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Abstract

In the present work, a numerical finite element framework is introduced to model
and solve the response of nonlinear soft dielectrics, including the effects of Maxwell
stress and flexoelectricity at finite strains. Weak forms, finite element discretizations
and constistent linearizations, able to handle strain gradient in the context of flexo-
electricity are introduced. Numerical algorithms for the treatment of a soft dielectric
in a surrounding medium are presented, more specifically to handle the effects of
discontinuities of the Maxwell stress at the interfaces. Finally, several benchmarks
are proposed to assess the present formulations and numerical schemes, through
applications of special cases of interest: induced piezoelectricity in non-piezoelectric
materials due to coupling of Maxwell stress and electrets, flexoelectricity, or stretch-
ing of electroactive soft dielectrics subjected to an external electric field.

Key words: Flexoelectricity, Dielectrics, Finite Elements, Nonlinear dielectrics,
Maxwell stress, Finite strains

1 Introduction

Soft dielectrics have recently attracted a growing attention due their ability
to generate large deformations when they are subjected to an electric voltage.
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The induced mechanical deformations caused by the applied electric field can
be utilized for sensing and actuation [31,6,43]. As discussed in [42], the elec-
trically induced mechanical deformations are caused by the Maxwell stress.
Nonlinear electro-elasticity for soft dielectric elastomers has been discussed in
[12,28] and constitutive relation for soft dielectric elastomers have been pro-
posed and discussed by [41,32,22,36,35] for solid and fluid dielectrics. The low
dielectric coefficients of soft dielectrics polymers can be increased by addition
of reinforcements with high dielectric constants such as ceramic particles or
carbon fibres [13,16,24]. A review on applications of nonlinear dielectrics to
soft actuators, artificial muscles, soft robots and energy harvesting systems can
be found e.g. in [17]. In [27], a soft electric generator model of soft dielectric
elastomer has been presented.

Moreover, other interesting coupled electromechanical phenomena can occur
in soft dielectric and soft biomembranes, like the phenomenon of flexoelec-
tricity. Flexoelectricity describes the coupling between electric polarization
and mechanical strain gradient. Even though flexoelectric effects are much
larger in ferroelectric materials [9] and complex oxide ceramics [5,25,44,26],
the flexoelectricity of several polymers has recently been investigated in [8].
Kogan [20] formulated the first phenomenological theory of flexelectricity and
estimated the value range of flexoelectric coefficients. In [10], Deng et al. de-
veloped a nonlinear theoretical framework for flexoelectricity in soft materials.
In [23], an energy formulation was proposed for continuum electro-elasticity
and magneto elasticity. Using the principle of minimum free energy, the Euler-
Lagrange equations of the principle of minimum free energy were derived for
a hierarchy of behaviours, including nonlinear dielectric with Maxwell effects
and flexoelectricity.

In [33], it was shown how nano composites made of non-piezoelectric com-
ponents can have an apparent piezoelectric behavior by exploiting the effects
of flexoelectricity. In [10] An interesting nonlinear interplay between Maxwell
stress and flexoelectricity was described, and the importance of flexoelectricity
in soft biological membranes was shown. A prospective on flexoelectricity can
be found in [21]. A critical analysis of the current knowledge on the flexoelec-
tricity in common solids can be found in [40].

While many experimental and theoretical studies have been proposed to model
soft dielectrics, few numerical works have been proposed so far to model these
phenomena in more complex configurations than beams and unidirectional lay-
ers. In [2], Aboudi introduced the High-Fidelity Generalized Method of Cells
(HFGMC) for prediction of the overall behavior of soft dielectrics composites
undergoing large deformations. In [39], an iterative method based on Green’s
functions was proposed to solve the interior/exterior electrostatic problem for
a soft dielectric in a surrounding media. A number of numerical phase-field
simulations have been performed to evaluate the effects of flexoelectricity in
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ferroelectrics [15,38,3,7]. However, these references resort to finite differences
methods with uniform grids, which are limited to very simple geometries and
boundary conditions. In [1] Abdollahi et al. introduced a numerical framework
based on meshfree method to solve the flexoelectric problem at small strains,
where the meshfree approximation was introduced to handle the fourth-order
partial differential equations related to strain gradients formulations.

Specific architectures of structures or microstructures could be used to design
new soft dielectric systems with higher performances, exploiting the principles
described above. Then, numerical methods are required to solve such problems
over complex geometries. Motivated by these objectives, we present in this pa-
per a numerical framework for nonlinear dielectrics at finite strain including
the coupling due to Maxwell stress and flexoelectricity. The possibility to solve
the problem of a soft dielectric in a surrounding media like air is handled by a
staggered procedure. Based on the work of [23], the problem of coupled non-
linear flexoelectric problem with Maxwell stress is formulated and discretized
by finite elements. The C1 required continuity of the displacement field is
met by Argyris triangular elements, which allow meshing complex geometries.
The consistent linearizations are introduced and the corresponding FEM dis-
cretizations are proposed. Finally, benchmarks and applications to induced
piezoelectricity in non piezoelectric materials, flexoelectricity and stretching
of electroactive polymers are proposed.

The paper is organized as follows. After kinematics and notation preliminar-
ies in section 2, the equations for the nonlinear dielectric problems at finite
strains with flexoelectricity are recalled in section 3. Then, the weak forms
and consistent linearizations are introduced in sections 4 and 5, respectively.
FEM discretizations and a staggered algorithm for dielectrics surrounded by
an external media are introduced in sections 6 and 7, respectively. Finally,
numerical examples are provided in section 8. Some special cases of interest
of this framework, like small strains, Maxwell stress or flexoelectricity effects
as separated phenomena are provided in Appendix 11 and their discretization
in Appendix 12.

2 Notations and kinematics preliminary

Vectors and second order tensors, as well as matrices, are denoted by bold
letters A. Third order tensors are denoted by calligraphic uppercase letters
A, fourth-order, fifth-order and sixth-order tensors are denoted by double
case letters A. Double contraction of indices for second order tensors A and
B is denoted by A : B = AijBij, dot product for two vectors a and b by
a · b = aibi, and simple contraction of indices for a second order tensor A
and a vector b is denoted by (Ab)i = Aijbj. For the purpose of this paper,
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we introduce the triple contraction of indices for two third order tensors A
and B as: A ... B = AijkBijk. The gradient operator is denoted by ∇(.) and
the divergence operator by ∇ · (.). The third order strain gradient tensor is
defined by:

(∇ε)ijk =
1

2

(
∂2ui
∂xj∂xk

+
∂2uj
∂xi∂xk

)
. (1)

For later use, we introduce the following properties. Let a a real-valued vector
field and b a scalar field, we have:

∇ · (ab) = b∇ · a+ a · ∇b, ∂

∂xi
(aib) =

∂ai
∂xi

b+ ai
∂b

∂xi
. (2)

For b a real-valued vector field and A a second-order tensor field, it can be
shown that:

∇ · (Ab) = (∇ ·A) · b+A : ∇b,

or in indicial notations:

∂

∂xi
(Aijbj) =

∂Aij
∂xi

bj + Aij
∂bj
∂xi

. (3)

Let A a third-order tensor and B a second-order tensor, then:

∇ · (A : B) = (∇ · A) : B+A ... ∇B,

or

∂

∂xk
(AijkBjk) =

∂Aijk
∂xk

Bjk + Aijk
∂Bjk

∂xk
. (4)

We then introduce the following relations obtained from the divergence theo-
rem: ∫

Ω
∇ · (ab) dΩ =

∫
∂Ω

a · nbdΓ, (5)

∫
Ω
∇ · (Ab) dΩ =

∫
∂Ω

n ·AbdΓ, (6)

and ∫
Ω
∇ · (A : B) dΩ =

∫
∂Ω

n · A : BdΓ. (7)
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For later use, we introduce the directional, or Gâteaux derivative of f(u) in
the direction of v defined by:

Dvf(u) =

[
d

dϵ
{f(u+ ϵv)}

]
ϵ=0

. (8)

In the context of finite strains analysis, we define Ω0 as the reference configura-
tion and X and x material points in the reference and current configurations,
respectively. The displacement of a material point is denoted by u = x−X.

The deformation gradient tensor is defined by F = ∇Xu + 1, where ∇X(.)
denotes gradient with respect to reference configuration, and C = FTF is the
right Cauchy-Green strain tensor. The Jacobian is defined as J = det(F) and
∇X · (.) denotes the divergence operator with respect to reference configura-
tion. The stain gradient tensor decomposition into dillatation and rotation is
denoted by F = RU, U = C1/2.

To study flexoelectricity, we introduce the third-order strain gradient tensor
defined by:

Gijk =
∂2ui

∂Xj∂Xk

. (9)

Finally, we recall some properties (see e.g. [14]) which will be of interest in
the subsequent developments of this paper:

∂J

∂F
= JF−T , (10)

(
∂F−1

∂F

)
ijkl

= (F)ijkl = −F−1
ik F

−1
jl , (11)

(
∂F−T

∂F

)
ijkl

=
(
F̃
)
ijkl

= −F−1
li F

−1
kj , (12)

and combining (10), (11) and (12),

∂C−1

∂F
= A, (13)

(A)ijkl = −
(
F−1
ik F

−1
jp + F−1

ip F
−1
jk

)
F−1
pl

(14)

Finally, given A a general third-order tensor, we have:

∂Aijk

∂Almp

= δilδjmδkp, (15)
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(a) (b)

Figure 1. Solid Ω0 embedded in a surrounding domain Ω0 = V0\Ω0: (a) reference
configuration; (b) current configuration.

and for a third-order tensor Asym
ijk = 1

2
(Aijk +Ajik) symmetric with respect

to indices i and j, we have:

∂Asym
ijk

∂Almp

=
1

2
(δilδjm + δimδjl) δkp. (16)

3 Equations for the dielectric problem at finite strains with flexo-
electricity

A domain V0 ∈ RD is considered in the reference configuration, embedding a
solid domain Ω0 and a surrounding media (e.g. air) in a domain Ω0 such that
V0 = Ω0 ∪ Ω0 as depicted in Fig. 1. The boundary ∂Ω0 of Ω0 is composed of
Dirichlet and Neumann portions, denoted by ∂Ω0u and ∂Ω0F , where displace-
ment and tractions are prescribed respectively, such that ∂Ω0 = ∂Ω0u ∪ ∂Ω0F ,
∂Ω0u ∩ ∂Ω0F = ∅. Similarly, the boundary of V0 is composed of Dirichlet and
Neumann portions, denoted by ∂V0ϕ and ∂V0D, where electric potentials and
normal component of electric displacement are prescribed, respectively, such
that ∂V0 = ∂V0D ∪ ∂V0ϕ, ∂V0D ∩ ∂V0ϕ = ∅. Counterparts of definitions in the
current configuration are defined similarly, omitting the index 0.

The free energy of the system can be expressed as:

F (u, P̃) = U + Eelec +W ext (17)

where

U =
∫
Ω0

ψdΩ, (18)
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P̃ is the polarization, and ψ(u, P̃) is the internal energy given by:

ψ = ψelast(U) + ψflexo(G, P̃) + ψdiel(P̃). (19)

Moreover, Eelec is the total electric energy and Wmech is the potential energy
of mechanical loadings. The energy Eelec is expressed by:

Eelec =
∫
V0

ϵ0
2
J
∣∣∣F−T∇Xϕ

∣∣∣2 − ρ̃eϕdΩ (20)

where ϕ is the electric potential, ϵ0 is the vacuum electric permittivity and ρ̃e

is an external charge. Finally, Wmech is expressed by:

W ext = −
∫
∂Ω0F

t̃e · udΓ−
∫
Ω0

f̃ e · udΩ, (21)

where t̃e is the applied load and f̃ e denotes body forces. In (19), ψelast, ψflexo

and ψdiel are strain energy density functions, whose explicit forms are provided
in the sequel. The following relations are introduced:

Ẽ = −∇Xϕ, E = F−T Ẽ, (22)

D̃ = JF−1D = −ϵ0JC−1∇Xϕ+ F−1
(
P̃+ P̃0

)
, (23)

where Ẽ the electric current, D̃ is the electric displacement and P̃0 is an
extrinsic (eigen) polarization. In the following, isotropy is assumed, and then
the different strain density functions can be simplified. For example, we choose
here for Ψflexo(G) associated with the strain gradient (see e.g. [19]):

ψflexo(G) = g

2
GikkGill + fP̃iGikk, (24)

where g and f are material constants. The potential ψdiel is expressed as

ψdiel =
1

2J

(
RT P̃

)
·
(
ART P̃

)
, (25)

where A is the second-order dielectric tensor. We have

∂ψdiel

∂P̃m
=

1

J
RjiδjmAikRjkP̃j =

1

J
RmiAikRjkP̃j (26)

or

∂ψdiel

∂P̃
=

1

J
RART P̃. (27)
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Using the following property (see [23]):

∂ψ

∂P̃
+ F−T∇Xϕ =

∂ψdiel

∂P̃
+
∂ψflexo

∂P̃
+ F−T∇Xϕ = 0, (28)

from (24) and (25) we obtain the following relationship:

P̃ = −J(RART )−1
[
fgX(u) + F−T∇Xϕ

]
(29)

where

(gX)i (u) = Gikk =
∂2ui
∂X2

k

. (30)

For an isotropic dielectric medium, it yields:

A = (ϵ− ϵ0)
−11. (31)

Then, by the relation RRT = 1, (29) reduces to:

P̃ = −J(ϵ− ϵ0)
[
fgX(u) + F−T∇Xϕ

]
, (32)

and the electric displacement can be expressed by

D̃(u, ϕ, P̃0) = −JϵC−1∇Xϕ− Jf(ϵ− ϵ0)F
−1gX + F−1P̃0. (33)

In this work, we consider a compressible Mooney-Rivlin constitutive model
for the dielectric elastomer, defined by the following strain density function:

ψelast =
µ

2

[
J−2/3

(
λ21 + λ22 + λ23

)
− 3

]
+
κ

2
(J − 1)2 , (34)

where µ and κ are the Lamé ’s constants such that µ = E/(2(1 + ν)), κ =
E/(3(1 − 2ν)), with E the Young’s mudulus and ν the Poisson’s coefficient,
and λα (α = 1, 2, 3) are the principal stretches, i.e. eigenvalues of

√
C.

The first Piola-Kirchhoff stress tensor Σ = ∂ψelast

∂F
is then expressed by

Σ =
µ

2

[
−1

3
F−TJ−2/3

∑
α

λ2α + J−2/3F

]
+ κ(J − 1)JF−T . (35)

We finally define the third-order tensor S such that

S =
∂ψflexo

∂G
. (36)
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Using the expression of ψflexo given in (24) and (15), we obtain:

Sijk =
[
g

2
Gimm + fP̃i

]
δjk =

[
g

2
ui,mm + fP̃i

]
δjk. (37)

We define Σ̃MW as the modified Maxwell stress [23], expressed in the solid by:

Σ̃MW = −ϵ0
2
J |E|2 F−T − 1

2J(ϵ− ϵ0)

∣∣∣P̃∣∣∣2 F−T + E⊗ D̃. (38)

In the air, the polarization P̃ is zero and then the Maxwell stress still exists
but reduces to:

Σ̃MW = −ϵ0
2
J |E|2 F−T + E⊗ D̃, (39)

where D̃ is given by (33).

On the boundary ∂Ω0, we have, as Σ = 0, S = 0 and ΣMW ̸= 0 in Ω (see [23]
for more details):

ΣN− (∇X · S)N+ [[Σ̃
′
MW ]]N− τ − t̃e = 0 (40)

with

τp = [SpijNj(δik −NiNk)],k − [SpijNj −NiNk],mNmNk. (41)

By (37) in (41) we see that τ = 0. We summarize the equations of the coupled
problem in the following.

The equations of the dielectric problem are given by:

∇X ·
(
D̃
)
= ρ̃e in V0 (42)

where D̃ is given by (33), and, assuming only Dirichlet or Neumann boundary
conditions:

ϕ = ϕb on ∂V0ϕ, (43)

N · D̃ = Db
n on ∂VD0. (44)
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The equations describing the mechanical problem are given by (see [23]):

∇X · (Σ)−∇X · (∇X · S) +∇X · Σ̃MW + f̃ e = 0 in Ω0, (45)

with boundary conditions

ΣN− (∇X · S)N+ [[Σ̃MW ]]N− t̃e = 0 on ∂ΩF0, (46)

u = ub on ∂Ωu0, (47)

SN⊗N = 0 on ∂Ω0 (see [23] for a justification), (48)

where [[.]] = (.)air − (.)solid. We note that from to the definition (39) and
the electro-static equation (42), we also have:

∇X · Σ̃MW = 0 in Ω0 (49)

and

∇X · Σ̃MW = 0 in Ω0. (50)

4 Weak forms

To be solved by Finite elements, the above boundary value problem (42)-
(48) must be recast into weak forms. The relevant details are provided in the
following.

4.1 Dielectric problem

Let ϕ ∈
{
ϕ′|ϕ′ = ϕb on ∂V0ϕ, ϕ

′ ∈ H1(V0)
}
. Pre-multiplying (42) by a test

function δϕ ∈ {ϕ′|ϕ′ = 0 on ∂V0ϕ, ϕ
′ ∈ H1(V0)} and integrating over V0, we

obtain:∫
V0
∇X · D̃δϕdΩ =

∫
V0
ρ̃eδϕdΩ. (51)

Using properties (2) and (5) we obtain:

∫
∂V0

D̃ ·NδϕdΩ−
∫
V0
D̃ · ∇X(δϕ)dΩ−

∫
V0
ρ̃eδϕdΩ = 0. (52)
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Using (44), we obtain, as δϕ = 0 on ∂V0ϕ:∫
V0
D̃ · ∇X(δϕ)dΩ =

∫
∂V0

Db
nδϕdΩ +

∫
V0
ρ̃eδϕdΩ. (53)

Introducing (33) into the weak form, we obtain:

∫
V0
JϵC−1∇Xϕ · ∇X(δϕ)dΩ +

∫
Ω0

JF−1(ϵ− ϵ0)fgX · ∇X(δϕ)dΩ

=
∫
Ω0

F−1P̃0 · ∇X(δϕ)dΩ +
∫
V0
ρ̃eδϕdΩ +

∫
∂V0D

Db
nδϕdΓ. (54)

4.2 Mechanical problem

4.2.1 Dielectric medium without considering a surrounding domain

In this first case, we consider that boundary conditions i.e. of Dirichlet type
(like applied voltage) are directly prescribed over ∂Ω0 and that the surrounding
medium can be ignored. In that case, the procedure is the same as in the above,
except that the integration is only performed over Ω0. We then have:∫

Ω0

∇X ·Σ · δudΩ−
∫
Ω0

(∇X · (∇X · S)) · δudΩ

+
∫
Ω0

∇X · Σ̃MW · δudΩ +
∫
Ω0

f̃ e · δudΩ = 0. (55)

Using property (3), we obtain:

∫
Ω0

∇X · (Σδu) dΩ−
∫
Ω0

Pelast : δFdΩ

+
∫
Ω0

∇X ·
(
Σ̃MW δu

)
dΩ−

∫
Ω0

Σ̃MW : δFdΩ

−
∫
Ω0

∇X · ((∇X · S) δu) dΩ +
∫
Ω0

(∇X · S) : δFdΩ +
∫
Ω0

f̃ e · δudΩ = 0.

Using (6):

∫
Ω0

Σ : δFdΩ +
∫
Ω0

Σ̃MW : δFdΩ−
∫
Ω0

(∇X · S) : δFdΩ

=
∫
Ω0

f̃ e · udΩ +
∫
∂Ω0

[
[[Σ̃MW ]]N+ΣN− (∇X · S)N

]
· δudΩ (56)
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and then, using (46):

∫
Ω0

Σ : δFdΩ +
∫
Ω0

Σ̃MW : δFdΩ−
∫
Ω0

(∇X · S) : δFdΩ

=
∫
Ω0

f̃ e · udΩ +
∫
∂Ω0

t̃e · udΩ. (57)

Using (4), we have:

(∇X · S) : δF = ∇X · (S : δF)− S ... δG (58)

with

δGijk = [DδuG]ijk =
∂2δui

∂Xj∂Xk

. (59)

Then using (7):

−
∫
Ω0

(∇X · S) : δFdΩ =
∫
Ω0

S ... δGdΩ−
∫
Ω0

∇X · (S : δF) dΩ.

=
∫
Ω0

S ... δGdΩ−
∫
∂Ω0

SN : δFdΓ. (60)

By assuming the boundary condition s′ = SN = 0 on ∂Ω0, we finally obtain
the weak form as:

∫
Ω0

Pelast : δF+ Σ̃MW : δF+ S ... δGdΩ =
∫
Ω0

f̃ e · δudΩ +
∫
∂Ω0

t̃e · δudΓ. (61)

4.2.2 Dielectric medium embedded in a surrounding domain

In this next case, we consider both the solid dielectric and the surrounding
domain, as described in section 3. We assume that the surrounding domain
(e.g. air) does not have mechanical properties and cannot be polarized, i.e.
Σ = 0, P̃ = 0, S = 0, but ϕ ̸= 0 and then Σ̃MW ̸= 0, ∀x ∈ Ω0 = V0\Ω0.

Let u ∈
{
v|v = ub on ∂Ω0u,v ∈ H1(Ω0)

}
. Pre-multiplying (45) by a test func-

tion δu ∈ {v|v = 0 on ∂Ω0u,v ∈ H1(Ω0)}, and integrating over V0 yields:

∫
Ω0

∇X ·Σ · δudΩ−
∫
Ω0

(∇X · (∇X · S)) · δudΩ
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+
∫
Ω0

∇X · Σ̃MW · δudΩ +
∫
Ω0

∇X · Σ̃MW · δudΩ +
∫
Ω0

f̃ e · δudΩ = 0. (62)

Using property (3), we obtain:

∫
Ω0

∇X · (Σδu) dΩ−
∫
Ω0

Σ : δFdΩ

+
∫
Ω0

∇X ·
(
Σ̃MW δu

)
dΩ−

∫
Ω0

Σ̃MW : δFdΩ

+
∫
Ω0

∇X ·
(
Σ̃MW δu

)
dΩ−

∫
Ω0

Σ̃MW : δFdΩ

−
∫
Ω0

∇X · ((∇X · S) δu) dΩ +
∫
Ω0

(∇X · S) : δFdΩ +
∫
Ω0

f̃ e · δudΩ = 0,

where δF = ∇X(δu). Using (6), we obtain:

∫
Ω0

Σ : δFdΩ +
∫
Ω0

Σ̃MW : δFdΩ +
∫
Ω0

Σ̃MW : δFdΩ

−
∫
Ω0

(∇X · S) : δFdΩ

=
∫
Ω0

f̃ e · udΩ +
∫
∂Ω0

[
[[Σ̃MW ]]N+ΣN− (∇X · S)N

]
· δudΓ (63)

with [[.]] = (.)solid − (.)air. Then, using (46), it yields:

∫
Ω0

Σ : δFdΩ +
∫
Ω0

Σ̃MW : δFdΩ−
∫
Ω0

(∇X · S) : δFdΩ

+
∫
Ω0

Σ̃MW : δFdΩ =
∫
Ω0

f̃ e · udΩ +
∫
∂Ω0F

t̃e · δudΓ. (64)

Now using (49) and (50) and pre-multiplying by a test function δu ∈ {v|v = 0 on ∂Ω0u,v ∈ H1(Ω0)},
and integrating over V0 we have:

∫
Ω0

∇X · Σ̃MW · δudΩ +
∫
Ω0

∇X · Σ̃MW · δudΩ = 0. (65)

Using properties (3), (6) we obtain:

∫
Ω0

Σ̃MW : δFdΩ +
∫
Ω0

Σ̃MW : δFdΩ =
∫
∂Ω0

[[Σ̃MW ]]N · δudΓ.
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Then we obtain from (64):

∫
Ω0

(Σ− (∇X · S)) : δFdΩ

=
∫
Ω0

f̃ e · δudΩ +
∫
∂ΩF

t̃e · δudΓ +
∫
∂Ω0

[[Σ̃MW ]]N · δudΓ.

Using the results of the previous section, we finally obtain the weak form as:

∫
Ω0

(
Σ : δF+ S ... δG

)
dΩ

=
∫
Ω0

f̃ e · δudΩ +
∫
∂Ω0

t̃e · δudΓ +
∫
∂Ω0

[[Σ̃MW ]]N · δudΓ. (66)

Note that in this case, the bulk term Σ̃MW : δF in (66) is converted to external
Neumann boundary conditions.

5 Consistent linearization

The above problem being highly nonlinear due to both material and geo-
metrical nonlinearities and the presence of the Maxwell stress, we propose a
Newton-Raphson procedure to solve it numerically. In that framework, the
expression of the different tangent operators related to the above weak forms
need to be explicited. In what follows, we provide the different expressions for
these operators.

5.1 Dielectric problem

By the weak form (54), we set:

R1(u, ϕ) =
∫
V0
JϵC−1∇Xϕ · ∇X(δϕ)dΩ +

∫
Ω0

JF−1(ϵ− ϵ0)fgX · ∇X(δϕ)dΩ

−
∫
Ω0

F−1P̃0 · ∇X(δϕ)dΩ−
∫
V0
ρ̃eδϕdΩ−

∫
∂V0D

Db
nδϕdΩ.

A Taylor expansion of the above residuals gives:

R1(u
k +∆u, ϕk +∆ϕ) ≃

14



R1(u
k, ϕk) +D∆ϕR1(u

k, ϕk) +D∆uR1(u
k, ϕk). (67)

where we recall that Dvf(u) denotes the directional derivatives defined in
(8). The solution for the next increment in an iterative Newton-like procedure
consists in solving the linearized problems for ∆ϕ and ∆u and to update the
field variables for the next iteration through ϕk+1 = ϕk+∆ϕ, uk+1 = uk+∆u.
In the following, for the sake of clarity, the superscript k is omitted, then,
unless specified, u ≡ uk, ϕ ≡ ϕk.

Results of this linearization procedure are provided below. First, we have triv-
ially:

D∆ϕR1(u, ϕ) =
∫
V0
JϵC−1∇X(∆ϕ) · ∇X(δϕ)dΩ. (68)

Then, let us compute the term D∆u {JϵC−1∇Xϕ · ∇Xδϕ}. We have:

D∆u

{
JC−1

ij

}
=

∂J

∂Fkl
∆FklC

−1
ij + J

∂C−1
ij

∂Fkl
∆Fkl. (69)

with

∆Fkl =
∂∆uk
∂Xl

. (70)

Using (10) and (13) we obtain:

D∆u

{
FϵC−1∇X∆ϕ · ∇Xδϕ

}

= ∇Xi(δϕ)ϵJ
{[
C−1
ij F

−1
lk + (A)ijkl

]
∇ϕj

}
∆Fkl (71)

which can be re-written as

D∆u

{
FϵC−1∇X∆ϕ · ∇Xδϕ

}
= ∇Xδϕ · M1 : ∆F, (72)

with

(M1)ijk = ϵJ
{
C−1
ip F

−1
jk + (A)ipkj

}
∇ϕp, (73)

where we have set (∇Xϕ)i ≡ ∇iϕ and (∇Xδϕ)i ≡ ∇iδϕ for the sake of clarity.

Now let us develop the term:

D∆u

{
(ϵ− ϵ0)fJF

−1gX · ∇Xδϕ
}

15



= f(ϵ− ϵ0)

{
∂

∂Fkl

{
JF−1

ij gj∇iδϕ
}
∆Fkl +

∂

∂Gklm

{
JF−1

ij gj∇iδϕ
}
∆Gklm

}
(74)

where we have set gi ≡ (gX)i, with

G(∆u) ≡ ∆G (75)

and

[∆G]ijk =
∂2∆ui
∂Xj∂Xk

. (76)

Using (15), we can show that

∂gX
∂G

= Ī, (77)

with

(Ī)ijkl = δijδkl. (78)

The above term can be re-written as

D∆u

{
(ϵ− ϵ0)fJF

−1gX · ∇Xδϕ
}
= ∇Xδϕ ·

{
M2 : ∆F+M3

... ∆G
}

(79)

with

(M2)ikl = Jf(ϵ− ϵ0)
{
F−1
ji F

−1
lk + Aijkl

}
gj (80)

and

M3 = Jf(ϵ− ϵ0)F
−T ⊗ 1. (81)

In a similar fashion, we obtain

D∆u

{∫
Ω0

F−1P̃0 · ∇X(δϕ)dΩ
}
=
∫
Ω0

∇Xδϕ · M4 : ∆FdΩ (82)

with

(M4)ikl = (F)ijklP̃ 0
j . (83)

We finally obtain the linearized form for the dielectric problem

16



∫
V0
∇Xδϕ · JϵC−1∇X(∆ϕ)dΩ

+
∫
Ω0

∇Xδϕ · (M1 +M2 −M4) : ∆FdΩ +
∫
Ω0

∇Xδϕ ·M3
... ∆GdΩ

= −R1(u
k, ϕk). (84)

5.2 Mechanical problem

5.2.1 Dielectric medium without considering a surrounding domain

In this section, we first consider a the case where Dirichlet boundary conditions
are prescribed on the boundary ∂Ω0 (e.g. direct applied voltage) and where
the surrounding domain is not modeled. In that case, we set:

R2(u, ϕ) =
∫
Ω0

Σ : δF+ Σ̃MW : δF+ S ... δGdΩ

−
∫
Ω0

f̃ e · δudΩ−
∫
∂Ω0

t̃e · δudΓ. (85)

Similarly, the nonlinear problem (66) has to be linearized:

R2(u
k +∆u, ϕk +∆ϕ) ≃

R2(u
k, ϕk) +D∆uR2(u

k, ϕk) +D∆ϕR2(u
k, ϕk). (86)

We can first express:

D∆ϕR2 =
∫
Ω0

δF :
∂Σ̃MW

∂∇Xϕ
∇X(∆ϕ) + δG ...

∂S
∂∇Xϕ

∇X(∆ϕ)dΩ. (87)

From (37) and (32) we obtain:

∂Sijk
∂∇ϕl

= −Jf(ϵ− ϵ0)F
−1
li δjk. (88)

Now let us compute the second term in (87), using (38), we obtain after some
calculations:

∂

∂∇ϕk

{−ϵ0
2
J |E|2 F−1

ji

}
=
(
QA

2

)
ijk

= ϵJF−1
ji F

−1
kmEm. (89)
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Next, we obtain:

∂

∂∇ϕk

{
− P̃mP̃m
2J(ϵ− ϵ0)

F−1
ji

}
= − 1

J(ϵ− ϵ0)

∂P̃m
∂∇ϕk

P̃mF
−1
ji . (90)

From (32) we obtain:

∂P̃i
∂∇ϕk

= −J(ϵ− ϵ0)F
−1
ki . (91)

Then

∂

∂∇ϕk

{
− P̃mP̃m
2J(ϵ− ϵ0)

F−1
ji

}
=
(
QB

2

)
ijk

= F−1
ji F

−1
kmP̃m. (92)

Furthermore,

∂

∂∇ϕk

{
EiD̃j

}
=

∂Ei
∂∇ϕk

D̃j + Ei
∂D̃j

∂∇ϕk
. (93)

From (33) we have:

∂D̃i

∂∇ϕk
= −ϵJC−1

ik . (94)

Then we obtain

∂

∂∇ϕk

{
EiD̃j

}
=
(
QC

2

)
ijk

= −F−1
ki D̃j − ϵJEiC

−1
jk . (95)

Finally

∂Σ̃MW

∂∇Xϕ
= Q2 (96)

with Q2 = QA
2 + QB

2 + QC
2 . Now let us perform the linearization of R2 with

respect to ∆u. First,

D∆u {Σ : δF} = δF : Cel : ∆F (97)

with

Cel =
∂Σ

∂F
. (98)

In addition, we have:

D∆u

(
S ... G(δu)

)
= G(δu) ... ∂S

∂G
... ∆G, (99)
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where

∆Gijk =
∂∆ui
∂xj∂xk

(100)

and (
∂S
∂G

)
ijklmp

= (T)ijklmp = gδilδjkδmp. (101)

Now let us express

∂Σ̃MW

∂F
=

∂

∂F

{
−ϵ0

2
J |E|2 F−T

}
+

∂

∂F


−
∣∣∣P̃∣∣∣2 F−T

2J(ϵ− ϵ0)


+
∂

∂F

{
E⊗ D̃

}
= QA

3 +QB
3 +QC

3 . (102)

Using

∂Ei
∂Fkl

= −
(
F̃
)
ijkl

∇ϕj, (103)

and

∂P̃i
∂Fkl

= −(ϵ− ϵ0)J
[
F−1
ji F

−1
lk +

(
F̃
)
ijkl

]
∇ϕj, (104)

we obtain, after tedious calculations:

(
QA

3

)
ijkl

= −ϵJ
2

{
F−1
ji F

−1
lk E

2
m − 2

(
F̃
)
mpkl

∇ϕpEmF−1
ji + E2

m

(
F̃
)
ijkl

}
(105)

and

(
QB

3

)
ijkl

=
1

2J(ϵ− ϵ0)

[
F−1
ji F

−1
lk P̃

2
m

−2(ϵ− ϵ0)J
(
F−1
pmF

−1
lk +

(
F̃
)
mpkl

)
∇ϕpP̃mF−1

ji + P̃ 2
m

(
F̃
)
ijkl

]
. (106)

Furthermore,

∂D̃i

∂Fkl
= −ϵ0

{
∂J

∂Fkl
C−1
ij ∇ϕj + JAijkl∇ϕj

}
+
∂F−1

ij

∂Fkl
P̃j + F−1

ij

∂P̃j
∂Fkl

.
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Then

∂

∂Fkl

(
EiD̃j

)
=
(
QC

3

)
ijkl

= −
(
F̃
)
ipkl

∇ϕpD̃j + Ei
∂D̃j

∂Fkl

with

∂D̃i

∂Fkl
= ϵ0J

(
C−1
ij F

−1
lk + (A)ijkl

)
∇ϕj +

(
F̃
)
ijkl

(
P̃j + P̃0j

)
+ F−1

ij

∂P̃j
∂Fkl

.

Finally, we set

Σ̃MW

∂G
= RA + RB (107)

with

RA = fF−T ⊗ 1⊗ P̃ (108)

and

RB = −Jf(ϵ− ϵ0)E⊗ F−T ⊗ 1. (109)

Finally, the linearized form associated with the mechanical problem is given
by:

∫
Ω0

G(δu) ... Q1 · ∇X(∆ϕ)dΩ +
∫
Ω0

δF : Q2 · ∇X(∆ϕ)dΩ

+
∫
Ω0

δF : Cel : ∆FdΩ +
∫
Ω0

G(δu) ... T ... ∆GdΩ

+
∫
Ω0

δF :
(
Q3 : ∆F+ R ... ∆G

)
dΩ = −R2(u

k, ϕk) (110)

with R(5) = RA + RB and Q3 = QA
3 +QB

3 +QC
3 .

5.3 Dielectric embedded in a surrounding media

If a surrounding media is taken into account, we define the new residual:

R̂2(u
k
n+1,un, ϕ

k
n+1) =

∫
Ω0

Σ(ukn+1, ϕ
k
n+1) : δF+ S(ukn+1, ϕ

k
n+1)

... δGdΩ

∫
Ω0

f̃ e · δudΩ−
∫
∂Ω0

t̃e · δudΓ−
∫
∂Ω0

[[Σ̃MW (un)]]N · δdΓ. (111)
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The purpose of the above special form is to decouple the application of the
discontinous Maxwell term [[Σ̃MW (un)]]N by prescribing it as forces assumed
known from the previous evolution increment n on ∂Ω0 at evolution increment
n + 1. The staggered scheme is described in section 7. In that case, the new
linearized problem to be solved is defined as:

∫
Ω0

G(δu) ... Q1(u
k
n+1, ϕ

k
n+1) · ∇X(∆ϕ)dΩ∫

Ω0

δF : Cel(ukn+1, ϕ
k
n+1) : ∆FdΩ +

∫
Ω0

G(δu) ... T ... ∆GdΩ

= −R̂2(u
k
n+1,un, ϕ

k
n+1).

6 Discretization

In the following, we present the developments associated with the Finite Ele-
ment discretization of the above problem. For the sake of simplicity, we restrict
the developments to 2D, even though extension to 3D is straightforward. A
mesh of elements is constructed over the domain V0, containing Ne elements.

We first consider the fully-nonlinear problem with all couplings. The case
of small small strains is treated in Appendix 12. The electric potential, test
function and potential increment are approximated by:

ϕ = Nϕϕ
e, δϕ = Nϕδϕ

e, ∆ϕ = Nϕ∆ϕe, (112)

with

Nϕ =
[
N1(x); N2(x); ... ;Nn(x)

]
, (113)

where NI(x) is the shape function of node I in one element, with n the number
nodes in one element e and I = 1, 2, ..., n denotes the index of the node. Above,
ϕe and ∆ϕe are column vectors of size n. The gradient of the electric potential
increment and of the related test functions are expressed by:

∇X(∆ϕ) = Bϕ∆ϕe, ∇X(δϕ) = Bϕδϕ
e (114)

where the matrix Bϕ is expressed by:

Bϕ =
[
D

(1)
ϕ ; D

(2)
ϕ ; ... ;D

(n)
ϕ

]
(115)
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and

D
(I)
ϕ =

 ∂NI(x)
∂x1

∂NI(x)
∂x2

 . (116)

Next, we introduce the related displacement discretization through:

u = Nuu
e, δu = Nuδu

e, ∆u = Nu∆ue, (117)

with

Nu =
[
N(1)
u ; N(2)

u ; ... ;N(n)
u

]
, N(I)

u =

NI(X) 0

0 NI(X)

 . (118)

Then, we define the vector [∆F] associated with the tensor ∆F:

[∆F] =



∂∆u1
∂X1

∂∆u1
∂X2

∂∆u2
∂X1

∂∆u2
∂X2


, (119)

which can be related to nodal displacement increments ∆ue and test functions
in the element e through:

[∆F] = Bu∆ue, [δF] = Buδu
e, (120)

where

Bu =
[
D(1)
u ; D(2)

u ; ... ;D(n)
u

]
(121)

with

D(I)
u =



∂NI(X)
∂X1

0

∂NI(X)
∂X2

0

0 ∂NI(x)
∂X1

0 ∂NI(x)
∂X2


. (122)

Now we introduce the vector associated with the 2D nonsymmetric compo-
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nents of G:

[G(∆u)] =



G111(∆u)

G112(∆u)

G211(∆u)

G122(∆u)

G212(∆u)

G222(∆u)



=



∂2∆u1
∂X2

1

∂2∆u1
∂X1∂X2

∂2∆u2
∂X2

1

∂2∆u1
∂X2

1

∂2∆u2
∂X1∂X2

∂2∆u2
∂X2

2



. (123)

Then the associated vectors [∆G] and [δG] are related to displacement incre-
ments and test functions through:

[∆G(u)] = B̂u∆ue, [δG(u)] = B̂uδu
e (124)

where

B̂u =
[
D̂(1)
u ; D̂(2)

u ; ... ; D̂(n)
u

]
(125)

with

D̂(I)
u =



∂2NI(X)
∂X2

1
0

∂2NI(X)
∂X1∂X2

0

0 ∂2NI(x)
∂X2

1

∂2NI(x)
∂X2

2
0

0 ∂2NI(X)
∂X1∂X2

0 ∂2NI(x)
∂X2

2



. (126)

The residual R1 is expressed by:

R1 = [δϕe]T r1 (127)

with

r1 =
∫
V0
BT
ϕ ϵJC

−1Bϕ [ϕ
e]k +BT

ϕJf(ϵ− ϵ0)F
−1ÎB̂u [u

e]k dΩ

−
∫
V0
BT
ϕF

−1P̃0 +NT
ϕ ρ̃

edΩ−
∫
∂V0D

NT
ϕD

b
n, dΓ.
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where the matrix Ĩ is such that g = Ĩ [G(u)] and is given by

Î =

 1 0 0 1 0 0

0 0 1 0 0 1

 . (128)

6.1 Case without considering a surrounding medium

In this case, the residual r2, which is such that

R2 = [δϕe]T r2 (129)

is expressed as:

r2 =
∫
Ω0

B
T

u [P
el]dΩ +

∫
Ω0

B̂T
u [S]dΩ +

∫
Ω0

B
T

u [Σ̃MW ]dΩ

−
∫
Ω0

NT
u f̃

edΩ−
∫
∂Ω0F

NT
u t̃

edΓ (130)

with

[Σ̃MW ] = −ϵ0
2
|E|2 [F−T ]− 1

2J(ϵ− ϵ0)

∣∣∣P̃∣∣∣2 [F−T ] + Z̃, (131)

and

[F−T ] =



F−T
11

F−T
12

F−T
21

F−T
22


, [Σ] =



Σ11

Σ12

Σ21

Σ22


, [Σ̃MW ] =



(ΣMW )11

(ΣMW )12

(ΣMW )21

(ΣMW )22


(132)

[S] =



S111

S112

S211

S122

S212

S222



, Z̃ =



E1D̃1

E1D̃2

E2D̃1

E2D̃2


(133)
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|a|2 = aTa and

E = −F−TBϕ[ϕ
e] (134)

P̃ = −J(ϵ− ϵ0)
[
f ĨB̂uu

e + F−TBϕ[ϕ
e]
]

(135)

D̃ = −JϵC−1Bϕ[ϕ
e]− Jf(ϵ− ϵ0)F

−1ÎB̂uu
e + F−1P̃0. (136)

Above,

[F] =



1

0

0

1


+Buu

e. (137)

6.2 Case with considering a surrounding medium

In this case, the residual is expressed as

r2 =
∫
Ω0

B
T

u [Σ]dΩ +
∫
Ω0

B̂T
u [S]dΩ

−
∫
Ω0

NT
u f̃

edΩ−
∫
∂Ω0F

NT
u t̃

edΓ−
∫
∂Ω0

NT
u f

S
MWdΓ, (138)

where fSMW = [[Σ̃MW ]]N. At the interface between the solid dielectric and the
surrounding media (e.g. air), external forces are exerted due to the term f sMW

in Eq. (66). In this work, we propose the following simple discretization for the
term

∫
∂Ω0

NT
u f

S
MWdΓ. Considering an integration point on the interface ∂Ω, we

define the approximation of the jump in [[Σ̃MW ]]N as:

[[Σ̃MW ]] ≃ Σ̃MW (x+)− Σ̃MW (x−) (139)

where x+ and x− refer to integration points located in the center of two
elements adjescent to the segment containing the point x (see Fig. 2).

∂u
∂x

= 0

It is worth noting that if strain gradient is taken into account, the strong
equations in (45) or in (185) are fourth-order nonlinear partial differential
equations and require C1-continuity of the displacement field and associated
C1 Finite Elements, while the electric potential field can be discretized with
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Solid
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x

+

x
-

x

N

Figure 2. Two adjacent elements across the interface between the solid and surround-
ing media for the approximation of the Maxwell stress jump across the interface.

C0 elements. Even though mixed finite elements requiring only C0 continuity
could be alternatively considered for handing strain gradient elasticity [34,4],
in the present work, we have used linear triangle elements to discretize the
potential field, while C1 triangular Argyris elements with 21 degrees of freedom
per element [11] have been chosen for the displacements. Note that other
discretization choices are possible, as meshfree methods [1] or isogeometric
FEM [18], which also ensure the C1-continuity. The main objective of this
paper is to provide the different formulations and linearization procedures, in
which the discretization is a numerical ingredient that can be changed. We
chose on purpose the simplest C1 discretization based on triangular elements
for the sake of convenience, but we are aware that such discretization might
be cumbersome in 3D. Introducing the mentioned discretization techniques in
the present framework is left to further studies.

6.3 Linearized system

Introducing approximations (112), (114) and (124) in weak forms (84) and
(110) we obtain the following system of linear equations associated with the
linearized problem in the Newton algorithm:

K11 K12

K21 K22


∆ϕ

∆u

 = −

 r1
r2

 , (140)

where the different matrices are expressed in the following.

K11 =
∫
V0
JϵBT

ϕC
−1BϕdΩ, (141)

K12 =
∫
Ω0

BT
ϕ (M1 +M2 −M4)B

T

udΩ +
∫
Ω0

BT
ϕM3B̂

T
udΩ, (142)

K21 =
∫
Ω0

B̂T
uQ1BϕdΩ +

∫
Ω0

B
T

uQ2BϕdΩ, (143)

K̃22 =
∫
Ω0

B
T

uC
elBudΩ+

∫
Ω
B̂T
uTB̂udΩ+

∫
Ω0

B
T

u

(
Q3Bu +RB̂u

)
dΩ.(144)
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In the above, M1, M2, M3, M4, Q1, Q2, C
el, T, Q3 and R are the matrix

forms corresponding to the operators M1, M2, M3, M4, Q1, Q2, Cel, T, Q3

and R, respectively.

Solving the linear system (140), the nodal displacements and electric potentials
are udpdated through

uk+1 = uk +∆u, (145)

ϕk+1 = ϕk +∆ϕ, (146)

until a convergence criterion is reached.

7 A staggered algorithm for simulation of soft solids subjected to
Maxwell stress in a surrounding medium

In this section, we describe a staggered algorithm to solve the full problem
of soft dielectrics in surrounding media, subjected to Maxwell stress. Due to
severe nonlinearities, solving the problem (140) in a monolithical fashion may
lead to convergence issues. To alleviate this problem, the following algorithm
can be employed. To avoid spurious distortions of the mesh related to the
surrounding medium when the domain Ω is deformed, a displacement field
in the surrounding domain is artificially defined, and fictious elastic proper-
ties are assigned to the surrounding domain defined in Ω0. Let ϕ

n(x), un(x)
vn(x) denote the potential field in V0, the displacement field in Ω0 and the
displacement field in Ω0 at time step tn. The algorithm runs as follows:

(1) For each time step tn+1 (increment of external electric or mechanical
loading)
(a) Given un, solve the dielectric problem (54) ∀x ∈ V0, to find ϕn+1(x).
(b) Compute the surface Maxwell forces fSMW (ϕn+1,un) = [[Σ̃MW (ϕn,un)]]N,

using (38), (39) and the discretization procedure described in section
6.

(c) Solve the mechanical problem (66) ∀x ∈ Ω0, to find un+1(x).
(d) Prescribe Dirichlet boundary conditions obtained from (c) on ∂Ω0 in

Ω0 using un+1(x) and solve the fictious elastic problem in Ω0 to find
vn+1(x)

(e) Update
• ϕn(x) = ϕn+1(x)
• un+1(x) = un(x)
• vn+1(x) = vn(x)

(2) Go to (1)
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Figure 3. Bilayer material with uniform charge ρ subjected to voltage.

Note that this algorithm uses the Newton method described in the previous
sections, but only avoids the linearization of the surface term by prescribing
it as a given force term known from the previous iteration.

8 Applications: numerical examples

8.1 Effective piezoelectricity induced by coupling electrets and Maxwell stress

The objective of this first example is to validate the present framework in
the context of Maxwell stress at small strains. A unidimensional structure
is composed of two layers with respective Young’s modulus E1 and E2 and
permittivity coefficients ϵ1 and ϵ2, as depicted in Figure 3.

A charge ρe(x) is uniformly distributed over the structure. The (x = 0)-side
is subjected to a potential ϕ = 0 and clamped, while the (x = H)-side is
subjected to a potential ϕ = +V and is free of mechanical loading. In 1D, we
have:

e(x) =
dϕ(x)

dx
, D(x) = −ϵdϕ(x)

dx
, p(x) = −(ϵ− ϵ0)

dϕ(x)

dx
(147)

where ϕ, e, D, and p denote electric potential, electric field, electric displace-
ment and polarization, respectively. Then the equations of the dielectric prob-
lem degenerate to:

d D(x)

dx
= ρe (148)

or

d2 ϕ(x)

dx
= −ρ

e

ϵ
(149)

with continuity equations at the interface:

[[ϕ(a)]] = 0, [[D(a)]] = 0. (150)

28



Then the solution ϕ(x) in each domain is given in the form:

ϕ(y) =


−ρex2

2ϵ2
+ A1x, 0 ≤ x ≤ a

ρex2

2ϵ1
+ A2x+ A3, a ≤ x ≤ H

(151)

where A1, A2 and A3 are solution of:
0 H 1

a −a 1

ϵ2 ϵ1 0




A1

A2

A3

 =


V + ρeH2

2ϵ1

−a2ρe

2

(
1
ϵ1
− 1

ϵ2

)
0

 . (152)

The first line of the system is associated with the boundary condition ϕ(H) =
V , the second one with the continuity of potential across the interface (x = a),
and the last one with the continuity of electric displacement at the interface.

Then we note that the mechanical problem can be solved in an uncoupled
manner, given the solution ϕ(x). In 1D, the equation of the mechanical balance
problem is given by:

d (σe(x) + σ̃MW (x))

dx
= 0 (153)

with

σe(x) = E
du(x)

dx
, (154)

σ̃MW (x) = −ϵ0
2

(
dϕ(x)

dx

)2

+ e(x)d(x)− ϵ− ϵ0
2

(
dϕ(x)

dx

)2

=
ϵ

2

(
dϕ(x)

dx

)2

. (155)

Then Eq. (153) can be rewritten as:

E
du(x)

dx
= −ϵd

2ϕ(x)

dx2
dϕ(x)

dx
(156)

with continuity equations at the interface:

[[u(a)]] = 0, [[σe(a) + σ̃MW (a)]] = 0 (157)

and boundary conditions

u(0) = 0, σe(H) + σMW (H) = 0. (158)
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Then solving the displacement equation leads to

uy(y) =


ρe

E2

(
B2x+

A1x2

2
− ρex3

6ϵ2

)
, 0 ≤ x ≤ a

ρe

E1

(
B3 +B1x+

A2x2

2
− ρex3

6ϵ1

)
, a ≤ x ≤ H,

(159)

where B1, B2 and B3 are solutions of:


ρe 0 0

1 −1 0

a
E1

− a
E2

1
E1




B1

B2

B3

 =


F1

F2

F3

 . (160)

In Eq. (160), the first equation corresponds to the free load condition at (x =
H), the second one to the continuity of total stress across the interface, and
the last one to the continuity of displacements across the interface, and

F1 = ρe
(
ρeH2

2ϵ1
− A2H

)
−ϵ1

2

(
ρeH

ϵ1
A2

)2

, (161)

F2 =
ρea2

2

(
1

ϵ1
− 1

ϵ2

)
+ a (A1 − A2) +

ϵ2
2ρe

(
A1 −

ρea

ϵ2

)2

, (162)

F3 =
1

E2

(
A1a

2

2
− ρea3

6ϵ2

)
+

1

E1

(
ρea3

6ϵ1
− A2a

2

2

)
. (163)

The effective piezoelectric coefficient is computed as

deff =
∂uy(H)

∂V
. (164)

Comparisons between FEM simulation and the exact solution are presented
in Figure 4 for different E2/E1 ratio, with ρe = 0.001 C/m3, E1 = 1 MPa,
ϵ1 = 2ϵ0, ϵ2 = 20ϵ0, H = 1 mm, a = H/2. The results show a very good
agreement between the theory and the numerical soltuon, which validates the
present numerical framework in this case.

8.2 Flexoelectricity

In this second example, flexoelectricity is considered, i.e. the material param-
eters f and g in Eq. (24) are no more neglected. We neglect Maxwell stress
and the small strain assumption is adopted. A uniform bar is submitted to
the conditions described in Fig. 5.
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Figure 4. Effective piezoelectric coefficient deff as a function of the ratio E2/E1.
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Figure 5. Layer with flexoelectric properties subjected to voltage.

The material parameters are chosen as follows: ϵ0 = 8.854 C/m2, ϵ = 17.708
C/m2, E = 1 MPa, ν = 0, the elastic coefficient g associated to strain gradient
rigidity in (24) varies between 10−3 and 1, the flexoelectric coefficient f in (24)
varies between 0 and 10−1, ρe = 0 C/m3, p0 = 0 V/m, u = 0.1 mm, V = 10−3

V, H = 1 mm. The analytical solution of this problem is given by:

u(x) = ue
−x
k
−2ke

H
2k + 2ke

H+4x
2k + e

H+x
k (2k − L− 2x)− e

x
k (2k + L+ 2x)

2
(
2k
[
e

H
k − 1

]
−H

[
e

H
k + 1

]) (165)

ϕ(x) =
uGu + V GV

ϵH
(
2k − 2ke

H
k +H +He

H
k

) , (166)

with

Gu = −e
−x
k

{
−e

H
2k + e

x
k + e

L+x
k − e

L+4x
2k

}
(ϵ− ϵ0)fH, (167)
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GV = −2xϵ
(
2k
[
e

H
k − 1

]
−H

[
e

H
k + 1

])
. (168)

In the above, k =
√
A/E and

A = g − (ϵ− ϵ0)f
2

[
1− (ϵ− ϵ0)

ϵ

]
(169)

To our knowledge, this solution is provided in this paper for the first time.

To solve numerically the problem, we model the one-dimensional problem in
a two-dimensional domain by prescribing appropriate boundary conditions
to render the problem 1D. A square domain has been discretized into 15 ×
15 nodes, corresponding to 392 regular triangular Argyris [11] elements to
guarantee the C1−continuity.

In Figs. 6-9 the displacement solution as well as the potential distribution
along x is provided. First, the elasticity gradient coefficient g has been varied
for a fixed value of the flexoelectric coefficient f = 0.01. Second, f has been
varied for a fixed value of g = 1. In each case, the exact solution has been
compared with the numerical solution. We can note here again a very good
agreement between the analytical and numerical solutions.

8.3 Finite strains: soft cylindrical body in an electrical field

In this example, we consider a soft cylindrical body subjected to an electric
field in a finite square box, as described in Fig. 8. Related experimental and
numerical works can be found e.g. in [37,30,22]. The geometry and boundary
conditions of the problem are depicted in Fig. 8 (a), and the corresponding
mesh is depicted in Fig. 8 (b). For the sake of symmetry, only a half of the
problem is modeled and meshed. The body is surrounded by air in the square
domain. A voltage is applied on the upper (y = −H) and lower (y = H) ends
of the square domain. For the sake of simplicity, plane strain are assumed.
The material properties of the soft body are: E = 0.01 MPa, ν = 0.45. The
staggered algorithm described in section 7 has been used.

Due to the Maxwell stress, the body is stretched when the voltage is increased,
as depicted in Fig. 9. It is worth noting that due to the surface term [[Σ̃MW ]]N
in (66), the initial circular section does not remain an ellipsoid but takes a
more complex shape.

The evolution of the stretch λ1 in the y−direction as a function of the applied
electric current |E0|2, E0 = 2V e2 is depicted in Fig. 10 for several values of
the soft body’s relative permittivity ϵr = ϵ/ϵ0.
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Figure 6. Solution field along the layer thickness for a fixed flexoelectric coefficient
f = 0.01 and a varying strain gradient coefficient g; (a) Displacement; (b) electric
potential.

Due to severe nonlinearities and probably the occurrence of instabilities, the
present formulation was not able to simulate larger strains than the ones in-
dicated in Fig. 10. Implementation of more robust algorithms for taking into
account these nonlinearities and possible instabilities are reported to future
studies, e.g. by implementing an arc-length control algorithm, or by introduc-
ing inertia effects, as proposed by Park et al. in [29].

9 Conclusion

In the present work, a finite element framework has been introduced to solve
the response of nonlinear, flexoelectric soft dielectric materials at small and
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Figure 7. Solution field along the layer thickness for a fixed strain gradient coefficient
g = 1 and a varying flexoelectric coefficient ; (a) Displacement; (b) electric potential.

finite strains, with effects of Mawxell stress. Weak forms and finite element
discretizations able to handle strain gradient in the context of flexoelectricity
have been introduced. Numerical algorithms for the treatment of a soft dielec-
tric in a surrounding medium have been proposed, more specifically to handle
the effects of discontinuities of the Maxwell stress at the interfaces. Finally,
several benchmarks have been presented to assess the present formulations and
numerical schemes, through applications of special cases of interest: induced
piezoelectricity in non-piezoelectric materials due to coupling of Maxwell stress
and electrets, flexoelectricity, or stretching of electroactive soft dielectrics and
polymers subjected to an external electric field.
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Figure 8. Soft cylindrical body subjected to an electric field; (a) geometry; (b) FEM
mesh.

(a) (b)

Figure 9. Electric field Ẽ(x)2 and deformed configuration of the ellipsoid (magnified
10 times) for an applied electric field (a) E0 = 0.009 V/m and (b) E0=0.141 V/m,
ϵr = 20, E=0.01 MPa, ν = 0.45.
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11 Appendix: Particular cases

Here, we particularize the above developments to special cases of interests.
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Figure 10. Stretch of the initial spherical particle as a function of the applied electric
current |E0|2.

11.1 Flexoelectric elastomers at finite strains

If Maxwell stress is neglected but the material is flexoelectric, we obtain the
following equations for finite strains flexoelectricity (we assume that we do
not consider the surrounding medium here):

11.1.1 Strong form

∇X ·
(
D̃
)
= ρ̃e in V0 (170)

where D̃ is given by (33), with boundary conditions

ϕ = ϕb on ∂V0ϕ, (171)

N · D̃ = Db
n on ∂VD. (172)

∇X ·Σ−∇X · (∇X · S) + f̃ e = 0 in Ω0, (173)

with boundary conditions

u = ub on ∂Ωu0, (174)

ΣN− (∇X · S)N− t̃e = 0 on ∂ΩF0, (175)

and

SN⊗N = 0 on ∂Ω0. (176)
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11.1.2 Weak form

The weak form is straightforwardly expressed by

(54) and∫
Ω0

(
Σ : δF+ S ... δG

)
dΩ−

∫
Ω0

f̃ e · δudΩ−
∫
∂Ω0F

t̃edΓ

= −R2(u, ϕ) = 0. (177)

11.1.3 Consistent linearization

The linearized problem of finite strain flexoelectricity is given by:

(84) and∫
Ω0

G(δu) ... Q1 · ∇X(∆ϕ)dΩ +
∫
Ω0

δF : Cel : ∆FdΩ

+
∫
Ω0

G(δu) ... T ... ∆GdΩ = −R2(u
k, ϕk). (178)

11.2 Dielectric elastomers without flexoelectricity and Maxwell stress

The case of taking into account Maxwell stress in a non-flexoelectric material
is simply obtained by taking f = 0 and g = 0 in the formulations of sections
3 and 4.

11.3 Assumption of small strains

In this section, we consider the case where small perturbations are assumed.
In this case, J ≃ 1, C ≃ 1, F ≃ 1.

The strong form is given as follows:
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For the dielectric problem:

∇ · (d) = ρe in V (179)

with e = −∇ϕ,
d = −ϵ∇ϕ− (ϵ− ϵ0)fg + p0, (180)

p = −(ϵ− ϵ0) [fg +∇ϕ] . (181)

where p0 is the extrinsic polarization and

gi = ∇εikk (182)

with boundary conditions

ϕ = ϕb on ∂Vϕ (183)

n · d = dbn on ∂VD. (184)

For the mechanical problem:

∇ · σ −∇ · (∇ · S ′) +∇ · σ̃MW + f e = 0 in Ω (185)

with boundary conditions

u = ub on ∂Ωu, (186)

σn− (∇ · S ′)n+ [[σ̃MW ]]n− te = 0 on ∂ΩF (187)

and

S ′ : n⊗ n = 0 on ∂Ω (188)

with

σ̃MW = −ϵ0
2
|e|2 1− |p|2

2(ϵ− ϵ0)
+ e⊗ d. (189)

With definition (24), we obtain, after algebraic computations:

(S ′)ijk =
∂ψflexo

∂∇εijk
=
g

2
(∇εippδjk + δik∇εjpp) +

f

2
(piδjk + δikpj) . (190)

The weak form associated with the dielectric problem is given by

∫
V
ϵ∇ϕ · ∇(δϕ)dΩ +

∫
Ω
(ϵ− ϵ0)fg · ∇(δϕ)dΩ

−
∫
V
p0 · ∇(δϕ)dΩ−

∫
V
ρeδϕdΩ = R1(u

k, ϕk) (191)

The weak form associated with the mechanical problem is given as follows.

Let us define (G ′)ijk =
∂ui

∂xj∂xk
. As (S ′)ijk is symmetric with respect to i and j
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indices, and as ∇εijk = ∇εjik, we have:

S ′
ijkG ′

ijk = S ′
ijk

1

2

(
G ′
jik + G ′

ijk

)
= S ′

ijk∇εijk. (192)

We finally obtain the weak form for the mechanical problem:

∫
Ω
σ : ε(δu)dΩ + S ′ ... ∇ε(δu)dΩ +

∫
Ω
σ̃MW : ε(δu)dΩ

−
∫
Ω
f e · δudΩ−

∫
∂ΩF

te · δudΓ = 0, (193)

where ∇ε(δu)ijk = ∂δui
∂xj∂xk

. We notice that even considering small perturba-

tions, the problem remains nonlinear due to the Maxwell stress term. Then,
a linearization of the problem around a know solution (ϕk,uk) is performed
through:

R′
1(u

k +∆u, ϕk +∆ϕ) ≃

R′
1(u

k, ϕk) +D∆uR
′
1(u

k, ϕk) +D∆ϕR
′
1(u

k, ϕk). (194)

R′
2(u

k +∆u, ϕk +∆ϕ) ≃

R′
2(u

k, ϕk) +D∆uR
′
2(u

k, ϕk) +D∆ϕR
′
2(u

k, ϕk). (195)

In the following, we develop the different terms associated with the above
linearization process. We can express:

D∆ϕ {(ϵ− ϵ0)fg · ∇(δϕ)} = ∇(δϕ) · M̂ ... ∇ε(∆u) (196)

with

(
M̂
)
ijkl

=
f(ϵ− ϵ0)

2
(δijδkl + δikδjl) . (197)

Then, the linearized form associated with the dielectric problem is obtained
as:

∫
V
ϵ∇(∆ϕ) · ∇(δϕ)dΩ +

∫
V
∇(δϕ) · M̂ ... ∇ε(∆u)dΩ = −R′

1(u
k, ϕk). (198)

To derive the linearized equations associated with the mechanical problem, we
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note that:

∂S ′
ijk

∂∇ϕl
= −f(ϵ− ϵ0)

2
(δilδjk + δikδjl) = −

(
M̂
)
ilkj

. (199)

We have

∂σMW

∂∇ϕ
= Q̂A

3 + Q̂B
3 + Q̂C

3 (200)

with (
Q̂A

3

)
ijk

= −ϵ0δijek, (201)

(
Q̂B

3

)
ijk

= −(δikdj + ϵeiδjk), (202)

(
Q̂C

3

)
ijk

= δijpk (203)

We set:

∂σ̃MW

∂∇ϵ
= R̂A + R̂B (204)

with

(
R̂A
)
ijklp

= −ei(ϵ− ϵ0)

2
f [δjkδlp + δjlδkp] (205)

and (
R̂B

)
ijklp

=
f

2
δij [δlppk + δkppl] . (206)

Finally

D∆u

{
S ′ ... ∇ε(δu)

}
= ∇ε(δu)

... T̂ ... ∇ε(∆u). (207)

with

T̂ =
∂S ′

∂∇ε
, (208)

(
T̂
)
ijklmp

=
g

4
(δik [δjlδmp + δjmδlp] + δjk [δilδmp + δimδlp]) . (209)

After other similar computations (see section 5), we finally obtain the lin-
earized form associated with the mechanical problem in the case of small
strains assumption:
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−
∫
Ω
∇ε(δu)

... MT · ∇(∆ϕ)dΩ +
∫
Ω
δε : Q̂3 · ∇(∆ϕ)dΩ

+
∫
Ω
ε(∆u) : C : ε(δu)dΩ +

∫
Ω
∇ε(δu)

... T̂ ... ∇ε(∆u)dΩ

+
∫
Ω
ε(δu) : R̂ ... ∇ε(∆u)dΩ = −R′

2(u
k, ϕk),

with Q̂3 = Q̂A
3 + Q̂B

3 , R̂ = R̂A + R̂B.

12 Appendix: discretization for small strains

In this appendix, we consider case of small strains assumption, taking into
account flexoelectricity and Maxwell stress. The electric potential increment
and associated test function are expressed in the same manner than in the
previous section.

Next, we classically introduce the vector [∆ε] associated with the tensor ∆ε:

[∆ε] =


ε11(∆u)

ε22(∆u)

2ε12(∆u)

 =


∂∆u1
∂x1

∂∆u2
∂x2

∂∆u2
∂x1

+ ∂∆u1
∂x2

 (210)

which can be related to nodal displacement increments ∆ue and test functions
in the element e through:

[∆ε] = Bu∆ue, [δε] = Buδu
e (211)

where

Bu =
[
D

(1)

u ; D
(2)

u ; ... ;D
(n)

u

]
(212)

with

D
(I)

u =


∂NI(X)
∂X1

0

0 ∂NI(X)
∂X2

∂NI(X)
∂X2

∂NI(x)
∂X1

 . (213)

Now we introduce the vector associated with the 2D nonsymmetric compo-
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nents of ∇ε:

[∇ε(u)] =



∇ε111

∇ε112

2∇ε121

2∇ε122

∇ε221

∇ε222



=



∂2u1
∂x21

∂2u1
∂x1∂x2

∂2u1
∂x1∂x2

+ ∂2u2
∂x21

∂2u1
∂x22

+ ∂2u2
∂x1∂x2

∂2u2
∂x1∂x2

∂2u2
∂x22



. (214)

Then the associated vectors [∇ε(∆u)] and [∇ε(δu)] are related to displace-
ment increments and test functions through:

[∇ε(∆u)] = B̃u∆ue, [∇ε(δu)] = B̃uδu
e, (215)

where

B̃u =
[
D̃(1)
u ; D̃(2)

u ; ... ; D̃(n)
u

]
(216)

with

D̃(I)
u =



∂2NI(x)
∂x21

0

∂2NI(x)
∂x1∂x2

0

∂2NI(x)
∂x1∂x2

∂2NI(x)
∂x21

∂2NI(x)
∂x22

∂2NI(x)
∂x1∂x2

0 ∂2NI(x)
∂x1∂x2

0 ∂2NI(x)
∂x22



. (217)

We then introduce the vector containing the components of S ′:

[S ′] =



S ′
111

S ′
112

S ′
121

S ′
122

S ′
221

S ′
222



. (218)
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From (190), [S ′] is related to [∇ε(u)] through:

[S ′] = T′ [∇ε(u)] +Up (219)

where

T′ = g



1 0 0 1/2 0 0

0 0 0 0 0 0

0 0 1/4 0 0 1/2

1/2 0 0 1/4 0 0

0 0 0 0 0 0

0 0 1/2 0 0 1



, U = f



1 0

0 0

0 1/2

1/2 0

0 0

0 1



. (220)

Introducing the different above discretization expressions in (198) and (11.3),
we finally obtain the linear system of equations in the form:

 K̃11 K̃12

K̃21 K̃22


∆ϕ

∆u

 = −

 r′1
r′2

 (221)

where

K̃11 =
∫
V
ϵBT

ϕBϕdΩ, (222)

K̃12 =
∫
V
BT
ϕf(ϵ− ϵ0)ÎB̂udΩ. (223)

Before providing the expressions for K̃21 and K̃22, we express the residuals r
′
1

and r′2 in what follows.

The residual R′
1 is such that:

R′
1 = [δϕe]T r′1 (224)

with

r′1 =
∫
V
ϵBT

ϕBϕ [ϕ
e]k dΩ +

∫
V
f(ϵ− ϵ0)B

T
ϕ IB̃u [u

e]k dΩ

−
∫
V
BT
ϕp

0dΩ−
∫
∂V

NT
ϕD

b
ndΓ−

∫
V
NT
ϕρ

edΩ.
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with

I =

 1 0 0 1/2 0 0

0 0 1/2 0 0 1

 . (225)

The residual R′
2 is such that:

R′
2 = [δue]T r′2 (226)

with

r′2 =
∫
Ω
B
T

uC
elBu[u

e]kdΩ +
∫
Ω
B̃T
u [S ′] dΩ +

∫
Ω
B
T

u [σ̃MW ]dΩ

−
∫
Ω
NT
u fdΩ−

∫
∂ΩF

NT
u t

edΓ, (227)

with

[σ̃MW ] = −
∫
Ω

1

2

{
ϵ0
∣∣∣ek∣∣∣2 + 1

(ϵ− ϵ0)

∣∣∣p̃k∣∣∣2}1+ Z̃,

∣∣∣ek∣∣∣2 = [ϕe]k
T
BT
ϕBϕ [ϕ

e]k (228)

and ∣∣∣p̃k∣∣∣2 = [
p̃k
]T

p̃k (229)

with

p̃k = −(ϵ− ϵ0)
[
f ÎB̃u[u

e]k +Bϕ[ϕ
e]k
]
. (230)

Above, the vector Z̃ is given by:

Z̃ =


Z11

Z22

1
2
(Z12 + Z21)

 , (231)

where

Z =
{
ek
}{

dk
}T

, ek = −Bϕ[ϕ
e]k (232)

dk = −ϵBϕ[ϕ
e]k − f(ϵ− ϵ0)ÎB̃u[u

e]k + p0 (233)
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and

1 =


1

1

0

 . (234)

The tangent matrices K̃21 and K̃22 can then be written as

K̃21 =
∫
Ω
−B

T

u1 (ϵ0a+ (ϵ− ϵ0)b) + Ξ(1)dΩ (235)

with

a =
[
ϕk
]T

BT
ϕBϕ (236)

b =
[
ϕk
]T

BT
ϕ

(
f ÎB̃u [u

e]k +Bϕ [ϕ
e]k
)

(237)

and

Ξ(1) =


b1
ϕ

(
ϵ[ϕe]kb1

ϕ − d1
)

b2
ϕ

(
ϵ[ϕe]kb2

ϕ − d2
)

1
2

[
b1
ϕ

(
ϵ[ϕe]kb2

ϕ − d2
)
+ b2

ϕ

(
ϵ[ϕe]kb1

ϕ − d1
)]

 , (238)

where biϕ is the i− th row of the matrix Bϕ and di is the i− th component of
d, and

K̃22 =
∫
Ω
B
T

uC
elBudΩ +

∫
Ω
B̃T
uT

′B̃u − f(ϵ− ϵ0)B̃
T
uUÎB̃udΩ (239)

−
∫
Ω
B
T

u

(
1cT − Ξ(2)

)
dΩ (240)

with

c = f(ϵ− ϵ0)B̃
T
u I

T
(
f ÎB̃u [u

e]k +Bϕ [ϕ
e]k
)

(241)

and

Ξ(2) =


b1
ϕ[ϕ

e]k î1B̃u

b2
ϕ[ϕ

e]k î2B̃u

1
2

(
b1
ϕ[ϕ

e]k î2 + b2
ϕ[ϕ

e]k î1
)
B̃u

 . (242)

where îj is the j − th line of I.
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