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Abstract

We define in this paper a general Hawkes-based framework to model infor-
mation diffusion in social networks. The proposed framework takes into con-
sideration the hidden interactions between users as well as the interactions
between contents and social networks, and can also accommodate dynamic
social networks and various temporal effects of the diffusion, which provides
a complete analysis of the hidden influences in social networks. This frame-
work can be combined with topic modeling, for which modified collapsed
Gibbs sampling and variational Bayes techniques are derived. We provide an
estimation algorithm based on nonnegative tensor factorization techniques,
which together with a dimensionality reduction argument are able to dis-
cover, in addition, the latent community structure of the social network.
At last, we provide numerical examples from real-life networks: a Game of
Thrones and a MemeTracker datasets.

Key words: Information diffusion, social networks, Hawkes processes,
nonnegative tensor factorization, topic models

1. Introduction

Information diffusion/dissemination in social networks refers to users broad-
casting (sharing, posting, tweeting, retweeting, liking, etc.) information to
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others in the network. By tweeting, for example, users broadcast informa-
tion to the network, which is then transmitted to their followers. These
sequences of broadcasts by users are called information cascades, and have
been studied extensively over the past years; see for example [1, 2, 3, 4]. The
large amount of recent work on this subject reflects the strategic real-life
implications which may be brought by the knowledge of such cascades: one
can discover the hidden impact of users and contents on this diffusion, and
highlight various characteristics of not only the social networks in question
but also of the influential users and their contents [5, 6, 7, 8].

Information diffusion cascades are complex objects, for which there is no
consensus on the standard way to study them; for example: Kempe et al. in
their seminal paper [2] develop a framework based on submodular functions
to detect the optimal seed group in order to diffuse a fixed content in a social
network, based on the so-called independent cascade propagation model [9,
10], which is a well known information diffusion model. In [11], Myers and
Leskovec study the variation of the probability in retransmiting information
due to previous exposure to different types of information; they found that,
for Twitter, these retransmission probabilities are indeed very different when
compared to results stemming from independent cascade models; however,
their approach does not take into consideration the time between broadcasts
of information and the topology of the network. And in [4], Gomez-Rodriguez
et al. study the network inference problem from information cascades using
survival theory; however, again, the authors to not take into consideration
the underlying network structure.

Among the works dealing with information diffusion, there has been a
steady increase of interest in point-processes-based models [12, 13, 14, 15].
Point processes take into consideration the broadcast times of users, whereas
a lot of information cascade models consider time to be discrete, i.e., time
only evolves when events occur; point processes are counting processes and
have thus a discrete state space, which makes them able to fully capture
real-life features, such as the number of posts, without increasing the mathe-
matical complexity of the models; and the closed formula for the likelihood of
these point processes ([16] p. 232) gives us easy, simple and direct methods
for the estimation of important model parameters. For instance, Myers et al.
study in [12] the influence of externalities from other nodes on information
cascades in networks; they use a point process approach, from which the time
instances of infection are essential for the estimation of parameters, but the
topological properties of the network are of secondary concern in their work.
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One point process has been particularly useful in the modeling of these
continuous-time models: the Hawkes process [17, 18]. Hawkes processes are
self-exciting point processes and are perfect candidates for counting events on
information cascades, where users transmit their information to their neigh-
bors in a social network. The use of self-exciting processes here enlightens
the necessity of a theory that can model the interaction between people hav-
ing a conversation or exchanging messages: imagine two people messaging
each other through SMS. Normally each one would have its own rhythm
of messaging, but due to the self-excitation among these people, they will
text and respond faster than they would normally do when generating SMS
messages without response. For example, Yang and Zha study in [19] the
propagation of memes (see definition in [20] p. 192) in social networks with
linear Hawkes processes and couple the point process with a language model
in order to estimate the memes. They provide a variational Bayes algorithm
for the coupled estimation of the language model, the influence of users and
their intrinsic diffusion rates; however, they do not take into consideration
the influence that memes may have on one another; moreover, they propose
the estimation of the entire social network, not taking into consideration the
eventual lack of communication between users.

Hawkes processes have already been successfully employed to study earth-
quakes [21], neuronal activities [22], high-frequency finance [23], social sci-
ences [19, 24, 25] and many other fields, with a vast and diversified literature.

This paper aims to provide a framework for information diffusion models
in social networks using Hawkes processes. The framework encompasses:

• modeling and estimating user-user and topic-topic interactions,

• modeling and estimating multiple social networks and their interac-
tions,

• being combined with topic models [26, 27, 28], for which modified col-
lapsed Gibbs sampling [29, 30, 31] and variational Bayes techniques
[32, 33] are derived,

• estimating different temporal effects of the users diffusion, such as sea-
sonality and non-homogeneity,

• using and estimating dynamic/temporal social networks [34, 35], and
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• retrieving the community structure of the underlying users influence in
social networks, due to a dimensionality reduction during the parame-
ters estimation (see [36] for another example of such methodology).

We also provide numerical examples of our framework for four different
datasets: the first two datasets are synthetic datasets generated by Ogata’s
thinning method [37] for Hawkes processes, the third is a Game of Thrones1

dataset consisting of the speakers information for the first episode for the
first season, from which we retrieve the hidden influence graph of characters,
and the last one is a MemeTracker dataset, with different topics and world
news for the 5, 000 most active sites from 4 million sites from March 2011
to February 20122, where we use the 5 most broadcasted memes to estimate
the hidden websites influence graph.

The rest of the paper is organized as follows. Section 2 describes our
model for information diffusion using Hawkes processes. Section 3 details the
estimation procedure of the hidden influences, with the modified collapsed
Gibbs sampling and variational Bayes techniques for the author-topic model
[27] as an example. Section 4 discusses some additional topics for our Hawkes
diffusion framework. In Section 5 numerical experiments are performed for
the beforementioned datsets, and Section 6 concludes the paper.

2. Models

A multivariate linear Hawkes process (see [17, 18] for more details) is
a self-exciting orderly point process Xt, t ∈ [0, τ ] with the intensity λt =

limδ↘0
E[Xt+δ−Xt|Ft]

δ
satisfying

λt = µ+

∫ t

0

φ(t− s)dXs,

where Ft = σ(Xs, s ≤ t) is the filtration generated by X, µ is an intrinsic
Poissonian rate and φ is a causal kernel that is responsible for the self-exciting
part.

The intensity λt can be divided into two distinct parts: the intrinsic
Poissonian rate µ, which models the base intensity of the Hawkes process,

1http://en.wikipedia.org/wiki/Game_of_Thrones.
2Data available at http://snap.stanford.edu/netinf.
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and does not take into account the past of the process, and the self-exciting
part

∫ t
0
φ(t − s)dXs, which models the interactions of the present with past

events. The µ coefficient can, for example, model how some user tweets
something, after learning about it in class or at work, after listening to the
radio or watching television.

The orderly property of the Hawkes process means that X cannot have
two events/jumps at the same time ([16] p. 232), and by the standard theory
of point processes ([16] p. 233) we have that an orderly point process is
completely characterized by its intensity, which in this case is also a stochastic
process (as consequence, the orderly property of Hawkes processes allows the
estimation of its parameters by maximum likelihood techniques, as performed
in section 3); and the self-excitatory property of the Hawkes process means
that future jumps become more probable to occur when X jumps.

We model the social network as a graph G = (V,E), where V is the set of
users and E is the set of links between users (Facebook friends, Twitter fol-
lowers, etc.), such that this information is coded by a directed and unweighted
inward adjacency matrix A such that Ai,j = 1 if user j can influence user i,
i.e., if (j, i) ∈ E or j  i, and Ai,j = 0 otherwise.

The broadcasting of messages can be performed in various ways, depend-
ing on the application and the social network in question: measuring tweets,
retweets or likes, checking the history of a conversation in a chat room, etc.
However, they all have one thing in common: messages are broadcasted by
the N = ]V users in the social network, and users that can receive these
broadcasts may be directly influenced by them (this procedure of course
allows the indirect influence of users, e.g. two-hops influence, three-hops in-
fluence, however these influences are not estimated in our model and are seen
as a consequence of the direct influence).

Here is a concrete example of this mechanism: in Facebook, users can
post various messages in their wall, where their friends can check on these
messages regularly. Assuming that we are modeling the Facebook social
network, our graph G is the friendship graph of Facebook, and the Hawkes
processes X counts the number of messages that each user posted, regarding
each different subject (assuming that we can in some sort categorize the
messages’ subjects). Thus, when friends check on each other, they increase
the likelihood of taking some action, e.g. they may respond to the messages,
they may like them, they may send them to other people, or they may even
post something else entirely. This mechanism illustrates the influence of
people and contents in the social network, where a user influences others if
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her messages increase the likelihood of other users broadcasting their own
messages by, for example, taking some of the beforementioned actions.

Throughout this paper we adopt two kinds of message categories: the first
kind assumes that messages are of K predefined topics (economics, religion,
culture, politics, sports, music, etc.) and that each message is represented by
exactly one of these topics. The second kind assumes a ”fuzzy” setup with K
topics, where this time the topics are not known beforehand and messages are
a mixture of these unknown (latent) topics; Barack Obama may for example
tweet something that has 40% of its content about politics, 50% of its content
about economics and 10% of its content related to something else.

2.1. User-user and topic-topic interactions with predefined topics

We first focus on the case where messages are about one of K predefined
contents (economics, religion, sports, etc.). We assume that we have N users
in the social network and that they can influence each other to broadcast,
and that these influences are independent of the broadcasted content. On the
other hand, the topic to be broadcasted is influenced by the topics already
broadcasted beforehand.

This is the case, for example, if one wants to separate the influence effects
of users and topics: posts about politics can influence posts about fashion,
economics, religion, etc., and people can influence other people simply be-
cause they are friends, famous or charismatic. In this model we assume that
the influence of a specific user when posting something is given by two dif-
ferent components, the user-user component and the topic-topic component.

These influences are coded by two matrices: the user-user influence ma-
trix J and and the topic-topic influence matrix B, such that Ji,j ≥ 0 is the
influence of user i over user j and3 Bc,k ≥ 0 is the influence of topic c over
topic k. In real-life social networks, people who tend to promote conversa-
tions and trends in Twitter or Facebook or any other social network would
have larger values for the matrix J , whereas topics that are trendy or ”im-
portant” would have larger values for the matrix B. A maximum likelihhod
estimation procedure for these matrices is carried out in subsection 3.1

We model the number of messages broadcasted by users as a linear Hawkes
process Xt ∈MN×K(R+), where X i,k

t is the cumulative number of messages
of topic k broadcasted by user i until time t ∈ [0, τ ] in the social network. In

3We assume that B is normalized such that
∑
k Bc,k = 1 for all c, such as in [38].
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other words, this Xt is a RN×K point process with intensity

λi,kt = µi,k+
∑
c

∑
j i

Bc,kJi,j

∫ t−

0

φ(t−s)dXj,c
s = µi,k+

∑
c

∑
j i

Bc,kJi,j(φ∗dX)j,ct ,

where µi,k ≥ 0 is the intrinsic rate of broadcasting of user i about topic k,
φ(t) ≥ 0 is the temporal influence kernel that measures the temporal shape of
influences coming from past broadcasts - which satisfies ||φ||1 =

∫∞
0
φ(t)dt <

∞ - and

(φ ∗ dX)t =

∫ t−

0

φ(t− s)dXs ∈MN×K(R+)

is the convolution matrix of the temporal kernel φ and the jumps dX. This
allows one to use N2 + K2 parameters instead of N2K2 for the full fledged
model without this influence factorization.

As said before, not all users can communicate with each other. Hence
one must take into consideration the inward adjacency matrix A given by the
underlying structure on the social network. This is done by the relationship

Ai,j = 0⇒ Ji,j = 0. (1)

Remark: Two standard time-decaying functions are φ(t) = ωe−ωt.I{t>0} a
light-tailed exponential kernel [39, 40, 19] and φ(t) = (b − 1)(a + t)−b.I{t>0}
a heavy-tailed power-law kernel [25].

2.2. User-topic interactions and global influence in the social network

A different model arises when users do not influence other individually,
but they influence the social network as a whole. This means that instead
of having an influence matrix J ∈ MN×N(R+) that measures the user-user
interactions, we have now an influence matrix J̃ ∈ MN×K(R+) such that
J̃i,k ≥ 0 is the influence of user i over the whole social network, when he
broadcasts something about topic k.

Hence, the associated Hawkes process X i,k
t , which measures the cumu-

lative number of messages broadcasted by user i about topic k until time
t ∈ [0, τ ], has intensity

λi,kt = µi,k +
∑
c

∑
j i

Bc,kJ̃j,c

∫ t−

0

φ(t− s)dXj,c
s .

Think about Barack Obama: it is natural that posts or tweets about
economics or politics coming from Obama are going to have a much bigger
impact than posts about sports or fashion.
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2.3. User-user and topic-topic interactions with ”fuzzy” topic label

Up until now we have dealt with information dissemination models having
K predefined topics and in which each broadcasted message was assumed to
belong to one, and only one, of these topics. We consider now a different
point of view regarding the broadcasted messages: each message now is a
mixture over K undiscovered/latent topics. These topics are distributions
over words and each message broadcasted at time ts ∈ [0, τ ] generates the
message’s empirical distribution of topics random variable Zts such that

Zts
k =

1

Ns

Ns∑
w=1

zs,wk , (2)

where Ns is the number of words in the message broadcasted at time ts and
zs,w are discrete random variables modeling the topic of word w, i.e., zs,wk = 1
if and only if word w in message ts is about topic k, and 0 otherwise.

In this model users receive messages that are mixtures of topics and each
user reacts to the topics in a different manner. These user-topic interactions
are characterized by the matrix H ∈ MN×K(R+), such that4 Hi,k measures
the influence of topic k over user i.

We define thus the Hawkes processes X i
t as the cumulative number of

messages broadcasted by user i in the social network until time t ∈ [0, τ ],
with intensity

λit = µi +
∑
j i

Ji,j
∑
c,k

Bc,kHi,k

∫ t−

0

φ(t− s)Zs
cdX

j
s

= µi +
∑
j i

Ji,j
∑
c,k

Bc,kHi,k(φ ∗Z dX)j,ct ,

where µi ≥ 0 represents the intrinsic dissemination rate of user i and

(φ ∗Z dX)j,ct =

∫ t−

0

φ(t− s)Zs
cdX

j
s

is the (j, c) entry of the weighted convolution of the temporal kernel φ and
the jumps dX, where the weights are the topic empirical proportions of each
message broadcasted by user j.

4We also assume that
∑
kHi,k = 1, following [41].
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Again, not all users can communicate among themselves, hence one must
take into consideration Eqn. (1).

In order to fully exploit the random variables Zts we use topic models
[26, 27, 28], as for example the latent Dirichlet allocation [26] (see[41] for
such a methodology) or the author-topic model [27], which will be presented
later.

Remark: One can also easily extend the model in subsection 2.2 to the
”fuzzy” diffusion framework, following these ideas.

2.4. User-user and topic-topic interactions with predefined topics in multiple
social networks

We now turn to the case where we have several ”interconnected” social
networks. The mth ∈ {1, 2, · · · ,M} social network is defined as a communi-
cation graph Gm = (V m, Em), where V m is the set of users and Em is the
edge set, i.e., the set with all the possible communication links between users
of the mth social network. Again, we assume these graphs to be directed and
unweighted, and coded by inward adjacency matrices Am such that Ami,j = 1
if user j is able to influence user i in social network m, or Ami,j = 0 otherwise.

One can think about Facebook and Twitter users: there are users in
Facebook that do not necessarily follow the same people on Facebook and
on Twitter, and vice-versa. Let us say that Facebook is social network 1
and Twitter is social network 2; A1

i,j = 1 means that user i follows user j in
Facebook and receives the news published by user j in his or her timeline.
This does not necessarily imply that A2

i,j = 1, i.e., user i also follows user j
on Twitter.

Assuming that we have M different social networks, each one with its
own adjacency matrix Am, we model the influence of broadcasts using, sim-
ilarly to the model in subsection 2.1, three matrices J ∈ MN×N(R+), B ∈
MK×K(R+) and S ∈MM×M(R+), such that Ji,j ≥ 0 is the influence of user
i over user j, Bc,k ≥ 0 is the influence of topic c over topic k and5 Sm,n is
the influence that a generic user of social network m has over a generic user
of social network n. The network-network influence matrix S measures thus
how broadcasts made on one social network influence broadcasts made on
the others.

Let X i,k,n
t be the cumulative number of messages broadcasted by user i

5As before, we assume that
∑
n Sm,n = 1.
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about content k at social network n until time t ∈ [0, τ ]. The intensity for
this process is thus

λi,k,nt = µi,k,n +
∑

m,c,j i

Sm,nJi,jBc,k

∫ t

0

φn(t− s)dXj,c,m
s ,

where J is again the user-user influence matrix, B is the topic-topic influence
matrix and µ is the intrinsic rate of dissemination on different social networks.

In view of Eqn. (1), if there exists an edge j  i in some social network,
then user i can be influenced by user j. Our new constraint becomes∑

m

Ami,j = 0⇒ Ji,j = 0.

One can notice in the definition of the intensity of this model that each
social network m has its own6 temporal kernel function φm. Each temporal
kernel φm represents how users and contents in each social network are af-
fected by ancient messages, and are considered a timescale parameter7. Let
us take for comparison Twitter and Flickr: in Twitter users chat, discuss,
post comments and retweet, while Flickr is a photo-sharing social network
that allows users to upload photos and post comments. This means that the
conversation and interaction mechanisms in both social networks are differ-
ent, since they serve different purposes. It is thus natural to assume that
users in both social networks react differently to the information received;
these different reactions are in part measured by the different temporal ker-
nels (φm)m∈{1,··· ,M}.

2.5. Network dependent user-user and topic-topic interactions in multiple
social networks

A second (and more complex) extension to the single social network in-
formation diffusion model is to assume that the different broadcasting mech-
anisms in each social network imply different influences on users and topics.

6The temporal kernel functions could take more complicated forms, such as φk,m, where
each topic in a social network would have an idiosyncratic temporal kernel function. This
enlightens the versatility of this Hawkes framework, allowing one to adapt the system
parameters to any desired situation.

7Take for example the exponential kernel φ(t) = ωe−ωt.I{t>0}: the larger the ω, the
larger is the influence of recent broadcasts. This may imply users responding faster to
immediate messages.
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It means that the user-user and topic-topic influences are now specific to
each social network, i.e., user j broadcasting a message about content c on
a social network m influences user i in this same social network when he
broadcasts some message about content k. These network-dependent influ-
ences are measured by the user-user influence matrices (Jm)m∈{1,··· ,M} and
topic-topic influence matrices (Bm)m∈{1,··· ,M}.

Remark: Viewed as high-dimensional objects, J andB are three-dimensional
tensors.

We can define, again, X i,k,n
t to be the cumulative number of messages

broadcasted by user i about content k in social network n until time t ∈ [0, τ ].
The intensity for this process is then

λi,k,nt = µi,k,n +
∑

m,c,j
m
 i

Sm,nJ
m
i,jB

m
c,k

∫ t

0

φn(t− s)dXj,c,m
s ,

where j
m
 i means that user j can influence user i in social network m, i.e.,

Ami,j = 1.
Since now users only influence themselves in the same social network, the

adjacency matrix constraint in Eqn. (1) becomes

Ami,j = 0⇒ Jmi,j = 0.

Remark: One can easily extend the model to social network-social net-
work specific influences of the form Jm,ni,j and Bm,n

c,k , for which the above
extension is a particular case Jm,ni,j = Jmi,jSm,n and Bm,n

c,k = Bm
c,kSm,n.

Remark: One can also easily extend the user-topic information dissemi-
nation model in a single social network and the ”fuzzy” diffusion model in a
single social network to take into account multiple social networks, following
these ideas.

3. Maximum likelihood estimation and multiplicative updates

One of the strong points about point processes (and Hawkes processes for
that matter) is the analytic form of the likelihood of their realization (see
[42] or [16] p. 232), where Hawkes-based models for information diffusion
used extensively this property in order to derive convex-optimization-based
maximum likelihood estimates for the system parameters [15, 19, 43].

Another technique for the maximum likelihood estimation of the Hawkes
process X was derived in [39, 40], where the authors slice the information
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time period [0, τ ] into T small bins of size δ > 0 in order to create suitable
tensors for the intensity and the Hawkes jumps, and show that maximizing
an approximation of the log-likelihood is equivalent to solving a nonnegative
tensor factorization (NTF) problem [44, 45, 46, 47].

Since we deal with real-life social networks, the number of parameters to
be estimated is large and convex optimization techniques that estimate each
parameter separately are too demanding in terms of complexity. That is
why we adopt the estimation framework of [39, 40], for which multiplicative
updates can be derived (see [38, 41] for the same methodology).

Let us take a δ > 0 that is smaller than the minimum elapsed time
between broadcasts in [0, τ ] and divide [0, τ ] into T = d τ

δ
e time bins such that

we do not have more8 than one broadcast in each bin, in order to preserve
the orderliness property of X.

Let Y , λ and φ be tensors such that

Yt =
dX(t−1)δ

δ
=
Xtδ −X(t−1)δ

δ
, λt = λ(t−1)δ and

φ
m

t =

{
(φm ∗ dX)(t−1)δ for predefined topics model
(φm ∗Z dX)(t−1)δ for ”fuzzy” diffusion model,

i.e., Y contains the jumps of Xt at each time bin ((t− 1)δ, tδ].
We begin by showing that maximizing the Riemann-sum approximation

of the log-likelihood of X is equivalent to minimizing the Kullback-Leibler
(KL) divergence between Y and λ.

Lemma 1. If
∫ τ
0

log(λi,k,mt )dX i,k,m
t and

∫ τ
0
λi,k,mt dt are approximated by their

respective Riemann sums, then maximizing the approximated log-likelihood of
X in [0, τ ] is equivalent to minimizing

DKL(Y |λ) =
∑
i,k,m,t

dKL(Y i,k,m
t |λi,k,mt ), (3)

where dKL(y|x) = y log( y
x
)− y+ x is the Kullback-Leibler divergence between

x and y.

8In practice, this orderliness constraint is not satisfied in order to decrease the com-
plexity of the multiplicative updates.
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Proof. Let us place ourselves, without loss of generality, in an information
diffusion model with predefined topics9 and let tn be the broadcast times
in [0, τ ], such that user in broadcasted a message about topic kn in social
network mn at time tn. We have that the log-likelihood of X is given by (see
for example [42] or [16] p. 232)

L = log

( ∏
0≤tn≤τ

λin,kn,mntn

)
−
∑
i,k,m

∫ τ

0

λi,k,mt dt

=
∑
i,k,m

(∫ τ

0

log λi,k,mt dX i,k,m
t −

∫ τ

0

λi,k,mt dt

)
.

Approximating the integrals in L by their Riemann sums we get

L ∼
∑
i,k,m

∑
t

(
log λi,k,m(t−1)δ(X

i,k,m
tδ −X i,k,m

(t−1)δ)− δλ
i,k,m
(t−1)δ

)
,

thus maximizing the approximation of L is equivalent to minimizing

−L/δ ∼
∑
i,k,m

∑
t

(
λ
i,k,m

t − Y i,k,m
t log λ

i,k,m

t

)
.

With Y fixed, this is equivalent to minimizing

DKL(Y |λ) =
∑
i,k,m,t

dKL(Y i,k,m
t |λi,k,mt ).

Using lemma 1, we have that the maximization of the approximated log-
likelihood of X is equivalent to a nonnegative tensor factorization problem
with cost function DKL(Y |λ), where Y are the normalized jumps of X and
λ is a tensor representing the intensity of X.

9For ”fuzzy” diffusion models, we consider the conditional log-likelihood with respect
to Z, which is (see for example [16] p. 251)

L(X|Z) = log

( ∏
0≤tn≤τ

λin,mn

tn

)
−
∑
i,m

∫ τ

0

λi,mt dt =
∑
i,m

(∫ τ

0

log λi,mt dXi,m
t −

∫ τ

0

λi,mt dt

)
.
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This nonnegative tensor factorization problem stemming from the mini-
mization of the cost function DKL(Y |λ) has already been studied at length
in [44, 48, 46, 47], where authors derive convergent multiplicative updates
[49, 45].

These multiplicative updates are interesting for several reasons: they are
simple to implement (they are basically matrix products and entrywise oper-
ations), can be performed in a distributed fashion and have a low complexity
on the data, thus being adequate to work on real-life social networks of mil-
lions (or even hundreds of millions) of nodes.

These NTF techniques are based on the multiplicative updates given by
the following lemma:

Lemma 2. Let Y be a nonnegative tensor of dimension M , S a nonnegative
tensor of dimension sS +L and H a nonnegative tensor of dimension hH +L
such that sS + hH ≥M . Define SH, a nonnegative tensor of dimension M ,
such that

(SH)j1,··· ,jM =
∑
l1,··· ,lL

Sis1 ,··· ,isS ,l1,··· ,lLHih1 ,··· ,ihH ,l1,··· ,lL ,

where we have that

• {is1 , · · · , isS} ∪ {ih1 , · · · , ihH} = {j1, j2, · · · , jM} (we can still have
{is1 , · · · , isS} ∩ {ih1 , · · · , ihH} 6= ∅) and

• {j1, · · · , jM} ∩ {l1, · · · , lL} = ∅.

Define the cost function

DKL(Y |SH) =
∑

j1,··· ,jM

dKL(Yj1,··· ,jM |(SH)j1,··· ,jM ),

where dKL(y|x) = y log( y
x
)− y+ x is the Kullback-Leibler divergence between

x and y.
The multiplicative updates for DKL(Y |SH) of the form

Zn+1 ← Zn �
∇−ZDKL(Y |SH)|Zn

∇+
ZDKL(Y |SH)|Zn

, (4)

with

14



• the variables Z ∈ {S,H}, ∇+/−
Z DKL(Y |SH) the positive/negative part

of ∇ZDKL(Y |SH),

• A�B the entrywise product between two tensors A and B, and

• A
B

the entrywise division between two tensors A and B,

satisfy

DKL(Y |Sn+1H) ≤ DKL(Y |SnH) and DKL(Y |SHn+1) ≤ DKL(Y |SHn),

i.e., the multiplicative updates produce nonincreasing values for the cost func-
tion DKL(Y |SH).

The proof of lemma 2 is based on bounding DKL(Y |SH) by above using
an auxiliary function, due to the convexity of dKL. The result when Y, S
and H are matrices is well explained in [49, 45] and the general case is
demonstrated in A.

Unfortunately, the cost function (3) is not convex on the ensemble of
tensors, which means that we cannot expect to retrieve the global minimum of
DKL(Y |λ), i.e., the global maximum of the Hawkes likelihood. Nevertheless,
it is convex (due to the convexity of the Kullback-Leibler divergence) on each
tensor, given that the other is fixed. So, estimating each tensor given the rest
fixed in a cyclic way produces nonincreasing values for Eqn. (3), as in [49, 45],
thus converging to a local maximum of the approximated log-likelihood.

When δ → 0, the Riemann sums converge to their respective integrals,
and minimizing the cost function in Eqn. (3) becomes equivalent to maxi-
mizing the likelihood of X.

As all information diffusion models of our Hawkes-based framework can
be estimated using the same techniques based on lemmas 1 and 2, we have
thus created a unified information dissemination framework using Hawkes
processes.

Similarly to nonnegative matrix factorization (NMF) problems [48, 45],
the multiplicative updates in lemma 2 can be sometimes written in a con-
cise matrix form. We give next two examples of such cases: the models of
subsections 2.1 and 2.3.

3.1. Estimation of model in subsection 2.1

In order to proceed to the estimation procedure, one needs first to handle
the user-user interaction with care: due to the overwhelming number of user-
user interaction parameters Ji,j in real-life social networks (where we have
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millions or even hundreds of millions of users), we factorize J into FG, such
that F ∈MN×d(R+) is a N×d matrix and G ∈Md×N(R+) is a d×N matrix,
with d� N . This method is similar to clustering the hidden influence graph
into different communities (see [36]).

One can also notice that by performing a dimensionality reduction J =
FG during the estimation, we not only estimate the influence that users have
over one another but we also acquire information on the communities of the
underlying social network, since we are able to factorize the hidden influence
graph J .

This is a very difficult problem, since the cyclic multiplicative updates
destroy this relationship, and the only other way to do so is to estimate each
coordinate separately. Since Ai,j ∈ {0, 1}, we can circumvent this problem
using a convex relaxation of this constraint of the form10 η〈1− A,FG〉 and
η ≥ 0 a penalization parameter.

We have the following penalization η〈1− A,FG〉, with derivatives

∇Fη〈1− A,FG〉 = η(1− A)GT and ∇Gη〈1− A,FG〉 = ηF T (1− A).

Unfortunately, since F and G act as a product, there is a potential iden-
tifiability issue of the form FG = FΓΓ−1G = F̃ G̃ where Γ is any scaled
permutation and the pair F̃ = FΓ, G̃ = Γ−1G is also a valid factorization
of J (see [44, 50, 39]). We deal with this issue by normalizing the rows of
G to sum up to 1 (see [44, 39]). This normalization step involves the resolu-
tion of a nonlinear system for each row of G to find the associated Lagrange
multipliers.

Our constraint thus becomes G1 = 1, for which the Karush-Kuhn-Tucker
conditions are written in matrix form as ηG =

∑d
i=1 ηG,ie

T
i 1, with (ei)i∈{1,··· ,d}

the standard basis vectors and ηG,i ∈ R the Lagrange multipliers solution of
the nonlinear equation G1 = 1 after the update.

Let us recall that in this particular model we have the Hawkes parameters
J = FG,B and µ. With an abuse of notation, let us define the N×T matrices

Y k, λ
k

and φ
k

such as Y k
i,t = Y i,k

t , λ
k

i,t = λ
i,k

t and φ
k

i,t = φ
i,k

t , and the d × T
matrices ρk and ρk =

∑K
k′=1Bk′,kρ

k′ such that ρki,t =
∑

j Gi,jφ
k

j,t.

10From now on we denote by 1 any vector or matrix with entries equal to 1. The
dimension of 1 will be clear in the context.

16



If we proceed using lemma 2, following [45], we have

∂Fn,mDKL(Y |λ) =
∑
t,k

(
1− Y n,k

t

λ
n,k

t

)
(GφtB)m,k

=
∑
k

(∑
t

(
1− Y n,k

t

λ
n,k

t

)
(GφtB)m,k

)
=
∑
k

((
1− Y k

λ
k

)
(ρk)T

)
n,m

.

Taking the positive and negative parts of ∇FDKL(Y |λ) we have that

∇+
FDKL =

∑
k

1(ρk)T and ∇−FDKL =
∑
k

[
Y k

λ
k

](ρk)T .

Since the constraint ∇Fη〈1 − A,FG〉 = η(1 − A)GT is nonnegative, we
have that it belongs to the positive part of ∇FDKL(Y |λ), which gives the
multiplicative updates

F ← F �
∑K

k=1[
Y k

λ
k ](ρk)T∑K

k=1 1(ρk)T + η(1− A)GT
.

We can proceed accordingly with G, B and µ in a cyclical manner, as
already mentioned.

Remark: One can read [38] for the details of estimation in this information
diffusion model.

3.2. Estimation of model in subsection 2.3

We focus in this subsection on the ”fuzzy” diffusion model with user-
user and topic-topic interactions in a single social network. The estimation
procedure in ”fuzzy” diffusions follows the same ideas as in the preceding
subsection, with a minor difference: one also needs to estimate the topic
model parameters. The topic model parameters are estimated during the
Hawkes parameters estimation, and are influenced by these. At the same
time, the topic model parameters also influence the Hawkes parameters esti-
mation through the random variables Z.

The estimation step is thus performed in two steps: first one estimates the
topic parameters with the initial values for the Hawkes parameters F,G,B,H
and µ, using the conditional log-likelihood of X given Z and lemma 2. Then,
one estimates the topic model parameters with the Hawkes parameters fixed.
One may just continue the reiteration of the Hawkes parameters estimation,
and topic model parameters estimation until convergence.
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3.2.1. Hawkes parameters estimation

We perform briefly here an estimation procedure for the Hawkes param-
eters, given the empirical topic proportions Z fixed.

As before, we have by lemma 1 that maximizing the conditional log-
likelihood of X given Z is equivalent to minimizing

DKL(Y |λ) =
∑
i,t

dKL(Y i
t |µi +

∑
k

Hi,k

∑
l

Fi,l(GφtB)l,k).

We can, again, use lemma 2 to derive multiplicative updates, as

∂Fn,mDKL(Y |λ) =
∑
t

(
1− Y n

t

λ
n

t

)∑
k

Hn,k(GφtB)m,k

=
∑
k

(∑
t

Hn,k

(
1− Y n

t

λ
n

t

)
(GφtB)m,k

)
.

Define now F n to be the nth row of F , i.e., the 1 × d vector F n =
(Fn1, · · · , Fnd), we have thus

F n ← F n �
∑K

k=1Hn,k

(
[Y

n

λ
n ](ρk)T

)∑K
k=1Hn,k1(ρk)T + η(1− A)GT

,

where Y n = (Y n
1 , Y

n
2 , · · · , Y n

T ) and λ
n

= (λ
n

1 , λ
n

2 , · · · , λ
n

T ) are 1 × T row
vectors, ρ = (I⊗G)φ is an auxiliary dK × T and ρk =

∑K
k′=1Bk′,kρ

k′ .
We can apply the same principle to G, B, H and µ, yielding:
For G

G← G�
∑K

k=1(F
k)T
(
[Y
λ

](Φ
k
)T
)∑K

k=1(F
k)T1(Φ

k
)T + ηF T (1− A) + ηG

,

where Y and λ are N × T matrices, F k is a N × d matrix such that F k
i,l =

Fi,lHi,k, Φ
k

is an auxiliary N × T matrix such that Φ
k

i,t =
∑

k′ Bk′kφ
i,k′

t ,
ηF T (1−A) is the constraint from Eqn. (1) and ηG is the constraint G1 = 1.

For B

Bk ← Bk �
∑N

i=1Hi,kζ
i[Y

i

λ
i ]∑N

i=1Hi,kζ i1
,

where Bk is the kth column of B, Y i = (Y i
1 , · · · , Y i

T ) and λ
i

= (λ
i

1, · · · , λ
i

T )

are column vectors and ζ i is a K × T matrix such that ζ ik,t =
∑

j Jijφ
j,k

t .
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For H

Hn ← Hn �
[Y

n

λn
](Ψn)T

1(Ψn)T
,

where Hn is the nth row of H, Y n = (Y n
1 , · · · , Y n

T ) and λ
n

= (λ
n

1 , · · · , λ
n

T )
are row vectors and Ψn is a K × T matrix such that Ψn

k,t = (JφtB)n,k.
For µ

µ = µ�
[Y
λ

]1

1T1
= µ�

[Y
λ

]1

T
.

3.2.2. The author-topic model

One of the fundamental pillars of the ”fuzzy” diffusion models are the
topic models used to estimate the unknown/latent K topics for each broad-
casted message, which are statistical models for discovering compound ”top-
ics”, composed of multiple ideas, that appear in documents [26, 27, 28].

We focus in this subsection on a particular topic model, the author-topic
(AT) model [27]; any other topic model whose estimation procedure adapts
well in our framework can however be used. One such example is the latent
Dirichlet allocation (LDA) topic model of [26], used similarly in [41].

The author-topic model is a generative model that works as follows: a
group of authors at ∈ V broadcasts a message at time tt. For each word
w in the message, an author is chosen uniformly at random in at, which
is coded by the random variable xt,w. Then, a topic zt,w is chosen from a
discrete random variable11 θx

t,w
, and finally the word w is generated from the

chosen topic, following the distribution P(w = W v|zt,w = k) = βk,v, where
β is the topic-word distribution12 and W v is the vth entry in the dictionary
{1, 2, · · · ,W} (see figure 1).

The random variables xt,w represent the author associated with the word
w in the message broadcasted at time tt, sampled uniformly from at ⊂
{1, 2, · · · , N}. In our case, ]at = 1 for all messages broadcasted at times
tt ≤ τ , i.e., each message has only one author and this author is the user
it ∈ {1, 2, · · · , N} that posted the message at time tt.

The LDA model, on the other hand, models each message broadcasted at
time tt with an independent topic random variable θt, which is itself sampled

11The discrete random variables θa, a ∈ {1, 2, · · · , N} are sampled from a Dirichlet
random variable with parameter α.

12The rows βk, k ∈ {1, · · · ,K} are generated by a Dirichlet random variables with
parameter η.
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wzt,wxt,wat

θaα

βk η

∀w ∈ t
∀t ≤ T

∀k ≤ K

∀a ≤ N

Figure 1: Graphical model for author-topic language model [27].

from a Dirichlet distribution with parameter α. Thus, for each word w in the
message broadcasted at time tt, we sample independent word-topic discrete
random variables zt,w using the message-topic random variable θt, and select
the word w following the distribution P(w = W v|zt,w = k) = βk,v, where β
is the topic-word distribution and W v is the vth entry in the dictionary W
(see figure 2).

wzt,wθtα βk η

∀w ∈ t
∀t ≤ T

∀k ≤ K

Figure 2: Graphical model for latent Dirichlet allocation [26].

The motivation for using the AT language model instead of the LDA
language model is the fact that in the LDA model, messages are a mixture
of topics, independent of other messages. This means that we do not take
into consideration the authors inclination to post messages on their topics of
expertise or interest. Think for example of Barack Obama: he is more likely
to tweet about topics related to economics or politics than topics related to
fashion or sports. The AT model takes that individuality into consideration
when discovering the latent topics.

A potential weakness of the AT model is that it does not consider mes-
sages individually. Messages are thus generated only by a mixture of the
authors topic distributions. The LDA model on the other hand is in a sense
its complete opposite - it allows each message to have its own message-specific
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topic mixture. One could also provide less ”extreme” topic models that lie
between these two.

There are two very common ways of estimating the author-topic parame-
ters β, θ and z used in this generative model: variational methods [26, 32, 33]
and Gibbs sampling methods [29, 30, 31].

3.2.3. Modified collapsed Gibbs sampling

We take advantage of the relationship between the topic model and the
information diffusion, given by the random variables Zts , and derive a more
data-driven methodology for the author-topic model and the content dissem-
ination itself. Another example of such methodology is [19].

We derive hence a modified collapsed Gibbs sampling, using the sampling
equation of [27]. Gibbs sampling is a member of the Markov-chain Monte
Carlo (MCMC) framework (see [51, 29]), and it is a particular instance of the
Metropolis-Hastings algorithm. In Bayesian estimation, MCMC algorithms
aim to construct a Markov chain that has the posterior distribution as its
unique stationary distribution.

In the standard author-topic generative model, one wants to sample from
the posterior13 of (z, x), i.e., P(z, x, θ, β|w, α, η), however this expression is
unknown. On the other hand, since the discrete distribution and the Dirichlet
distribution are conjugate, one can analytically integrate θ and β out of the
posterior.

Let zs,i be the topic and xs,i be the author of word wi, belonging to
message14 s, and z−(s,i) be the topics and x−(s,i) be the authors of all other
words except the word wi; we have (following [52, 30, 31]) that

P(zs,i = k, x(s,i) = a|z−(s,i), x−(s,i), w, α, η) (5)

∝
n−w

i,WT
wi,k

+ ηwi

n−w
i,WT

·,k +
∑

j ηj
.

n−w
i,TA

a,k + αk

n−w
i,TA

a,· +
∑

k′ αk′
,

where

• n−w
i,WT

wi,k
is the number of instances of word wi assigned to topic k, in

exception of word wi in message s,

13Since ]as = 1 for every message s, from now on we omit every dependence of the
probabilities on the authors. For example, P(z, x, θ, β|w, a, α, η) = P(z, x, θ, β|w,α, η).

14From now on, we denote message s the message broadcasted at time ts.
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• n−w
i,WT

·,k is the total number of words, in exception of word wi in mes-
sage s, that are assigned to topic k,

• n−w
i,TA

a,k is the number of words of author a assigned to topic k, in

exception of word wi in message s,

• n−wi,TAa,· is the total number of words of author a, in exception of word
wi in message s.

Since ]as = 1 for all message s, we have that

P(zs,i, xs,i|z−(s,i), x−(s,i), X, w, α, η) = P(zs,i|z−(s,i), x−(s,i), X, w, α, η)

and by Bayes rule (since the intensity λt depends only on z through Z)

P(zs,i, xs,i|z−(s,i), x−(s,i), w,X, α, η) = P(zs,i|z−(s,i), x−(s,i), w,X, α, η)

∝ P(X|zs,i, z−(s,i), x−(s,i), w, α, η)× P(zs,i|z−(s,i), x−(s,i), w, α, η)

= P(X|zs,i, z−(s,i))× P(zs,i|z−(s,i), x−(s,i), w, α, η)

= P(X|Z)× P(zs,i|z−(s,i), x−(s,i), w, α, η)

= L(X|Z)× P(zs,i|z−(s,i), x−(s,i), w, α, η),

where L(X|Z) is the conditional likelihood of X given Z (see [16] p. 251), as

L(X|Z) =
[X(τ)∏
n=1

λintn
]

exp(−
∑
i

∫ τ

0

λiudu), (6)

where in is the user that broadcasted the message at time tn and X(τ) is
the total number of jumps of X in [0, τ ], i.e., the total number of messages
broadcasted in [0, τ ].

Remark: Let ts be the time of broadcast of the message s containing word
wi, is be the user that broadcasted the message at time ts. Looking at the
likelihood L(X|Z) more closely, one can see that some terms do not depend
on zs,i, and are casted out during the normalization process; these are the
terms not containing Zts .

Remark: After achieving the stationary regime for z one can compute the
estimators for θ and β as

θ̂a,k =
nTA(a, k) + αk∑
k′ n

TA(a, k′) + αk′
and β̂k,j =

nWT (k, j) + ηj∑
j′ n

WT (k, j′) + ηj′
,
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where nTA(a, k) is the number of times a word of author a is of topic k and
nWT (k, j) is the number of times the j-word of the vocabulary was associated
with topic k (see [27]).

3.2.4. Modified variational Bayes

One alternative to Gibbs sampling is a variational method, where one
replaces the sampling part by an optimization procedure. We derive here a
modified variational Bayes estimation, using B.

Following B we introduce the free Dirichlet variables γa = (γa1 , · · · , γaK), γak ≥
0, for the author topic distributions θa and the free discrete variables ψa,i for
zl,i, where

∑
k ψ

l,i
k = 1 and ψl,ik ≥ 0, i.e., ψl,i evolves in the probability sim-

plex. We can thus retrieve the random variables θa, zl,i as θa ∼ Dirichlet(γa)
and zl,i ∼ Discrete(ψl,i)

Our approach, again, makes use of the Hawkes process X to modify the
true posterior and introduces a dependence between the dynamics of X and
the author-topic model. To include the Hawkes process X into our posterior,
we use Bayes rule as (again, since ]as = 1)

P(θ, z, w, x,X|α, β) = P(X|θ, z, w, x, α, β).P(θ, z, w, x|α, β)

= P(X|Z).P(θ, z, w|α, β) = L(X|Z).P(θ, z, w|α, β), (7)

where L(X|Z) is the conditional likelihood of X given Z, as in [41].
Applying the same methods as in appendix A.3 in [26] andB, we have

logP(X,w|α, β) = L(γ, ψ;α, β) + dKL(q(θ, z|γ, ψ)|P(θ, z|X,w, α, β)),

where

L(γ, ψ;α, β) = Eq[logP(θ, z, w,X|α, β)]− Eq[q(θ, z)]

= Eq[logL(X|Z)] + Eq[logP(θ, z, w|α, β)]− Eq[q(θ, z)]

by Eqn. (7) and, by Eqn. (6),

Eq[logL(X|Z)] = Eq[
X(τ)∑
n=1

log(λintn)]− Eq[
∑
i

∫ τ

0

λitdt]. (8)

However, one cannot compute analytically Eqn. (8), but one can de-
rive a lower bound: let il be the user that broadcasted message l. Due to
the concavity of the logarithm and the fact that Eq[Ztl ] = 1

Nl

∑
i Eq[zl,i] =
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1
Nl

∑
i ψ

l,i = ψ̃l, one can introduce nonnegative branching variables u such

that uti,0 +
∑

tl<t,c
uti,c,lψ̃

l
c = 1 and bound Eq[log(λit)] in the following way:

Eq[log(λit)] = Eq[log(µi +
∑
tl<t

∑
c,k

Ji,ilBc,kHi,kφ(t− tl)Ztl
c )]

≥
∑
tl<t,c

uti,c,lEq[Ztl
c ] log(Ji,il

∑
k

Bc,kHi,kφ(t− tl))

+ uti,0 log(µi)− uti,0 log(uti,0)−
∑
tl<t,c

uti,c,lEq[Ztl
c ] log(uti,c,l)

= uti,0 log(µi) +
∑
tl<t,c

uti,c,lψ̃
l
c log(Ji,il

∑
k

Bc,kHi,kφ(t− tl))

− uti,0 log(uti,0)−
∑
tl<t,c

uti,c,lψ̃
l
c log(uti,c,l). (9)

We can find the u that makes this bound the tightest possible by maxi-
mizing it under the constraint uti,0 +

∑
tl<t,c

uti,c,lψ̃
l
c = 1, which gives us

uti,0 =
µi

µi +
∑

tl<t,c
ψ̃lcJi,il

∑
k Bc,kHi,kφ(t− tl)

and

uti,c,l =
Ji,il

∑
k Bc,kHi,kφ(t− tl)

µi +
∑

tl<t,c
ψ̃lcJi,il

∑
k Bc,kHi,kφ(t− tl)

.

We also trivially have

Eq[
∑
i

∫ τ

0

λitdt] = τ
∑
i

µi +
∑

i,c,k,tl<τ

Φ(τ − tl)Ji,ilBc,kHi,kψ̃
l
c,

where Φ(t) =
∫ t
0
φ(s)ds is the primitive of φ(t).

Plugging Eqns. (9) and (10) into L(γ, ψ;α, β) and deriving with respect
to ψl,wc we find

∂ψl,wc L(γ, ψ;α, β) = ϕl,wc + AT l,wc + LM s,w = 0,

where

ϕl,wc =
1

Nl

(
−
∑
i

Φ(τ − tl)Ji,il
∑
k

Bc,kHi,k

+
∑
ts>tl

usis,c,l log(
Jis,il

∑
k Bc,kHis,kφ(ts − tl)

usis,c,l
)

)
,
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with in the user that broadcasted message n, AT l,wc a term stemming from
the standard variational approach for the author-topic model responsible for
ψl,wc in Eqn. (12), vw ∈ {1, 2, · · · ,W} the unique index such that wv = 1 and
LM s,w is a Lagrange multiplier for the constraint

∑
c ψ

l,w
c = 1.

Following appendix A.3 in [26] it is then straightforward to get

ψl,wk ∝ βk,vw exp(ϕl,wk + Ψ(γilk )−Ψ(
∑
k′

γilk′)).

Since L(X|Z) does not depend on θ (and by consequence on γ) nor β, we
have that the updates for γ and β are the same as fromB.

Remark: A great deal of importance is given to the hyperparameters η
and α. They are responsible for ”smoothing” the Dirichlet random variables
β and θ, and giving them a predetermined shape (see [53, 54, 55] for a more
throughout discussion).

4. Additional remarks

• Introduction of seasonality in the intrinsic intensity µ: it may be desir-
able to introduce periods in which people behave differently and thus
broadcast messages differently; take Twitter, for example, where users
probably have a higher intrinsic rate during the evening compared to
the late night or early morning.

To do so, let us define periods τn ∈ [0, τ ] such that τi ∩ τj = ∅ and⋃
n τn = [0, τ ]. An example: let τ1 be all the periods [0, 6h] for every

day in [0, τ ], τ2 = (6h, 12h], τ2 = (12h, 18h] and τ2 = (18h, 24h]..

Let 1τn be the T × 1 vector such that 1τnt = I{δ(t−1)∈τn} and µτn be the
intrinsic rate associated with the period τn. Thus, 1 =

∑
n 1τn and we

can apply our NTF procedure for each µτn separately. For example, the
model in subsection 2.3 has the following updates for the time periods
τn

µτn ← µτn �
[Y
λ

]1τn

〈1, 1τn〉
.

One could also incorporate a nonparametric estimation of the intrinsic
rate µ as in Lewis and Mohler [56].
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Algorithm 1 Estimation procedure

Input: jumps dX, step size δ, temporal kernels (φm)m∈{1,··· ,M}
1: Discretize [0, τ ] into T bins of size δ
2: Calculate normalized jumps Y = dX

δ
, convolution tensors φ and dis-

cretized intensities λ
3: Initialize Hawkes matrices set X (for example, in a user-user topic-topic
model with predefined topics X = {F,G,B, S, µ})
while Matrices in X have not converged do
if In a ”fuzzy” diffusion model then

4: With all Hawkes matrices X fixed, run round of topic model esti-
mation

end if
for matrix x in X do

5: With all other matrices fixed (and topic model parameters as well,
if in a ”fuzzy” diffusion model), update x as

xn+1 ← xn �
∇−xDKL(Y |λ)|xn

∇+
xDKL(Y |λ)|xn

,

end for
end while
Output: Hawkes matrices X and topic model parameters

• Estimation of the temporal kernel: As already mentioned before, the
temporal kernel represents the temporal interactions between the an-
cient and future broadcasted messages on the social network in ques-
tion. It is a timescale parameter and it may be advantageous to retrieve
it from data, instead of being an input of the model.

A temporal kernel estimation step can be introduced in algorithm 1
without difficulty, where expectation-maximization algorithms [57, 56]
for parametric kernels, e.g., the exponential and power-law kernels, or
even nonparametric algorithms [58] can be implemented.

• Introduction of dynamic/temporal networks [34, 35]: In many cases,
links in social networks are severed or acquired, which means that the
social network in question can be a dynamic object, instead of a static
one.
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Let us consider the model in subsection 2.1, for simplicity. In this
case, one can define P increasing periods of time (τp)p∈{1,··· ,P} such
that τp ∈ [0, τ ], τp′ ∩ τp = ∅,

⋃
p τp = [0, τ ] and sup τp = inf τp+1. We

may also have that the adjacency matrices Ap satisfy Ap 6= Ap
′
if p 6= p′,

i.e., each period of time represents a change in the underlying network
structure.

Let 1τp be the N × T matrix such that 1
τp
i,t = I{δ(t−1)≥inf τp}, pt = {p ∈

{1, · · · , P} | t ∈ τp} be the unique index p such that t ∈ τp, Pt =
⋃
s≤t ps

are all time period indices until time t and j
p
 i means that user j can

influence user i on the time period τp. Thus the intensity is given by

λi,kt = µi,k +
∑
c

∫ −t
0

∑
j
ps i

Jpsi,jφ(t− s)dXj,c
s

= µi,k +
∑
c

∑
p∈Pt

∫ t∧sup τp

inf τp

∑
j
p
 i

Jpi,jφ(t− s)dXj,c
s ,

which in tensor form is given by (as a product of matrices)

λt = µ+
∑
p∈Pt

Jpφp,tB, (10)

where φ
j,c

p,t =
∫ (t−1)δ∧sup τp
inf τp

φ(t− s)dXj,c
s if (t− 1)δ ∈ τp and 0 otherwise.

Define theN×T matrices Y p,k and λ
p,k

such that Y p,k
i,t = Y i,k

t .I{(t−1)δ≥inf τp}
and λ

p,k

i,t = λ
i,k

t .I{(t−1)δ≥inf τp}, and the d × T matrices ρp,k and ρp,k =∑
k′ Bk′,kρ

p,k′ such that ρp,ki,t =
∑

j G
p
i,jφ

p,k

j,t . Using lemma 2 we have that
the multiplicative updates for F take the form

F p ← F p �
∑K

k=1[
Y p,k

λ
p,k ](ρp,k)T∑K

k=1 1τp(ρp,k)T + ηp(1− Ap)(Gp)T
,

with similar multiplicative updates for G,B and µ.

One may also be interested in finding the ensemble (Jp)p∈{1,··· ,P} the
smoothest as possible (if one sees the temporal function p 7→ Jp as
the way the adjacency matrix J evolves through time), one may also
apply L1 or L2 regularization techniques during the estimation of F

27



and G. If, for example, we use a cost function of the form g(F,G) =
η
∑

0≤p<P ||Jp+1−Jp||2 = η
∑

0≤p<P ||F p+1Gp+1−F pGp||2 as regulariz-
ing function, we have that the derivatives ∂F pg and ∂Gpg behave as in
lemma 2 (being divided into positive and negative parts) and it is thus
easy to incorporate this step into the cyclical estimation algorithm 1.

• Alternative estimation methods: The problem of nonnegative tensor
factorization (or more specifically nonnegative matrix factorization) has
been studied for a long time now, with a vast and varied research liter-
ature. The NTD multiplicative updates used in this chapter are simply
one of the existing methods for NTD estimation. The reasons for the
use of multiplicative NTD updates are: they are easy to implement,
can be implemented in a distributed fashion, have a low (even linear)
complexity on the data, provide an easy way to introduce penalizations
and constraints, and they provide a mathematically solid and unified
estimation framework for the Hawkes-based information diffusion mod-
els.

Other methods are: projected gradient and alternate least-square algo-
rithms [59, 60, 61, 62], fixed-point alternating least-squares algorithms
[63, 64], quasi-Newton algorithms [61, 65], multilayer techniques and
hierarchical methods [61, 66, 67], etc. The reader has an excellent
review of these methods in [68].

5. Numerical examples

In this section we describe some numerical examples of this information
diffusion framework, or more specifically, examples of the model in subsection
2.1.

We have four different datasets, two simulated with the thinning algo-
rithm15 developed by Ogata in [37] and two real-life datasets:

• The first example is a synthetic dataset of a 2-clique uniformly random
network with N = 100 (each complete clique having 50 nodes), K = 10

15The thinning algorithm simulates a standard Poisson process Pt with intensity M >∑
i,k λ

i,k
t for all t ∈ [0, τ ] and selects from each jump of Pt the Hawkes jumps of Xi,k

t with

probability
λi,k
t

M , or no jump at all with probability
M−

∑
i,k λ

i,k
t

M .
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and an exponential temporal kernel; corresponding figures are 3, 4, 5
and 6.

We used d = 51 for our factorization J = FG, with a linear penalization
(as in subsection 3.1) with constants ηF = ηG = 103. We did not use
cross-validation techniques to find optimal penalization parameters ηF
and ηG, since the algorithm is robust enough with respect to them.

Figure 3 is the heatmap of J = FG, where the left heatmap is the
estimated J = FG and the right heatmap is the true value for J . One
can clearly see that our algorithm retrieves quite well the structure
behind the true J , i.e., two distinct cliques.

Figure 4 is the heatmap of the squared difference of the true J and its
estimation J̃ , i.e., for each true entry Ji,j and estimated entry J̃i,j we
have plotted the differences (Ji,j− J̃i,j)2 and (Ji,j− J̃i,j)2/J2

i,j (when Ji,j
is nonzero).

Figure 5 refers to the squared difference of B and its estimation and
figure 6 refers to the squared difference of the true µ and its estimation,
as in figure 4.

• The second example is again a synthetic dataset, simulated for a 2-
clique uniformly random network with N = 20 and K = 1 and expo-
nential temporal kernel; corresponding figures are7 and 8.

We compare our estimation choosing d = 10 with the estimation algo-
rithm in [19] (with the simplification of K = 1 and no language model),
which models memes propagation in a social network using a Hawkes
model similar to ours (identical to ours when K = 1), but making use
of an auxiliary language model for the memes labeling and not using
the factorization J = FG as in subsection 3.1; one can see that our
algorithm (on the left of figure 7) outperforms the algorithm of [19] not
only in the estimation16 of µ, but also in the estimation of J , retrieving

16One can clearly see that our algorithm is able to detect the different sets of values for
µ, although with a high variance. This is understandable, because a linear Hawkes process
is equivalent to a Poisson cluster process (see [69]), where immigrants arrive following a
Poisson process with rate µ. This means that the algorithm estimates a rate µ of a Poisson
process, which is known to have (optimal) variance µ itself (see [70]), hence a larger rate
implies a larger variance. Of course the estimation improves when τ → ∞, since for J
fixed this is equivalent to a maximum likelihood estimator (MLE), which is consistent and
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the community structure when the algorithm in [19] did not. More-
over, the algorithm of [19] needs an ad-hoc parameter ρ to control the
sparsity of the network, which is not needed in our case.

• The third example is a Game of Thrones17 (GOT) dataset with the
dialogues of the pilot episode, with their respective timestamps and
characters. We assumed that every GOT character could influence all
the other characters to speak during the episode (by measuring their
temporal influence with a temporal kernel, as before), and we used
the tools of subsection 3.1 to estimate the characters hidden influence
matrix J using K = 1, i.e., we are only concerned with the characters’
influence on each other without any topic distinction. The heatmap of
J is plotted in figure 9, and shows that our estimation algorithm indeed
performs a community detection procedure, by dividing the influence
graph into the two most famous families Stark and Lannister.

Although this example is not a social network in the sense of Twitter
or Facebook, it has nevertheless all of its characteristics: users (the
GOT characters) that interact with each other following broadcast of
messages (their lines during the episode). Moreover, since we do know
the intrinsic hidden structure of allegiances in the series, i.e. Starks
vs. Lannisters, we can measure if our model recovers this structure
through matrix J , which is indeed the case.

• The last example is a MemeTracker dataset, with different topics and
world news for the 5, 000 most active websites from 4 million sites
from March 2011 to February 201218. We used the 5 most broadcasted
memes, i.e., K = 5, leading to the websites influence graph in figure
10. This graph was plotted with the websites having the 10% largest
outdegrees19 and shows the influence of websites on one another. The
thicker the edge lines, the larger the influence, and the larger the web-
site’s name, the larger the overall influence of the website (the sum of
its influences).

asymptotically normal (see [42]); we used in this example a rather small τ for performance
reasons.

17http://en.wikipedia.org/wiki/Game_of_Thrones.
18Data available at http://snap.stanford.edu/netinf.
19We have chosen the 9th decile of nodes regarding the distribution (

∑
i Ji,j)j∈V .
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This example is in fact a simple illustration of our Hawkes framework
since we cannot validate our results: the parameters J and B do not
actually exist in real-life social networks because they are the hidden
influences of users (in this case websites) and topics (in this case the
5 most broadcasted memes). As a consequence, our framework helps
gain qualitative knowledge on real-life social networks, which seems to
be a hard enough task in social sciences.

Figure 3: Heatmap of J = FG for 2-clique network of 100 nodes.

——————————————–

6. Conclusion

We presented in this paper a general framework to model information dif-
fusion in social networks based on the theory of self-exciting point processes
- linear multivariate Hawkes processes. Hawkes processes were already suc-
cessfully introduced in a multitude of domains, such as neuroscience, finance,
seismology, and even social sciences, and present themselves as a natural way
to model information cascades in social networks.

The framework developed here exploits the real broadcasting times of
users - a feature that comes with no mathematical overhead since we do so
in the theory of point processes - which guarantees a more realistic view of
the information diffusion cascades.
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Figure 4: Heatmap of L2 differences (absolute and relative) between entries of true J and
estimated J .

Figure 5: Heatmap of L2 differences (absolute and relative) between entries of true B and
estimated B.

Our framework can take into consideration every influence between users
and contents in social networks, under a variety of assumptions, which pro-
vides a clear view of hidden influences in social networks.

This framework also allows one to use predefined topics (labeled data) and
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Figure 6: Heatmap of L2 differences (absolute and relative) between entries of true µ and
estimated µ.
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unknown topics (unlabeled data). The overhead of introducing topic mod-
els into the Hawkes models is minimal and allows a much more data-driven
way of discovering the hidden influences on social networks, for which mod-
ified collapsed Gibbs sampling and variational Bayes techniques are derived;
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Figure 9: Game of Thrones influence heatmap.

moreover, the generality of these topic models also simplifies the extension
of our framework to any kind of data modeling, such as hierarchical topic
models, semi-supervised topic models, nonparametric topic models, spatial
topic models, etc. It further allows dynamic social networks and/or various
temporal effects of users intrinsic rate of diffusion to be investigated and
discovered.

Our estimation algorithms depend on the temporal kernel of the under-
lying Hawkes process, and a variety of kernels can be used to model different
kinds of temporal interactions, for example: close-range interactions with the
exponential kernel and long-range interactions with power law kernels. The
estimation algorithms remain robust and fast, and parametric estimation al-
gorithms (or with nonparametric ones) for these temporal kernels may also
be coupled in our estimation procedure.

The multiplicative updates stemming from the nonnegative tensor fac-
torization are also appealing: the multiplicative updates derived from the
optimization problem are easy to implement, even in a distributed fashion
- they are basically matrix products and entrywise operations - with a low
complexity on the data, allowing one to perform estimations in real-life social
networks, especially if some of the parameters are already known beforehand.

One can also notice that by performing a dimensionality reduction during
our nonnegative tensor factorization estimation, we not only estimate the
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Figure 10: Sites influence graph.

influence that users have on one another but we also acquire information
on the communities of the underlying social networks, since we are able to
factorize the hidden influence graphs. Here, we used heavily the self-exciting
model to retrieve the hidden influence graphs, which is different from other
graphs generated by different methods; for example, one could weight the
communication graph with the number of messages from one user to its
neighbors, but by doing so one looses the temporal character. Moreover, the
graphs found by performing this kind of technique are under the assumption
that messages influence directly other users, which may not be the case. In
our Hawkes framework, the influence is a byproduct of the interaction of
users and information, and therefore their influence is probabilistic - it may
or may not occur at each broadcast.
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A. Proof of lemma 2

We prove the result only for the tensor S, the calculations for the tensor
H are equivalent. Let

DKL(Y |SH) =
∑

j1,··· ,jM

dKL(Yj1,··· ,jM |(SH)j1,··· ,jM ),

where dKL(x|y) = x log(x
y
)−x+y is the Kullback-Leibler divergence between

x and y.
In order to find suitable multiplicative updates for this cost function we

proceed in the same manner as in [45, 49], i.e., we find an auxiliary function
G such that G(S, S̃) ≥ D(Y |SH) for all nonnegative tensor S and G(S, S) =
D(Y |SH), with the NTF updates Sn, n ∈ {0, 1, 2, · · · } of the form

Sn+1 = argminX≥0G(X,Sn). (11)

We have thus

D(Y |Sn+1H) ≤ G(Sn+1, Sn) = min
S̃≥0

G(S̃, Sn) ≤ G(Sn, Sn) = D(Y |SnH).

Let J = {j1, · · · , jM}, S = {is1 , · · · , isS}, H = {ih1 , · · · , ihH} and L =
{l1, · · · , lL} be the index sets for the tensor summations such that S∪H = J
and J ∩ L = ∅, and define function G as

G(S, S̃) =
∑
J

∑
L

SS,LHH,L

ỸJ
dKL(YJ |ỸJ

SS,L

S̃S,L
)

where ỸJ =
∑
L S̃S,LHH,L (if S̃ = S then ỸJ =

∑
L SS,LHH,L = (SH)J ).

We easily have that G(S, S) = D(Y |SH). Moreover, by the convexity of

dKL(x|y) in y and
∑
L
S̃S,LHH,L

ỸJ
= 1, we have that

G(S, S̃) ≥
∑
J

dKL(YJ |
∑
L

S̃S,LHH,L

ỸJ
ỸJ

SS,L

S̃S,L
)

=
∑
J

dKL(YJ |
∑
L

SS,LHH,L) = D(Y |SH),
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thus G is indeed an auxiliary function.
Now, we calculate the multiplicative updates for this auxiliary function

as in Eqn. (11). Taking the gradient ∇SG(Sn+1, Sn) = 0 gives us

∂SS,LG(Sn+1, Sn) =
∑
J\S

(
1−

YJS
n
S,L

ỸJS
n+1
S,L

)
HH,L

=
∑
J\S

HH,L −
(∑
J\S

YJ

ỸJ
HH,L

)
SnS,L

Sn+1
S,L

= ∂+SS,LD(Y |SnH)− ∂−SS,LD(Y |SnH)
SnS,L

Sn+1
S,L

= 0,

which easily implies Sn+1
S,L = SnS,L ×

∂−SS,L
D(Y |SnH)

∂+SS,L
D(Y |SnH)

, the multiplicative updates

of lemma 2.

B. Variational Bayes for author-topic model

This appendix is dedicated to the variational Bayes updates for the author-
topic model. This approach is similar to the one used in LDA [26] and is a
particular case of [33], so the calculations will be omitted. Let us recall that
in our framework, every message has only one author, thus the author latent
variables xt,w do not interfere.

For every user a ∈ V we define free variational Dirichlet variables γa =
(γa1 , · · · , γaK), γak ≥ 0, for the author-topic latent random variables θa and for
every word i in the message broadcasted at time ts we define free variational
discrete variables ψs,i for the word-topic latent random variables zs,i, where∑

k ψ
s,i
k = 1 and ψs,ik ≥ 0. We can thus retrieve the random variables θa, zs,i

as θa ∼ Dirichlet(γa) and zs,i ∼ Discrete(ψs,i).
Applying the same methods as in appendix A.3 in [26], we have the

updates for the free variational parameters

γak = αk +

∑
s∈Aa

∑Ns
w=1 ψ

s,w
j

]Aa
,

ψs,wk ∝ βk,vw exp(Ψ(γask )−Ψ′(
∑
k′

γask′ )) and (12)

βk,j ∝
∑
s

Ns∑
i=1

ψs,ik w
s,i
j ,
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where as is the author of message s, Aa = {s | as = a}, vw is the index for
word w at the dictionary and

∑
j βk,j = 1.

If we consider βk ∼ Dirichlet(η) and use a free variational parameter ρk
for each βk, we get (see [26])

ρk,j = ηj +
∑
s=1

Ns∑
i=1

ψs,ik w
s,i
j .

For the hyperparameters α and η, one can proceed as in [26] to find a
Newton-Raphson algorithm to find the optimal values.
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