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Abstract

Many phenomena are modeled by deterministic differential equa-
tions, whereas the observation of these phenomena, in particular in
life sciences, exhibits an important variability. This paper addresses
the following question: how can the model be adapted to reflect the
observed variability?

Given an adequate model, it is possible to account for this vari-
ability by allowing some parameters to adopt a stochastic behavior.
Finding the parameters probability density function that explains the
observed variability is a difficult stochastic inverse problem, especially
when the computational cost of the forward problem is high. In this
paper, a non-parametric and non-intrusive procedure based on offline
computations of the forward model is proposed. It infers the proba-
bility density function of the uncertain parameters from the matching
of the statistical moments of observable degrees of freedom (DOFs) of
the model. This inverse procedure is improved by incorporating an
algorithm that selects a subset of the model DOFs that both reduces
its computational cost and increases its robustness. This algorithm
uses the pre-computed model outputs to build an approximation of
the local sensitivities. The DOFs are selected so that the maximum
information on the sensitivities is conserved. The proposed approach
is illustrated with elliptic and parabolic PDEs. In the Appendix, an
nonlinear ODE is considered and the strategy is compared with two
existing ones.
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1 Introduction

The context of this work is the following: a collection of experimental mea-
surements is available, which exhibit variability, caused for instance by an
heterogeneity in the physical settings [1, 2]. We assume that the observable
quantities correspond to the degrees of freedom (DOFs) of a model that
depends on fixed and uncertain parameters. The model is typically a sys-
tem of ordinary differential equations (ODE) or partial differential equations
(PDE).

The aim of this paper is twofold. First, we propose a non-parametric
and non-intrusive method to estimate the uncertain parameters probability
density function (PDF) by exploiting the observable variability. Second, we
propose a method to make this estimation “parsimonious”, i.e. requiring
as few model evaluations as possible and as few observables (or DOFs) as
possible.
To tackle the first problem, two different strategies may be envisioned.
First, one could estimate the model parameters associated with each ex-
perimental sample using classical inverse problem tools such as Bayesian
approaches [3, 4] or genetic algorithms [5]. These strategies would yield a
collection of parameters values from which the PDF would be computed by
using histograms or more sophisticated PDF estimation techniques [6]. As
straightforward as this approach is, it becomes computationally intensive as
the number of experimental samples grows larger. Second, one may see the
experimental data set as a whole, which has the advantage of being both
computationally cheaper and more robust to noise and low-quality measure-
ments. In this paper, we focus on the second strategy and present an adap-
tation of the well-known problem of moments [7]. The problem of moments
consists in finding the PDF of the parameters such that its statistical mo-
ments have a prescribed set of values. It has been used as an inverse problem
tool with success in various contexts [8, 2, 9]. A popular regularization of
the problem of moments is the maximum entropy principle, which is rooted
in information theory and is justified by practical mathematical considera-
tions [10, 11]. In most cases however, parameters of a model are not directly
observable. Therefore, one needs a technique that takes into account the
observable variability. In this context, we introduce an “observable moment
matching” method which consists in maximizing the PDF entropy under
the constraints of matching the moments of the observable itself (not of the
parameters). This is a two-step method. First, the model is evaluated for a
fixed number of parameters samples and the corresponding outputs, i.e. the
simulated observables, are stored. Second, the PDF is found by an iterative
process that maximizes its entropy under the constraints of matching the
moments of the experimental and simulated observables.
To address the second problem, we propose an algorithm that selects the
DOFs in the physical domain where the moments are to be matched in order
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to alleviate the cost of the inverse problem – which is crucial for complex
models such as PDEs – and to improve its conditioning. This algorithm
exploits the sensitivity information provided by the pre-computed model
evaluations. The sensitivity Gram matrix, computed for every DOF, reveals
active subspaces [12, 13] of the parameter space. The DOFs are selected
by clustering the active subspaces and choosing their best representatives.
This strategy allows for a reduction of the number of DOFs by several orders
of magnitude and therefore proves to drastically reduce the computational
cost of the inverse problem without requiring any additional evaluation of
the model.

This paper is organized as follows. The whole methodology is detailed in
Section 2. First, we introduce the observable moment matching algorithm
and we formulate the associated inverse problem in terms of an optimization
problem. Then, the clustered sensitivities algorithm is introduced and the
reduction of the number of DOFs is explained. In Section A, our approach
is illustrated with a set of ODEs modeling the transient action potential of a
heart cell. We compare its performance with two existing statistical inverse
problem techniques: one proposed by N. Zabaras and B. Ganapathysubra-
manian [14], the other one proposed by E. Kuhn and M. Lavielle [15]. In
Section 3, our algorithm is applied to the Darcy equations. The PDF of five
coefficients that parametrize an inner field is recovered using measurements
on the domain boundaries. Then, we consider a nonlinear parabolic PDE
model, namely the FKPP equation. Under certain conditions, this model
exhibits a wave propagation whose shape depends on the location of the
source term and on certain parameters. The PDFs of the source term and
the reaction parameters are recovered using measurements at different times
and locations.

Finally, we present some concluding remarks in Section 4.

2 Methodology

2.1 Notation

Let us consider a data set that exhibits variability and a physical model
assumed to accurately depict the observations. Let D ⊆ Rd be an open
subset, the physical domain (space, time or space-time), in which the gov-
erning equations are written. Let (Θ,A,P) be a complete probability space,
Θ being the set of outcomes, A a σ–algebra and P a probability measure.
The model can be written in a compact notation as:

L(u(x,θ)) = 0, (1)

where L denotes a generic nonlinear differential operator.
The vector θ =

(
θ1, . . . , θnp

)
∈ Θ denotes the uncertain parameters of the
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model and Θ is a bounded subset of Rnp , sometimes referred to as the
stochastic domain [14]. A set of measurements {y1, . . . ,yN} is available.
Each measurement yi is assumed to take the following form:

y = g (u(x,θ)) + ε, (2)

where g is a function describing the measurement process and ε is the noise,
assumed to be additive and independent. For practical reasons, g is normal-
ized to take values in [0, 1]. Let E be the expectation operator. We make
the hypothesis that the random fields associated with the observables are p-
integrable, that is:

∫
D |E(yp)| dx < M , where the exponent p is the highest

available moment. The variability in the observations is due to two main
contributions: the variability in the parameters and the noise in the mea-
surement process. In a classical forward Uncertainty Quantification (UQ)
context, given the probability density function (PDF) of the parameters ρ,
the moments of the observables are computed. In the present work, an in-
verse problem is solved which consists in finding the PDF of the parameters
that generates the observed variability in a set of available data. Let us
introduce the mth order empirical moment of the measurements:

µm(x) =
1

N

N∑
i=1

yi(x)m ≈ E((g + ε)m), (3)

and the mth order moment of the simulations:

µρm(x) =

∫
θ∈Θ

(ysim(θ))m ρ(θ)dθ = E(ymsim), (4)

where ysim are the observations of the simulated system.

2.2 Handling the noise

Under the assumption that the noise is additive, independent and with a
known structure, it is straightforward to account for its influence on the
measurements moments. Using the linearity of the expectation operator
and the independence of the noise, it follows from definition (2) that:

E [ym] =
m∑
k=0

(
m

k

)
E [gm]E

[
εm−k

]
.

As an example, consider the case where the noise follows a zero-mean normal
distribution with a known variance τ2: ε ∼ N (0, τ2). Then, the following
corrections may be applied to the first three empirical moments defined in
Eq. (3):

µ̃1(x) = µ1(x),

µ̃2(x) = µ2(x)− τ2,

µ̃3(x) = µ3(x)− 3τ2µ1(x).



A moment matching method to study the variability of phenomena 5

In the numerical experiments, the noise is assumed to be gaussian and its
level is defined as the ratio 4τ/A where A is the signal amplitude. In Sec-
tion A, the effect of τ2 on the PDF estimation is investigated.

Only Gaussian noises are considered here. However, the same procedure
may be applied to any noise whose power moments are known. If the noise
structure is completely unknown, a strategy can be set up to estimate it but
it is not investigated in the present work.

2.3 Overview of the strategy

The overall algorithm aims at estimating the PDF ρ of the uncertain pa-
rameters θ, given the empirical moments of the observables. The Jaynes
principle of maximum entropy is applied (see [10]): the PDF is sought so
that it has the maximum entropy under the constraints that the experimen-
tal and simulated moments be equal. Two additional constraints correspond
to the positivity and the PDF normalization. This leads to the following
optimization problem:


Minimize:

∫
Θ ρ log(ρ)

Subject to: µ̃m(x)− µρm(x) = 0, ∀x ∈ D, 1 ≤ m ≤ Nm,
ρ(θ) ≥ 0, ∀θ ∈ Θ,∫

Θ ρ = 1.

(5)

In what follows, this is referred to as the Observable Moment Matching
(OMM) problem. In Section 2.4 the optimality conditions for the OMM
problem are derived and a dual formulation is introduced. The latter leads
to a nonlinear problem which is, in general, ill-conditioned. Moreover, its
computational cost is prohibitive when models described by PDEs are at
hand. To overcome these difficulties a reduction approach is introduced,
based on a sensitivity analysis. As a consequence, the OMM procedure is
only applied to a subset S of the DOFs of the model variables discretized
in the physical domain D. More precisely, the eigendecomposition of an
approximation of the following matrix is computed:

C(x) =

∫
Θ

[∇θg(x,θ)] [∇θg(x,θ)]T ρ(θ)dθ, (6)

referred to as the exact sensitivity Gram matrix (SGM).The study of the
SGM eigenvalues allows us to identify active subspaces [12] in the parameter
space associated with each DOF. The subspaces are clustered based on a
similarity function and the “best” DOFs are then picked based on a criterion
defined in Section 2.5 to form the selected subset S. This selection method
will be later referred to as the Clustered Sensitivities (CS) procedure.
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2.4 Inverse problem: observable moment matching (OMM)

The classical problem of moments consists in finding a PDF ρ of the param-
eters θk from the knowledge of a finite number Nm of its power moments
µm,k, m = 1, . . . , Nm, k = 1, . . . , np:

Eρ [θmk ] = µm,k, m = 1, . . . , Nm, k = 1, . . . , np,

where Eρ(·) denotes the expectation operator given a density function ρ.
This problem has been extensively discussed in the literature and has been
addressed by adopting a wide range of strategies. When only a finite num-
ber of moments are known, which is often the case in practice, the problem
becomes under-determined. Indeed, there exists an infinite number of den-
sities that have the same Nm moments. Therefore, one needs to introduce
a regularization in order to obtain a unique distribution function among
all the feasible solutions. Several approaches exist, such as minimizing the
mean squared error ε(ρ) =

∑
m,k (Eρ [θmk ]− µm,k)2 with the constraint that

ρ be a finite expansion of polynomials [16] or Padé approximants [17].
This problem has been successfully used in situations where the mo-

ments of the model parameters are directly measurable, for instance in the
context of microstructure reconstruction [8, 2, 9]. In general however, the
moments of the model parameters are not observable. Therefore, we pro-
pose to apply the moment matching constraints not on the parameters but
on the observable itself.

To regularize the problem, the maximum entropy principle is used: find
the PDF that maximizes the entropy under the constraint of matching the
first Nm moments, where the Shannon definition [18] of the PDF entropy
reads: S(ρ) = −

∫
Θ ρ log(ρ). There are three main reasons why this choice

of regularization is well suited to the present case. First, from an infor-
mation theory point of view, the maximum entropy PDF is considered the
best choice when a limited amount of information is available (here, only
a finite number of moments are known). This principle was first intro-
duced by Jaynes [10] and was successfully applied to numerous practical
cases [11, 2, 19, 20]. Second, −S(ρ) is a convex cost function which en-
ables the use of efficient optimization tools. Last, ρ can be written as an
exponential term (see below), which dispenses the addition of an inequality
constraint ensuring its positivity.

A set of constraint functions is introduced, expressing the mismatch
between the moments of the measured observable and the moment of the
simulated observable. They read:

cm(x) = µρm(x)− µ̃m(x) =

∫
Θ
gm(x,θ)ρ(θ) dθ − µ̃m(x), m = 1, . . . , Nm.

Introducing the Lagrange multipliers λ(x) = (λm(x))m=1...Nm , λ0 and
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ν(θ), the initial optimization problem (5) is recast in the following saddle-
point problem:

inf
ρ

sup
λ,λ0,ν≥0

L (ρ, λ, λ0, ν) , (7a)

with

L (ρ, λ, ν) =

∫
Θ
ρ log(ρ)−

Nm∑
m=1

∫
D
λm(x)cm(x) dx− λ0

(∫
Θ
ρ− 1

)
−
∫

Θ
ρν.

(7b)
The necessary conditions for optimality give:

ρ = exp(λ0 − 1) exp
(∑Nm

m=1

∫
D g

mλm dx
)
, (8)∫

Θ g
m exp(λ0 − 1) exp

(∑Nm
h=1

∫
D g

hλh dx
)

dθ − µ̃m = 0, m = 1, . . . , Nm(9)

In the present case, by virtue of the entropy regularization, the primal vari-
able ρ can be expressed in an analytic form as a function of the dual variable
and the positivity constraint is automatically satisfied (Eq.(8)). Hence, the
solution of the system can be reduced to the solution of a nonlinear problem
for the dual variable (Eq.(9)).

The error in the density can be evaluated by means of the Kullback-
Leibler divergence. In the following Lemma, it is shown that it is bounded
by the error in the dual variable. Let the distribution that maximizes the
entropy under the moment constraints be denoted by ρ∗ and let its actual
approximation be ρ. The true dual variable being λ∗ and its approximation
being λ, the error in the dual variable is defined as: δλ := λ∗ − λ. The
following result holds.

Lemma 1. The Kullback-Leibler divergence between ρ∗ and ρ is bounded by
the error in the dual variable as follows:

|KL(ρ∗|ρ)| ≤ |δλ0|+ meas(D)1/2
Nm∑
m=1

‖δλm‖x,2. (10)

Proof. The Kullback-Leibler (KL) divergence reads:

KL(ρ∗|ρ) :=

∫
Θ

log

(
ρ∗

ρ

)
ρ∗dθ. (11)

We deduce from the optimality conditions:

ρ∗

ρ
= exp(δλ0) exp

(
Nm∑
m=1

〈gm, δλm〉x
)
, (12)
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so that the expression of the KL divergence can be rewritten as:

KL(ρ∗|ρ) = δλ0 +

Nm∑
m=1

∫
Θ
〈gm, δλm〉x ρ∗dθ. (13)

The Cauchy-Schwarz inequality is applied to the scalar product in the phys-
ical space:

|KL(ρ∗|ρ)| ≤ |δλ0|+
Nm∑
m=1

‖δλm‖x,2
∫

Θ
‖gm‖x,2(θ) ρ∗dθ. (14)

Hence the result since the observable is bounded by 1.

2.4.1 Discretization of the inverse problem

The discretization of the nonlinear system Eq.(9) is addressed in this sec-
tion. The observable, as well as the Lagrange multipliers λm, are discretized
in space (or space-time) by means of standard methods and the total num-
ber of DOFs is denoted by Nx. The integrals in the stochastic space are
approximated by a quasi-Monte Carlo method. The stochastic domain Θ is
discretized using the Sobol sequence [21]. These quasi-random samples have
a low-discrepancy, and are competitive compared to random uniform sam-
ples [22]. When integrating functions featuring a certain regularity, sparse
grid methods, which are often used in uncertainty propagation (see [23]), can
outperform quasi-Monte Carlo ones [24]. In the present context, however, a
reason to prefer a quasi-Monte Carlo discretization of the stochastic domain
is that the probability density distribution is the unknown of the problem,
and it is not known in advance. Roughly speaking, since sparse grids have
strong preferential directions, the risk of “missing” the area of interest in
the stochastic domain is non-negligible, making evenly distributed points a
more suitable discretization. Figure 1 shows how a two-dimensional domain
is discretized using each of the three options described above. It illustrates
how the Sobol sequence both performs a more even coverage of the domain
than uniform pseudo-random samples and does not favor specific directions
such as in sparse grids. Let us denote by Nc the number of sample points
in Θ and |Θ| the stochastic domain volume.

To compute the integrals approximations in (9), the model is evaluated
for each sample θi. The corresponding set {ysim(θi,xj), i = 1, . . . , Nc, j = 1, . . . , Nx} ∈
RNc×Nx will later be referred to as the simulation set. Assuming a subset
S of D has been selected, the number of DOFs in S is denoted by Nk. For
the sake of clarity, the following notation is now used:

ρi = ρ(θi), gi,j = ysim(θi,xj), λj,m = λm(xj), µj,m = µm(xj), β =
|Θ|
Nc

for i = 1, . . . , Nc, j = 1, . . . , Nk, m = 1, . . . , Nm.
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Figure 1: Different discretizations of the parameter space: random uniform
(left), Sobol sequence (center), sparse grid (right).

The discretization of Eq.(8) reads:

ρi = exp (λ0 − 1) exp

 Nk∑
j=1

Nm∑
m=1

ωjλj,mg
m
i,j

 , i = 1, . . . , Nc, (15)

where the wj are quadrature weights for the physical domain discretization.
Before discretizing Eq.(9), a vector form is introduced, for the sake of

compactness. Let ω =
[
ω1 . . . ωNk

]
, λ =

[
λ1,1 . . . λNk,Nm λ0 − 1

]T
,

µ =
[
µ̃1,1 . . . µ̃Nk,Nm 1

]T
and G =

[
G(1) . . . G(Nm) 1

]T
withG

(k)
i,j =

gki,j , k = 1, . . . , Nm, i = 1, . . . , Nc, j = 1, . . . , Nk. Note that G ∈ RNG×Nc
where NG = NkNm + 1. It has an extra column of ones to take into account
the normalization constraint. Finally, let ∆ = diag(ω,ω, . . . ,ω︸ ︷︷ ︸

Nm times

, 1).

The density can be written as: ρ = exp
(
GT∆λ

)
. The discretization of

Eq.(9) reads:
βGρ− µ = βGexp

(
GT∆λ

)
− µ = 0. (16)

A Newton method is used to solve this step. However, since the Hessian
is ill-conditioned in practical cases, a regularization is proposed. Let U,S,V
be the SVD decomposition of G, done with respect to the scalar product
induced by ∆, i.e. UT∆U = I. The residual now reads:

r = βUSVT exp
[
VSUT∆λ

]
− µ. (17)

Instead of making r vanish, we propose to solve for r̂ = ÛT∆r = 0. This
is equivalent to taking a low-rank approximation Ĝ of G by replacing the
matrix of singular values S with its truncation Ŝ. Ŝ is defined so that it
shares the first nσ singular values with Ŝ and the following are set to zero.
Replacing G by Ĝ in (17) and left-multiplying by ÛT∆, one obtains:

r̂ = βŜV̂T exp
[
V̂ŜÛT∆λ

]
− ÛT∆µ. (18)
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Proceeding to the change of variables λ = Ûφ, the residual now reads:

r̂ = βŜV̂Tρ− ÛT∆µ, (19a)

where ρ = exp
[
V̂Ŝφ

]
. (19b)

Note that the residual is no longer a function of the vector of experimen-
tal moments µ but rather its projection ÛT∆µ. Therefore, the number of
non-truncated singular values nσ is chosen so that the representation error

‖
(
I− ÛÛT∆

)
µ‖ is smaller than a user-defined tolerance parameter α.

The Hessian matrix of the problem now reads:

H =
∂r̂

∂φ
= βŜV̂diag(ρ)V̂T Ŝ, (20)

which is symmetric, positive semi-definite of rank nσ. Its Moore-Penrose
pseudo-inverse P is computed and the Newton actualization step reads:

φ(n+1) = φ(n) −Pr̂. (21)

The components of φ are initialized to zero, which is equivalent to taking
a uniform PDF as the initial guess for ρ or, more precisely, a uniform mass
on the discrete ρi.
The overall OMM inverse procedure in summarized in Algorithm 1.
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Algorithm 1: Observable moment matching algorithm.

Input:
• S = {x1, . . . ,xNk

} subset of D selected using CS algorithm.

• µ̃j,m, j = 1, . . . , Nk, m = 1, . . . , Nm: corrected experimental moments.

• gi,j , i = 1, . . . , Nc, j = 1, . . . , Nk: simulation subset.

• A tolerance α > 0.

• A stopping criterion for Newton iterations εNewton

Initialization:

• Assemble G =
[
((gi,j)) . . . ((gi,j))

Nm 1
]

and µ =
[
((µ̃j,k)) 1

]
.

• Compute SVD decomposition of G: U,S,V

• Number of singular values nσ = Card
{
σ | ‖

(
I− ÛÛT

)
µ‖ ≤ α

}
.

• φ(0) = 0 (i.e. ρ(0) uniform over Θ).

n = 1 ;

while ‖r̂(n−1)‖ > εNewton do
Compute ρ(n) using (19b);

Compute residual r̂(n) = using (19a);

Assemble Hessian matrix H(n) using (20);
Update Lagrange multipliers using (21);
n← n+ 1 ;

end

Output: ρi, i = 1, . . . , Nc: the PDF estimate.

Remark that the problem of computing the PDF value at each collocation
point ρi, i = 1, . . . , Nc has been transformed into a problem of computing
the unknown Lagrange multipliers λ0, λ1,1, . . . , λNk,Nm . In other words, the
size of the problem is now that of the physical domain subset (S) times the
number of moments instead of that of the stochastic domain. This is there-
fore computationally cheaper as long as the physical subset size remains
sufficiently small, an issue that is addressed in the next section.

2.4.2 Analysis of the regularization error

In this section, we propose to justify some aspects of the proposed strategy.
The true measure on the stochastic domain is Pe, absolutely continuous
with respect to Lebesgue measure. The associated probability density is ρe.
The density which maximizes the entropy under the moment constraints
is denoted by ρ∗ and the actual approximation is ρ. There are two main
contributions to the error: the first one is related to the entropic regular-
ization, and the second one is due to the approximation of the constrained
optimization problem. The latter is controlled by the norm of the error in
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Figure 2: Solution of the moment-matching method: joint PDF of two
parameters.

the dual variable approximation, as shown in Lemma 1. In what follows,
the regularization error is studied.

The hypotheses under which this analysis is performed are the following:
the observable is g(x,θ) ∈ H1(D × Θ) ∩ L∞(D × Θ). We remind that we
assume that the g takes values in [0, 1]. The standard L2(D × Θ) scalar
product is denoted by 〈u, v〉, and the norms are defined accordingly. The
scalar product in the physical and in the stochastic space will be denoted
by 〈u, v〉x and 〈u, v〉θ respectively.

The regularization error is studied in the case where an infinite number of
moments exists. A first Lemma is presented to prove under which condition
the total residual on the moments is L2 summable, and then an identifiability
condition for the inverse problem is derived.

Lemma 2. Let ‖v‖Lp(D×Θ),ρe =
(∫
D
∫

Θ v
pdxρedθ

)1/p
be the Lp norm. If

there exist C, δ > 0 such that ‖g‖Lp(D×Θ),ρe ≤
(

C
p1+δ

)1/p
, then

∑∞
m=1 ‖µ

ρe
m‖2L2(D) <

+∞.

Proof. The Jensen inequality gives:

‖µρem‖2L2(D) =

∫
D

(∫
Θ
gmρe dθ

)2

dx ≤ ‖gm‖2L2(D×Θ),ρe
. (22)

The norm can be rewritten as follows:

‖gm‖2L2(D×Θ),ρe
=

∫
D

∫
Θ
g2m dx ρedθ = ‖g‖2mL2m(D×Θ),ρe

≤ C

(2m)1+δ
, (23)
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and thus:
∞∑
m=1

‖µρem‖2L2(D) ≤
∞∑
m=1

C

(2m)1+δ
< +∞. (24)

Let us assume that both the exact density ρe and the entropic regu-
larization ρ∗ satisfy the hypotheses of Lemma 2. Upper and lower bounds
for the L2 error ε := ρe − ρ can be found. Consider that, by linearity:∫
D g

mε = µρem − µρ
∗
m = δµm. The result is summarized in the following

proposition.

Proposition 1. Let ρe, ρ
∗ satisfy the hypotheses of Lemma 2.

Let γ = inf‖v‖L2(D×Θ)=1

[∑∞
m=1〈gm, v〉2

]
; let β =

∑∞
m=1 ‖gm‖2L2(D×Θ).

Then: ∑∞
m=1 ‖δµm‖2L2(D)

β
≤ ‖ε‖2L2(Θ) ≤

∑∞
m=1 ‖δµm‖2L2(D)

γ
. (25)

Proof. The Cauchy-Schwarz inequality implies:

∞∑
m=1

‖δµm‖2L2(D) =

∞∑
m=1

∫
D

(∫
Θ
gmε dθ

)2

dx ≤
∞∑
m=1

∫
D

∫
Θ
‖gm‖2L2(Θ)‖ε‖2L2(Θ)dx,

(26)
The error norm does not depend on the physical space coordinates and thus:

∞∑
m=1

∫
D

∫
Θ
‖gm‖2L2(Θ)‖ε‖2L2(Θ)dx ≤

( ∞∑
m=1

‖gm‖2L2(D×Θ)

)
‖ε‖2L2(Θ) = β‖ε‖2L2(Θ).

(27)
Analogously, the upper bound for the error is proved:

∞∑
m=1

‖δµm‖2L2(D) =
∞∑
m=1

∫
D

(∫
Θ
gmεdθ

)2

dx, (28)

≥
∞∑
m=1

inf
‖v‖L2(D×Θ)=1

[
〈gm, v〉2

]
‖ε‖2L2(θ), (29)

that can be deduced by considering that gm can be expressed on a dense
tensorized complete orthonormal basis of L2(D)⊗ L2(Θ).

The condition for the error to be bounded, namely γ > 0, can be seen
also as an identifiability condition for the problem and it is verified when the
set of function gm is a complete basis of the space. The result of the following
Lemma shows a meaningful case in which the density is not identifiable and
the error is unbounded.
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Lemma 3. Let the stochastic domain be the box Θ = Θ1 × . . .Θd. Let
D1 ⊆ D an open subset of the physical domain where the observable does not
depend on θi, i.e. for which ∂θig = 0. Then γ = 0.

Proof. The proof is done in a constructive way, by building a function v
which is of unitary norm, making the scalar product with all the gm vanish.
Let v = f1(θi)f2(θj 6=i)f3(x) such that

∫
Θ f1dθ = 0 and f3(x) = 0 on D/D1.

For all h, ∫
D

∫
Θ
gmv dθ dx =

∫
D1

∫
Θ
gmf1f2dθf3(x) dx, (30)

since f3 vanishes outside D1. Then, since the observable g does not depend
on θi,∫
D1

∫
Θ
gmf1f2dθf3(x)dx =

∫
D1

(∫
Θi

f1dθi

)(∫
Θ/Θi

gmf2(θj 6=i)dθj

)
f3(x)dx = 0.

(31)

The result of this Lemma sheds some light onto the identifiability of the
inverse problem. In particular, the problem is ill-posed whenever there are
regions in the physical space in which the observable does not depend on
one or more parameters. A way to overcome this is to reduce the physical
domain by excluding the regions (i.e. the DOFs) where the observable is
not sensitive to the parameters.

2.5 Physical DOFs reduction: clustered sensitivities (CS)
algorithm

As explained before, the dual variable formulation of the optimization prob-
lem transfers the resolution effort onto the solution of a system whose size is
the number of DOFs in the physical domain times the number of moments.
However, in many practical applications, as for instance when models are
described by PDEs, the number of DOFs used to discretize the solution
in the physical domain is large, making the Hessian matrix inversion com-
putationally intensive. Aside from the sheer computational cost of linear
algebra operations, dealing with many large simulations – say thousands of
simulations counting millions of DOFs – poses undeniable issues in terms
of storage capacity and Input/Output computer operations. The main idea
to reduce the computational cost is to retain only the subsets of the phys-
ical domain in which the observable conveys more information about the
variability of the parameters. Consider for instance a region in which the
observable does not vary, or its variation amplitude is lower than the noise
level: then, matching the moments in this region will certainly not convey
any meaningful information about the parameters. Even worse, it may in-
crease the Hessian condition number and degrade the overall accuracy of the
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method. It may also happen that part of the data is redundant, meaning
that the observable exhibits the same variations with respect to the param-
eters in two different DOFs. In this section, we propose an algorithm that
selects a subset S of the full set of DOFs D. This subset is then used in
the OMM inverse procedure described before. Notice that we are not inter-
ested in building a low-dimensional surrogate model with fewer outputs. On
the contrary, we aim at developing a non-intrusive approach where we only
choose to discard some outputs of the high fidelity model. To do that, we
propose the following gradient-based algorithm which is rooted in the global
sensitivity analysis of the model.

2.5.1 The SGM matrix

For each xj , we consider an approximation of the exact SGM matrix (defined
in (6)) as follows:

Cj ' β
Nc∑
i=1

[∇θg(xj ,θi)] [∇θg(xj ,θi)]
T ρi,

where∇θg(xj ,θi) is a vector of size np whose components are the derivatives
of g with respect to each parameter at a given xj and a given parameter
sample θi. Cj is a np-by-np matrix containing the sensitivity information of
the observable with respect to the input parameters at xj . It may also be
seen as the uncentered covariance matrix of the gradient of the observable
with respect to the uncertain parameters.
In this work, the gradient ∇θg is approximated by using local polynomial
approximations. Other well-known methods exist, such as adjoint equa-
tions [25] or automatic differentiation [26], but they will not be discussed
here. For each sample θi in the stochastic space, its K nearest neighbors
are found and their indices are denoted by ik, k = 1, . . . ,K. An imple-
mentation of the k-NN algorithm (using k-d trees) from the Scikit-learn li-
brary [27] was used for an efficient search of the nearest neighbors. The
method consists in fitting a polynomial model to the K values of the ob-
servable gik,j , k = 1, . . . ,K. Given a set of linearly independent polynomials
{Pl(θ)}l=1,...,nl

, the collocation matrix Φi reads:

Φi =

P1(θi1) · · · Pnl(θi1)
...

. . .
...

P1(θiK ) · · · Pnl(θiK )

 .

The local polynomial model is obtained by solving the following linear sys-
tem:

Φiq = yi,j ,
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where yi,j =
(
gi1,j · · · giK ,j

)T
and q is the vector of unknowns of size nl.

For stability reasons, K must be greater than nl and therefore the system
is solved in the least-squares sense. In practice, we used a basis of local

multivariate quadratic monomials so that nl =
n2
p+3np+2

2 . The number of
nearest neighbors is set to K = nl + 2. Once q is computed, one obtains the
following approximation of the gradient:

∇θg(xj ,θi) '
nl∑
l=1

ql∇θPl(θi). (32)

In what follows, this approximation of ∇θg(xj ,θi) is denoted by di,j . We

now have an easily computable approximation Ĉj of the SGM:

Ĉj = β

Nc∑
i=1

di,jd
T
i,jρi, (33)

which is symmetric and positive semidefinite so its eigenvalues are real and
non-negative. Note that the approximation in (33) is computed using the
Sobol sequence quadrature rule and the same simulation set {gi,j} as previ-
ously computed. This means that no additional model evaluation is required.

2.5.2 Parameter space dominant directions

The eigenvalues of the SGM play an important role in the classification of
the DOFs. For a given xj the eigenvalues are denoted by ηj1, . . . , η

j
np , in

descending order. The corresponding eigenvectors, denoted by ej1, . . . , e
j
np ,

form an orthonormal basis of the parameter space. The vector ej1 corre-
sponds to the direction (in the parameter space) of maximum variation, on
average, of g at xj . Its associated eigenvalue ηj1 corresponds to the mean-

squared directional derivative of the observable along the direction ej1 [12,
Lemma 3.1]. For instance, if there are two input parameters θ1 and θ2, then
ej1 = (1, 0) means that the observable variation of g at xj is mostly due, on
average, to variations of θ1. Each xj is therefore associated with a dominant

direction in the parameter space ej1 and its corresponding eigenvalue ηj1. We
are now able to address the initial problem: on the one hand, the DOFs
where the variation of the observable is not significant are characterized by
a low first eigenvalue. A threshold on ηj1 may be applied to remove the DOFs
where the observable variation amplitude is lower than the noise level. On
the other hand, the DOFs that are redundant from the observable point
of view are characterized by “similar” dominant directions. This notion of
similarity will be introduced hereafter. Knowing this, we propose to divide
the set of Nx dominant directions into Nk clusters using an agglomerative
hierarchical clustering algorithm. This algorithm consists in clustering vec-
tors according to a given similarity function. First, each vector is associated
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with its own cluster and pairs of similar clusters are iteratively merged. We
refer to [28] for an overview of such algorithms. In the present work, we
used the Scikit-learn library [27] which provides a Python implementation
of an agglomerative hierarchical algorithm that accepts user-defined simi-
larity functions. The similarity function between two (unit-norm) vectors is
defined as follows:

s(u,v) = |u · v| ,

i.e. the cosine of the angle between u and v. Once the Nx DOFs of the full
physical set are divided into Nk clusters, the ones with maximum trace of
Ĉj are chosen as their cluster representatives. The subset S is then formed
by the Nk representatives.

Remark 1. The agglomerative clustering guarantees that the sequence of
selected subsets is nested. This means that if S(n) and S(n+1) respectively
count n and n + 1 elements, then they have n elements in common. From
a practical viewpoint, the full sequence of clusters can be computed once so
that there is no additional cost linked to the clustering when Nk increases.
Furthermore, in our simulations, we noticed that the residual had a smoother
behavior as Nk increases compared to other clustering techniques.

The output of the CS algorithm is a nested sequence of subsets S(1) ⊂
. . . ⊂ S(Nx) and we denote by Nk the cardinality of a given subset S.

Remark 2. In the works by Constantine [29] and Russi [30], where the term
“active subspace” was introduced, the matrix C is used to reduce the param-
eter space dimension. It is particularly efficient when dealing with complex
models counting a very large number of parameters while only a few direc-
tions in the parameter space are responsible for the observed variability [13].
In our case it is used to reduce the number of DOFs in the discretized physical
domain. However, the interpretation of the SGM eigenvalues and eigenvec-
tors in terms of the sensitivity of the model is the same. In the papers by
Streif et al. [31] and Himpe & Ohlberger [32], a similar Gramian matrix
is used to assess the observability and controllability of linear and nonlin-
ear systems. Though quite different from the CS analysis, their approach is
another illustration of the interpretation of Gramian matrices in terms of
sensitivity analysis.
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Algorithm 2: Clustered Sensitivities algorithm.

Input:
• gi,j , i = 1, . . . , Nc, j = 1, . . . , Nx: simulation subset.

• ρ: PDF estimate.

for j = 1 to Nx do
for i = 1 to Nc do

Compute dij using (32)
end

Compute Ĉ(j) using (33);

Compute first eigenvector ej1 and eigenvalues trace t(xj) =
∑
k η

j
k;

end

Compute sequence of clusters for j = 1, . . . , Nx using similarity function
s;
for Nk = 1 to Nx do
S(Nk) = {};
for k = 1 to Nk do

Select representative xk of cluster Ck as: arg max
x∈Ck

{t(x)};
Append xk to S(Nk);

end

end

Output: Subset sequence: S(1) ⊂ . . . ⊂ S(Nx).

2.6 Visualization and interpretation of the results

The output of the proposed algorithm is the estimated PDF values at the
collocation points: ρ(θi), i = 1, . . . , Nc. Although a direct visualization of
the PDF is possible (see Fig. 2), it becomes irrelevant if the number of
parameters is greater than two. Therefore it may be convenient to consider
the marginal density of the kth parameter, defined as follows:

zk(x) =

∫
· · ·
∫

θl,l 6=k

ρ(θ1, . . . , x, . . . , θnp)
∏
l 6=k

dθl. (34)

An approximation of Eq.(34) may be computed using the discrete PDF
values and the corresponding quadrature rule.
In the numerical tests we illustrate the proposed algorithm with synthetic
data, meaning the true PDF ρ∗ of the parameters is known. There are several
ways to compare the estimated and true PDFs such as the 2–norm of their
difference. However, for density functions, it is more natural to consider the
Kullback-Leibler (KL) divergence, introduced in Lemma 1. Here we use a
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discrete approximation of the symmetric KL divergence, defined as follows:

KL(ρ|ρ∗) =
1

2
(ϕ(ρ, ρ∗) + ϕ(ρ∗, ρ)) ,

where ϕ(u, v) = β

Nc∑
i=1

ui log(ui/vi).

It is also possible to compute the parameters moments with the estimated
PDF and compare them with their true values.

2.7 Main algorithm

The proposed inverse procedure consists in combining the OMM and CS
algorithms (see Alg. (3)). To assess the convergence of the procedure, we
use the global moment residual R ∈ RNx×Nm defined as follows:

Rj,m = β

Nc∑
i=1

gmi,jρi − µ̃j,m, j = 1, . . . , Nx, m = 1, . . . , Nm.

Note that while the OMM algorithm is designed to cancel out the residual
r defined on a subset S of D, R is defined on the full DOFs set D.
One iteration of the main algorithm consists in progressively adding DOFs
to the subset S using the CS algorithm and applying the OMM algorithm
for each S until stagnation of the 2-norm of the residual, ‖R‖2. Then, the
SGM is updated with the new PDF estimate and another iteration is done.
The main algorithm stops when no improvement of ‖R‖2 is observed. The
total number of iterations is later referred to as niter. Figure 13 shows an
example of the dependence between the global residual norm ‖R‖2 and the
cardinality of the subset S.
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Algorithm 3: Main algorithm.

Input:
• Corrected experimental moments: µ̃j,m, j = 1, . . . , Nx, m = 1, . . . , Nm;

• Number of stochastic samples: Nc;

• Tolerance parameters : α, εNewton;

Step 1:

• Build the simulation set {gi,j}.

Initial guess ρ(0,0): uniform distribution over Θ ;
j = 1, Nk = 0 ;

while ‖R(j−1,Nk)‖2 not converged do
Apply CS procedure with ρ(j−1,0) (Step 2);

→ nested subsets sequence S(j,1) ⊂ . . . ⊂ S(j,Nx);
n = 1 ;

while ‖R(j−1,n)‖2 not converged do
Apply OMM procedure with S(j,n) (Step 3);

→ ρ(j,n+1);
n← n+ 1 ;

end
j ← j + 1 ;
Nk ← n ;

end
niter = j

Table 2.7 presents an overview of the computational cost of the whole
procedure. In practice, this cost is strongly dominated by the construction
of the simulation set (step one), each model evaluation having a high cost
Cforward. However, this step is embarrassingly parallelizable with respect to
Nc. Step two is embarrassingly parallelizable both with respect to Nc and
Nx. In our implementation, the SGM computations are only parallelized
with respect to Nx. Step three is dominated by the cost of the Hessian
pseudo-inverse computation. As it scales with (NmNk)

3, the need to reduce
the number of DOFs in the physical space becomes obvious. The pseudo-
inverse computation could also be parallelized but this was not done in our
implementation. The cost of the pseudo-inverse is multiplied by nNewton,
the number of Newton iterations.

3 Numerical illustrations

We apply our strategy to the PDF estimation of parameters for two PDEs.
Comparisons with existing methods are presented in the Appendix for a
nonlinear ODE.
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Table 1: Complexity of the inverse procedure. Cforward denotes the cost of
one model evaluation.

Step Complexity Parallelizable

1. Simulation Set O (Nc × Cforward) massively w.r.t. Nc

2. Clustured Sensitivities O
(
Nx ×Nc × n3

p

)
massively w.r.t. Nc and Nx

3. Observable Moment Matching O
(
nNewton × (Nk ×Nm)3) possible

3.1 Application to an elliptic PDE: the Darcy equations

In this section, we focus on the following two-dimensional PDE posed in the
bounded domain D = [0, 1]× [0, 1]:

−∇ · (K∇p) = 0, x ∈ D,
p = f, x ∈ ΓD,

K∇p · n = 0, x ∈ ΓN ,

where p is the fluid pressure, f a deterministic function defined on the bound-
ary ΓD and {ΓD,ΓN} is a partition of ∂D. In what follows, f will be set to
1 at the inlet and to 0 at the outlet (see Fig. 3). The Darcy model states
that the fluid velocity is linked to the pressure as follows by u = −K∇p.
We assume that the source of variability comes from the heterogeneous per-

ΓN

ΓN

ΓD

p = 0

ΓD

p = 1

ux obervations

p obervations

Figure 3: Schematic of the problem geometry and location of 25 sensors
automatically selected by the CS procedure (out of 400 available sensors).

meability field K(x). Using a similar example found in [14], we assume that
the spatial variation in the permeability field follows an exponential corre-

lation: c(xi,xj) = exp
(
− |xi−xj |b

)
, where b is the correlation length, set to
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b = 0.2 in our case. From a physical viewpoint, this means that the porous
medium is relatively smooth. Then, we choose to represent the random field
K as a linear combination of the first 5 eigenmodes K̂k of the correlation
kernel K(x) = 1 +

∑5
k=1 θkK̂k(x), where the θk are the random parameters.

Figure 4 shows the eigenmodes of the correlation kernel and Figure 5 shows
one realization of the random permeability field, along with the outputs of
the model, namely the pressure field p and the horizontal velocity ux.
The objective is to apply the proposed approach to recover the PDF of the
permeability field expansion coefficients θk from observations of ux and p
on the boundaries. Retrieving the permeability in the domain by exploiting
only boundary measurements is a particular case of the Calderón problem,
which is a difficult and generally ill-posed inverse problem.

Numerical settings The observable is defined as follows: 200 sensors
for ux (resp. p) are uniformly distributed over the boundary ΓD (resp.
ΓN ) so that Nx = 400. The synthetic data set is generated by evalu-
ating the model for N = 104 samples of θ = (θ1, . . . , θ5). The samples
are drawn from an uncorrelated multivariate normal distribution of mean
µ = 2.5 × 10−2 × [1, 1, 1, 1, 1] and covariance matrix Σ = 3.3 × 10−2 × I5.
Nc = 214 collocation points are generated using the Sobol sequence over the
domain Θ = [−0.2, 0.2]5, the number of moments to be matched is set to
Nm = 3 and the tolerance parameter is set to α = 1 × 10−3. The PDE
model is solved using the FreeFem++ [33] finite element software. A dif-
ferent discretization is used for both sets. For the synthetic dataset, the
model is solved on a fine grid of 23550 triangles. For the simulation set,
the model is solved on a coarse mesh of 944 triangles. In addition, a Gaus-
sian zero-mean noise of amplitude 5% is added to the sensors measurements.

Results The proposed inverse procedure is applied and convergence is
reached at niter = 2 and Nk = 25. Figure 3 shows the position of fi-
nal selected DOFs. Note that points were automatically selected on each
boundary even though this was not imposed in the CS procedure. Figure 6
shows the estimated marginals of the five parameters along with their exact
distributions. Table 3.1 summarizes the estimated parameters statistics to
be compared to their exact values. The means are in good agreement, with
an error of the order of 1%. The standard deviations feature a higher error,
especially for the fifth mode parameter. The sources of error are diverse.
The mesh used to generate the simulation dataset is coarser than the one
used for the synthetic dataset. This induces a higher numerical diffusion.
Moreover, the added noise may also contribute to the error, especially for
the higher order modes coefficients.
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Figure 4: Contours of the first 5 eigenmodes of the correlation kernel.
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Figure 5: Contours of one realization of the Darcy model. Left: permeability,
center:horizontal velocity, right: pressure. Black squares indicate where the
velocity and pressure fields are observed.

-0.2 -0.1 0 0.1 0.2
θ1

0
2
4
6
8
10
12
14

m
ar
gi
n
al

d
en
si
ty OMM

exact

-0.2 -0.1 0 0.1 0.2
θ2

0
2
4
6
8
10
12
14

m
ar
gi
n
al

d
en
si
ty OMM

exact

-0.2 -0.1 0 0.1 0.2
θ3

0
2
4
6
8
10
12
14

m
ar
gi
n
al

d
en
si
ty OMM

exact

-0.2 -0.1 0 0.1 0.2
θ4

0
2
4
6
8
10
12
14

m
ar
gi
n
al

d
en
si
ty OMM

exact

-0.2 -0.1 0 0.1 0.2
θ5

0
2
4
6
8
10
12
14

m
ar
gi
n
al

d
en
si
ty OMM

exact

Figure 6: Marginal densities of five parameters estimated using the OMM
method.
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Table 2: Darcy model

Statistics mean std.

Parameter exact OMM rel. err.(%) exact OMM rel. err.(%)

θ1 2.48e-02 2.49e-02 0.5 3.33e-02 3.08e-02 7.4

θ2 2.46e-02 2.49e-02 1.2 3.35e-02 3.39e-02 1.3

θ3 2.56e-02 2.53e-02 0.9 3.36e-02 2.82e-02 16

θ4 2.55e-02 2.58e-02 1.1 3.33e-02 2.90e-02 13

θ5 2.49e-02 2.52e-02 1.4 3.31e-02 5.00e-02 51

3.2 Application to a parabolic PDE: the FKPP equation

In this section, we illustrate our strategy with the FKPP equation, originally
introduced by Fisher [34], later revisited by Kolmogorov, Petrovskii and
Piskunov. It is a nonlinear reaction-diffusion equation defined by:

∂u

∂t
− ν∆u = Ru(1− u) + f(x, t), x ∈ [0, 1]2, t ∈ [0, T ],

∇u · n = 0, x ∈ ∂[0, 1]2, t ∈ [0, T ],

u(x, t = 0) = 0, x ∈ [0, 1]2,

where u is a time and space dependent variable, R is the reaction param-
eter and ν the diffusion field, here considered uniform and constant equal
to 10−3. Provided that R/ν � 1 and given an ad hoc source term f , the
FKPP equation admits travelling waves solutions. In practice, u exhibits a
propagation front across which u switches from 0 to 1. It is often considered
as the simplest PDE model presenting this feature. This has motivated the
use of FKPP for a large variety of applications (examples include popula-
tion dynamics, tumor growth and fire propagation). Here f , later referred
to as the stimulation, was designed so that such a propagation would be
observable: if (x− x0)2 + (y − x0)2 ≤ r2

0, t ∈ [t0, t0 + δ0] then f(x, t) = I0,
otherwise f(x, t) = 0, where (x0, y0) are the coordinates of the stimulation,
I0 = 1.0 its amplitude, r0 = 3 × 10−2 its radius and δ0 = 5 its duration.
The total duration of the simulation is set to T = 20. Figure 7 shows an
instance of the FKPP model output. The contour plots of u exhibit the
propagating front (left and right) while the time dependence of u at a given
location exhibits a logistic shape. The source of variability is assumed to
come from the reaction parameter R and from the stimulation coordinates
x0 and y0: R = R̄θ1, x0 = θ2, y0 = θ3, where R̄ = 10.

Numerical settings The observations are the values of u at Nt = 200
time steps times Nh = 81 sensors locations, uniformly distributed over



A moment matching method to study the variability of phenomena 25

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

t = 1

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

t = 4

0 5 10 15 20
t

0.0

0.2

0.4

0.6

0.8

1.0

u

x = 0.7, y = 0.7

0.0 0.2 0.4 0.6 0.8 1.0
u

Figure 7: Solution of the FKPP model at different times (left, center) and
time-dependent solution at a given point (right).

[0, T ]×[0, 1]2 so thatNx = 16200. The synthetic dataset is generated by eval-
uating the model for N = 103 samples of θ = (θ1, θ2, θ3). The samples are
drawn from a multivariate normal distribution of mean µ = [0.55, 0.55, 0.50]
and covariance matrix Σ = σ2 × I3, where σ = 0.1. Nc = 2048 col-
location points are generated using the Sobol sequence over the domain
Θ = [0.1, 1.0]3, the number of moments to be matched is set to Nm = 3 and
the tolerance parameter is set to α = 5 × 10−3. The PDE model is solved
using an in-house software implementing the finite element method. Time
integration is performed using the Strang [35] splitting scheme with fixed
time step. Its application to a similar reaction diffusion model is detailed
in [36]. Again, a different discretization is used for both simulation sets. The
simulations used to generate the synthetic data are run on a mesh counting
40328 elements whereas the simulations used to solve the inverse problem
are run on a coarse mesh counting 11478 elements. In addition, a Gaussian
zero-mean noise of amplitude 5% is added to the sensors measurements.

Physical domain reduction This test case where the observable depends
on time and space is a good illustration of the crucial need for a DOF selec-
tion procedure. Indeed, in this setting, Nx ' 104 which makes the inverse
problem both ill-conditioned and computationally intensive. In this exam-
ple, it is particularly interesting to interpret the results of the CS procedure.
Figure 8 shows the contours of the components of the SGM first eigenvector
ej1 (dominant direction) multiplied by its associated eigenvalue ηj1 over the
physical domain D. Each column corresponds to one component of ej , i.e.
to one parameter, and each row to a different time. The space-time areas of
interest now appear clearly. For small times, the parameters are the most
identifiable in the vicinity of the domain center. As the front propagates
outwards, the important areas are located near the domain boundaries.
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Results The proposed inverse procedure is applied and convergence is
reached at niter = 3 and Nk = 48 DOFs are selected. Figure 9 shows the
location and time of the selected sensors. Again, note that they are con-
centrated around the center of the domain for small times (the stimulation
occurs, in average, near the center of the domain) and that they gradually
spread outwards as time increases. Figure 10 shows the estimated marginals
of the three parameters of interest and Table 3.2 summarizes the parameters
estimated statistics. Again, the method yields reasonably accurate results
considering the low number of model evaluations and the difficulty of the
inverse problem. As explained in the previous test case, the errors in the
standard deviations estimates stem from the noise and the mesh differences.
Note however that there is also a positive bias in the estimation of the reac-
tion parameter R. This is due to the fact that the Sobol simulations mesh
is coarser than the synthetic simulations one, inducing a higher numerical
diffusion. The higher value obtained for R is therefore the result of a com-
pensation. This explanation was confirmed by using identical meshes for
both Sobol and synthetic simulations.

0.0 0.2 0.4 0.6 0.8 1.0
θ1 (R)

0

1

2

3

4

5

m
ar
gi
n
al

d
en
si
ty

OMM

exact

0.0 0.2 0.4 0.6 0.8 1.0
θ2 (x0)

0

1

2

3

4

5

m
ar
gi
n
al

d
en
si
ty

OMM

exact

0.0 0.2 0.4 0.6 0.8 1.0
θ3 (y0)

0

1

2

3

4

5

m
ar
gi
n
al

d
en
si
ty

OMM

exact

Figure 10: Marginal densities of three parameters of the FKPP model esti-
mated using our strategy.

Table 3: Results for the FKPP equation.

Statistics mean std.

Parameter exact OMM rel. err.(%) exact OMM rel. err.(%)

θ1 0.55 0.59 5.8 0.098 0.16 66

θ2 0.55 0.55 0.4 0.105 0.12 9.3

θ3 0.50 0.50 0.5 0.103 0.11 8.0

4 Concluding remarks

We have developed a procedure to estimate the PDF of uncertain param-
eters from the knowledge of experimental moments of an observable. This
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iterative procedure is based on two combined algorithms. The first one, the
Observable Moment Matching (OMM) algorithm, computes an estimate of
the parameters PDF using a given subset of the available model DOFs. It
maximizes the PDF entropy under the constraints of matching the moments
of the observable in the subset DOFs. The second one, the Clustered Sen-
sitivies (CS) algorithm, selects a subset of the available model DOFs. The
DOFs are clustered using a similarity measure and a representative for each
cluster is chosen to maximize the sensitivity with respect to the parame-
ters. Selecting a subset of Nk DOFs among the Nx available ones ensures
a better-conditioned and less computationally expensive inverse problem
solved in the OMM algorithm.
This approach has been compared to existing techniques on an ODE test
case. While requiring much less model evaluations, our method has a similar
accuracy. Then, it has been tested on more sophisticated cases involving an
elliptic (resp. parabolic) PDE model with 5 (resp. 3) uncertain parame-
ters. To conclude, we comment on details that have not been thoroughly
investigated in this paper but still are worth mentioning. First, the choice
of parameter box (or stochastic domain) is very important and conditions
the overall success of the procedure. In our tests, we used a large box with
respect to the exact PDF support and not centered on the exact mean to
avoid any favorable bias. In the case of real experimental data, a reasonable
strategy would be to first try a very large box and use the PDF estimate to
recenter and rescale the box for a second run. Another strategy would be
to locally refine the stochastic grid to capture the regions of interest. Ap-
plying different weights in the moment-matching constraints depending on
the moment order has also not been investigated but could impact the pre-
cision of the method. One could use higher weights for the higher moment
components or for certain DOFs. Finally, one possible use of the proposed
approach could be to produce a cheap PDF estimation used as a prior for
more expensive methods such as Bayesian inference.
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A Comparison with existing techniques for an ODE
model

In this appendix, a nonlinear ODE model is introduced. It serves as a simple
reference test case to both illustrate the method and compare its accuracy
and cost with different existing techniques.

A.1 The MV model

The proposed numerical method is applied to an ODE model counting four
state variables g, u, v, w which satisfy

∂tg = −J1(g, u)− J2(g, θ1, θ2)− J3(g, v, w)
∂tu = f1(g, u)
∂tv = f2(g, v)
∂tw = f3(g, w)

(35a)

along with the initial conditions

g(0) = 0, u(0) = 0, v(0) = 1, w(0) = 1. (35b)

The Ji and fi are nonlinear functions of the variables and of the input param-
eters. The proposed model was designed to replicate the electrical activity of
a heart muscle cell. It is known as the Minimum Ventricular model and will
be referred to as the MV model in what follows. For the sake of simplicity,
it is not fully transcribed here but we refer the reader to the original paper
by Bueno-Orovio et al. [37] for the detailed equations. Out of the numerous
input parameters of the MV model, θ1 and θ2 were picked for the illustration
of the method. In the original paper, these two parameters are respectively
denoted by kso and τso1. All remaining parameters are fixed to reference
values found in [37]. Our observable is the state variable g(t) which corre-
sponds to the cell membrane potential. Note that the relationship between
the observable and the input parameters is nonlinear.

A.2 Reference test case

Numerical settings The ODE is solved using a BDF3 scheme with adap-
tive time steps. The number of DOFs Nx = 334 corresponds in this case
to the number of steps used in the time integration. The synthetic data
set is generated by evaluating the model in (35) for N = 103 samples of
θ = (θ1, θ2). The samples are drawn from an uncorrelated bivariate normal
distribution of mean µ = [1.1, 1.1] and covariance matrix Σ = 0.12 × I2.
First, the noise level is set to 5% for the comparison study but its influence is
investigated later in this section. The first Nm order moments are computed
using (3) and stored for the inverse problem. Our strategy is applied to the



A moment matching method to study the variability of phenomena 34

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

0.0

0.2

0.4

0.6

0.8

1.0

g

θ1 = 1, θ2 = 1

selected DOFs
θ1 = 0.6, θ2 = 0.6

θ1 = 1.8, θ2 = 1.8

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

0.0

0.2

0.4

0.6

0.8

1.0

g

synthetic observable sample

Figure 11: Solution of the ODE model for different values of the input
parameters (left) and synthetic measurements (right). 5 time steps selected
by the CS algorithm are indicated as red circles.

joint PDF estimation of the synthetic population θ1 and θ2. The stochas-
tic domain Θ = [0.6, 1.8]2 is discretized using Nc = 1024 quadrature points
from the Sobol sequence. It should be noted that the width of the stochastic
domain is equal to 12σ and is not centered on µ. Taking a domain which is
wide enough with respect to the exact PDF support, and not centered on the
exact mean, is important if one wants to assess the accuracy of the method
without any “favorable bias” induced by the choice of the stochastic domain
bounds. Indeed, in practical cases, one does not have a precise knowledge
on the exact means and standard deviations of the parameters distributions.

To investigate the effect of several hyper-parameters of the procedure,
the number of global iterations in temporarily set to niter = 1. The CS pro-
cedure is applied with the initial guess ρ(0,0) being a uniform distribution
over Θ. Figure 12 shows the SGM eigenvectors ej = (e1, e2)j , j = 1, . . . , Nx.
The size of the markers is proportional to the logarithm of the associated
eigenvalues ηj . Since the eigenvectors are normalized, the points are scat-
tered over the unitary circle. Each cluster is featured with a different color
(here Nk = 5 so the points are divided into 5 clusters).

Influence of Nk Here we investigate the effect of Nk. The other hyper-
parameters are fixed: Nm = 3 and Nc = 512. The CS procedure is applied
for Nk varying from 2 (np) to 334 (Nx). Figure 13 shows the evolution of the
KL divergence KL(ρ|ρ∗) and the residual norm ‖R‖2 with respect to the
number of selected DOFs Nk. The KL divergence and the global residual
norm ‖R‖2 are not monotonic with respect to Nk but they both follow
the same decreasing trend. From Nk = 50, there is no significant change
in the KL divergence. Both observations confirm the relevance of the CS
procedure and of the a priori error analysis. Table A.2 summarizes the
parameters estimated statistics (mean and standard deviation) with respect
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to Nk. It is clear that a certain convergence is reached as Nk increases, both
in the KL divergence and in the parameters statistics themselves.
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Figure 13: Convergence of the KL error and residual norm as the number
of selected DOFs Nk increases.

Influence of Nc The effect of the number of stochastic collocation points
Nc is investigated with Nm = 3 and Nk = 50. Nc varies from 2 to 210 and
Nm = 3 and Nk = 50 are fixed. Table A.2 shows the means and standard
deviations of θ1 and θ2 estimated by the Observable Moment Matching algo-
rithm as well as their empirical values. The empirical moments correspond
to the moments computed directly from the synthetic parameter samples
using the following formula:

µm,k =
1

N

N∑
i=1

θmi,k, m = 1, . . . , Nm, k = 1, . . . , np. (36)
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Table 4: Observable Moment Matching results for different values of Nk

(Nc = 512 and Nm = 3).

Statistics KL(ρ|ρ∗) mean std

Number of DOFs θ1 θ2 θ1 θ2

Nk = 2 3.84 1.2124 1.1458 0.343 0.231

Nk = 5 6.45 ×10−1 1.1080 1.1071 0.150 0.127

Nk = 10 4.18 ×10−1 1.1078 1.1118 0.140 0.135

Nk = 20 1.65 ×10−1 1.1006 1.1068 0.119 0.121

Nk = 50 4.10 ×10−2 1.0978 1.1037 0.108 0.103

Nk = 100 2.49 ×10−2 1.0974 1.1037 0.106 0.103

Nk = 200 2.94 ×10−2 1.0971 1.0383 0.105 0.103

Nk = 334 3.01 ×10−2 1.0970 1.1039 0.105 0.103

Empirical 0 1.0972 1.1042 0.104 0.102

As expected, the estimation is more accurate when Nc increases. Note that
the computational cost of increasing Nc is limited owing to the deterministic
and nested nature of the Sobol sequence. If one already has evaluated the
model for Nc1 sample points and wants Nc2 model evaluations, one only has
to perform Nc2 −Nc1 forward runs to complete the simulation set.

Influence of the noise level The synthetic measurements are corrupted
by adding some noise to the numerical results. Table A.2 shows the esti-
mated means and standard deviations of θ1 and θ2 for different noise levels.
As expected, the accuracy of the method decreases as the noise increases.

Non-normal distributions In order to assess the robustness of the method,
a similar but more complex heart cell model [38] is used. It consists of a
set of 29 nonlinear coupled ODEs and we aim at estimating the PDF of
two parameters of this model. The synthetic dataset is generated by sam-
pling the parameters of interest from two known distributions: a bivariate
log-normal distribution Log − N (0, σ2

1) and a bivariate Gaussian mixture
N (1, σ2

2) + N (2, σ2
2) with σ1 = 0.7 and σ2 = 0.2. In both cases, the syn-

thetic dataset is corrupted by a zero-mean Gaussian noise of amplitude 5%.
The inverse procedure is applied to the log-normal case with the follow-
ing numerical settings: Nc = 2048, Nm = 3 and convergence is reached at
niter = 1 and Nk = 21. The PDF values are shown in Figure 14 and the
marginal densities in Figure 15. Note that the strong skewness of the true
distribution is well captured by the proposed inverse procedure.

The inverse procedure is then applied to the Gaussian mixture case with
the following numerical settings: Nc = 2048, Nm = 3 and convergence is
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Table 5: Observable Moment Matching results for different values of Nc

(Nk = 50 and Nm = 3).

Statistics KL(ρ|ρ∗) mean std

Number of stochastic points θ1 θ2 θ1 θ2

Nc = 4 1.62 1.1328 1.1378 0.187 0.189

Nc = 8 1.89 1.1000 1.1241 0.116 0.151

Nc = 16 8.48 ×10−1 1.1006 1.1002 0.123 0.105

Nc = 32 2.69 ×10−1 1.0995 1.1109 0.119 0.134

Nc = 64 1.02 ×10−1 1.0968 1.1049 0.107 0.110

Nc = 128 5.04 ×10−2 1.0965 1.1038 0.106 0.104

Nc = 256 4.99 ×10−2 1.0979 1.1039 0.109 0.105

Nc = 512 4.10 ×10−2 1.0978 1.1037 0.108 0.103

Nc = 1024 4.20 ×10−2 1.0978 1.1037 0.108 0.104

Empirical 0 1.0972 1.1042 0.104 0.102

Table 6: Observable Moment Matching results for different noise levels
(Nc = 512, Nk = 50 and Nm = 3).

Statistics KL(ρ|ρ∗) mean std

Noise level θ1 θ2 θ1 θ2

80% 1.55 1.1027 1.1543 0.120 0.251

20% 1.23 ×10−1 1.0967 1.1019 0.105 0.094

10% 6.97 ×10−1 1.0994 1.1161 0.117 0.162

5% 4.10 ×10−2 1.0978 1.1037 0.108 0.103

2% 3.92 ×10−2 1.0978 1.1051 0.107 0.108

1% 3.79 ×10−2 1.0977 1.1050 0.107 0.108

0% 3.70 ×10−2 1.0977 1.1048 0.107 0.107

Empirical 0 1.0972 1.1042 0.104 0.102
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Figure 14: PDF estimation of a bivariate log-normal distribution: direct
visualization.
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Figure 15: PDF estimation of a bivariate log-normal distribution: marginal
densities.
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reached at niter = 1 and Nk = 31. The PDF values are shown in Fig-
ure 16 and the marginal densities in Figure 17. Note that strong correlation
between θ1 and θ2 is fully captured.
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Figure 16: PDF estimation of a bivariate Gaussian mixture: direct visual-
ization.
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Figure 17: PDF estimation of a bivariate Gaussian mixture: marginal den-
sities.

A.3 Comparison with existing techniques

In this section, the proposed approach is compared to existing techniques on
the reference test case described in A.2. We show that all three approaches
achieve the same precision on the parameters estimations but with a different
number of function evaluations.

Least-squares moment-matching An alternative to the present ap-
proach is to directly minimize the moment difference using a least-squares
method. In [14], the quantity of interest is represented as a finite polyno-
mial expansion of d uncorrelated random variables ξ = {ξ1, . . . , ξd}. The
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methodology was applied to inverse heat conduction problems and to mi-
crostructure reconstruction. This approach was applied to our test case.
Here, the quantities of interest are the two parameters θ1 and θ2 and the
observable is the variable u. Using the methodology presented in [14], the
parameter θj is expanded on a sparse grid as follows:

θj(ξ) =

nk∑
k=1

θj(ξk)Lk(ξ) =

nk∑
k=1

qj,kLk(ξ),

where qj,k = θj(ξk), the ξk are the sparse grid collocation points and Lk the
members of the polynomial basis. Then, one can approximate the moments
of the observable using the sparse grid quadrature rule:

µ∗m(xj) =

nk∑
k=1

wkg(xj , ξk)
m,

where the wk are the sparse grid weights. The cost function J is defined
as the squared difference between the approximated and experimental mo-
ments:

J =
1

2

Nm∑
m=1

Nx∑
j=1

αm (µ∗m(xj)− µm(xj))
2 ,

where the αm are user-defined weights. The problem now consists in min-
imizing J with respect to the coefficients qj,k. In [14], this is done by a
gradient descent method which involves solving the sensitivity equations
associated with the model. For the sake of simplicity, to avoid the tedious
derivation of the sensitivity equations of the MV model, we used the Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) evolutionary algo-
rithm [39] to minimize J . Since the minimization strategy differs from that
of [14], the number of model evaluations needed to reach convergence may
differ. This is to be taken into account when comparing the three methods
in Table A.3.

Population approach (SAEM) Here we tackle the inverse problem from
a radically different perspective, belonging to the so-called population ap-
proaches. It consists in seeking a Maximum Likelihood (ML) estimate of
the unknown parameters. The MV test case can be seen as a mixed effects
model where the observed data are the yi,j , i = 1, . . . , N , j = 1, . . . , Nx and
the parameters θ1, θ2 are the non-observed data. We assume that the ob-
served data are outputs of the MV model with an additive noise εi,j assumed
to be normally distributed: ε ∼ N

(
0, τ2

)
.

yi,j = g(θi,xj) + εi,j .
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Assuming each θj is normally distributed, θj ∼ N
(
µj , σ

2
j

)
, the likelihood

L reads:

L(y, θ; τ, µk, σk) =
(
2πσ2

1σ
2
2

)−N/2 (
2πτ2

)−NNx/2
exp

− 1

2τ2

∑
i,j

(yi,j − g(θi,xj))
2

− 1

2σ2
1

∑
i

(θ1,i − µ1)2 − 1

2σ2
2

∑
i

(θ2,i − µ2)2

]
.

Note that this approach differs from the other two on two major aspects.
First, it is a parametric approach, meaning we are not seeking a pointwise
estimate of the PDF but a parameterization of it (here a Gaussian parame-
terization). Second, the method provides, by construction, an estimation of
the noise level of the measurements. In the other two approaches, the noise
structure and amplitude is assumed to be known. The parameters τ, µk, σk
are found by maximizing the log-likelihood log(L), which is challenging due
to the nonlinear relationship between g and θ1, θ2. This is called the Maxi-
mum Likelihood Estimation (MLE) method. In the case of linear models, the
maximum likelihood is usually found using the Expectation Maximization
(EM) algorithm [40]. The paper by E. Kuhn and M. Lavielle [15] introduces
a modified version of the EM algorithm to tackle cases where the models are
nonlinear. The authors developed a Stochastic Approximation of the Expec-
tation Maximization algorithm (SAEM) to solve the MLE problem. For the
comparison study, we used Monolix R© [41], the Matlab R© implementation of
the SAEM algorithm. This software was initially designed to perform the pa-
rameter estimation of pharmacokinetics-pharmacodynamics (PK-PD) mod-
els. Compared to PDEs, those models are usually computationally cheap
so that the software does not look for a solution with minimum model eval-
uations. However, one may reduce the computational cost by constructing
a pre-computed grid of solutions and then interpolate in that grid instead
of evaluating the full model. The Monolix software was successfully used
in [42] to estimate the parameters of a 1–D PDE model. Such a strategy
was not adopted in this paper and the software was used as is.

Comparison We applied the Clustered Sensitivities / Observable Moment
Matching algorithms and both the previously described methods to the ref-
erence test case described in A.2. The numerical settings for our method
are: Nc = 512, Nm = 3 and Nk = 50. For the least-squares method, we used
a two-dimensional sparse grid using the Smolyak rule [43] to discretize the
parameter space with Nc = 9 and the first Nm = 3 moments were matched.
As explained before, the SAEM algorithm was applied using the Monolix
software with default settings.
Table A.3 shows the estimations of the parameters moments and the number
of model evaluations needed for the three methods. For all three approaches,
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the errors on the means are less than 1% and the errors on the standard
deviations are less than 10%. Even though the SAEM appears to be more
precise than the other two, the main difference lies in the number of model
evaluations needed. Our approach requires much less model evaluations and
those evaluations are made offline, once and for all. Again, our implementa-
tion of the least squares method presented in [14] may require more model
evaluations due to the minimization strategy adopted.

Table 7: Comparison with existing techniques

Exact SAEM least-squares OMM

moment order θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

1 1.0972 1.1042 1.0975 1.1051 1.0972 1.1019 1.0963 1.1015

2 1.2147 1.2297 - - 1.2133 1.2215 1.2125 1.2224

3 1.3566 1.3810 - - 1.3522 1.3616 1.3520 1.3663

std 0.104 0.102 0.104 0.102 0.098 0.086 0.103 0.095

model evaluations - 2.98× 106 1.67× 105 512


