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A Variable-Length Cell Road Traffic Model:

Application to Ring Road Speed Limit

Optimization

Carlos Canudas-de-Wit∗ and Antonella Ferrara⋄

Abstract—In this paper we propose a variable speed control

strategy based on a new Variable-Length cell transmission

Model (VLM). The VLM differs from the standard Cell

Transmission model in that only a limited number of (variable

length) cells are used. Road network is subdivided into several

sections which are assumed to be composed of a downstream

congested cell followed by a free upstream cell. Both cells have

variable lengths and are described by two lumped densities (one

congested, the other free). One more state describing the length

variation completes the model for each section. The paper also

introduces an associated optimal speed control design based on

the proposed VLM. The method is illustrated on a closed ring

road and is shown to optimize the traveling time per turn.

I. INTRODUCTION

Modern technologies are now a well recognized vector to

alleviate traffic congestions problems. First steep is to equip

the roads with sensors collecting [4] and processing data

[20], in order to decide optimal traffic control policies based

on reliable traffic models [13], [15], [14], [17], [18], [8],

[9]. Physicists, mathematicians and engineers have developed

models of vehicular traffic for almost fifty years [21], but

models useful for control design are still a limited number.

Control designers have preference for simple macroscopic

models capturing fundamental physical features like vehicle

conservation and shock wave propagation, often inspired by

analogies from flows dynamics in fluids or gases.

For instance, the well-known Daganzo’s Cell Transmission

Model (CTM) [5] comes from a discretization into cells

(corresponding to small portions of the road) of the LWR

continuum model proposed by Lighthill and Whitham [16],

and Richards [19]. The CTM keeps track of the number

of vehicles in each cell, and at every time step determines

the number of vehicles that cross the boundaries between

adjacent cells. The interface flows between cells can be

captured by the well-known and compact demand/supply

formulation (see [12] for a complete study of CTM major

mathematical properties).

One limitation of the CTM model is due to its complexity

which is determined by the number of cells into which

the considered road stretch is subdivided. Using the CTM
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to model large scale traffic networks results in a high-

dimensional switched linear model with exponential com-

plexity.

The previous considerations have been the motivations for

searching new low-dimensional macroscopic models allow-

ing tractable control design with reduced complexity. Among

those there is the so-called Link-Transmission model (LTM)

which is basically a CTM with a single cell, but with the

limitation that the shock propagation is only possible between

links. This implies that the shock waves propagation inside

the link is not captured, while it is captured by the CTM

does (see [22] for further discussion). The use of this model

is often limited to the context of traffic light control in urban

network.

Store and forward models are some sort of queue models

integrating the difference between the total inflows and out-

flows. The model traces back to the original works of Gazis

and Potts (1963) [10] and has since then been used in various

road traffic control optimization studies [1]. Those models

integrate several simplifications at the cost of the loss of

many of the model kinematic original properties. Stochastic

version of this models have been also considered[23]. A

common observed limitation is that queues are “vertical” with

unlimited capacity. Therefore, it does not permit saturation

of a downstream link that blocks the movement of vehicles

from an upstream link. This may result in motion-blocking

problems as observed by [23], [2], and in a substantial

deviation from waves propagations as predicted from the

original LWR model.

In this paper, we propose a new aggregated Variable-

Length cell transmission Model (VLM) aiming also at com-

plexity reduction by limiting the number of states per link,

which stems from the ground base ideas presented in [3].

In this paper we present an improved model with respect to

that in [3], showing in particular that its derivation results

from averaging the original LWR model while ensuring

that the wave propagations are suitable considered, not only

at the level of the link but also between neighbor links.

Essentially, the model consists of three lumped state variables

per link one of which explicitly describes the position of the

congestion wave front (or the queue length). In this paper

we also formally address the most prominent mathematical

model properties including; the consistency with respect to

its inherent mass (or vehicle) conservation law, and the



capability of accurately describing the propagation of shock

and advection waves. We also equipped the model with small

fixed boundary cells to avoid singularities when the link is

either fully congested or fully free.

The proposed model can be satisfactorily used in several

possible scenarios. Moreover, it possesses a sufficient level

of accuracy and the appropriate simplicity to be adopted

as a basis to design controllers for traffic systems. This is

testified by its effective use in the context of optimal speed

design illustrated in [6], [7]. Even in the present paper, to

better emphasize the control design oriented nature of the

VSL model, we present the model utilization in a closed

ring road, and the possibility of exploiting such a model to

optimize the speed limits, so as to improve the traveling time

in that scenario.
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Fig. 1. Schematic representation of the triangular fundamental diagram.

II. PRELIMINARIES: CONSERVATION LAWS AND CTM

The simplest continuous macroscopic traffic model is the

so-called LWR model, proposed by Lighthill, Whitham [16],

and Richards [19]. It is based on the vehicle conservation’s

principle, and on the assumption that the traffic can be

described by the empiric relation between flow, ϕ, and

density, ρ, as: ϕ = Φ(ρ), where the function Φ(·) is called

Fundamental Diagram (see Fig. 1), which can be defined in

its simplest form by a triangle given by

Φ(ρ) = min{vρ,−w(ρ− ρM )}

where v is the maximum velocity at free-flow, and −w
defines the speed at which congestion travels upstream.

Φ(ρ) has its maximum at ΦM = Φ(ρ∗) describing the

maximum capacity of the road. The critical density ρ∗ defines

the boundary between the decongested and the congested

modes, while ρM is the maximum density that the road can

withstand.

The evolution of the number of vehicles, N , within any

spatial section (0, L) is given by the conservation law

d

dt
N = ϕin − ϕout, N =

∫ L

0

ρ(x, t)dx (1)

where ϕin and ϕout are the input (at x = L) and output (at

x = 0) flows at the boundaries of the road section of length

L. Equation (1) can be rewritten (see [16]) as a hyperbolic

equation involving only the density

∂tρ+ ∂xΦ(ρ) = ∂tρ+ ∂ρΦ · ∂xρ = 0 (2)

The macroscopic continuous density dynamics is then given

by the LWR Cauchy problem described by (2) with the initial

condition ρ(x, 0) = ρ0(x).
Assume now that the road section is subdivided into n-cells

of constant length ∆li. Let us denote with ρi the density of

the ith cell of the section. Then, the number of vehicles per

cell can be computed as Ni = ρi∆li.
A well-known efficient first-order numerical method to

integrate (2) is the Godunov scheme [11]. This process leads

to discrete space-time equations named the Cell Transmission

Model (CTM) originally proposed by Daganzo in [5], which

in its continuous-time version takes the following form

ρ̇i(t) =
1

∆li

(

ϕi−1(t)− ϕi(t)
)

(3)

with ϕ0 = ϕin(t), ϕn = ϕout(t), ϕi being the interface flow

between the cells i and i+ 1 given as

ϕi = min{Di, Si+1} (4)

with

Di = min{viρi, ϕM,i},

Si+1 = min{ϕM,i+1, wi+1(ρM,i+1 − ρi+1)}

where the demand Di is the flow that can be delivered by the

cell i to the cell i+1, while the supply Si+1 is the flow that

can be received by the cell i+1 from the cell i; ϕM,i is the

maximum flow allowed by the capacity of cell i, ρM,i is the

jam density (i.e. the maximum density that can be reached),

vi corresponds to the free flow speed and wi is the congestion

wave speed in cell i.
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Fig. 2. Schematic diagram of the two-cell variable-length model VLM with
boundaries cells introduced to avoid singularities at l = 0, and l = L.

III. NEW MACROSCOPIC MODEL WITH

VARIABLE-LENGTH CELLS

Consider a simple road section described by two cells of

variable length: a downstream congested cell, of length l, and

an upstream free cell, of length L − l, where L is the total

length of the section. The former cell is characterized by the

lumped (or averaged) “congested density” ρc, the latter by

the lumped (or averaged) “free density” ρf . Note that l = l(t)
is time-varying and specifies the position of the congestion

wave front, see Fig. 2 (with ǫ = 0). Then, in contrast to the

n-fixed cells model (3), the new macroscopic traffic model

introduced in this paper, named Variable-Length cell Model

(VLM), consists only of three lumped state variables, i.e. ρf ,

ρc and l.



A. Conservation law for the variable-length cells

Consider for consistency with the grow direction of l
shown in Fig. 2, that the x-axis is oriented with l from right

(downstream) to left (upstream). Therefore, the conservation

law (2) now can be written as ∂tρ = ∂xΦ(ρ), where we have

replaced ∂x with −∂x. Moreover, let s(t) be the continuous

variable describing the time-varying shock wave position

along the x axis. Relying on s(t), the following lumped

(averaged) densities variables ρf and ρc are defined:

ρf =
1

L− s

∫ L

s

ρ(x, t)dx (5a)

ρc =
1

s

∫ s

0

ρ(x, t)dx (5b)

Note that the density distribution is discontinuous at the

boundary x = s. Its left, ρ−, and right, ρ+, limits can be

written as

ρ− = ρ−(t) = lim
x→s−

ρ(x, t), ρ+ = ρ+(t) = lim
x→s+

ρ(x, t)

The time-derivatives of the lumped variables are given by

ρ̇f =
1

L− s

[
∫ L

s

∂tρ(x, t) dx− ρ− ṡ

]

+
ṡ

(L− s)2

∫ L

s

ρ(x, t)dx

ρ̇c =
1

s

[
∫ s

0

∂tρ(x, t) dx+ ρ+ ṡ

]

−
ṡ

s2

∫ s

0

ρ(x, t)dx

Using ∂tρ(x, t) = ∂xΦ(ρ) in the previous integrals, and the

definitions (5a)-(5b), ρ̇f rewrites as

ρ̇f =
1

L− s

[

Φ(ρ(L))− Φ(ρ−)− ρ− ṡ
]

+
ṡ

(L− s)
ρf

=
1

L− s

[

ϕin − Φ(ρ−)− ρ− ṡ
]

+
ṡ

(L− s)
ρf (6)

with the boundary upstream flow Φ(ρ(L)) = ϕin. Similarly,

we get for ρ̇c

ρ̇c =
1

s

[

Φ(ρ+)− Φ(ρ(0)) + ρ+ ṡ
]

−
ṡ

s
ρc

=
1

s

[

Φ(ρ+)− ϕout + ρ+ ṡ
]

−
ṡ

s
ρc (7)

where Φ(ρ(0)) = ϕout, and the boundary densities and

flows at the shock wave front are denoted as ρ−, ρ+,

and Φ(ρ+),Φ(ρ−), respectively. From the Rankine-Hugoniot

jump condition, the shock wave speed, ṡ can be written, in

the l coordinates, as

ṡ =
Φ(ρ−)− Φ(ρ+)

ρ+ − ρ−
(8)

implying that Φ(ρ−) + ρ− ṡ = Φ(ρ+) + ρ+ ṡ. The balance

between the first term (left-flow) and the second term (out-

flow) is a direct consequence of the principle of vehicle

conservation at the interface. The interface flow ϕI in the

moving shock wave frame is given by

ϕI = Φ(ρ+) + ρ+ ṡ = Φ(ρ−) + ρ− ṡ (9)

As such, equations (6) and (7) can be rewitten as

ρ̇f =
1

L− s
[ϕin − ϕI + ṡρf ] (10)

ρ̇c =
1

s
[ϕI − ϕout − ṡρc] (11)

Note all the variables in the previous equations, except for

s, are expressed in the lumped form. In order to arrive at

a description which only depends on lumped variables, an

approximation of the shock wave position s(t), denoted with

l(t), is introduced. The time evolution of l(t) ∈ (0, L) is

proposed to be

l̇ =
Φ(ρf )− Φ(ρc)

ρc − ρf
(12)

which can be regarded as the lumped version of (8). More

specifically, in (12) we assume that Φ(ρ−) and Φ(ρ+)
are approximated by Φ(ρf ) and Φ(ρc), respectively. This

approximation makes sense as the densities in each of the

variable cells are assumed to be scalar and constant over the

space variables, and not distributions.

Then on the basis of (12), equations (10) and (11) can be

rewritten as

ρ̇f =
1

L− l

[

ϕin − ϕI + l̇ρf

]

(13)

ρ̇c =
1

l

[

ϕI − ϕout − l̇ρc

]

(14)

B. Full dynamics

Note that the lumped model provides a piece-wise value

of the traffic density for each of the two portions (the free

and the congested one) of the road section, in opposition to

the spatially distributed formulation. The boundary density

values in the lumped case are then given as

ρ+ = ρc, and ρ− = ρf

so that equation (9) writes now as

ϕI = Φ(ρc) + ρc l̇ = Φ(ρf ) + ρf l̇ (15)

from which we get

−ϕI + ρf l̇ = −Φ(ρf) and ϕI − ρc l̇ = Φ(ρc) (16)

Substitution of these expression into (13) and (14), together

with (12), gives

ρ̇f =
1

L− l
[ϕin − Φ(ρf )] (17)

ρ̇c =
1

l
[Φ(ρc)− ϕout] (18)

l̇ =
Φ(ρf )− Φ(ρc)

ρc − ρf
(19)

Equations (17)-(19) define the new macroscopic traffic

model we propose. This model is a lumped variables model

based on three state variables only. As for its structure, it

is simpler than classical continuous macroscopic models, as

well as of n-fixed cells models. Nevertheless, as discussed in



the next section, it features interesting properties which allow

it to capture the relevant phenomena of traffic dynamics.

Remark 1 The VLM owns fundamental mathematical prop-

erties consistent with the constructive assumptions. For in-

stance, it can be shown that densities ρc, and ρf remain

in their definition domain Ωf = {ρ : ρ ∈ [0, ρ∗]}, and

Ωc = {ρ : ρ ∈ [ρ∗, ρM ]} as long the density initial conditions

are taking values inside the respective domains. However, to

ensure that l ∈ Ωl , where Ωl = {l : l ∈ (0, L)}, additional

mechanisms need to be implemented to treat the singular

points where l is equal to either 0 or L.

C. Special cases of singular points

The VLM model presents three degenerate cases when l =
0, l = L, and ρf = ρc, respectively. This subsection describes

how the original model can be reformulated to cope with such

cases.

1) Singular points for l(t): Consider first the case where

the variable length l(t) approaches one of the two possible

boundary values. In those cases, the idea is to create a ε-

boundary layer at the two extremes of the considered road

section and stop the evolution of l(t) when it reaches the ε-

boundary layer borders. When this happens, the model col-

lapses into the standard CTM model with fixed length cells,

and the density variables evolve according to the conventional

“Demand-Supply” mechanism, with the standard notation

D(ρ) = min{vρ, ϕM}, S(ρ) = min{−w(ρ− ρM ), ϕM}

This idea is sketched in Fig. 2.

Let us consider an arbitrarily small ε such that 0 < ε ≪ L.

Then the following two conditions can be introduced:

C0 = {(l = ε) ∩ (D(ρf ) ≤ S(ρc))} (20)

CL = {(l = L− ε) ∩ (D(ρf ) ≥ S(ρc))} (21)

Condition C0 implies that the lower extreme is reached while

the congestion front wave is moving downstream. Symmetri-

cally, condition CL indicates that the upper extreme is reached

while the congestion front wave is moving upstream. For

those specific cases, the following model modification is

proposed:

• If C0 holds, the interface flow is ϕI =
min{D(ρf ), S(ρc)} = D(ρf ), and then the model

becomes

ρ̇f =
1

L− ε
[ϕin −D(ρf )] (22)

ρ̇c =
1

ε
[D(ρf )− ϕout] (23)

l̇ = 0 (24)

Note that in this case, the variation domain of the state

variables is partially modified. The congested density

variable can now take values smaller than the critical

density ρ∗, i.e. ρc ∈ [0, ρM ], while the free density

variable remains in its original domain, i.e. ρf ∈ Ωf .

• If CL holds, the interface flow is ϕI =
min{D(ρf ), S(ρc)} = S(ρc), and then the model

becomes

ρ̇f =
1

ε
[ϕin − S(ρc)] (25)

ρ̇c =
1

L− ε
[S(ρc)− ϕout] (26)

l̇ = 0 (27)

In this case, the free density variable can take values

larger than the critical density ρ∗, i.e. ρf ∈ [0, ρM ],
while the congested density variable remains in its

original domain, i.e. ρc ∈ Ωc.

Now consider the third singular point, i.e. ρf = ρc.

From the fundamental diagram in Fig. 1, it is apparent

that this singularity only occurs at ρf = ρc = ρ∗, where

Φ(ρf ) = Φ(ρc) = ϕM . This implies that equation (19)

becomes undetermined. As a consequence, in order to extend

the proposed model validity to this case, a regularization

mechanism needs to be introduced. To this end, let ef =
ρf −ρ∗ ≤ 0 and ec = ρc−ρ∗ ≥ 0, we have that ef = −|ef |,
and ec = |ec|. Hence, (19) can be rewritten as

l̇ =
−v|ef |+ w|ec|

|ef |+ |ec|

Let us denote with V (ef , ec) = |ef | + |ec|, and with

σ(ef , ec) = ǫe−αV 2(ef ,ec), ǫ and α being strictly positive

coefficients, a suitable regularizing term. Then, the following

regularization for (19)

l̇ =
−v|ef |+ w|ec|

V (ef , ec) + σ(ef , ec)
, lim

V (ef ,ec)→0
l̇ = 0

is proposed, which in the original system coordinates writes

as

l̇ =
Φ(ρf )− Φ(ρc)

ρc − ρf + σ(ρc, ρf )
(28)

with σ(ρc, ρf ) = ǫe−α(ρf−ρc)
2

.

D. Singularity-free full VLM

Considering the different regularizations introduced previ-

ously, and noticing that l = ε, and l = L − ε, at C0 and

CL, respectively, the full model can be compactly written as

follows

ρ̇f =
1

L− l







ϕin −D(ρf ) if C0
ϕin − S(ρc) if CL
ϕin − Φ(ρf ) else

(29)

ρ̇c =
1

l







D(ρf )− ϕout if C0
S(ρc)− ϕout if CL
Φ(ρc)− ϕout else

(30)

l̇ =

{

0 if C0
⋃

CL
Φ(ρf )−Φ(ρc)

ρc−ρf+σ(ρc,ρf )
else

(31)



IV. RAREFACTION WAVES IN THE VLM

Model (29)-(31) has been designed under the implicit

assumption of the existence of a bottleneck originating an

important change of capacity at the boundary l = 0, and

producing a congestion whose origin in the space remains

fixed. However, there are other situations in which both

spatial boundaries of the congestion may evolve in time.

This is the case when a sudden change from the congested

mode to the free mode occurs at the downstream boundary

(i.e. because of the traffic light switching from red to green,

or of a car accident being eventually resolved) producing a

rarefaction (or fan) wave at the downstream boundary.

l

ρ∗

ρuf

lu ld

ρ(x)

lr

l̇r = w

ρc

ρr

ρdf

l̇d = −v

l̇u =
Φ(ρc)−Φ(ρu

f
)

ρu
f
−ρc

Fig. 3. Illustration of the variables involved in the model including
rarefaction waves.

Consider the variables as defined in Fig. 3, with

ρuf , ρc, ρr, ρ
d
f being the densities, and lu, lr, ld being the

associated cell lengths subject to the following constraints:

L > lu ≥ lr ≥ ld > 0, and 0 < ρdf < ρ∗ < ρc < ρM .

The left and the right boundary of the rarefaction wave are

indicated by lr, ld respectively. Assuming the rarefaction

wave is initiated at l = l0, the solution of the Riemann

problem with initial left and right distributions ρ− = ρc,
and ρ+ = ρdf is:

ρ(l, t) =







ρc (l − l0) < Φ′(ρc)t,
ρ∗ Φ′(ρc)t ≤ (l − l0) < Φ′(ρdf )t,

ρf (l − l0) ≥ Φ′(ρdf )t.
(32)

For the triangular piece-wise fundamental diagram, we have

Φ′(ρc) = w, and Φ′(ρdf ) = −v (in the l-direction). We

have then the formation of two shock waves: one traveling at

velocity w, and another traveling at velocity −v, with critical

density ρr = ρ∗ as the intermediate state.

The model can now be constructed by following the same

ideas on vehicles conservation laws used previously, i.e.

Ṅu
f = ϕin − ϕu

I (33)

Ṅc = ϕu
I − ϕr

I (34)

Ṅr = ϕr
I − ϕd

I (35)

Ṅd
f = ϕd

I − ϕout (36)

with Nu
f = (L− lu)ρ

u
f , Nc = (lu− lr)ρc, Nr = (lr−Ld)ρr,

Nd
f = ldρ

d
f , and ϕu

I , ϕ
r
I , ϕ

d
I being the interface flows at

lu, lr, ld, respectively. As before, each interface flow can be

computed using the speed function l̇−/+ = f(ρ−, ρ+) =
Φ(ρ+)−Φ(ρ−)

ρ−−ρ+ of each interface, and its corresponding left

and right densities ρ−, ρ+. This gives: ϕ
−/+
I = ρ− l̇−/+ +

Φ(ρ−) = ρ+ l̇−/+ +Φ(ρ+). The full model is now given by

ρ̇uf =
1

L− lu

[

ϕin − Φ(ρuf )
]

(37)

ρ̇c = 0, (38)

ρ̇r = 0 (39)

ρ̇df =
1

ld

[

Φ(ρdf )− ϕout

]

(40)

and

l̇u =

{

f(ρuf , ρc) if lu > lr
f(ρuf , ρr) = −v if lu = lr

(41)

l̇r =

{

f(ρc, ρr) = w if lu > lr
f(ρuf , ρr) = −v if lu = lr

(42)

l̇d = f(ρr, ρ
d
f ) = −v if lr ≥ ld (43)

with initial conditions ρuf (0), ρc(0), ρr(0) = ρ∗, ρdf(0), and

luf (0) > lr(0) = ldf (0) = l0.

Remark 2 Because of the particular initial density distribu-

tion, and of equations (38)-(39), both densities ρc(t) = ρc(0),
and ρr(t) = ρ∗ remain constant. The rarefaction wave

reaches in finite time the upstream free state (i.e. lu = lr),

giving raise to a new shock wave whose values are below

the critical density and moves to the right with velocity v,

i.e. l̇u = l̇r = −v.

θd

θr

θu

ρr

ρf

ρc

θ̇r =
w

R

θ̇d =
−v

R

θ̇u

θd

θu = θu

ρr

ρf

θ̇ r
=
θ̇ u

=
−

v
R

θ̇d =
−v

R

θd

θr

ρr

ρc

θ̇u = θ̇d =
w

R

θ̇r =
w

R

θu

Fig. 4. Illustration of the ring-road scenario. Left figure shown the scenario
with the associated variables. Center (class A) and right (class B) figures
shown the two possible equilibria classes.

V. VARIABLE SPEED OPTIMIZATION IN A CLOSED RING

ROAD

In this section, a case study of a closed ring-road scenario

shown in Fig. 4 is considered to illustrate the main model

properties and how the model can be used for variable speed

optimization.

A. Ring-road Variable Length model

Let lu = Rθu, lr = Rθr, ld = Rθd, ρuf = ρdf = ρf ,

ϕin = ϕout. Model (37)-(43), in the set Ωθ =
{(θu, θr, θd) : θu ≥ θr ≥ θd} \ {(θu, θr, θd) : θu = θr = θd},



can be written in the circular coordinates as,

ρ̇f = 0, ρf (0) = ρ0f (44)

ρ̇c = 0, ρc(0) = ρ0c (45)

ρ̇r = 0, ρr(0) = ρ∗ (46)

θ̇u =
l̇u
R

=
1

R

{

f(ρf , ρc) if θu > θr
f(ρf , ρr) = −v if θu = θr

(47)

θ̇r =
l̇r
R

=
1

R

{

f(ρc, ρr) = w if θu > θr
f(ρf , ρr) = −v if θu = θr

(48)

θ̇d =
l̇d
R

=
1

R

{

f(ρr, ρf ) = −v if θr ≥ θd
f(ρr, ρc) = w if θd = θu

(49)

with initial conditions (θ0u, θ
0
r , θ

0
d) ∈ Ωθ.

B. Equilibrium points of the VLM of the ring road

The model (44)-(49) has in general two classes of equilib-

rium points depending on the initial conditions. One class

(Class A) is composed of one part in free-flow and the

other at the critical density, while the second class (Class

B) consists of one part in congested mode, and the other at

the critical density, see Fig. 4.

Consider the following definitions:

∆θf (t) = 2π + θd(t)− θu(t)

∆θc(t) = θu(t)− θr(t)

∆θ∗(t) = θr(t)− θd(t)

with the notation ∆θ(·)(0) = ∆θ0(·).

Lemma 1 Consider the ring-road model (44)-(49), with ini-

tial conditions θ0u > θ0r ≥ θ0d. Let

a =
ρ0f

ρ0c − ρ0f
, b =

Φ(ρ0c)

ρ0c − ρ0f
, β =

∆θ0f
∆θ0c

c(β, a, b) =
b(1 + β) + βw

a(1 + β) + 1
, f0 = f(ρ0f , ρ

0
c)

Then:

A) The system converges in a finite time t1 = R
∆θ0

c

w−f0
, to the

Class-A equilibrium points if initial conditions satisfy:

f0 + v

w − f0
< β

with the final angles given as:

∆θc(t1) = 0,

∆θf (t1) = ∆θ0f −
v + f0
w − f0

∆θ0c

∆θ∗(t1) = ∆θ0
∗
+

v + w

w − f0
∆θ0c

with ∆θf (t1) + ∆θ∗(t1) = 2π.

B) The system converges in a finite time t2 = R
∆θ0

f

v+f0
, to the

Class-B equilibrium points if initial conditions satisfy:

f0 + v

w − f0
> β

with the final angles given as:

∆θc(t2) = ∆θ0c −
w − f0
v + f0

∆θ0f ,

∆θf (t2) = 0,

∆θ∗(t2) = ∆θ0
∗
+

v + w

v + f0
∆θ0f

with ∆θc(t2) + ∆θ∗(t2) = 2π.

Proof. The proof is straightforward by computing the angle

evolutions of the solutions

θr(t) = θ0r +
w

R
t

θu(t) = θ0u +
f0
R
t

θd(t) = θ0d −
v

R
t

and noticing that f0 can be rewritten as

f0 =
φ(ρ0f )− Φ(ρ0c)

ρ0c − ρ0f
= v

ρ0f
ρ0c − ρ0f

−
Φ(ρ0c)

ρ0c − ρ0f
= av − b

For Class A, we require the existence of a finite time t1 such

that: i) θr(t1) = θu(t1), and ii) θu(t1) < 2π+ θd(t1). Now,

from the above solutions, we get

θ0r +
w

R
t1 = θ0u +

f0
R
t1

θ0u +
f0
R
t1 < 2π + θ0d −

v

R
t1

Then, t1 is obtained from the first equation. The velocity

range comes from the second equations where we replace

t1, and noting the fact that f0 < 0, and hence av − b < 0.

For Class B, we require the existence of a finite time t2
such that: i) θu(t2) = 2π + θd(t2), and ii) θu(t2) > θr(t2).
Now, from the above solutions, we get

θ0u +
f0
R
t2 = 2π + θ0d −

v

R
t2

θ0u +
f0
R
t2 > θ0r +

w

R
t2

As before, t2 is obtained from the first equation. The velocity

range comes from the second equation where we replace t2.

⋄ ⋄ ⋄

Figure 5 shows the velocity admissible domain as a func-

tion of the initial angles defined by β. Note this domain cor-

responds to free-flow velocities which are consistent with the

model densities definition. For instance, the lower admissible

value vm = b/(a + 1) is equal to Φ(ρ0c)/ρ
0
c , and maximum

velocity bound vM = (b+w)/a is equal to −w(1−ρM/ρ0f ).
As long as v ∈ Ωv = (vm, vM ) the evolution of ρf (t), ρc(t)
will remain in the corresponding free and congested part of

the fundamental diagram. The curve c(β, a, b) is the velocity

boundary between the two possible equilibria classes.

Note that this allows for some flexibility in the selection

of v ∈ Ωv, and therefore opens the possibility to optimize



b+w

a

β0

β

v

c(β, a, b)

b

a+1

Class-A

Class-B

Optimal velocity

Fig. 5. Admissible velocity domain as a function of the initial conditions.
The domain is limited by v ∈ (vm, vM ), where vm = b/(a + 1), vM =
(b+ w)/a

the network operation. For instance by minimizing the lap

time, i.e.

vopt = min
v∈Ωv ,i∈1,2

J(v, i),

where

J(v, i) = R

[

∆θ∗(ti)

v
+

∆θf (ti)

v
+

∆θc(ti)

vm

]

.

A particular case of interest is to find the optimal free-speed

for the Class-A equilibria, which can be easily computed by

observing Figure 5, that is

vopt = min
v∈Ωv ,i=1

J(v, 1) = c(β, a, b)

leading to J(vopt, 1) = 2πR/c(β, a, b).

C. Simulation of the ring road

The two possible cases (A and B) mentioned in Subsec-

tion V-B can be reproduced in simulation. The considered

physical parameters of the model are given in table V-C. The

initial conditions are ρ0f = 30veh/km, ρ0c = 150veh/km for

case A, and ρ0f = 10veh/km, ρ0c = 100veh/km for case

B. In both cases the radius is equal to R = 0.8km, and

the initial congestion length is lu = 2π
3 R = 1.67km (with

θu(0) = 2π
3 , andθr(0) = 0). Vehicles are assumed to flow

in a clockwise direction. Due to these initial conditions, in

case A the rotation speed is θ̇u = 3.33km/h, while in case

B is θ̇u = −24.44km/h. Results are shown in Fig. 6 for

both cases. Six different snapshots are reported. From the

figure, it is possible to observe how the rarefaction process

evolves and how the equilibria are reached. As expected, two

possible equilibria occur. In case A, after that the rarefaction

wave is produced, θu reaches θr and the equilibrium is given

by a zone at ρ∗ and by one at ρ0f . In case B, θu reaches θd
and the equilibrium is given by a zone at ρ0c and by one at

ρ∗.

TABLE I
SIMULATION PARAMETERS

Parameter Description Value Unit

L section length 1 km

v free-flow speed 80 km/h

w congestion propagation speed 20 km/h

ρM jam density 250 veh/km

ρ∗ critical density 50 veh/km

ϕM maximum flow 4000 veh/h

ρ0
f

initial free-flow cell density 30 veh/km

ρ0c initial congested cell density 150 veh/km

l0 initial congestion length [0.4L, 0.4L, 0.2L] km

VI. CONCLUSIONS

A new Variable-Length cell transmission Model (VLM)

has been presented in the paper as a basis to develop

variable speed traffic control strategies. The proposed model

differs from the standard Cell Transmission model since it

consists of only three lumped state variables: two lumped

densities and a third state variable describing the position of

the congestion wave front. A modification of the model to

capture also the rarefaction wave phenomenon is provided in

the paper. Moreover, the major mathematical properties of the

model are discussed. The paper also addresses the beneficial

use of the new model in dealing with optimal speed control

design. The method is illustrated on a closed ring road, where

the model facilitates the determination of the free-speed such

that the traveling time per turn is minimized.
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