34 847469
P7 01/01/07 12/31/11 66.65 71.29 4.64 73.68 89507
P8 01/01/07 04/13/11 67.51 71.38 3.86 80.72 78650
P9 01/01/07 06/30/11 45.97  49.6 3.62 73.17 1556150
P10 01/01/07 12/31/11 62.97 67.64 4.67 79.77 132990
P11 01/01/07 12/31/11 38.89 42 3.11 56.44 420405
P12 01/01/07 12/31/11 37.05 39.2 2.15 57.41 904020
P13 01/01/07 12/31/11 43.01 46.89 3.88 71.03 848757
P14 01/01/07 12/31/11 50.12 54.16 4.04 72.37 233488

methodology developed in the previous sections, we must should look deeper into the particular
feature of our dataset.. Specifically, we must focus on those that may arise specific concerns when it
comes to the graduation of a mortality table using the smoothing procedure considered in Section 2.
As previously reported, the experienced mortality does not only suffer from a small sample size but
also the under-representation of those within some age groups. This is typically the case of portfolio
P2, see Table 1 and Figure 1. In fact, we have a small size of 7589 individuals with only 2% aged under
60. This is the case for portfolios P7, P8 and to some extent P10, but with a bigger exposure. For
these portfolios, the use of the smoothing procedure in Subsection 2.2 has the advantage of borrowing
the information in age bands where the exposure is substantially larger. However, this may alter the
local properties generally required for a mortality curve. Indeed, enlarging the smoothing window
h, giving access to far distant ages, may amend the increasing mortality over ages, which is not only

a very much sought behavior but also a biologically reasonable quality.

4.2 Entity-Specific Graduated Mortality. In order to implement the likelihood based gradua-
tion approach, we need to identify the fitting variables. To this end, we first choose a weight function

IThis table is derived from mortality trends originating from the INSEE table, French national bureau of statistics,
and covers the period 2007-2060.
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Figure 1: Distribution of age groups in the portfolios.

More precisely, we should characterize the smoothing parameters h and p referring, respectively, to
(i) the window-width or bandwidth h which determines how fast the weights decrease and (ii) the
degree of the polynomial used for smoothing. To do so, we have to balance the trade-off between
bias and variance on the estimation of the mortality as they move on the opposite direction in terms
of the smoothing parameters. Formally, we compute a number of candidate fits and use a criteria
to select, among the fits, the one with the lowest score. For instance, we use a generalization of the
Akaike information criterion (AIC) based on the deviance function taking into account the likelihood
as well as the degrees of freedom of the fitting model. The smoothing parameters are selected based
on graphical diagnostics. Figure 2 displays the AIC scores against the fitted degrees of freedom for
the portfolios 1, 6 and 14. The interpretation of such a graphic is as follows. A two-degree of freedom
represents a smooth model with very little flexibility while 10 degrees of freedom represents a noisy
model showing many features. It also aids comparability as we can compute criteria scores for other
polynomial degrees or for other smoothing methods and added them to the plot. We select the
smoothing parameters at the point when the criterion reaches a minimum or a plateau after a steep
descent. In the left panel of Figure 2, the graphic represents the selection procedure for the portfolio
P1. This consists of scores for various polynomial degrees. The optimal choice of the smoothing
parameters corresponds to the point on the plan where with the lowest AIC score. For portfolio P1,
the lowest score corresponds to a cubic fit with 5 degrees of freedom leading to a smoothing window
of 7 points. In Table 2, we report the optimal parameters for each portfolio.

In Table 2, we can see that for some portfolios the optimal choice of the input controls induce
high level of degrees of freedom, i.e. portfolios P1 and P5. This is to say that the corresponding
"smoothed" curves ¢, i = 1,5, will be noisy showing many feature. Indeed, the degree of freedom

is a qualitative proxy for the regularity of graduated mortality curve as the smoothness inversely to
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Figure 2: AIC scores for various polynomial degrees for portfolios P1, P6 and P14

Table 2: Local-likelihood smoothing parameters’ optimal choice

P1 P2 P3 P4 P5 P6 P7

AIC 98.90 29.34 79.68 7891 61.10 106.73 68.37
Degree 2 1 1 1 3 3 1
DF 18 3 3 6 16 10 8

P8 P9 P10 P11 P12 P13 P14

AIC 74.11 83.96 5344 70.86 74.82 82.70 78.37
Degree 2 1 2 1 1 3 2
DF 4 7 5 6 6 7 5

the degree of freedom. This feature can already be deduced from the limited amount of information
(exposures) that are at our disposable for these portfolios. For the remaining portfolio, the degrees of
freedom are relatively small. In the following, we will implement the credibility approach described

in the last section to assess the impact of the latter on the graduated mortality curves.

4.3 Next-Period Mortality Rate. Here, we consider the mortality experience over the period
2007 — 2010 upon which we calibrate the smoothing procedure considered in the above subsection.
For each portfolio, we build a graduated mortality table c,Aol and aim at adjusting the latter for the
next period projection. For each age z, the graduated mortality gives a candidate rate for the next
period, i.e. ¢’. The insurer has the possibility of whether to rely on this rate or adjust the latter
given the experience stemming from the other rates at other ages. In other words, the mortality
used for the next period forecasts can be adjusted using the credibility formula in Equation (8). To
do this, we estimate the different quantities needed to implement (8) as follows:

(i) Following Remark 2, the expected mortality rate o can be estimated as follows:

Ty d d
(XX Ei,.wi)/;Ei,.~

r=x1 =1

a

(ii) The weight loading matrix S is given as an output of the graduate step and can be estimated
using Equation (8).

(iii) The diagonal matrix o’ relies on the variance of ©%’s which might be estimated given that
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O! = . /a, and thus we can write
d

ot =" (5h/a) ja- (X 2i/a)/d)

i=1 i=1

2

Figure 3 depicts, respectively, the graduated mortality over the period 2007 — 2010 as described
above and the next-period (2011) mortality rates using the credibility formula in Equation (8).
Similarly, Figure 4 represents the next-period predicted deaths using the two mortality rates. In
these figures we grayed areas (ages) where the relative difference between the smoothed mortality
and its adjusted counterpart exceeds a 10% level. More precisely, this corresponds to the ages x
where |3, — $%|/3L > 0.1. At a first glance, we remark that the credibility adjustment does change
the mortality rate and overall propose a smoother curve compared to the initial one, and this is
even evident when dealing with portfolios with small portfolios and high degrees of freedom. In
fact, when we deal with portfolios such as P5, where the exposure-to-risk as well as the underlying
deaths are very limited, the smoothing approach fails to capture the mortality structure and the
output of the procedure proposed in Section 2 are very irregular and noisy. Indeed, as noted above
such a procedure need information stemming from adjacent ages when a particular age lacks of
sufficient exposure. The case of P5 is very appealing of the limit of the non-parametric smoothing
as the limitation on the information is shared over the ages. This is why the corresponding degree
of freedom is high and the AIC is low, see Table 2, and explains the irregular curve (dashed line) for
the smoothed mortality.

On the other hand, the degrees of freedom given as tr(S?S?") provide information on the credi-
bility of the smoothed curve @'. In fact, as we can see in Equation (8) or in a more tractable way
as in Remark 1, the higher the degrees of freedom, i.e. tr(S'S'T) = 377" ||s*(x)||?; the smallest is
the weight attached to the smoothed curve ¢’ (in aggregate). At the age level, one should look the
component-wise of the degrees of freedom, i.e. the individual variance ||s’(z)||?>. That being said,
we can conclude that the parameter driving the adjustment at the age levels is vanishing meaning
that the adjusted mortality rate 470; is close to the reference a. It comes as no surprise, then, to
find that the adjusted curve tends to obliterate this undesired effect thanks also to the information
coming from other ages but from different portfolios.

The visual inspection of the credibility based mortality curve shows that the regularity is pre-
served avoiding the limitation of the sole smoothing procedure discussed above. For some portfolios,
such as portfolio P12, the regularization based on the credibility attached to each age level enhance
the prediction of the future mortality. Indeed, the smoothed mortality based on past observations
suggest a local distortion of the curve for ages ranging from 60 to 80. This particular feature is
however not observed in the mortality curve for the year 2011 and thus the credibility based curve
has a better fitting. This can also be observed in Figure 4, where the predicted deaths using g~0i, for
i = 12, are (visually) more in line with the observations. The same conclusions, in the grayed area,

can be drawn for the other portfolios.

4.4 Proximity Between the Observations and the Model. Besides the visual inspection
of the proposed adjustment, and in order to understand the impact of the the latter, we will use
some known statistics to quantify the proximity between the observations and the outputs of the
two curves considered in Figure 3 and Figure 4. We assess the overall deviation with the observed
mortality by comparing criteria measuring the distance between the observations and the models
with the x?, i.e. Forfar et al. (1988b), the mean average percentage error (MAPE), see for instance
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Figure 3: The next-period mortality rate based on the graduation of mortality (solid line) as well as its credibility based adjustment (dashed line) based
on the period 2007 — 2010. Both predictions are compared to the observed mortality rate over the period 2011 (black dots).
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Felipe et al. (2002); as well as the standardized mortality ratio (SMR), i.e. the ratio of deaths
observed to those predicted. In addition, we find useful to use the SMR test proposed in Liddell
(1984) and the likelihood ratio test to asses of significance of the SMR and to its interval estimation.
The tests and quantities summarizing the proximity between the observations and the model, for
each portfolio i at calendar year t = 2011, are described in the following.

(i) The x? allows to measure the quality of the fit of the model. It writes,

o (D - Ly, @)

AP Lie @) (1 - (1)

=1

(ii) The MAPE is the average of the absolute values of the deviations from the observations,

Yot Do/ Loy = @)/ (Dol L)
Zm:ml Dlx,t

(iii) The SMR is computed as the ratio between the observed and fitted number of deaths:

Z;n:azl D;Z;c,t
>t Ly T(1)

MAPE! =

SMR'? =

Hence, if SMR’ > 1, the fitted deaths are under-estimated and vice-versa if SMR < 1. Note that
we can consider the SMR as a global criterion which does not take the age structure into account,
compared to the x? and the MAPE for instance.

Figure 5 summarizes the above mentioned tests and quantities giving the overall deviation be-
tween the observations and the adjustment analysis for the portfolios P1 to P14 (except 3 and 6
which does not contain observations of year 2011) obtained by the smoothing approach together with
the credibility adjustment procedure.

When looking at criteria and quantities which take the age structure of the error into account, the
credibility approach has an important benefit compared to the sole graduated curve. The quality of
the fit increases, sometimes drastically, i.e. portfolio P1, in terms of having the minimum x? and
MAPE values, see also the last panels of Table 3. Also, the credibility adjustment exhibits the high-
est p-value for the likelihood ratio test. Even when we consider a global indicator of the quality of
the fit such as the SMR which does not take the age structure into account, the proposed procedure
seems to perform better than the graduated curve. However, notice that the impact of adjustment
in smaller when the portfolios are quiet big. This is already remarkable when one operated visual

checks as mentioned earlier.

4.5 Comparaison with Classical Approaches. Here, we wish to compare our model to the
Hardy and Panjer (1998) and Poisson-Gamma credibility analysis applied to our mortality datasets.
Moreover, we intend to compare our results to a similar approach introduced in Salhi et al. (2016),
where the graduation of mortality is based on a parametric method, i.e. Makeham law, and the
credibility theory is used to adjust the latter with incoming new data experience. The first two
approaches focus on the actual to expected mortality ratio, in aggregate level, as a key observation.
The adjustment is directly applied to this quantity. Specifically, the a priori expected number of
deaths for each portfolio is updated at each period given the credibility weight on the observations
coming from this portfolio and the one computed on the basis of the other portfolios. Table 3

presents the tests and quantities summarizing the overall deviation between the observations for
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these different approaches in comparison the one exposed in this paper.

We first note that the Hardy-Panjer and Poisson-Gamma approaches produce relatively similar
graduations as the tests suggest sensibly similar outputs. However, we notice some differences with
the Makeham credibility model which displays more favorable results. This is already outlined in
Salhi et al. (2016) and this may be explained by the age-specific adjustment but thanks to the
structural feature added by the Makeham parametric model. When it comes to the tests that
are sensitive to the age structure, we notice that the credibility-based Makeham model offers a
outstanding adjustment as the tests are favorable compared to the Hardy-Panjer and Poisson-Gamma
approaches.

5 Concluding Remarks

In this paper we proposed a methodology to adjust the graduated mortality table that uses an adap-
tive smoothing procedure based on the local likelihood. The adjustment is based on the credibility
weighting technique of the smoothed curves and a reference. Out approach takes into account the age
specific heterogeneity that may arise in real world datasets. We thus consider updating the mortality
for each age based on the upcoming past information from the same age but also the neighboring
ages. The inclusion of the neighboring ages is crucial as the particular smoothing procedure used in
this paper add a dependency between the single ages. Based on classical results on the inference of
the smoothing procedure we derived the closed form formulas needed to adjust the mortality.

The proposed methodology is shown to outperform compared to the classical credibility ap-
proaches that does not take into account the age structure of the portfolio. This is in line with
the recent work in this field as mentioned by Salhi et al. (2016). Even when the age structure is
accounted for the methodology developed in this paper has an important benefit. This is mainly
due to the underlying curve built using an adaptive procedure compared to the parametric model
considered in Salhi et al. (2016).

We should note that the model proposed can be investigated in order to quantify mathematically
the errors induced in the assessment of the next-period mortality curve. This amend to consider the
uncertainty stemming from the estimation of the different variables used in the updating procedure.
There are also several practical issues we do not address here such as the impact on the pricing of
life insurance contracts. These are open questions that we openly acknowledge and leave for future
research.
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A Additional Tables

Table 3: Tests and quantities summarizing the deviation between the observations and the model

Hardy-Panjer  Poisson-Gamma  Makeham-Credibility =~ Smoothed = Smoothed+Adj.

X2 2 1901.240 1928.680 259.400 357.870 193.967
MAPE (%) ‘:5 102.660 102.000 32.870 3.018 2.349
+
SMR E 1.737 1.756 1.126 1.487 1.385
X2 2 34.890 33.640 30.940 37.612 31.166
MAPE (%) = 48.030 49.120 53.990 20.119 20.842
(=]
+
SMR E 1.037 1.002 0.905 1.102 0.948
X2 3 130.120 132.890 79.321 58.615 51.515
MAPE (%) = 95.390 92.490 44.880 14.006 13.078
“—
+
SMR E 0.826 0.853 1.405 0.984 1.168
X2 2 473.680 573.940 348.180 NA 370.401
MAPE (%) 3 85.660 88.040 90.420 59.296 56.038
+
SMR E 2.857 3.424 5.021 3.513 5.534
x2 l; 221.640 223.560 195.000 77.997 72.795
MAPE (%) 3 135.390 135.710 37.250 0.534 0.509
SMR E 0.846 0.844 0.823 0.922 0.922
x2 % 2575.630 2583.900 2414.250 66.033 61.174
MAPE (%) 3 323.780 324.610 263.210 1.100 1.122
SMR E 0.232 0.231 0.243 0.928 0.930
X2 2 1572.530 1573.970 1502.870 57.461 53.735
MAPE (%) E 368.080 368.290 125.640 0.764 0.755
+
SMR é 0.423 0.423 0.419 0.932 0.940
X2 = 115.820 116.470 97.880 83.790 72.448
MAPE (%) % 89.680 91.030 46.140 3.356 3.530
o~
SMR = 0.871 0.862 0.960 0.948 0.950
[aW)
X2 = 415.320 417.530 76.480 55.888 55.127
MAPE (%) % 152.870 151.690 46.970 5.934 5.548
o
SMR % 0.829 0.837 1.018 0.918 0.964
[aW)
X2 S 130.050 129.230 90.740 88.836 76.459
MAPE (%) % 110.540 107.220 95.270 36.577 33.344
(=
SMR = 0.598 0.619 0.543 0.669 0.539
el
X2 3 351.560 351.360 263.550 94.570 89.428
MAPE (%) % 180.910 180.610 54.620 1.765 1.608
(=]
SMR = 0.839 0.840 0.832 0.914 0.930
eV
<t
X2 - 227.860 227.950 85.920 59.317 50.885
MAPE (%) = 159.740 160.600 53.530 5.659 4.852
(=]
+
SMR E 0.792 0.788 0.939 0.827 0.860
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