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Abstract

In the present work, a numerical finite element framework is introduced to model
and solve the response of nonlinear soft dielectrics, including the effects of Maxwell
stress and flexoelectricity at finite strains. Weak forms, finite element discretizations
and constistent linearizations, able to handle strain gradient in the context of flexo-
electricity are introduced. Numerical algorithms for the treatment of a soft dielectric
in a surrounding medium are presented, more specifically to handle the effects of
discontinuities of the Maxwell stress at the interfaces. Finally, several benchmarks
are proposed to assess the present formulations and numerical schemes, through
applications of special cases of interest: induced piezoelectricity in non-piezoelectric
materials due to coupling of Maxwell stress and electrets, flexoelectricity, or stretch-
ing of electroactive soft dielectrics subjected to an external electric field.

Key words: Flexoelectricity, Dielectrics, Finite Elements, Nonlinear dielectrics,
Maxwell stress, Finite strains

1 Introduction

Soft dielectrics have recently attracted a growing attention due their ability
to generate large deformations when they are subjected to an electric voltage.
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The induced mechanical deformations caused by the applied electric field can
be utilized for sensing and actuation [31,6,43]. As discussed in [42], the elec-
trically induced mechanical deformations are caused by the Maxwell stress.
Nonlinear electro-elasticity for soft dielectric elastomers has been discussed in
[12,28] and constitutive relation for soft dielectric elastomers have been pro-
posed and discussed by [41,32,22,36,35] for solid and fluid dielectrics. The low
dielectric coefficients of soft dielectrics polymers can be increased by addition
of reinforcements with high dielectric constants such as ceramic particles or
carbon fibres [13,16,24]. A review on applications of nonlinear dielectrics to
soft actuators, artificial muscles, soft robots and energy harvesting systems can
be found e.g. in [17]. In [27], a soft electric generator model of soft dielectric
elastomer has been presented.

Moreover, other interesting coupled electromechanical phenomena can occur
in soft dielectric and soft biomembranes, like the phenomenon of flexoelec-
tricity. Flexoelectricity describes the coupling between electric polarization
and mechanical strain gradient. Even though flexoelectric effects are much
larger in ferroelectric materials [9] and complex oxide ceramics [5,25,44,26],
the flexoelectricity of several polymers has recently been investigated in [§].
Kogan [20] formulated the first phenomenological theory of flexelectricity and
estimated the value range of flexoelectric coefficients. In [10], Deng et al. de-
veloped a nonlinear theoretical framework for flexoelectricity in soft materials.
In [23], an energy formulation was proposed for continuum electro-elasticity
and magneto elasticity. Using the principle of minimum free energy, the Euler-
Lagrange equations of the principle of minimum free energy were derived for
a hierarchy of behaviours, including nonlinear dielectric with Maxwell effects
and flexoelectricity.

In [33], it was shown how nano composites made of non-piezoelectric com-
ponents can have an apparent piezoelectric behavior by exploiting the effects
of flexoelectricity. In [10] An interesting nonlinear interplay between Maxwell
stress and flexoelectricity was described, and the importance of flexoelectricity
in soft biological membranes was shown. A prospective on flexoelectricity can
be found in [21]. A critical analysis of the current knowledge on the flexoelec-
tricity in common solids can be found in [40].

While many experimental and theoretical studies have been proposed to model
soft, dielectrics, few numerical works have been proposed so far to model these
phenomena in more complex configurations than beams and unidirectional lay-
ers. In [2], Aboudi introduced the High-Fidelity Generalized Method of Cells
(HFGMC) for prediction of the overall behavior of soft dielectrics composites
undergoing large deformations. In [39], an iterative method based on Green’s
functions was proposed to solve the interior/exterior electrostatic problem for
a soft dielectric in a surrounding media. A number of numerical phase-field
simulations have been performed to evaluate the effects of flexoelectricity in



ferroelectrics [15,38,3,7]. However, these references resort to finite differences
methods with uniform grids, which are limited to very simple geometries and
boundary conditions. In [1] Abdollahi et al. introduced a numerical framework
based on meshfree method to solve the flexoelectric problem at small strains,
where the meshfree approximation was introduced to handle the fourth-order
partial differential equations related to strain gradients formulations.

Specific architectures of structures or microstructures could be used to design
new soft dielectric systems with higher performances, exploiting the principles
described above. Then, numerical methods are required to solve such problems
over complex geometries. Motivated by these objectives, we present in this pa-
per a numerical framework for nonlinear dielectrics at finite strain including
the coupling due to Maxwell stress and flexoelectricity. The possibility to solve
the problem of a soft dielectric in a surrounding media like air is handled by a
staggered procedure. Based on the work of [23], the problem of coupled non-
linear flexoelectric problem with Maxwell stress is formulated and discretized
by finite elements. The C*' required continuity of the displacement field is
met by Argyris triangular elements, which allow meshing complex geometries.
The consistent linearizations are introduced and the corresponding FEM dis-
cretizations are proposed. Finally, benchmarks and applications to induced
piezoelectricity in non piezoelectric materials, flexoelectricity and stretching
of electroactive polymers are proposed.

The paper is organized as follows. After kinematics and notation preliminar-
ies in section 2, the equations for the nonlinear dielectric problems at finite
strains with flexoelectricity are recalled in section 3. Then, the weak forms
and consistent linearizations are introduced in sections 4 and 5, respectively.
FEM discretizations and a staggered algorithm for dielectrics surrounded by
an external media are introduced in sections 6 and 7, respectively. Finally,
numerical examples are provided in section 8. Some special cases of interest
of this framework, like small strains, Maxwell stress or flexoelectricity effects
as separated phenomena are provided in Appendix 11 and their discretization
in Appendix 12.

2 Notations and kinematics preliminary

Vectors and second order tensors, as well as matrices, are denoted by bold
letters A. Third order tensors are denoted by calligraphic uppercase letters
A, fourth-order, fifth-order and sixth-order tensors are denoted by double
case letters A. Double contraction of indices for second order tensors A and
B is denoted by A : B = A;;B;;, dot product for two vectors a and b by
a-b = a;b;, and simple contraction of indices for a second order tensor A
and a vector b is denoted by (Ab), = A;;b;. For the purpose of this paper,



we introduce the triple contraction of indices for two third order tensors A

and B as: A : B = A;j;Bijx. The gradient operator is denoted by V(.) and
the divergence operator by V - (.). The third order strain gradient tensor is
defined by:

1 82ui 82uj
o= ) 1
(VE)”’“ 2 <8xj8xk + &ci&nk) (1)

For later use, we introduce the following properties. Let a a real-valued vector
field and b a scalar field, we have:

0 da; 0b
8332- (alb) 8:151 b +a (9951 ( )

V.-(ab) =bV-a+a-Vb,

For b a real-valued vector field and A a second-order tensor field, it can be
shown that:

V-(Ab)=(V-A)-b+A: Vb,

or in indicial notations:

0 0A;; 0b;
— (A;:b) = —2b, + A, —2.
axi ( J ]) axl J + ]8$i

Let A a third-order tensor and B a second-order tensor, then:

V-(A4:B)=(V-A):B+ A} VB,
or

0 DA

0B,
Er (Aijx Bjr) = ’

TR B A2t 4
8xk J + gk al‘k ( )

We then introduce the following relations obtained from the divergence theo-
rem:

/QV~(ab)dQ:/aQa~nbdF, (5)

/QV-(Ab)dQ:/mn-AbdF, (6)
and

/QV-(A:B)dQ:/mn-A:BdF. (7)



For later use, we introduce the directional, or Gateaux derivative of f(u) in
the direction of v defined by:

Durtw) = | (usen| ®)

e=0

In the context of finite strains analysis, we define )y as the reference configura-
tion and X and x material points in the reference and current configurations,
respectively. The displacement of a material point is denoted by u = x — X.

The deformation gradient tensor is defined by F = Vxu + 1, where Vx(.)
denotes gradient with respect to reference configuration, and C = FTF is the
right Cauchy-Green strain tensor. The Jacobian is defined as J = det(F) and
Vx - (.) denotes the divergence operator with respect to reference configura-
tion. The stain gradient tensor decomposition into dillatation and rotation is

denoted by F = RU, U = C'/2.

To study flexoelectricity, we introduce the third-order strain gradient tensor
defined by:

82ui

Gijk =

Finally, we recall some properties (see e.g. [14]) which will be of interest in
the subsequent developments of this paper:

oJ
< g T 10
om = JFT. (10)
OF~! 1
( OF )"kl = (]F)ijkl = _Filejl17 (11)
ij
OF " 7 —1—1
( oF >ijlcl - (F)ijkl = —h by (12)

and combining (10), (11) and (12),

oC1
_ 13
o5 A, (13)

(D) = — (F' Fip' + Fy Fit) F* (14)
Finally, given A a general third-order tensor, we have:

0 Aii
a-’4lmp

= 6.0, (15)



Figure 1. Solid Qg embedded in a surrounding domain Qy = Vp\Qo: (a) reference
configuration; (b) current configuration.

and for a third-order tensor A" = 2 (Aijk + Aji) symmetric with respect
to indices ¢ and j, we have:
OAL" 1
GE - — (50 jm + Oim0j1) Okp- 16
A 5 (u0jm + Oimdjt) Ok (16)

3 Equations for the dielectric problem at finite strains with flexo-
electricity

A domain Vj € RP is considered in the reference configuration, embedding a
solid domain Qy and a surrounding media (e.g. air) in a domain Qg such that
Vo = Qo Uy as depicted in Fig. 1. The boundary 9 of Qg is composed of
Dirichlet and Neumann portions, denoted by 9€)y, and 0€yr, where displace-
ment and tractions are prescribed respectively, such that 02 = 090, U 0QF,
000, N OQr = (0. Similarly, the boundary of Vj is composed of Dirichlet and
Neumann portions, denoted by dV4, and 0Vyp, where electric potentials and
normal component of electric displacement are prescribed, respectively, such
that OVy = 0Vop U OVye, OVop N OVie = 0. Counterparts of definitions in the
current configuration are defined similarly, omitting the index 0.

The free energy of the system can be expressed as:

F(u,lS) — U+ clec 4+ Tyest (17)
where
U= [ o, (18)
Qo



P is the polarization, and ¥(u, 15) is the internal energy given by:

w _ welast(U) + ¢flezo(g’ 15) + @bdiel(p)' (19)

Moreover, E¢¢ is the total electric energy and W™e" is the potential energy
of mechanical loadings. The energy E¢° is expressed by:

€ 2
Eelec — /V SIFEIVxo| - ped0 (20)

where ¢ is the electric potential, ¢y is the vacuum electric permittivity and p°
is an external charge. Finally, W™e" is expressed by:

West — —/a i udl — [ Feudo, (21)
Qor

Qo

where t¢ is the applied load and f¢ denotes body forces. In (19), yelast qpflexo
and ¥%¢! are strain energy density functions, whose explicit forms are provided
in the sequel. The following relations are introduced:

E=-Vx¢, E=FTE (22)

D=JF D= —¢JC 'Vy¢+F! (f> + f>°) , (23)

where E the electric current, D is the electric displacement and P° is an
extrinsic (eigen) polarization. In the following, isotropy is assumed, and then
the different strain density functions can be simplified. For example, we choose
here for W/le®°(G) associated with the strain gradient (see e.g. [19]):

plleo(G) = %gikkgill + PGk, (24)

where g and f are material constants. The potential % is expressed as

wd’iel _ 21J (RTf)> . (ARTP) ’ (25)

where A is the second-order dielectric tensor. We have

O diel 1 - 1 ~
8%5 = jRji5ijik‘RjkPj = ijiAikRjkPj (26)
or
diel 5
agp — 3RARTP. (27)



Using the following property (see [23]):

aw o awdz’el awflero o
b F TV = T — +F TV =0, 28
oP =Tp T T X0 (2)

from (24) and (25) we obtain the following relationship:

P = —J(RAR")™ [fgx(u) + F Vx| (29)
where

(9x); (1) = G = g;; (30)
For an isotropic dielectric medium, it yields:

A= (ec—¢) 1. (31)
Then, by the relation RR” = 1, (29) reduces to:

P =—J(e— ) [fex(w) + F'Vxg], (32)
and the electric displacement can be expressed by

D(u, ¢, P%) = —JeC'Vxp — Jf(e — ) Flgx + F 1Py, (33)

In this work, we consider a compressible Mooney-Rivlin constitutive model
for the dielectric elastomer, defined by the following strain density function:

elast _ H [ 7-2/3 (2 2 2\ K0 \2
" _2[J (A + A3+ 23) 3]+2(J 1)?, (34)
where p and s are the Lamé ’s constants such that p = E/(2(1 +v)), k =
E/(3(1 = 2v)), with E the Young’s mudulus and v the Poisson’s coefficient,
and A, (o = 1,2,3) are the principal stretches, i.e. eigenvalues of v/C.

The first Piola-Kirchhoff stress tensor ¥ = 3’%6; " is then expressed by

1
¥ = g —g BTN 4 TR | k(] - 1) JF T (35)

We finally define the third-order tensor S such that

@wflexo

S="3g

(36)




Using the expression of ¢/ given in (24) and (15), we obtain:
Sin = |2Gimm + B 655 = | Lttinm + B 6, (37)
ijk — 9 imm i| Y56 — 2uz,mm i| Yjk-
We define X5y as the modified Maxwell stress [23], expressed in the solid by:

~ ~ 12 ~
S = —%OJ|E|2F‘T— )]P] FT+E@D. (38)

2J(e — €

In the air, the polarization P is zero and then the Maxwell stress still exists
but reduces to:

S = _%OJ|E]2F‘T+E®I~), (39)

where D is given by (33).

On the boundary 9, we have, as ¥ =0, S = 0 and Xy # 0 in Q (see [23]
for more details):

YN - (Vy -S)N+[EywlN—7-t=0 (40)
with
Tp = [SpijNj (0 — NilNi)] . = [SpigNj — NilNi] ,,, Nin N (41)

By (37) in (41) we see that 7 = 0. We summarize the equations of the coupled
problem in the following.

The equations of the dielectric problem are given by:

Vx- (D) =4 inVj (42)
where D is given by (33), and, assuming only Dirichlet or Neumann boundary
conditions:

¢ =" on IV, (43)
N-D =D’ on dVpy. (44)




The equations describing the mechanical problem are given by (see [23]):

Vi (2) = Vx - (Vx-8) + Vx - Spyw + =0 in Q, (45)
with boundary conditions
— (Vx - S)N+ [Syw]]N = t° =0 on 9Qp, (46)
u=u’ on 90y, (47)
SN ®N =0 on 0 (see [23] for a justification), (48)
where [[]] = ()% — (.)*%4 We note that from to the definition (39) and

the electro-static equation (42), we also have:
and

4 Weak forms

To be solved by Finite elements, the above boundary value problem (42)-
(48) must be recast into weak forms. The relevant details are provided in the
following.

4.1 Dielectric problem

Let ¢ € {qb’|gb’ = ¢ on MWy, @' € Hl(VO)}. Pre-multiplying (42) by a test
function d¢ € {¢'|¢ = 0 on V4, ¢’ € H'(Vy)} and integrating over Vj, we
obtain:

Vx -DigdQ = | p°66dQ. (51)
Vo Vo
Using properties (2) and (5) we obtain:

) D - N6¢dQ — D Vi (60)dQ — | p°6¢dQ = 0. (52)
Vo VO

10



Using (44), we obtain, as d¢ = 0 on 0Vj:

D Vy(6¢)dQ = /d  Dhigd+ [ 56dQ. (53)

Vo

Introducing (33) into the weak form, we obtain:

[ JeCTIVx0 - Vi (30)a + /Q TF (e — o) fgx - Vx (66)dQ

= [ F'p°. 9) 58 pdS) D §dr. 54
5 Vx(66)d2+ [ pfaod+ [ Didod (54)

4.2 Mechanical problem

4.2.1  Duelectric medium without considering a surrounding domain

In this first case, we consider that boundary conditions i.e. of Dirichlet type
(like applied voltage) are directly prescribed over 0€)y and that the surrounding
medium can be ignored. In that case, the procedure is the same as in the above,
except that the integration is only performed over €25. We then have:

VX-E-éudQ— (VX(va))(SudQ
Q() QO

+ [ Vx-Suw-oudQ+ [ £ 6udQ =0. (55)
Qo QO

Using property (3), we obtain:

V- (S6u)dQ — / pelost . §FdQ)
QO QO

Qo Q0
- QOVX-((VX-S)éu)dQJr/QO(VX-S):5FdQ+ [ - uaa =o.

Using (6):

/ 2:5Fd9+/ flezéFdQ—/ (Vy - S) : §FdQ
Qo Qo Qo

=/ £ . udQ + ” [Baw]IN + BN — (Vy - S)N| - 6udQ (56)

11



and then, using (46):

/2:5FdQ+/ Saw : 0FdQ — [ (Vx - S) : 6FdQ
QO Q0

Qo

= [ fooudQ+ [ t° udQ. (57)
Qo 0Q0

Using (4), we have:

(Vx-8):0F = Vyx - (S:0F) — S G (58)
with
82(5UZ’
0Gijk = [Dsubl0 = IX, 0, (59)
Then using (7):
- (VX-S):éFdQ:/ S$16Gd0— [ V- (S:0F)dS.
Qo Qo Qo
- / §:66d0— [ SN :GFdr. (60)
Qo 00

By assuming the boundary condition s’ = SN = 0 on 02, we finally obtain
the weak form as:

Qo Qo 0o

Pt . GF + Sy OF +8 1 6GdQ = [ - 6udQ+ [t dudl. (6

4.2.2  Dielectric medium embedded in a surrounding domain

In this next case, we consider both the solid dielectric and the surrounding
domain, as described in section 3. We assume that the surrounding domain
(e.g. air) does not have mechanical properties and cannot be polarized, i.e.
¥ =0,P=0,8=0,but ¢ #0 and then X,y # 0, ¥x € Qy = V5 \Qo.

Letu € {V|V =u® on 0,, v € Hl(QO)}. Pre-multiplying (45) by a test func-
tion du € {v|v =0 on 0Q,,v € H'(Q)}, and integrating over V} yields:

VX'E'(SUC[Q— (VX(VXS))(SudQ

Qo Qo

12



[ Vi S - oudQ + /5 V- S -oudQ + [ - oudQ = 0. (62)
0

Qo Qo

Using property (3), we obtain:

[ Vx-(Zowydo- [ ®:oFaQ
0 Qo

+ vX-(SMW(su) dQ — | Syw : 6FdQ
Qo Q0

+ L VX . (2Mw5u) d$) — [ EMW - 0FdSQ2

QO Q0

— [ Vx-((Vx-8)ow)dQ2+ [ (Vx-S):6FdQ+ [ f°-oudQ =0,

Qo Qo Qo

where 0F = Vx(éu). Using (6), we obtain:

/ 2:5Fd9+/ Suw : SFdQ+ [ S : SFAQ
Qo Qo Qo

— (Vx -S): 0FdQ2
=/ £ . udQ + ” [Baw]IN + BN — (V- S)N]| - sudl (63)
with [[.]] = ()sotia — (-)air- Then, using (46), it yields:

/Qz:;(st(H/Q flezéFdQ—/ (Vy - S) : §FdQ
0 0 Qo

+ /ﬁ Sw : 0FdQ = [ Foud+ [ & dudr. (64)

Qo 0 r

Now using (49) and (50) and pre-multiplying by a test function du € {v|v = 0 on 9Q,,v € H'(Q0)}
and integrating over V{, we have:

Vx - Zyw - 0udQ+ [ V- Xyw - 6udQ = 0. (65)

Q() Qo

Using properties (3), (6) we obtain:

Qo Qo Qo

13



Then we obtain from (64):

/Q (S — (Vx - S)) : 6FdQ

= | f¢. 6udQ+ te-oudl + | [[Zpw]]N - dudl.
Qo NE 00

Using the results of the previous section, we finally obtain the weak form as:

/520(2;5F+355g)d9

= [ f.sud+ [ & Sudl + / [Eaw]N - dudl. (66)
00

Qo Qo

Note that in this case, the bulk term X,y : 6F in (66) is converted to external
Neumann boundary conditions.

5 Consistent linearization

The above problem being highly nonlinear due to both material and geo-
metrical nonlinearities and the presence of the Maxwell stress, we propose a
Newton-Raphson procedure to solve it numerically. In that framework, the
expression of the different tangent operators related to the above weak forms
need to be explicited. In what follows, we provide the different expressions for
these operators.

5.1 Dielectric problem

By the weak form (54), we set:

Ri(we)= | JeC‘1VX¢-VX(6¢)dQ+/Q JF Y — eo) fgx - Vx(66)dQ
[ PPV (60)dQ2 — [ p6pdQ — / DP56dS.
Qo Vo aVvOD

A Taylor expansion of the above residuals gives:

Ri(u" + Au, ¢* + Ag) ~

14



Ri(u”", ¢") + DagRi (0", ¢*) + Dau Ry (0", ¢"). (67)

where we recall that D, f(u) denotes the directional derivatives defined in
(8). The solution for the next increment in an iterative Newton-like procedure
consists in solving the linearized problems for A¢ and Au and to update the
field variables for the next iteration through ¢**! = ¢* + A¢, uf! = u* + Au.
In the following, for the sake of clarity, the superscript k is omitted, then,
unless specified, u = u®, ¢ = ¢*.

Results of this linearization procedure are provided below. First, we have triv-
ially:

DagRi(u,¢) = | JeCT'Vx(Ag) - Vx(3¢)dS. (68)

Vo

Then, let us compute the term Da, {JeC™'Vx¢ - Vxdp}. We have:

oJ oCt

Dau{JC;;'} = or AP + T F; AF. (69)
with

AFy = aﬁg’f. (70)
Using (10) and (13) we obtain:

Dau{FeC™'VxA¢ - Vxig}

= Vxi(60)e { O Fi' + (A) ] V5 } AFy (71)
which can be re-written as

Dau{FeC™'VxAd - Vxdp} = Vxdp- M, : AF, (72)
with

(M) = €I {C Fiit + (Adigis | Vo, (73)

where we have set (Vx¢); = V¢ and (Vxdp); = V,;0¢ for the sake of clarity.

Now let us develop the term:

D {(€ = o) fJF 'gx - Vo }

15



0

= f(e =€) {OF {JF N 5¢} AFy+ —— {JFijlngiM} Agk;lm} (74)

0
OGkim
where we have set g; = (gx);, with

G(Au) = AG (75)

and

(92 AUZ

Using (15), we can show that
ogx =
=1, 7
5 )
with
( )Zjlcl 51]5kl (78)

The above term can be re-written as

Dau{(e — o) fJF ' gx - Vb6 } = V36 - {Mz . AF + M : Ag} (79)
with

(Ma)y = Jfe =€) {FﬁlFlil + Aijkl} 9; (80)
and

=Jf(e—e)F T®1. (81)

In a similar fashion, we obtain

Dau { / F B0 Vi (60) dQ} / Vb6 - My : AFdQ (82)
with

(My)yy = (F)ijra P). (83)

We finally obtain the linearized form for the dielectric problem

16



V06 - JEC IV < (Ad)dD
Vo
+/Q Vxdé - (M + Ms — M) : AFdQ +/ﬂ V66 Ms | AGAD

= —Rl(uk, ngk) (84)

5.2 Mechanical problem

5.2.1 Duelectric medium without considering a surrounding domain

In this section, we first consider a the case where Dirichlet boundary conditions
are prescribed on the boundary 0y (e.g. direct applied voltage) and where
the surrounding domain is not modeled. In that case, we set:

Ry(u,¢) = | X :0F 4+ Xy : 0F + 8 1 6GdQ

Qo

— [ £ oudQ— | t°-dudl. (85)
QO 890

Similarly, the nonlinear problem (66) has to be linearized:
Ry(u” + Au, ¢* + Ag) ~

Ro(u®, %) + DauRa(u”, ¢%) + DayRo(u*, ¢). (86)
We can first express:

O v oS

oV <o Vx(A¢) +0G : c‘NWvX(A@dQ' (87)

DagRy = /Q SF
0

From (37) and (32) we obtain:

O
OV

= —Jf(e — o) Fyi 'O (88)

Now let us compute the second term in (87), using (38), we obtain after some
calculations:

8 —€p 2 1| A _ 1
m {2J|E| F]Z } o <Q2>i]’k o EJFBZ Eln Lom.- (89)

17



Next, we obtain:

0 Pl )
“od(e—eq) )T " Pt 90
oV { 2J(e—c) " } (e —co) OV, ™7 (90)
From (32) we obtain:
oF, )
OV ¢, = —J(e— o) Fy;". (91)
Then
0 PuPr . o
oV gy, { 2J (e — EO)FJZ } <Q2 >’ijk FJZ Frn P (92)
Furthermore,
0 - 0E; - oD,
gog. \BiDij = go-Di+ Eige - 93
over DI} = g, D B, (93)
From (33) we have:
D:
;vq; = —eJCL o)
k
Then we obtain
a ) — 2 —
Finally
ox
ang = (%6)
X

with @y = Q' + QF + QF. Now let us perform the linearization of R, with
respect to Au. First,

Dpu{Z : 6F} = 6F : C : AF (97)
with
)
el — ) 98
Cl =5 (98)

In addition, we have:

Dau (8 16(6w) = Glow) g‘g | AG, (99)
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where

0Au;
AG.., — i
gzjk 8%8xk (10())
and
oS
<ag>z‘jklmp - (T)ijklmp = 9010k 0mp- (101)
Now let us express
22 0 0 P FT
MW €0 2 T N
= = 1-J[EPF o )Py
OF 8F{ 5 |E| }+8F{2J(eeo)}
58 {EeD} =0 +QF +f. (102)
OF 3 3 3
Using
0E; .
OFy (F)ijkl b5, (103)
and
OP, L
0Fy, =—(e—€)J |:sz‘ F+ (F)ijkl] Vo, (104)

we obtain, after tedious calculations:
A A (P - -1 2 (7
( 3 )z‘jkl ) {Fﬁ Fe By — 2 (F)mpkl VopEnlyi + Ep, (]F)ijkl} (105)
and

(@f)ijkl = N(l) [f‘ZleElP%

€ — €

“2e— ) (FpiF + (), ) Ve P + PL(E) | (06)

Furthermore,

oD, { o.J

OF -t OP:
= —€6{ —C>'Vo. A . Y poy pot 20
8Fkl €0 8Fkl Cl] V¢J —|— J wlegzﬁj} —|— +

OFy 7 "9 oFy
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0 c F ) 0D,
OFy (EIDJ> - ( 3 )z]kl - (F) w VoDt EZ@TM
with
6[?1 . -1 -1 i B 2 -t ap]
OFw coJ (Cij By + (A)ijkl> Vo + (F)ijkl (PJ + POj) + OFy
Finally, we set
Suw A B
Buw _pa g 107
ag N (107)
with
R'=fFT210P (108)
and
R = —Jf(e—e)E@F T ®1. o

Finally, the linearized form associated with the mechanical problem is given
by:

/Q G(u) Qi - Vx(Ag)d2+ [ GF : Qy Vx(Ag)d2
+ 6F : C* . AFdQ + A G(du) : T : AGdS

+ [ oF; (Q3 AF+R: Ag) dQ = — Ry(u*, o) (110)

with R® = R4 + RP and Q3 = Q4 + QF + Q.

5.8 Dielectric embedded in a surrounding media

If a surrounding media is taken into account, we define the new residual:
ﬁ2(uﬁ+1aum¢ﬁ+1) :/Q E(Ufwrl? ¢Z+1) :OF + S(uiﬂaﬁbﬁﬂ) £ 0GdS)
0

fo oud— [t oudl — [ [[Syw(u,)]]N-6dr 111
[ Fsudg — [ sudr = [ [ ()] (111)
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The purpose of the above special form is to decouple the application of the
discontinous Maxwell term [[3 (1u,)]]N by prescribing it as forces assumed
known from the previous evolution increment n on 02y at evolution increment
n + 1. The staggered scheme is described in section 7. In that case, the new
linearized problem to be solved is defined as:

[, 6w : @il 0k, - V(D)0
OF : Cl(ut . ¢, ) : AFdQ + /Q G(6u) I T | AGD

Qo

- _P'«Q(U—ZJFU Uy, ¢ﬁ+1)‘

6 Discretization

In the following, we present the developments associated with the Finite Ele-
ment discretization of the above problem. For the sake of simplicity, we restrict
the developments to 2D, even though extension to 3D is straightforward. A
mesh of elements is constructed over the domain Vj, containing N, elements.
We first consider the fully-nonlinear problem with all couplings. The case

of small small strains is treated in Appendix 12. The electric potential, test
function and potential increment are approximated by:

¢ =Nyo*, ¢ =Nyi¢", A¢=N;A¢", (112)
with
Ny = | Ni(x); Na(x); .. s No(x) | 5 (113)

where N;(x) is the shape function of node I in one element, with n the number
nodes in one element e and I = 1,2, ..., n denotes the index of the node. Above,
¢° and A¢° are column vectors of size n. The gradient of the electric potential
increment and of the related test functions are expressed by:

Vx(A¢) = BsAg®, Vix(d¢) = Byog° (114)

where the matrix B is expressed by:

By = D((;); fo); ;D((ﬁ") (115)
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and

0 ON1(x)

I ox1

DY =| o | (116)
Oxo

Next, we introduce the related displacement discretization through:
u=N,u®, du=N,0u, Au=N,Au° (117)

with

N, = |N®; N@; Nm|, N = : (118)

u

Then, we define the vector [AF| associated with the tensor AF:

[ oAu, |
X,
OAuq

[AF] = | 7% || (119)

O0Aus
0X1

OAug
L 0X2

which can be related to nodal displacement increments Au® and test functions
in the element e through:

[AF] = B,Au®, [0F] = B,0u", (120)
where
B.,=|DW®; D?; .. ;DM (121)
with
[ an; (%) 1
%, U
ON[(X) 0
D) = | 9% . (122)
“ 0 ON;(x)
X1
ONp(x
L 0 5§(2 : i

Now we introduce the vector associated with the 2D nonsymmetric compo-
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nents of G:

[G(Au)]

8% Auy
0X?

82 Auq
0X10X2

9% Aus
o0x?

8% Auy
0X?

82 Aus
0X10X2

9% Aus

L 0Xx5 ]

(123)

Then the associated vectors [AG] and [0G] are related to displacement incre-
ments and test functions through:

[AG(u)] = B,Au’,

where

The residual R; is expressed by:

92N (X)
0X?
9% N1(X)
0X10X>

0
%N (x)
X2

0

0

Ry = [6¢°] 1,

with

= BlcJC !B, [¢]" + BL T f(e — 6)F 1B, [u]" dQ

Tp—1pPo T ~e
- [ BIFTP 4 NJja0 -

0

9%2N1(x)
0x3

0
9% N1 (X)
0X10X5

9% N1(x)
0X2

[0G(u)] = B,ou®

N} D5, dr.

oVop

23

(124)

(125)

(126)
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where the matrix I is such that g = I[G(u)] and is given by

. 100100
I= . (128)
001001

6.1 Case without considering a surrounding medium

In this case, the residual ry, which is such that
Ry = [6¢]" vy (129)
is expressed as:

ro= [ BLPYdQ+ [ BIS]AQ + / Bl [Suwld
Qo Qo Qo

— | NTfedn — NTtedr (130)
QQ 8QOF
with
Sa] =~ L BPF] - B[ ] + Z (131)
Mw 2 2J(e — €) ’
and
S o ] _
F Y1 (Xnw )1y
_ " 212 ~ (Emw)
[F1] = A El= , [Buw] = ” (132)
Fy Y1 (Xpw )
_FQ_QT_ | 222 | _(EMW)QQ_
8111
’5112 ElDl
S . E\D
S)= ", z=| T (133)
8122 E2D1
8212 _E2D2 ]
_8222_
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la® = a’a and
E = —F "By[¢'] (134)
P = —J(e - ) [fIB,u" + F "B, [¢] (135)
D = —JeC'By[¢p°] — Jf(e — ¢o)F 1B, u® + F~'Py,. (136)
Above,
N
0
[F]=| | +B,u" (137)
0
1

6.2 Case with considering a surrounding medium

In this case, the residual is expressed as

r,= [ BL[X]d2+ [ BTS]dQ
Q() Q0

Tge TZe TeS
o, N, £¢dQ . N, tedl’ o, N, fowdl, (138)
where £, = [[Zaw]]N. At the interface between the solid dielectric and the
surrounding media (e.g. air), external forces are exerted due to the term f3,,,
in Eq. (66). In this work, we propose the following simple discretization for the
term [y, NZ£3,dl. Considering an integration point on the interface 0€2, we
define the approximation of the jump in [X;w]]N as:

[Earw]] = Zarw (xT) = Spw (x7) (139)

where x* and x~ refer to integration points located in the center of two
elements adjescent to the segment containing the point x (see Fig. 2).

du _

22 =0

It is worth noting that if strain gradient is taken into account, the strong
equations in (45) or in (185) are fourth-order nonlinear partial differential

equations and require C'-continuity of the displacement field and associated
C! Finite Elements, while the electric potential field can be discretized with
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Air

Solid

Figure 2. Two adjacent elements across the interface between the solid and surround-
ing media for the approximation of the Maxwell stress jump across the interface.

(" elements. Even though mixed finite elements requiring only C° continuity
could be alternatively considered for handing strain gradient elasticity [34,4],
in the present work, we have used linear triangle elements to discretize the
potential field, while C* triangular Argyris elements with 21 degrees of freedom
per element [11] have been chosen for the displacements. Note that other
discretization choices are possible, as meshfree methods [1] or isogeometric
FEM [18], which also ensure the C*-continuity. The main objective of this
paper is to provide the different formulations and linearization procedures, in
which the discretization is a numerical ingredient that can be changed. We
chose on purpose the simplest C! discretization based on triangular elements
for the sake of convenience, but we are aware that such discretization might
be cumbersome in 3D. Introducing the mentioned discretization techniques in
the present framework is left to further studies.

6.3 Linearized system

Introducing approximations (112), (114) and (124) in weak forms (84) and
(110) we obtain the following system of linear equations associated with the
linearized problem in the Newton algorithm:

K Koo Aﬁb . ry (140)
K21 K22 All Iy

where the different matrices are expressed in the following.

Ky — /V JeBTC'B,dQ, (141)
K = /Q B (M, + M, — M,)B, dQ + /Q 0 B/ M;B!d0, (142)
Ko\ = /Q BIQuBAQ + /Q BLQuByd0 (143)

(144)

N ~

Koy — / BB, d0+ / BITB,d0+ / B, (Q:B. + RB,) d.
Qo Q Qo
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In the above, M;, My, M3, My, Q1, Qa, C%, T, Q3 and R are the matrix
forms corresponding to the operators My, My, My, My, Qi, Qy, C¥, T, Q4
and R, respectively.

Solving the linear system (140), the nodal displacements and electric potentials
are udpdated through

u" =u" + Au, (145)
P = ¢* + Ao, (146)

until a convergence criterion is reached.

7 A staggered algorithm for simulation of soft solids subjected to
Maxwell stress in a surrounding medium

In this section, we describe a staggered algorithm to solve the full problem
of soft dielectrics in surrounding media, subjected to Maxwell stress. Due to
severe nonlinearities, solving the problem (140) in a monolithical fashion may
lead to convergence issues. To alleviate this problem, the following algorithm
can be employed. To avoid spurious distortions of the mesh related to the
surrounding medium when the domain ) is deformed, a displacement field
in the surrounding domain is artificially defined, and fictious elastic proper-
ties are assigned to the surrounding domain defined in Q. Let ¢"(x), u”(x)
v"(x) denote the potential field in Vj, the displacement field in €y and the
displacement field in Qq at time step t". The algorithm runs as follows:

(1) For each time step t"™' (increment of external electric or mechanical
loading)

(a) Given u™, solve the dielectric problem (54) Vx € V;, to find ¢"™!(x).

(b) Compute the surface Maxwell forces 5, (¢" 1, u”) = [Zaw (6", u™)]|N,
using (38), (39) and the discretization procedure described in section
6.

(c) Solve the mechanical problem (66) Vx € €, to find u"™!(x).

(d) Prescribe Dirichlet boundary conditions obtained from (c) on 9 in
Qo using u™*!(x) and solve the fictious elastic problem in Qg to find
vl (X)

(e) Update

o ¢"(x) = ¢""(x)
o u"t(x) = u"(x)
o vitli(x)=v

(2) Go to (1)
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Figure 3. Bilayer material with uniform charge p subjected to voltage.

Note that this algorithm uses the Newton method described in the previous
sections, but only avoids the linearization of the surface term by prescribing
it as a given force term known from the previous iteration.

8 Applications: numerical examples
8.1  Effective piezoelectricity induced by coupling electrets and Mazwell stress

The objective of this first example is to validate the present framework in
the context of Maxwell stress at small strains. A unidimensional structure
is composed of two layers with respective Young’s modulus F; and E5 and
permittivity coefficients €; and €,, as depicted in Figure 3.

A charge p®(x) is uniformly distributed over the structure. The (x = 0)-side
is subjected to a potential ¢ = 0 and clamped, while the (x = H)-side is
subjected to a potential ¢ = +V and is free of mechanical loading. In 1D, we
have:

e(a) = =7, D(x):—ed‘zf), p(x):—(e—eo)d@f) (147)

where ¢, e, D, and p denote electric potential, electric field, electric displace-
ment and polarization, respectively. Then the equations of the dielectric prob-
lem degenerate to:

d D(x) .
dx P (148)
or
d* ¢(x) p°
dx € (149)

[¢(a)]] = 0, [[D(a)]] = 0. (150)
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Then the solution ¢(z) in each domain is given in the form:

e (151)
BE 4+ Agr+As, a<az<H

2€1

o(y) =

{pe’”Q—i—Alx, 0<z<a

where A;, A and Az are solution of:

0 H 1| |4 v+ g
a —al||Ay| = —TP(L_L) : (152)
€y €1 0 Ag O

The first line of the system is associated with the boundary condition ¢(H) =
V', the second one with the continuity of potential across the interface (z = a),
and the last one with the continuity of electric displacement at the interface.

Then we note that the mechanical problem can be solved in an uncoupled
manner, given the solution ¢(x). In 1D, the equation of the mechanical balance
problem is given by:

d(0°(x) + Guw ()

dx - (153)
with
e Edng)’ (154)
Taw () = —%0 (dflf)y +e(a)d(z) — & —260 (dgcbi;m)y
: % (%)2. (155)

Then Eq. (153) can be rewritten as:

du(w) __ o) dofa)

E = 1
dx dz? dx (156)
with continuity equations at the interface:
[u(@)]] =0, [[0°(a) + duw(a)]] = 0 (157)
and boundary conditions
u(0) =0, o*(H)+oyw(H)=0. (158)
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Then solving the displacement equation leads to

(BQ$+A1T’”2—p%3>, 0<z<a

uy(y) = ;; b2/ (159)
2 (Bs+ Bz +42 —£2) o<z <H,
where B;, By and Bs are solutions of:
p°0 0 B F
1 -1 0 By | = | Fy |- (160)
e o B RN R

In Eq. (160), the first equation corresponds to the free load condition at (z =
H), the second one to the continuity of total stress across the interface, and
the last one to the continuity of displacements across the interface, and

Fy=p° —AH | —— A 161

! p < 261 2 ) 2 €1 2 ’ ( )
ea2 1 1 ca 2

=" <—>+a(A1—A2)+62 <A1—” ) , (162)
2 €1 €9 2p° €9
1 [(Aa®  ptad 1 [(pa®  Aya®

F;=— — — — . 163

T B, ( > 6w ) TE 6 T 2 (163)

The effective piezoelectric coefficient is computed as

Au,(H)
ff = 2 164
d 5V (164)

Comparisons between FEM simulation and the exact solution are presented
in Figure 4 for different E,/FE) ratio, with p¢ = 0.001 C/m?3, E; = 1 MPa,
€1 = 2¢ey, € = 20¢p, H = 1 mm, a = H/2. The results show a very good
agreement between the theory and the numerical soltuon, which validates the
present numerical framework in this case.

8.2 Flexoelectricity

In this second example, flexoelectricity is considered, i.e. the material param-
eters f and g in Eq. (24) are no more neglected. We neglect Maxwell stress
and the small strain assumption is adopted. A uniform bar is submitted to
the conditions described in Fig. 5.
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102 = Numerical -

0 0.1 0.2 0.3 0.4 0.5
E2/E1

Figure 4. Effective piezoelectric coefficient d¢f as a function of the ratio Fsy /E1.

u=70 uU="1u
ou __

oc =V ou =
Q' > x
-H/2 0 H/2
¢=-V ¢=+V

Figure 5. Layer with flexoelectric properties subjected to voltage.

The material parameters are chosen as follows: €y = 8.854 C/m?, ¢ = 17.708
C/m?, E =1 MPa, v = 0, the elastic coefficient g associated to strain gradient
rigidity in (24) varies between 107 and 1, the flexoelectric coefficient f in (24)
varies between 0 and 107, p° =0 C/m?, p* =0 V/m, 7w = 0.1 mm, V = 1073
V, H =1 mm. The analytical solution of this problem is given by:

—2kek + 2ke 3 + et (2k — L — 22) — et (2k + L + 21)

R o [F - - H [ F 4] "
¢(z) = “C . o e (166)
eH (2k — 2ke’ + H + He' )
with
G,=—€F {—e% tek et —eLjﬁI}(e—eo)fH, (167)
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Gy = —2ze (2k [e¥ —1] — H [eT +1]). (168)
In the above, k = \/A/iE and

A=g—(c—a)f’ [1 - “)] (169)

€

To our knowledge, this solution is provided in this paper for the first time.

To solve numerically the problem, we model the one-dimensional problem in
a two-dimensional domain by prescribing appropriate boundary conditions
to render the problem 1D. A square domain has been discretized into 15 x
15 nodes, corresponding to 392 regular triangular Argyris [11] elements to
guarantee the C'—continuity.

In Figs. 6-9 the displacement solution as well as the potential distribution
along z is provided. First, the elasticity gradient coefficient g has been varied
for a fixed value of the flexoelectric coefficient f = 0.01. Second, f has been
varied for a fixed value of ¢ = 1. In each case, the exact solution has been
compared with the numerical solution. We can note here again a very good
agreement between the analytical and numerical solutions.

8.8 Finite strains: soft cylindrical body in an electrical field

In this example, we consider a soft cylindrical body subjected to an electric
field in a finite square box, as described in Fig. 8. Related experimental and
numerical works can be found e.g. in [37,30,22]. The geometry and boundary
conditions of the problem are depicted in Fig. 8 (a), and the corresponding
mesh is depicted in Fig. 8 (b). For the sake of symmetry, only a half of the
problem is modeled and meshed. The body is surrounded by air in the square
domain. A voltage is applied on the upper (y = —H) and lower (y = H) ends
of the square domain. For the sake of simplicity, plane strain are assumed.
The material properties of the soft body are: £ = 0.01 MPa, v = 0.45. The
staggered algorithm described in section 7 has been used.

Due to the Maxwell stress, the body is stretched when the voltage is increased,
as depicted in Fig. 9. It is worth noting that due to the surface term [[3]]N
in (66), the initial circular section does not remain an ellipsoid but takes a
more complex shape.

The evolution of the stretch A; in the y—direction as a function of the applied
electric current |Eg|?, Eqg = 2Ve, is depicted in Fig. 10 for several values of
the soft body’s relative permittivity € = €/¢.
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(b)

Figure 6. Solution field along the layer thickness for a fixed flexoelectric coefficient
f =0.01 and a varying strain gradient coefficient g; (a) Displacement; (b) electric
potential.

Due to severe nonlinearities and probably the occurrence of instabilities, the
present formulation was not able to simulate larger strains than the ones in-
dicated in Fig. 10. Implementation of more robust algorithms for taking into
account these nonlinearities and possible instabilities are reported to future
studies, e.g. by implementing an arc-length control algorithm, or by introduc-
ing inertia effects, as proposed by Park et al. in [29].

9 Conclusion

In the present work, a finite element framework has been introduced to solve
the response of nonlinear, flexoelectric soft dielectric materials at small and
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Figure 7. Solution field along the layer thickness for a fixed strain gradient coefficient
g = 1 and a varying flexoelectric coefficient ; (a) Displacement; (b) electric potential.

finite strains, with effects of Mawxell stress. Weak forms and finite element
discretizations able to handle strain gradient in the context of flexoelectricity
have been introduced. Numerical algorithms for the treatment of a soft dielec-
tric in a surrounding medium have been proposed, more specifically to handle
the effects of discontinuities of the Maxwell stress at the interfaces. Finally,
several benchmarks have been presented to assess the present formulations and
numerical schemes, through applications of special cases of interest: induced
piezoelectricity in non-piezoelectric materials due to coupling of Maxwell stress
and electrets, flexoelectricity, or stretching of electroactive soft dielectrics and
polymers subjected to an external electric field.
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11.1 Flexoelectric elastomers at finite strains

If Maxwell stress is neglected but the material is flexoelectric, we obtain the
following equations for finite strains flexoelectricity (we assume that we do

not consider the surrounding medium here):

11.1.1 Strong form

Vx- (D) =4 inVj
where D is given by (33), with boundary conditions
¢ =¢" on dVp,,
N-D = D! on dVp.
Vx -2 —Vx-(Vx-8)+f =0 inQ,
with boundary conditions
u=1u’ on 00,
YN - (Vx-S)N —t°=0 on 0Qp,

and
SN®N =0 on 0.

(170)

(171)
(172)
(173)

(174)
(175)

(176)
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11.1.2 Weak form

The weak form is straightforwardly expressed by

(54) and
/ (2:5F+355g)d9— Fe . sudQ) — tedr
Qo

Qo Qor

= —Ry(u,¢) = 0. (177)

11.1.3 Consistent linearization

The linearized problem of finite strain flexoelectricity is given by:

(84) and
/Q G(u) Qi Vx(A0)d2+ [ OF : C*: AFdQ
+ G(ou) i T : AGdQY = —Ry(u*, o). (178)

11.2  Dielectric elastomers without flexoelectricity and Mazwell stress

The case of taking into account Maxwell stress in a non-flexoelectric material
is simply obtained by taking f = 0 and g = 0 in the formulations of sections
3 and 4.

11.3  Assumption of small strains

In this section, we consider the case where small perturbations are assumed.
In this case, J~1,C~1, F ~ 1.

The strong form is given as follows:
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For the dielectric problem:

Vid)=p°* inV (179)
with e = —V¢,

d=—eVo — (¢ — ) fg +p’, (180)

p=—(c—c)[fg+ Vo] (181)
where p? is the extrinsic polarization and

9i = VEikk (182)
with boundary conditions

¢ =¢" ondV, (183)

n-d=d ondVp. (184)
For the mechanical problem:

V.o-V-(V-8N+V-oyw+f=0 inQ (185)
with boundary conditions

u=u’ on 9N, (186)

on— (V-8)n+[[eyw]n—t°=0 on 0Qp (187)
and

S:nn=0 ondf (188)
with )

- €0 | 2 p

=——= 1-— d. 189
O MW 2|e\ 2(6—60)+e® ( )
With definition (24), we obtain, after algebraic computations:
N vl g /
(8 = Newr 2 (Ve + 0iwNVejp) + 5 (Pidj + daps) . (190)
The weak form associated with the dielectric problem is given by
/vev¢-V(5¢)dQ+/Q(e— co)fg - V(36)dQ
- /V p’ - V(36)dQ — /Vp%d(z — Ry(u, ¢") (191)

The weak form associated with the mechanical problem is given as follows.

Let us define (G')ijr = 52%—. As (8")ijx 18 symmetric with respect to i and j

O0x;0xy,
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indices, and as Ve, = Veji, we have:

1
SiwGijn = z/jk:§ ( ik gz{jk) = Sk Veiji. (192)

We finally obtain the weak form for the mechanical problem:

[ o e(owdn+8 : Ve(u)d + [ Fuw : e(bu)de
Q Q

—/ £ oudQ — [ t°-dudl =0, (193)
Q N

where Ve(du)j, = aﬁfg;k

tions, the problem remains nonlinear due to the Maxwell stress term. Then,
a linearization of the problem around a know solution (¢*, u*) is performed
through:

. We notice that even considering small perturba-

R (0" + Au, ¢* + Ag) ~
R{(u",¢") + DauR} (u*, ¢*) + DAqull(uk, or). (194)
Ry(u" + Au, ¢* + Ag) ~

Ry(u", ¢") + DauRy(u®, ¢%) + DagRy(u*, 6"). (195)

In the following, we develop the different terms associated with the above
linearization process. We can express:

Dag{(e =€) fg- V(5¢)} = V(3¢) - M} Ve(Au) (196)
with
(M>1jkl - JF(EQ_EO) (G350k1 + 0ikdju) - (197)

Then, the linearized form associated with the dielectric problem is obtained
as:

/VEV(M) Y (66)dY + /VV(5¢) NI Ve(Au)dQ = — R, (uf, ¢"). (198)

To derive the linearized equations associated with the mechanical problem, we
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note that:

av{i;l _ _f(E ; €o) (60,1 + 0bs1) = — (M)%lkj (199)
We have

8gé4;v — Q4+ QF + 0f (200)
with

(Q?)Uk = —605z'j€k7 (201)

(9),,, = —(Gud; + ceidn), (202)

(QAgc)l]k = 5z'jpk (203)
We set:

8gé4€w = RA+RE (204)
with

(8, =~ g, + 0 (205)
and

(RB)ijklp - 1205” 9w + Ok (206)
Finally

Dau {3’ : vs((su)} — Ve(su) i T Ve(Au). (207)
with

T = gvfs’ (208)

(1) iy = % (Ot [0516mp + GjmOip] + Ojk [6it0mp + Gimip]) - (209)

After other similar computations (see section 5), we finally obtain the lin-
earized form associated with the mechanical problem in the case of small
strains assumption:
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_/QVE((SU) : MT-V(A¢)CZQ+/Q(5€ 1 Q3 V(Ag)dQ
+/Qs(Au) .C: s(éu)dQ—l—/ﬂVe(éu) LT Ve(Au)dQ

+/Qe(5u) 'R} Ve(Au)dQ = —Ry(u*, "),
with Q3 = Q4 + QF, R = RA + R5.

12 Appendix: discretization for small strains

In this appendix, we consider case of small strains assumption, taking into
account flexoelectricity and Maxwell stress. The electric potential increment
and associated test function are expressed in the same manner than in the
previous section.

Next, we classically introduce the vector [Ag] associated with the tensor Ae:

611(Au) %Aimull
[Ae] = | epy(Au) | = | L (210)
2512(Au) BantlLQ + 3(%;;1

which can be related to nodal displacement increments Au® and test functions
in the element e through:

[Ag] = B,Au’, [de] = B,du° (211)
where
B, = ﬁil); ﬁf); ;ﬁ;n) (212)
with
ON7(X)
“ox, U
—(I
D" = 1o M) | (213)
ON(X) ONp(x)
0Xo 0X1

Now we introduce the vector associated with the 2D nonsymmetric compo-
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nents of Ve:

Ve %2;?

Veno || riihs
Vet - || - {jggz +%u

Ve || Gt e

Ve || st

Vea | _6)32%2 |

(214)

Then the associated vectors [Ve(Au)] and [Ve(du)] are related to displace-

ment increments and test functions through:
[Ve(Au)] = B,Au®, [Ve(du)] = B,ou®,

where

62 N[ (X) 0
81’%

We then introduce the vector containing the components of S’

92Ny (x)
Ox10x2

9%N;(x)

01102

9%N;1(x)
81‘%

0

0

!/
111

/
112

/
121

/
122

/
221

/
222

0
92N (x)
8:1:%
9%N;1(x)
8x18x2
9%Ny(x)
leaxg
92N (%)
axg
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(216)

(217)

(218)



From (190), [S'] is related to [Ve(u)] through:

(81 = T'[Ve(u)] + Up

where

T =g

1
0
0
1/2
0
0

00 1/200 |
00 0 00
01/40 01/2
00 1/400
00 0 00
01/20 01

1 0
0 0
0 1/2
1/2 0
0 0
0 1

(219)

(220)

Introducing the different above discretization expressions in (198) and (11.3),

we finally obtain the linear system of equations in the form:

K, K A r
~1]. ~12 ¢ _ 1 (221>
K21 KQQ Au I'/2
where
K, = / BTB,,d, 222
n=| eB;By (222)
K = / B f(c — €)1B,d (223)
14

Before providing the expressions for I~(21 and I~(22, we express the residuals r)
and r}, in what follows.

The residual R} is such that:

Ry = [6¢] 1}

with

r;:/VeB;fB¢ [¢6]’“d9+/vf(e—eo)13§giﬁu ]k do

~ [ Biptae— [ NiDLr - [ Njpdo.
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with

I{100 1/200]'

001/20 01
The residual R} is such that:
R, = [u]'r),
with

r, = / B! CB, [u]"dQ + / B7 [S]dO + / B [6 1w]d9
Q Q Q

- / NT£dQ — [ NTtedr,
Q oNp
with

~k

- 1 2 1
[O'MW]:—/QQ{GO‘ek‘ +m P

2 ~
}1+Z,

P* = —(c — o) [/TB[uT* + By[o].

Above, the vector Z is given by:

NN

I
N
[N}

where

d" = —eBy[¢]" — f(e — o)IB,[u’] + p°
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(226)

(227)

(228)

(229)

(230)

(231)

(232)

(233)



and

1=|1]. (234)

Kgl = /Q —EZ]. (eoa + (6 - €0>b) + E(l)dQ (235)
with

a=[¢] BIB, (236)

b= [¢"]" BL (fIB, [u + B, [¢") (237)
and

bl (€[¢]"b} — dy)
=(1) _ b2 (e[qﬂkbi _ d2) , (238)
L [b} (e[g1b2 — do) + b2 (e[¢)b} — )]

where bfﬁ is the ¢ — th row of the matrix B, and d; is the ¢ — th component of
d, and

Ky — /Q B CB,d0 + /Q BIT'B, — f(c — ¢)BTUIB,dQ (239)
BT T _ =2
— [ B, (1c" = =) d0 240
| Bu (1c" —=9) (240)
with
¢ =f(e—e)BIT (fIB, [u)* + B, [¢") (241)
and

b} [¢]*'B,
=% = | b2[¢°)2B, : (242)

where i/ is the j — th line of L.

45



References

[1] A. Abdollahi, P.C Christian, M.D. Daniel, M. Arroyo, and A.I. Irene.
Computational evaluation of the flexoelectric effect in dielectric solids. J. Appl.
Phys., 116(9):093502, 2014.

[2] J. Aboudi. Micro-electromechanics of soft dielectric matrix composites. Int. J.
Solids Struct., 64-65:30-41, 2015.

[3] R. Ahluwalia, A. K. Tagantsev, P. Yudin, N. Setter, N. Ng, and D. J. Srolovitz.
Influence of flexoelectric coupling on domain patterns in ferroelectrics. Phys.
Rev. B, 89:174105, 2014.

[4] E. Amanatidou and N. Aravas. Mixed finite element formulations of strain
gradient elasticity problems. Comput. Meth. Appl. Mech. Eng., 191:1723-1751,
2002.

5] J.Y. Fu anf W. Zhu, N. Li, and L.E. Cross. Experimental studies of the
converse flexoelectric effect induced by inhomogeneous electric field in a barium
strontium titanate composition. J. Appl. Phys., 100(2):024112, 2006.

[6] F. Carpi, S. Bauer, and D. De Rossi. Stretching dielectric elastomers
performance. Science, 330:1759-1761, 2010.

[71 Y. Chen, M. Pani, F. Taddei, and C. Mazza. Large-scale finite element
analysis of human cancellous bone tissue micro computer tomography data:
a convergence study. J Biomech. Eng.-T. ASME, 136(10):101013, 2014.

[8] B. Chu and D.R. Salem. Flexoelectricity in several thermoplastic and
thermosetting polymers. Appl. Phys. Lett., 101:103905, 2012.

[9] L.E. Cross. Flexoelectric effects: Charge separation in insulating solids
subjected to elastic strain gradients. J. Mater. Sci., 41(1):53-63, 2006.

[10] Q.D. Deng, L.P. Liu, and P. Sharma. Flexoelectricity in soft materials and
biological membranes. J. Mech. Phys. Solids, 62:209-227, 2014.

[11] V. Dominguez and F.J. Saya. A simple Matlab implementation of the Argyris
element. ACM T. Math. Software, 35(2):16, 2008.

[12] A. Dorfmann and R.W. Ogden. Nonlinear electroelasticity. Acta Mech.,
174:167-183, 2005.

[13] G. Gallone, F. Galantini, and F. Carpi. Perspective for new dielectric elastomers
with improved electromechanical actuation performance: composites versus
blends. Polym. Int., 59:400-406, 2010.

[14] G.A. Holzapfel. Nonlinear solid mechanics. Wiley, 2000.

[15] S. Y. Hu and L. Q. Chen. A phase-field model for evolving microstructures
with strong elastic inhomogeneity. Acta Mater., 49:1879, 2001.

46



[16] J. Huang, T. Lu anf J. Zhu, D.R. Clarke, and Z. Suo. Tuni-directional
actuation in dielectric elastomers achieved by fiber stiffening. Appl. Phys. Lett.,
100:211901, 2012.

[17] T.A. Gisby I.A. Anderson, B.M. O’Brien T.G. McKay, and E.P. Calius. Multi-
functional dielectric elastomer artificial muscles for soft and smart machines. J.
Appl. Phys., 112:041101, 2012.

[18] Y. Bazilevs J. Cotterel, T.J.R. Hughes. Isogeometric analysis: Toward
integration of CAD and FEA. Wiley, 2009.

[19] J.P. Jaric, D. Kuzmanovic, and Z.Golubovic. On tensors of elasticity. Theor.
Appl. Mech., 35:119-136, 2008.

[20] S.M. Kogan. Piezoelectric effect during inhomogeneous deformation and
acoustic scattering of carriers in crystals. Sov. Phys. Solid Stat, 5(10), 1964.

[21] S. Krichen and P. Sharma. Flexoelectricity: A perspective on an unusual
electromechanical coupling. J. Appl. Mech., 83:030801-1, 2016.

[22] W. Li and C.M. Landis. Deformation and instabilities in dielectric elastomer
composites. Smart Mater. Struct., 21:094006, 2012.

[23] L.P. Liu. An energy formulation of continuum magneto-electro-elasticity with
applications. J. Mech. Phys. Solids, 63:451-480, 2014.

[24] O. Lopez-Pamies. Elastic dielectric composites: Theory and application to
particle-filled ideal dielectrics. J. Mech. Phys. Solids, 64:61-82, 2014.

[25] W. Ma and L.E. Cross. Flexoelectric polarization of barium strontium titanate
in the paraelectric state. Appl. Phys. Lett., 81(18):3440-3442, 2002.

[26] W. Ma and L.E. Cross. Strain-gradient induced electric polarization in lead
zirconate titanate ceramics. Appl. Phys. Lett., 82(19):3923-3925, 2003.

[27] T.G. McKay, B.M. O’Brien, E.P. Calius, and I.A. Anderson. Soft generators
using dielectric elastomers. Appl. Phys. Lett., 98:142903, 2011.

[28] R.M. McMeeking and C.M. Landis. Electroelastic forces and stored energy for
deformable dielectric materials. J. Appl. Mech, 72:581-590, 2005.

[29] H.S. Park, Z. Suo anf J. Zhuo, and P.A. Klein. A dynamic finite element method
for inhomogeneous deformation and electromechanical instability of dielectric
elastomer transducers. Int. J. Solids Struct., 49:2187-2194, 2012.

[30] H.S. Park and T.D. Nguyen. Viscoelastic effects on electromechanical
instabilities in dielectric elastomers. Soft matter, 9(4):1031-1042, 2013.

[31] R. Pelrine, R. Kornbluh, Q.B. Pei, and J. Joseph. High-speed electrically
actuated elastomers with strain greater than 100. Science, 287:836-839, 2000.

[32] A.W. Richards and G.M. Constitutive modeling of electrostrictive polymers
using hyperelasticity-based approach. J. Appl. Mech., 77:014502, 2010.

47



[33] N.D. Sharma, R. Maraganti, and P. Sharma. On the possibility of piezoelectric
nanocomposites without using piezoelectric materials. J. Mech. Phys. Solids,
55:2328-2350, 2007.

[34] J.Y. Shu, W.E. King, and N.A. Fleck. Finite elements form materials with
strain gradient effects. Int. J. Num. Meth. Eng., 44:373-391, 1999.

[35] Z. Suo, X. Zhao, and W.H. Greene. A nonlinear theory of deformable dielectrics.
J. Mech. Phys. Solids, 56:467-486, 2008.

[36] K.Y. Volokh. On electromechanical coupling in elastomers. J. Appl. Mech,
79:044507, 2012.

[37] Q. W. Wang, Z.G. Suo, and X.H. Zhao. Bursting drops in solid dielecrtics
caused by high voltages. Nature comm., 3:1157, 2012.

[38] Y.U. Wang, Y.M.M. Jin, and A.G. Khachaturyan. Phase field microelasticity
theory and modeling of elastically and structurally inhomogeneous solid. J.
Appl. Phys., 92:1351, 2002.

[39] L. Yang and K. Dayal. A completely iterative method for the infinite domain
electrostatic problem with nonlinear dielectric media. J. Comput. Phys.,
230:7821-7829, 2011.

[40] P.V. Yudin and A.K. Tagantsev. Fundamentals of flexoelextricity in solids.
Nanotechnology, 24:432001, 2013.

[41] X. Zhao, W. Hong, and Z. Suo. Electromechanical hysteresis and coexistent
states in dielectric elastomers. Phys. Rev. B, 76:134113, 2007.

[42] X. Zhao and Z. Suo. Electrostriction in elastic dielectrics undergoing large
deformation. J. Appl. Phys., 104:123530, 2008.

[43] X. Zhao and Z. Suo. Theory of dielectric elastomers capable of giant deformation
of actuation. Phys. Rev. Lett, 104:178302, 2010.

[44] G.P. Zubko, A.R. Catalan, P. Buckley, L. Welche, and J.F. Scott. Strain-
gradient induced polarization in SrTiO3 single crystals. Phys. Rev. Lett.,
99(16):167601, 2007.

48



