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Abstract

Pinning of the contact line and gas oversaturation explain the stability of single surface

nanobubbles. In this article we theoretically show that the pinning also suppresses the

Ostwald ripening process between neighboring surface nanobubbles, thus explaining why

in a population of neighboring surface nanobubbles different radii of curvature of the

nanobubbles can be observed.

Introduction

When a solid is immersed in a gas-oversaturated liquid, stable nanoscopic spherical-cap

shaped so-called surface nanobubbles can be formed at the interface.1–5 These were first specu-

lated to exist based on stepwise features in atomic forces curves between hydrophobic surfaces6–8

and later seen in atomic force microscopy.9–11 Meanwhile it has been theoretically understood

and supported by numerical simulations that the reason for the on first sight surprising stability

of a single surface nanobubbles lies in the balance between gas overpressure thanks to the gas

oversaturation in the liquid and the Laplace pressure1,12–14 and that pinning of the contact

line15–18 is a necessary condition to achieve this stability for a single surface nanobubble.
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What however happens when there are several surface nanobubbles sitting next to each

other on a surface? On one hand the theory of Lohse and Zhang13 predicts that for given gas

oversaturation ζ = c∞/cs − 1 > 0 the equilibrium contact angle θeq of all these surface bubbles

should obey

sin θeq = ζ
L

Lc
, (1)

where L is the footprint diameter of the pinned bubble (assumed to be of spherical cap-shape)

and Lc = 4σ/P0 following from the surface tension σ and the ambient pressure P0. Moreover, cs

is the saturation concentration and c∞ is the given gas concentration far away from the bubble.

Eq. (1) implies that the equilibrium radius of curvature Req = L/(2 sin θeq) should be the same

for all surface nanobubbles, namely

Req =
Lc

2ζeq
. (2)

On the other hand one would expect that neighboring surface nanobubbles are subjected to

Ostwald ripening,19 leading to shrinkage of bubbles with small radius of curvature and growth

of neighboring ones with large radius of curvature. Indeed, experimental studies do reveal

neighboring surface nanobubbles with different radii of curvature.15,20–26

The solution to this apparent paradox has qualitatively been given in the last paragraph

of the seminal paper by Zhang and coworker,15 who not only identified contact line pinning as

reason for the stabilization of single surface nanobubbles against dissolution, but also as reason

for the stabilization against Ostwald ripening within a population of surface nanobubbles. The

aim of this paper is to theoretically and quantitatively work out this idea. We will study the

stability of two different neighboring bubbles with distance d against Ostwald ripening, where

d is assumed to be much larger than the footprint diameter of the bubbles. The problem is

mathematically formulated in the next section. Then the results of the linear stability analysis

are presented and discussed. The paper closes with conclusions and an outlook.
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Derivation of the evolution equation for two diffusively cou-

pled surface bubbes

We state the problem as follows: consider two pinned surface nanobubbles, labelled 1 and

2, of constant footprint lengths L1 and L2 and variable contact angle θ1 and θ2, separated

by a distance d (Fig. 1). Let c(x, t) be the concentration field of dissolved gas in the liquid

surrounding the nanobubbles. The boundary conditions are: c→ c∞ far from the nanobubbles,

∂c/∂n = 0 at the solid boundary (i.e., no flux through it), where n is the normal direction to

the boundary, and Henry’s law at Si, the surface of nanobubble i:1

c|Si
= cs

(
1 +

4σ sin θi
LiP0

)
, (3)

where σ is the surface tension, and P0 the ambient pressure. In the absence of bulk flow, the

concentration field obeys the diffusion equation: ∂c/∂t = D∆c, with D the diffusion coefficient

of the dissolved gas. We will further assume that the evolution of the nanobubbles is slow

enough to be considered as quasistatic for the diffusion problem, so that the concentration field

simply obeys the Laplace equation:

∆c = 0. (4)

This quasistatic approximation does not rule out the possibility of Ostwald ripening,19 provided

that the time scale of this process is much larger than the diffusive time scale τD = L2/D, where

the footprint L is taken as a relevant characteristic length scale of the nanobubble. Actually,

the quasistatic approximation is well suited for nanobubbles (say, L < 1 µm), for which τD is

below 1 ms, using D ≈ 10−9 m2/s as the typical diffusion coefficient of gases in water.27

Figure 1: Sketch of the two nanobubbles.
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In general, this problem must be solved numerically. However, like for other interaction

problems involving potential flows, such as the relative translation of two spheres28 or the cou-

pled dynamics of two bubbles in an acoustic field,29 we can resort to analytical approximations

when the nanobubbles are far enough from each other so that Li/d� 1. Formally, we introduce

the small parameter

ε =
L1

d
, (5)

and we assume that L2/L1 is of order 1, so that L2/d is of the same order ε. In this case,

the potential field (here, the concentration field) can be expanded in a power series in ε,

which dominant terms represent single objects without interaction, and with correction terms

accounting for the interaction. A way to construct such a series is to consider successive images

of a sphere with respect to the other.28 However, we cannot use such an approach in our case,

except for the very special case θ1 = θ2 = π/2. Actually, this case can be treated exactly using

bispherical coordinates.

We will use a rougher approximation, but fully consistent as a leading-order correction.

Since the Laplace equation (4) is linear, we can use the principle of superposition of solutions.

We split the concentration field as follows, where the constant term c∞ is substracted off for

convenience:

c = c∞ + c
(0)
1 + c

(0)
2 + ε(c

(1)
1 + c

(1)
2 ), (6)

where each subfield c(j)i is of order 1, and obeys Laplace equation: ∆c
(j)
i = 0, with the following

boundary conditions:

c
(j)
i = 0 at ∞,

∂c
(j)
i

∂n
= 0 at the solid boundary,

for the bubbles i = 1, 2 and the orders j = 0, 1. Hence, the concentration field defined by

(6) obeys the boundary conditions at the wall and at infinity. At Si, we specify the following

boundary condition:

c
(0)
i = cs

(
1 +

4σ sin θi
LiP0

)
− c∞. (7)

We do not specify any boundary condition for c(0)i at S3−i. Hence, the problems labelled with

j = 0 neglect interaction: c∞ + c
(0)
i is exactly the concentration of the nanobubble i if it
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were isolated. As a result, the fields c(0)i take a nonzero value at S3−i. Therefore, the field

c(0) = c∞+c
(0)
1 +c

(0)
2 does not respect the boundary conditions (3). This discrepancy is of order

ε. Hence, the fields c(1)i are introduced to compensate this discrepancy at order ε, by imposing

as boundary condition over Si:

c
(1)
i = −ε−1c(0)3−i|d, (8)

where c(0)3−i|d is the concentration field induced by the presence of nanobubble 3− i evaluated at

the location of the other nanobubble i. At order ε, it suffices to evaluate this term at a constant

distance d; accounting for the spatial variations of c(0)3−i along Si in (8) leads to terms of order

ε2, which we neglect. Here again, we do not specify boundary conditions for c(1)i at S3−i. Hence,

as before, the field (6) does not respect the boundary condition (3), but the discrepancy is now

of order ε2. Hence, (6) gives the correct concentration field up to order ε included.

To compute the evolution equation of nanobubble i, we need the diffusive mass flux Ṁi at

its surface Si. Consistently with (6), we write Ṁi = Ṁ
(0)
i + εṀ

(1)
i , where Ṁ (j)

i =
∫
Si

(−D∇c
(j)
i ·

n)|Si
dSi, with n the outwards unit normal vector on Si.

The fields c(j)i share similar boundary conditions: zero concentration at infinity, a constant

concentration c0 prescribed at the nanobubble surface Si, and zero flux at the solid boundary.

Popov30 gave the general exact solution of such a problem, using toroidal coordinates (Fig. 2).

In particular, we can directly quote the mass flux (A8) calculated by Popov:30

Ṁi = −π
2
LiDc0f(θi), (9)

where D is the diffusion coefficient, and:

f(θ) =
sin θ

1 + cos θ
+ 4

∫ ∞
0

1 + cosh 2θτ

sinh 2πτ
tanh[(π − θ)τ ]dτ.

The first application of this result is to the problems (0): there, substituting the expression (7)

for c0 in (9), we recover the result for a single nanobubble:13

Ṁ
(0)
i = −π

2
LiD

[
cs

(
1 +

4σ sin θi
LiP0

)
− c∞

]
f(θi). (10)

To compute c(0)i |d, we need the asymptotic expression of the concentration field at order
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L

φ

α = const.

β = const.

Figure 2: Sketch of the bipolar coordinates (α, β) from which the toroidal coordinates (α, β, φ)
are obtained by rotation about the vertical symmetry axis (dashed-dotted line). The bipolar
coordinates are obtained from two points called foci, separated by a distance L. The curves
at constant β are the circles passing through the two foci (dashed curves). They interest the
axis joining the foci with an angle β. Hence, this axis can be mapped to the wall, and the
nanobubble of contact angle θ can be identified with the curve β = θ[2π] (plain curve). The
curves at constant α are the circles perpendicular to the family of circles at constant β (dotted
curves). The coordinate β is defined on any interval of length 2π, and the coordinate α is
defined between 0 and +∞; as α → +∞, the circles at constant α tend towards the foci, and
as α→ 0+, their radius tend towards ∞.
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zero at large distance from the nanobubbles. We use the exact concentration field (A3) given

by Popov:30

c
(0)
i (αi, βi) =

[
cs

(
1 +

4σ sin θi
LiP0

)
− c∞

]√
2(coshαi − cos βi)

×
∫ ∞
0

cosh θiτ cosh(2π − βi)τ
coshπτ cosh(π − θ)τ

P−1/2+iτ (coshαi)dτ, (11)

where c0 takes the value given by Eq. (7), and where the toroidal coordinates (αi, βi) are

defined with respect to nanobubble i. Despite its complex index −1/2 + iτ , the Legendre

function P−1/2+iτ is real valued.31 In this solution, βi is assumed to vary between π− θi, which

defines Si, and 3π−θi. To compute the far-field asymptotic behavior of (11), we notice that the

far field corresponds to αi → 0, cos βi → 1, hence βi = 2π. From the property of the Legendre

function Pν(1) = 1,31 (11) has the following far-field behavior:

c
(0)
i ∼

[
cs

(
1 +

4σ sin θi
LiP0

)
− c∞

]
Li
r
ϕ(θi), (12)

where r is the distance from the center of the footprint, and ϕ is defined as:

ϕ(θ) =

∫ ∞
0

cosh θτ

cosh πτ cosh(π − θ)τ
dτ. (13)

A plot of this auxiliary function (where the integral must be performed numerically) is shown

in Fig. 3. It is an increasing function of the contact angle, which diverges as θ → π. By direct

integration, we have the two useful exact values: ϕ(0) = 1/π, and ϕ(π/2) = 1/2. The latter

value enables us to cross check our calculations with the well-known solution of the Laplace

equation around a sphere of radius R: c(r) = c0R/r, with r the distance to the center of the

sphere. Finally, (12) yields the following value:

c
(0)
i |d =

[
cs

(
1 +

4σ sin θi
LiP0

)
− c∞

]
Li
d
ϕ(θi) =

[
cs

(
1 +

4σ sin θi
LiP0

)
− c∞

]
ε
Li
L1

ϕ(θi),

where c(0)i |d is the concentration field induced by the presence of nanobubble i, evaluated at the

location of the other nanobubble 3− i.
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Figure 3: Plot of ϕ(θ) defined by (13).

Hence, the boundary condition (8) of the problem at order 1 becomes:

c
(1)
i = −ε−1c(0)3−i|d = −L3−i

L1

[
cs

(
1 +

4σ sin θ3−i
L3−iP0

)
− c∞

]
ϕ(θ3−i).

Substituting this value for c0 into (9), we get the first-order correction for the mass flux towards

bubble i:

Ṁ
(1)
i = −π

2
LiDc

(1)
i f(θi)

=
π

2
LiD

{
L3−i

L1

[
cs

(
1 +

4σ sin θ3−i
L3−iP0

)
− c∞

]
ϕ(θ3−i)

}
f(θi). (14)

Hence, combining (10) and (14), the mass flux towards nanobubble i writes:

Ṁi = Ṁ
(0)
i + εṀ

(1)
i = −π

2
LiDf(θi)

{
cs

(
1 +

4σ sin θi
LiP0

)
− c∞

−εL3−i

L1

[
cs

(
1 +

4σ sin θ3−i
L3−iP0

)
− c∞

]
ϕ(θ3−i)

}
.

Now, from the simple geometry of a spherical cap with fixed footprint diameter Li, we get:

Ṁi =
π

8
ρgL

3
i

θ̇i
(1 + cos θi)2

.

Hence, using the oversaturation parameter ζ and the length scale Lc we get the coupled dy-
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namical system driving the evolution of the two contact angles:

 θ̇1 = 4Dcs
ρgL2

1
(1 + cos θ1)

2f(θ1)
[
ζ − Lc

L1
sin θ1 − εL2

L1

(
ζ − Lc

L2
sin θ2

)
ϕ(θ2)

]
θ̇2 = 4Dcs

ρgL2
2
(1 + cos θ2)

2f(θ2)
[
ζ − Lc

L2
sin θ2 − ε

(
ζ − Lc

L1
sin θ1

)
ϕ(θ1)

] . (15)

We stress again that this system (15) is valid up to order ε included. For large nanobubble

distance ε → 0, the two equations decouple and reduce to the evolution equation recently

derived by Lohse and Zhang:13

θ̇ =
4Dcs
ρgL2

(1 + cos θ)2f(θ)

(
ζ − Lc

L
sin θ

)
. (16)

Equilibrium and stability

The system (15) is the central result of our theoretical study, as it allows us to study

the equilibrium and the stability of the coupled system of two surface nanobubbles. Their

equilibrium is such that θ̇1 = θ̇2 = 0, hence:

 0 = ζ − Lc

L1
sin θ1 − εL2

L1

(
ζ − Lc

L2
sin θ2

)
ϕ(θ2)

0 = ζ − Lc

L2
sin θ2 − ε

(
ζ − Lc

L1
sin θ1

)
ϕ(θ1)

(17)

Hence, the equilibrium contact angle θ(0)i of a single nanobubble obeys sin θ
(0)
i = ζLi/Lc, in

agreement with the result of ref.13 If we set: θeqi = θ
(0)
i + εθ

(1)
i + . . . and insert in (17), it

immediately follows that θ(1)i = 0. Hence, the equilibrium contact angle is not modified at

order ε.

The most interesting question is whether the presence of a second nanobubble will affect the

stability of the first. It was shown by Lohse & Zhang13 that a pinned nanobubble was stable

against dissolution, contrary to a bulk bubble, because its Laplace pressure is an increasing

function of its contact angle; mathematically, θ̇ = g(θ) with (dg/dθ)|θeq < 0. This stability

criterion actually holds for θ < π/2, which corresponds to the experimental range of very small

contact angles reported in the literature11. To study the stability of the two-bubble equilibrium,

we linearise the system (15) close to the equilibrium: writing θi = θeqi + δi with |δi| � 1, and
1For the case θ > π/2 stability and instability of course would be reversed.
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δ = (δ1, δ2)
T , we get δ̇ = (4Dcs/ρg)Aδ with the matrix A:

A =

 −Lc

L3
1
(1 + cos θeq1 )2f(θeq1 ) cos θeq1 εLc

L3
1
(1 + cos θeq1 )2f(θeq1 )ϕ(θeq2 ) cos θeq2

εLc

L3
2
(1 + cos θeq2 )2f(θeq2 )ϕ(θeq1 ) cos θeq1 −Lc

L3
2
(1 + cos θeq2 )2f(θeq2 ) cos θeq2

 .

The stability of equilibrium depends on the sign of the eigenvalues of this matrix: it is stable

if and only if both are negative. Now, the eigenvalues obey the polynomial equation:

0 = det(A− λI) = λ2 + Lc

[
1

L3
1

(1 + cos θeq1 )2f(θeq1 ) cos θeq1

+
1

L3
2

(1 + cos θeq2 )2f(θeq2 ) cos θeq2

]
λ+

L2
c

L3
1L

3
2

[
1− ε2L2

L1

ϕ(θeq1 )ϕ(θeq2 )

]
×(1 + cos θeq1 )2(1 + cos θeq2 )2f(θeq1 )f(θeq2 ) cos θeq1 cos θeq2 . (18)

To discuss only the stability and not the growth or decay rates, we only need to discuss the

sign of the coefficients of this second-order polynomial. Indeed, if we write it λ2 + aλ + b, a

equals the sum of its two roots, and b their product. The assumption θeq1 < π/2 and θeq2 < π/2

guarantees that a > 0. Hence, if b > 0 with

b =
L2
c

L3
1L

3
2

(1 + cos θeq1 )2(1 + cos θeq2 )2f(θeq1 )f(θeq2 ) cos θeq1 cos θeq2

×
[
1− ε2L2

L1

ϕ(θeq1 )ϕ(θeq2 )

]
, (19)

both eigenvalues are positive and the two-nanobubble equilibrium is stable. The sign of b

is determined by the sign of the term 1 − ϕ(θeq1 )ϕ(θeq2 )ε2L2/L1 in eq. (19). It is positive

except if ϕ(θeq1 )ϕ(θeq2 )L1L2/d
2 > 1. Since ϕ(θ) increases from 1/π to 1/2 when θ increases

from 0 to π/2 (Fig. 3), a necessary condition for this inequality to hold is: L1L2/d
2 > 4 or,

equivalently, ε2L2/L1 > 4, which (i) violates our assumption ε� 1, (ii) is anyway geometrically

impossible, because d > (L1 + L2)/2 for two separated nanobubbles. Hence, the eigenvalues

of A remain positive, and the two-nanobubble equilibrium remains stable, even for different

radii of curvature of the two nanobubbles. In other words: In linear order Ostwald ripening is

suppressed for the neighboring surface nanobubbles.
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Conclusions and outlook

In summary, we have theoretically shown that in the framework of our analytical linear

approximation, the equilibrium of a nanobubble and its stability are not affected by the presence

of a second, neighboring nanobubble. This may on first sight appear puzzling when thinking in

terms of Ostwald ripening, where a bigger bubble grows at the expense of smaller neighbours

and which clearly holds for microbubbles in the bulk. However, once more, as in the case of

a single surface nanobubbles,13 this bulk-bubble based intuition fails because of the pinning

condition for surface nanobubbles.

The next steps to be taken are obvious: On the numerical side, just as we numerically

confirmed the stability theory of ref.13 by molecular dynamics (MD) simulations14 for a single

surface nanobubbles, we will numerically confirm the present theory for the stability of a pair of

diffusively interacting (pinned) surface nanobubbles. The MD simulations will also allow us to

go beyond the linear approximation and explore higher order Ostwald ripening effects. On the

theoretical side, the present calculation for two diffusively interacting surface nanobubbles can

straightforwardly be extended to three and more surface nanobubbles. On the experimental

side, the community is in urgent need of controlled and quantitative experiments for diffusively

interacting surface nanobubbles. In particular, the gas oversaturation ζ should be known in

these experiments, which clearly poses a challenge and may require highly controlled devices

as that described in refs.32
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