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LOCAL DENSITY APPROXIMATION FOR THE ALMOST-BOSONIC ANYON GAS

We study the minimizers of an energy functional with a self-consistent magnetic field, which describes a quantum gas of almost-bosonic anyons in the average-field approximation. For the homogeneous gas we prove the existence of the thermodynamic limit of the energy at fixed effective statistics parameter, and the independence of such a limit from the shape of the domain. This result is then used in a local density approximation to derive an effective Thomas-Fermi-like model for the trapped anyon gas in the limit of a large effective statistics parameter (i.e., "less-bosonic" anyons).

Introduction

A convenient description of 2D particles with exotic quantum statistics (different from Bose-Einstein and Fermi-Dirac) is via effective magnetic interactions. We are interested in a mean-field model for such particles, known as anyons. Indeed, in a certain scaling limit ("almost-bosonic anyons", see [START_REF] Lundholm | The average field approximation for almost bosonic extended anyons[END_REF]), a suitable magnetic non-linear Schrödinger theory becomes appropriate. The corresponding energy functional is given by

E af β [u] := R 2 -i∇ + βA[|u| 2 ] u 2 + V |u| 2 , (1.1) 
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acting on functions u ∈ H 1 (R 2 ). Here V : R 2 → R + is a trapping potential confining the particles, and the vector potential A[|u| 2 ] : R 2 → R 2 is defined through

A[̺] := ∇ ⊥ w 0 * ̺, w 0 (x) := log |x|, (1.2) 
for ̺ = |u| 2 ∈ L 1 (R 2 ) and x ⊥ = (x, y) ⊥ := (-y, x). Thus, the self-consistent magnetic field, given by curl A[̺](x) = ∆w 0 * ̺(x) = 2π̺(x), is proportional to the particles' density. The parameter β ∈ R then regulates the strength of the magnetic self-interactions and, for reasons explained below, we will call it the scaled statistics parameter. Note that by symmetry of (1.1) under complex conjugation u → u we may and shall assume β 0 in the following. We will study the ground-state problem for (1.1), namely the minimization under the mass constraint

R 2 |u| 2 = 1.
(1.

3)

The functional E af bears some similarity with other mean-field models such as the Gross-Pitaevskii energy functional

E GP [u] := R 2 |-i∇u + Au| 2 + V |u| 2 + g|u| 4 , (1.4) 
with fixed vector potential A. The above describes a gas of interacting bosons in a certain mean-field regime [LSSY05, LS06, NRS16, Rou14, Rou16]: the quartic term originates from short-range pair interactions. The crucial difference between (1.1) and (1.4) is that, while the interactions of E GP are scalar (with interaction strength g ∈ R), those of E af are purely magnetic and therefore involve mainly the phase of the function u. There is an extensive literature dealing with (1.4) (see [Aft07, CPRY12, CRY11, CR13] for references) and with the related Ginzburg-Landau model of superconductivity [START_REF] Béthuel | Progress in Nonlinear Differential Equations and their Applications 13[END_REF][START_REF] Fournais | Spectral methods in surface superconductivity[END_REF][START_REF] Sandier | Vortices in the magnetic Ginzburg-Landau model[END_REF][START_REF] Sigal | Magnetic Vortices, Abrikosov Lattices and Automorphic Functions[END_REF]. That the interactions are via the magnetic field in (1.1) poses however quite a few new difficulties in the asymptotic analysis of minimizers we initiate here. Note indeed (see the variational equation in Lemma A.2) that the non-linearity consists in a quintic non-local semi-linear term and a cubic quasi-linear term (also non-local), both being critical when compared to the usual Laplacian.

The functional E af arises in a mean-field description 1 of a gas of particles whose manybody quantum wave function can change under particle exchange by a phase factor e iαπ (with α ∈ R known as the statistics parameter). This is a generalization of the usual types of particles: bosons have α = 0 (symmetric wave functions) and their mean-field description is via models of the form (1.4), fermions have α = 1 (anti-symmetric wave functions) and appropriate models for them are Hartree-Fock functionals (see [START_REF] Bach | Error bound for the Hartree-Fock energy of atoms and molecules[END_REF][START_REF] Lieb | The Hartree-Fock theory for Coulomb systems[END_REF][START_REF] Lions | Solutions of Hartree-Fock equations for Coulomb systems[END_REF][START_REF]Hartree-Fock and related equations, Nonlinear partial differential equations and their applications[END_REF][START_REF] Fournais | The semi-classical limit of large fermionic systems[END_REF] and references therein). For general α one speaks of anyons [START_REF] Khare | Fractional Statistics and Quantum Theory[END_REF][START_REF] Myrheim | Topological aspects of low dimensional systems[END_REF][START_REF] Ouvry | Anyons and lowest Landau level anyons[END_REF][START_REF] Wilczek | Fractional Statistics and Anyon Superconductivity[END_REF], which are believed to emerge as quasi-particle excitations of certain condensedmatter systems [START_REF] Arovas | Fractional statistics and the quantum Hall effect[END_REF][START_REF] Haldane | Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid states[END_REF][START_REF] Halperin | Statistics of quasiparticles and the hierarchy of fractional quantized Hall states[END_REF][START_REF] Zhang | Fractional angular momentum in cold atom systems[END_REF][START_REF] Cooper | Signatures of Fractional Exclusion Statistics in the Spectroscopy of Quantum Hall Droplets[END_REF][START_REF]Emergence of fractional statistics for tracer particles in a Laughlin liquid[END_REF].

Anyons can be modeled as bosons (respectively, fermions) but with a many-body magnetic interaction of coupling strength α (respectively, α -1). It was shown in [START_REF] Lundholm | The average field approximation for almost bosonic extended anyons[END_REF] that the ground-state energy per particle of such a system is correctly described by the minimum of (1.1) (and the ground states by the corresponding minimizers) in a limit where, as the number of particles N → ∞, one takes α = β/N → 0. We refer to this limit as that of almost-bosonic anyons, with β determining how far we are from usual bosons.

In the following we treat the anyon gas as fully described by a one-body wave function u ∈ H 1 (R2 ) minimizing (1.1) under the mass constraint (1.3). We shall consider asymptotic regimes for this minimization problem. The limit β → 0 is trivial and leads to a linear theory for non-interacting bosons (see [START_REF] Lundholm | The average field approximation for almost bosonic extended anyons[END_REF] Appendix A]). The limit β → ∞ is more interesting and more physically relevant: In a physical situation the statistics parameter α is fixed and finite and N large, so that taking β → ∞ is the relevant regime, at least if one is allowed to exchange the two limits.

In an approximation that has been used frequently in the physics literature [CS92, IL92, LBM92, Tru92a, Tru92b, WZ90, Wes93], the ground-state energy per particle of the Nparticle anyon gas with statistics parameter α is given by

E 0 (N ) N ≈ R 2 2π|α|N ̺ 2 + V ̺ . (1.5)
This relies on assuming that each particle sees the others by their approximately constant average magnetic field B(x) ≈ 2παN ̺(x), with ̺(x) the local particle density (normalized to R 2 ̺ = 1). In the ground state of this magnetic field (the lowest Landau level) this leads to a magnetic energy |B| ≈ 2π|α|N ̺ per particle 2 . In this work we prove that, for large β, the behavior of the functional (1.1) is captured at leading order by a Thomas-Fermi type [START_REF] Catto | The mathematical theory of thermodynamic limits: Thomas-Fermi type models[END_REF][START_REF] Lieb | Thomas-Fermi and related theories of atoms and molecules[END_REF] energy functional of a form similar to the right-hand side of (1.5) with |α|N = β. The coupling constant appearing in this functional is defined via the large-volume limit of the homogeneous anyon gas energy (i.e., the infimum of (1.1) confined to a bounded domain with V = 0). In particular we prove that this limit exists and is bounded from below by the value 2π predicted by (1.5). We do not know the exact value, but there are good reasons to believe that it is not equal to 2π, thus refining the simple approximations leading to (1.5).

We state our main theorems in Section 2 and present their proofs in Sections 3 and 4. Appendix A recalls a few facts concerning the minimizers of (1.1). In particular, although we do not need it for the proof of our main results, we derive the associated variational equation.

Main results

We now proceed to state our main theorems. We first discuss the large-volume limit for the homogeneous gas in Subsection 2.1 and then state our results about the trapped anyons functional (1.1) in Subsection 2.2. 2.1. Thermodynamic limit for the homogeneous gas. Let Ω ⊂ R 2 be a fixed bounded domain in R 2 , with the associated energy for almost-bosonic anyons confined to it:

E af Ω [u] = E af Ω,β [u] := Ω -i∇ + βA[|u| 2 ] u 2 , (2.1)
with

A[|u| 2 ](x) = Ω ∇ ⊥ w 0 (x -y)|u(y)| 2 dy. (2.2)
We define two energies; with homogeneous Dirichlet boundary conditions

E 0 (Ω, β, M ) := inf E af Ω,β [u] : u ∈ H 1 0 (Ω), Ω |u| 2 = M , (2.3) 
and without boundary conditions,

E(Ω, β, M ) := inf E af Ω,β [u] : u ∈ H 1 (Ω), Ω |u| 2 = M . (2.4)
Of course, the last minimization leads to a magnetic Neumann boundary condition for the solutions. We are interested in the thermodynamic limit of these quantities, i.e., the scaling limit in which the size of the domain tends to ∞ with fixed density ρ := M/|Ω| and the normalization changes accordingly.

Theorem 2.1 (Thermodynamic limit for the homogeneous anyon gas).

Let Ω ⊂ R 2 be a bounded simply connected domain with Lipschitz boundary, β 0 and ρ 0 be fixed parameters. Then, the limits

e(β, ρ) := lim L→∞ E(LΩ, β, ρL 2 |Ω|) L 2 |Ω| = lim L→∞ E 0 (LΩ, β, ρL 2 |Ω|) L 2 |Ω| (2.5)
exist, coincide and are independent of Ω. Moreover e(β, ρ) = βρ 2 e(1, 1).

(2.6)

Remark 2.2 (Error estimate).

A close inspection of the proof reveals that we also have an estimate of the error appearing in (2.5), which coincides with the error appearing in the estimate of the difference between the Neumann and Dirichlet energies in a box (Lemma 3.8). Such a quantity is expected to be of the order of the box's side length L, which is subleading if compared to the total energy of order L 2 . Our error estimate O(L 12/7+ε ) (see (3.26)) is however much larger and far from being optimal. ⋄

The above result defines the thermodynamic energy per unit area at scaled statistics parameter β and density ρ, denoted e(β, ρ), and shows that it has a nice scaling property. The latter is responsible for the occurrence of a Thomas-Fermi-type functional in the trapped anyons case. The fact that e(β, ρ) does not depend on boundary conditions is a crucial technical ingredient in our study of the trapped case. This is very different from the usual Schrödinger energy in a fixed external magnetic field, for example a constant one, for which the type of boundary conditions do matter (see e.g. [FH10, Chapter 5]).

The constant e(1, 1) will be used to define a corresponding coupling parameter below. One may observe that (see Lemma 3.7) e(1, 1) 2π,

(2.7)

and we conjecture that this inequality is actually strict, contrary to what might be expected when comparing to the coupling constant of the conventional (constant-field) average-field approximation (1.5). The reason for this is that the self-interaction encoded by the functional E af has not been fully incorporated in (1.5). In fact, the lower bound (2.7) is based on a magnetic L 4 -bound (Lemma 3.2) which is saturated only for constant functions, and hence for constant densities, which certainly is compatible with (1.5) in the case of homogeneous traps. On the other hand, in order to minimize the magnetic energy in (2.1) for large β, the function has to have a large phase circulation and therefore also a large vorticity. This suggests the formation of an approximately homogeneous vortex lattice, in some analogy to the Abrikosov lattice that arises in superconductivity and in rotating bosonic gases [START_REF] Aftalion | Vortex patterns in Bose Einstein condensates[END_REF][START_REF] Correggi | Energy and vorticity in fast rotating Bose-Einstein condensates[END_REF][START_REF] Sandier | Vortices in the magnetic Ginzburg-Landau model[END_REF]. Such a picture has already been hinted at in [CWWH89, p. 1012] for the almost-bosonic gas. However the implication that the actual coupling constant may then be larger than the one expected from (1.5) seems not to have been observed in the literature before.

One should note here that there is a certain abuse of language in using the term "thermodynamic limit". Indeed, we consider the large-volume behavior of a mean-field energy functional, and there is no guarantee that this rigorously approximates the true thermodynamic energy of the underlying many-body system.

2.2.

Local density approximation for the trapped gas. We now return to (1.1) and discuss the ground state problem

E af β := min E af β [u] : u ∈ H 1 (R 2 ), V |u| 2 ∈ L 1 (R 2 ), R 2 |u| 2 = 1 . (2.8)
We denote u af any associated minimizer. We refer to the Appendix (see also [LR15, Appendix A]) for a discussion of the minimization domain as well as the existence of a minimizer. In the limit β → ∞, the following simpler Thomas-Fermi (TF) like functional emerges

E TF [̺] = E TF β [̺] := R 2 βe(1, 1)̺ 2 + V ̺ , (2.9) 
whose ground-state energy we denote

E TF β := min E TF β [̺] : ̺ ∈ L 2 (R 2 ; R + ), V ̺ ∈ L 1 (R 2 ), R 2 ̺ = 1 , (2.10)
with associated (unique) minimizer ̺ TF β . Here e(1, 1) is the fixed, universal constant defined by Theorem 2.1.

A typical potential one could have in mind for physical relevance is a harmonic trap, V (x) = c|x| 2 , or an asymmetric trap, V (x, y) = c 1 x 2 + c 2 y 2 . We shall work under the assumption that V is homogeneous of degree s and smooth:

V (λx) = λ s V (x), V ∈ C ∞ (R 2 ).
(2.11)

These conditions can be relaxed significantly; in particular we could extend the approach to asymptotically homogeneous potentials as defined in [LSY01, Definition 1.1]. We refrain from doing so to avoid lengthy technical discussions in the proofs. We shall always impose that V is trapping in the sense that it grows super-linearly at infinity, i.e., s > 1 and

min |x| R V (x) ----→ R→∞ ∞.
(2.12)

The TF problem (2.10) has the merit of being exactly soluble. We obtain by scaling

E TF β = β s/(s+2) E TF 1 , ̺ TF β (x) = β -2/(2+s) ̺ TF 1 β -1/(s+2) x , (2.13) 
and by an explicit computation

̺ TF 1 (x) = 1 2e(1, 1) λ TF 1 -V (x) + , (2.14) 
with the chemical potential

λ TF 1 = E TF 1 + e(1, 1) R 2 ̺ TF 1 2 .
(2.15)

Clearly the above considerations imply

supp(̺ TF β ) ⊂ B Cβ 1/(2+s) (0), (2.16) 
where B R (x) stands for a ball (disk) of radius R centered at x, and the estimates

̺ TF β L ∞ (R 2 )
Cβ -2/(2+s) ,

∇̺ TF β L ∞ (R 2 )
Cβ -3/(2+s) , (2.17)

for some fixed constant C > 0. Noticing that ̺ TF 1 vanishes along a level curve of the smooth homogeneous potential V , we also have the non-degeneracy

|∂ n V | = 0, a.e. on ∂ supp(̺ TF 1 ), (2.18) 
where n denotes the (say outward) normal vector to ∂ supp(̺ TF 1 ). We have the following result showing the accuracy of TF theory to determine the leading order of the minimization problem (2.8):

Theorem 2.3 (Local density approximation for the anyon gas). Let V satisfy (2.11) and (2.12). In the limit β → ∞ we have the energy convergence

lim β→+∞ E af β E TF β = 1. (2.19)
Moreover, for any function u af achieving the infimum (2.8), with ̺ af := |u af | 2 , we have for any R > 0

β 2/(2+s) ̺ af β 1/(2+s) . -̺ TF 1 W -1,1 (B R (0)) ---→ β→∞ 0 (2.20)
where W -1,1 (B R (0)) is the dual space of Lipschitz functions on the ball B R (0).

Remark 2.4 (Extension to more general potentials). The result can be straightforwardly extended to asymptotically homogeneous potentials, i.e., functions V (x) that satisfy the following property [LSY01, Definition 1.1]: there exists another function Ṽ , non-vanishing for x = 0, such that, for some s > 0,

lim λ→∞ λ -s V (λx) -Ṽ (x) 1 + | Ṽ (x)| = 0, (2.21) uniformly in x ∈ R 2 .
The function Ṽ is necessarily homogeneous of degree s > 0 and, if we denote by Ẽβ the TF functional (2.9) with Ṽ in place of V , we have

E TF β = (1 + o(1)) ẼTF β , ẼTF β = β s s+2 ẼTF 1 , as β → ∞. ⋄ Remark 2.

(Density approximation on finer length scales).

We conjecture that the estimate (2.20) can be improved to show that ̺ af is close to ̺ TF β on finer scales. Namely (2.20) implies that they are close on length scales of order β 1/(2+s) which is the extent of the support of ̺ TF β , but we expect them to be close on scales ≫ β -s/(2(s+2)) , which is the smallest length scale appearing in our proofs. We however believe that the density convergence cannot hold on scales smaller than β -s/(2(s+2)) , for we expect the latter to be the length scale of a vortex lattice developed by minimizers. ⋄ Remark 2.6 (Large β limit for the homogeneous gas on bounded domains). We can think of the homogeneous gas by formally taking the limit s → ∞ of the homogeneous potentials we have considered so far, which naturally leads to the restriction of the functional E af in (1.1) to bounded domains Ω with V = 0 and Dirichlet boundary conditions, that is (2.1)-(2.3). In fact, we have by the scaling laws discussed in Section 3.2,

lim β→+∞ E(Ω, β, 1) β = lim β→+∞ E 0 (Ω, β, 1) β = |Ω| -1 e(1, 1), (2.22)
for any bounded and simply connected Ω with Lipschitz boundary. Convergence of the density to the TF minimizer ̺ TF 1 holds true in the same form as in (2.20). In this case ̺ TF 1 is simply the constant function on the domain (confirming that the gas is indeed homogeneous). The shortest length scale on which we expect (but cannot prove) the density convergence is β -1/2 , which should be the typical length scale of the vortex structure. ⋄

Proofs for the homogeneous gas

The basic ingredient of the proof for the inhomogeneous case is the understanding of the thermodynamic limit of the model where the trap is replaced by a finite domain with sharp walls. We discuss this here, proving Theorem 2.1 and defining the constant e(1, 1) appearing in the TF functional (2.9). For the sake of concreteness we first set

e(β, ρ) := lim inf L→∞ E 0 (LΩ, β, ρL 2 |Ω|) L 2 |Ω| (3.1)
for Ω equal to a unit square and observe that such a quantity certainly exists and is nonnegative. At this stage it might as well be infinite but we are going to prove that actually the limit exists, it is finite, and furthermore independent of the domain shape.

We briefly anticipate here the proofs plan: next Section 3.1 contains basic technical estimates that we are going to use throughout the paper; Section 3.2 contains the proof of a crucial scaling property of the energy in the homogeneous case; in Section 3.3 we prove the existence of the thermodynamic limit for the case of squares, and then extend the result to general domains.

3.1. Toolbox. Let us gather a few lemmas that will be used repeatedly in the sequel. We start with a variational a priori upper bound confirming that the energy scales like the area. The proof idea, relying deeply on the magnetic nature of the interaction, will be employed again several times.

Lemma 3.1 (Trial upper bound).

For any fixed bounded domain Ω, and β, ρ 0, there exists a constant C > 0 s.t.

E(LΩ, β, ρL 2 |Ω|) L 2 E 0 (LΩ, β, ρL 2 |Ω|) L 2 C, ∀L 1.
Proof. That the Dirichlet energy is an upper bound to the Neumann energy is trivial because

H 1 0 (Ω) ⊆ H 1 (Ω).
Let us then prove the second inequality.

We fill the domain LΩ with N ∼ L 2 subdomains on which we use fixed trial states with Dirichlet boundary conditions. The crucial observation is that the magnetic interactions between subdomains can be canceled by a suitable choice of phase (local gauge transformation). For concreteness we here take disks as our subdomains.

Let f ∈ C ∞ c (B 1 (0); R + ) be a radial function with B 1 (0) |f | 2 = 1, and let

u j (x) := √ ω N f (x -x j ) ∈ C ∞ c (B j ), ω N := ρL 2 |Ω|/N.
Here the points x j , j = 1, . . . , N , are distributed in LΩ in such a way that the disks B j := B 1 (x j ) are contained in LΩ and disjoint, with N ∼ c|LΩ| as L → ∞ for some c > 0. Hence lim

N →∞ ω N = ρ/c.
Take then the trial state

u(x) := N j=1 u j (x)e -iβω N k =j arg(x-x k ) ∈ C ∞ c (LΩ).
Note that its phase is smooth on each piece B j of its support and that

|u(x)| 2 = N j=1 |u j (x)| 2 = |u j (x)| 2 , for x ∈ B j , 0, otherwise,
and hence

LΩ |u| 2 = N ω N = ρL 2 |Ω|.
Then

E af Ω,β [u] = N j=1 B j -i∇ + β N k=1 A[|u k | 2 ] e -iβω N k =j arg(x-x k ) u j (x) 2 dx = N j=1 B j -i∇ + βA[|u j | 2 ] + k =j βA[|u k | 2 ] -βω N ∇ arg(x -x k ) u j (x) 2 dx = N j=1 B j (-i∇ + βA[|u j | 2 ])u j 2 = N ω N B 1 (0) |(-i∇ + βω N A[|f | 2 ])f | 2 ,
where we used that by Newton's theorem [LL01, Theorem 9.7]

A[|u k | 2 ](x) = ∇ ⊥ B k ln |x -y||u k (y)| 2 dy = ∇ ⊥ ln |x -x k | B k |u k | 2 dy = ω N ∇ arg(x -x k ), for x / ∈ B k . It then follows that E 0 (LΩ, β, ρL 2 |Ω|) E af Ω,β [u] N ω N ∇f L 2 + βω N A[|f | 2 ]f L 2 2 CL 2 ,
for some large enough constant C > 0 independent of N or L (but possibly depending on β, ρ and Ω).

The following well-known inequalities will provide useful a priori bounds on the functional's minimizers: Lemma 3.2 (Elementary magnetic inequalities). Diamagnetic inequality: for any β ∈ R and u ∈ H 1 (Ω),

Ω (∇ + iβA[|u| 2 ])u 2 Ω |∇|u|| 2 .
(3.2)

Magnetic L 4 bound: for any β ∈ R and u ∈ H 1 0 (Ω), Ω (∇ + iβA[|u| 2 ])u 2 2π|β| Ω |u| 4 , (3.3) 
Proof. The diamagnetic inequality is, e.g., given in [LL01, Theorem 7.21], while the L 4 bound follows immediately from the well-known inequality

Ω |(∇ + iA)u| 2 ± Ω curl A |u| 2 , u ∈ H 1 0 (Ω); (3.4) see, e.g., [FH10, Lemma 1.4.1].
A proof of (3.4) is to integrate the identity

|(∇ + iA)u| 2 = |((∂ 1 + iA 1 ) ± i(∂ 2 + iA 2 ))u| 2 ± curl J[u] ± A • ∇ ⊥ |u| 2 , with J[u] := i 2 (u∇ū -ū∇u).
Thanks to the Dirichlet boundary conditions, the integral of the next to last term vanishes while the last one can be integrated by parts yielding

∓ Ω curl A |u| 2 .
Again, no boundary terms are present because of the vanishing of u on ∂Ω. Dirichlet boundary conditions are necessary since the bounds (3.4) resp. (3.3) are otherwise invalid as A → 0 resp. β → 0, as can be seen by taking the trial state u ≡ 1.

In order to perform energy localizations we shall also need an IMS type inequality 3 , i.e. a suitable generalization of the well-known localization formula [CFKS87, Theorem 3.2]:

|∇u| 2 = |∇(χu)| 2 + |∇(ηu)| 2 -|∇χ| 2 + |∇η| 2 |u| 2 , (3.5)
where χ 2 , η 2 form a partition of unity.

Lemma 3.3 (IMS formula).

Let Ω ⊆ R 2 be a domain with Lipschitz boundary and χ 2 + η 2 = 1 be a partition of unity s.t. χ ∈ C ∞ c (Ω) and supp χ is simply connected. Then, for any u ∈ H 1 (Ω) and β ∈ R,

E af Ω,β [u] = Ω (∇ + iβA[|u| 2 ])(χu) 2 + Ω (∇ + iβA[|u| 2 ])(ηu) 2 - Ω |∇χ| 2 + |∇η| 2 |u| 2 , (3.6)
where

Ω (∇ + iβA[|u| 2 ])(ηu) 2 Ω |∇|ηu|| 2 (3.7)
and

Ω (∇ + iβA[|u| 2 ])(χu) 2              Ω |∇|χu|| 2 , 2π|β| Ω χ 2 |u| 4 , (1 -ε)E af Ω,β [ψ] -(ε -1 -1)β 2 Ω |A[|ηu| 2 1 K ]| 2 |χu| 2 ,
(3.8) with ε ∈ (0, 1) arbitrary, K := supp χ ∩ supp η, and ψ = e iβφ χu ∈ H 1 0 (supp χ) for some harmonic function φ ∈ C 2 (supp χ).

Proof. We expand

E af Ω,β [u] = Ω |∇u| 2 + 2β Ω A[|u| 2 ] • J[u] + β 2 Ω A[|u| 2 ] 2 |u| 2 .
For the first term we use the standard IMS formula (3.5), while for the term involving J we have

2 i (J[χu] + J[ηu]) = uχ∇(χū) + uη∇(ηū) -ūχ∇(χu) -ūη∇(ηu) = u(χ 2 + η 2 )∇ū -ū(χ 2 + η 2 )∇u = 2 i J[u]
. We can then recollect the terms to obtain (3.6). Equation (3.7) and the first version of (3.8) follow from the diamagnetic inequality (3.2), while the second version of (3.8) follows from the magnetic bound (3.3) with Dirichlet boundary conditions. For the third version we write

Ω (∇ + iβA[|u| 2 ])(χu) 2 = Ω ∇ + iβA[|χu| 2 ] + iβA[|ηu| 2 1 K ] + iβ A[|ηu| 2 1 K c ] -∇φ (e iβφ χu) 2 ,
where the last magnetic term vanishes by taking the gauge choice

φ(x) := K c arg(x -y) |ηu(y)| 2 dy, x ∈ supp χ.
Thus, noting that

|χu| 2 = |ψ| 2 , Ω (∇ + iβA[|u| 2 ])(χu) 2 = Ω ∇ + iβA[|ψ| 2 ] ψ + iβA[|ηu| 2 1 K ]ψ 2 ,
and there only remains to expand the square and bound the cross-term using Cauchy-Schwarz to conclude the proof.

3.2. Scaling laws. In fact the large β and large volume limits are equivalent, as follows from the simple observation:

Lemma 3.4 (Scaling laws for the homogeneous gas).

For any domain Ω ⊂ R 2 and λ, µ > 0 we have that

E(Ω, β, M ) = 1 λ 2 E µΩ, β λ 2 µ 2 , λ 2 µ 2 M , (3.9)
and an identical scaling relation holds true for E 0 (Ω, β, M ).

Proof. Given any u ∈ H 1 (Ω) we may set

u λ,µ (x) := λu(x/µ), (3.10) 
and observe that u λ,µ ∈ H 1 (µΩ),

µΩ |u λ,µ | 2 = λ 2 µ 2 Ω |u| 2 ,
and

E af µΩ,β [u λ,µ ] = λ 2 E af Ω,βλ 2 µ 2 [u].
Namely, using

∇ ⊥ w 0 (x) = x -⊥ := x ⊥ /|x| 2 and A µΩ [|u λ,µ | 2 ](x) = µΩ (x -y) -⊥ |u λ,µ (y)| 2 dy = λ 2 µΩ (x -y) -⊥ |u(y/µ)| 2 dy = λ 2 µ Ω (x/µ -z) -⊥ |u(z)| 2 dz = λ 2 µA Ω [|u| 2 ](x/µ),
we have

E af µΩ,β [u λ,µ ] = µΩ ∇u λ,µ (x) + iβA µΩ [|u λ,µ | 2 ](x)u λ,µ (x) 2 dx = µΩ λµ -1 (∇u)(x/µ) + iβλ 3 µA Ω [|u| 2 ](x/µ)u(x/µ) 2 dx = λ 2 µ -2 µΩ (∇u)(x/µ) + iβλ 2 µ 2 A Ω [|u| 2 ](x/µ)u(x/µ) 2 dx = λ 2 Ω ∇u(z) + iβλ 2 µ 2 A Ω [|u| 2 ](z)u(z) 2 dz = λ 2 E af Ω,βλ 2 µ 2 [u].
Hence, we may take as a trial state for E af µΩ,βλ -2 µ -2 the function u λ,µ where u is the minimizer (or minimizing sequence) of E af Ω,β , and vice versa. Moreover, if u ∈ H 1 0 then so is u λ,µ . It follows immediately from the above that the thermodynamic energy has a very simple dependence on its parameters, which justifies (2.6) and the way it appears in (2.9).

Corollary 3.5 (Scaling laws for e(β, ρ)). For any ρ 0 and bounded Ω ⊂ R 2 , with e(β, ρ) defined as in (3.1), we have

e(1, ρ) = |Ω| lim inf β→∞ E 0 (Ω, β, ρ) β , (3.11) 
and for any β, ρ 0, e(β, ρ) = βρ 2 e(1, 1).

(3.12) Remark 3.6. At the moment each shape of domain Ω may give rise to a different limit e(β, ρ) in (3.1), and this Corollary and proof applies in such a situation. However it will be shown below in the case of Lipschitz regular domains that the limit is independent of the shape, and one may therefore w.l.o.g. take the unit square Ω = Q as a reference domain.

Proof. A first consequence of the scaling property (3.9) is that taking the thermodynamic limit as described in (2.5) or (3.1) is equivalent to taking the limit β → ∞ at fixed size of the domain, i.e., e(c, ρ) = lim inf

L→∞ E 0 (LΩ, c, ρ|Ω|L 2 ) L 2 |Ω| = lim inf L→∞ E 0 (Ω, cL 2 |Ω|, ρ) L 2 ,
where we have applied (3.9) with µ = L, λ = |Ω| 1/2 and M = ρ. Now if, for any c > 0, we set β = cL 2 |Ω| → ∞, the above expression becomes

e(c, ρ) = c|Ω| lim inf β→∞ E 0 (Ω, β, ρ) β , (3.13) 
which proves the first claim, and also implies that e(c, ρ) = c e(1, ρ).

(3.14)

Next we take µ = 1 in (3.9) and obtain

E 0 (Ω, β, M ) = λ -2 E 0 (Ω, βλ -2 , λ 2 M ).
Taking M = |Ω|, dividing by |Ω| and taking the limit |Ω| → ∞ we deduce e(β, 1) = λ -2 e(βλ -2 , λ 2 ) = λ -4 e(β, λ 2 )

L m Q L n Q 1 • • • L n Q j L n Q q 2 nm u 0 u j k nm Figure 1. Filling the square L m Q with smaller squares L n Q j .
where we used (3.14) in the last equality. This yields e(β, ρ) = ρ 2 e(β, 1) (3.15) for all β, ρ 0. Combining (3.14) and (3.15) yields the result (3.12).

3.3. Proof of Theorem 2.1. We split the proof in three lemmas:

Lemma 3.7 (Thermodynamic limit for the Dirichlet energy in a square).

Let Q be a unit square, and ρ 0 and β 0 be fixed constants. The limit

e(β, ρ) = lim L→+∞ E 0 (LQ, β, ρL 2 ) L 2
exists, is finite, and satisfies e(β, ρ) 2πβρ 2 .

Lemma 3.8 (Neumann-Dirichlet comparison).

Let Ω be a bounded simply connected domain with Lipschitz boundary, then for any fixed ρ and β positive, as

L → ∞ E 0 (LΩ, β, ρL 2 |Ω|) L 2 |Ω| E(LΩ, β, ρL 2 |Ω|) L 2 |Ω| E 0 (LΩ, β, ρL 2 |Ω|) L 2 |Ω| -o(1).
Lemma 3.9 (Thermodynamic limit for the Dirichlet energy in a general domain).

Let Ω ⊂ R 2 be a bounded simply connected domain with Lipschitz boundary, then

lim L→+∞ E 0 (LΩ, β, ρL 2 |Ω|) L 2 |Ω| = e(β, ρ). (3.16)
Theorem 2.1 immediately follows from these three results: combining Lemma 3.7 with Lemma 3.8 one obtains the existence of the thermodynamic limit for squares. In order to derive the result for general domains, one then uses Lemma 3.9 together with Lemma 3.8. Notice that the proof of Lemma 3.9 requires only Lemma 3.7 and 3.8 for squares as key ingredients.

Proof of Lemma 3.7. From Lemma 3.1 we know that the sequence of energies per unit area has both an upper and lower limit. We denote (L n ) n∈N and (L m ) m∈N two increasing sequences of positive real numbers such that L n → ∞, L m → ∞ and

E 0 (L n Q, β, ρL 2 n ) L 2 n ---→ n→∞ lim inf L→∞ E 0 (LQ, β, ρL 2 ) L 2 , E 0 (L m Q, β, ρL 2 m ) L 2 m ----→ m→∞ lim sup L→∞ E 0 (LQ, β, ρL 2 ) L 2 .
For each n, there must exist a sequence of integers

q nm ----→ m→∞ +∞
such that, for m large enough, e.g., m ≫ n,

L m = q nm L n + k nm , 0 k nm < L n .
We then build a trial state for E 0 (L m Q, β, ρL 2 m ) as follows (see Figure 1). The square L m Q must contain q 2 nm disjoint squares of side-length L n , that we denote L n Q j , j = 1, . . . , q 2 nm . Then we pick u j a minimizer of E 0 (L n Q j , β, ρL 2 n ) and remark that by definition,

q 2 nm k=1,k =j curl A[|u k | 2 ] = 0, in L n Q j .
Thus there exists a gauge phase φ j on the simply connected domain L n Q j such that

q 2 nm k=1,k =j A[|u k | 2 ] = ∇φ j , in L n Q j .
Similarly, there exists φ 0 on the remaining part of the domain (which can be arranged to be simply connected as well, as in Figure 1) such that

q 2 nm k=1 A[|u k | 2 ] = ∇φ 0 , on L m Q \ q 2 nm j=1 L n Q j .
We define the trial state as (see the proof of Lemma 3.1)

u := q 2 nm j=1
u j e -iβφ j + u 0 e -iβφ 0 where u 0 is a function with compact support in

L m Q \ q 2 nm j=1 L n Q j satisfying LmQ |u 0 | 2 = ρL 2 m -q 2 nm ρL 2 n .
By Lemma 3.1, we can construct u 0 such that

LmQ ∇ + iβA[|u 0 | 2 ] u 0 2 C L 2 m -q 2 nm L 2 n 2CL m k nm
(where C > 0 may depend on β and ρ). The function u is an admissible trial state on L m Q because it is in H 1 on each subdomain, and continuous across boundaries due to the Dirichlet boundary conditions satisfied by each u j . Computing the energy we have

E af LmQ,β [u] = q 2 nm j=0 LmQ e -iφ j ∇ + iβA[|u| 2 ] -iβ∇φ j u j 2 = q 2 nm j=0 LmQ ∇ + iβA[|u j | 2 ] u j 2 = q 2 nm j=1 E af LnQ,β [u j ] + LmQ ∇ + iβA[|u 0 | 2 ] u 0 2 = q 2 nm E 0 (L n Q, β, ρL 2 n ) + O(L m k nm ), with q 2 nm = L 2 m L 2 n 1 - k nm L m 2 .
Since u has by definition mass ρL 2 m , it follows from the variational principle that

E 0 (L m Q, β, ρL 2 m ) L 2 m E 0 (L n Q, β, ρL 2 n ) L 2 n 1 + O k nm L m + O k nm L m .
Passing to the limit m → ∞ first and then n → ∞ yields lim sup In the sequel we take β = 1 and |Ω| = 1 to simplify the notation. We will need to make an IMS localization on a small enough region, and therefore consider a division of LΩ into a bulk region surrounded by thin shells close to the boundary, where we will be using several different length scales L -1/3 λ ≪ 1 ≪ L and L -1 ≪ ℓ ≪ h ≪ L (see Figure 2 for the case of Ω = Q a square).

L→∞ E 0 (LQ, β, ρL 2 ) L 2 lim inf L→∞ E 0 (LQ, β, ρL 2 ) L 2 ,
We shall use Lemma 3.3 a first time at distance λ from the boundary to deduce some useful a priori bounds. Next, using a mean-value argument we show that, within a window of thickness h further from the boundary, there must exist one particular shell of thickness ℓ where we have a good control on the mass and energy. Finally we perform a second IMS localization with the truncation located in this particular shell. This yields a lower bound in terms of the Dirichlet energy in the bulk region, plus error terms that we can control using the a priori bounds and in particular the good control on mass and energy in the second localization shell.

Step 1, a priori bounds. Let δ Ω (x) := dist(x, ∂(LΩ)) denote the distance function to the boundary, which is Lipschitz and satisfies |∇δ Ω | 1 a.e. We make a first partition of unity χ2 + η2 = 1 such that χ varies smoothly from 1 to 0 on a shell K λ of width λ closest to the boundary of LΩ, i.e. K λ := {x ∈ LΩ : δ Ω (x) < λ}. One may note that it is possible to construct these functions so as to satisfy

|∇ χ| cλ -1 χ1-µ , |∇η| cλ -1 χ1-µ ,
for some arbitrarily small µ > 0, independent of λ, e.g., by taking, in supp χ ∩ supp η, χ = f a and η = 1 -χ2 for a large and some smooth function 0 f 1 varying on the right length scale and reflection symmetric. Then, by Lemma 3.1 and Lemma 3.3,

CL 2 E af LΩ,1 [u] LΩ 2π χ2 |u| 4 + |∇|ηu|| 2 -|∇ χ| 2 + |∇η| 2 |u| 2 LΩ 2π χ2 |u| 4 + |∇|ηu|| 2 -Cλ -2 1 K λ χ2-2µ |u| 2 . (3.17)
We bound the unwanted negative term as follows:

λ -2 LΩ 1 K λ χ2-2µ |u| 2 λ -2 K λ χ2-4µ 1/2 K λ χ2 |u| 4 1/2 Cλ -3/2 L 1/2 K λ χ2 |u| 4 1/2 CδLλ -3 + Cδ -1 LΩ χ2 |u| 4 ,
with δ a fixed, large enough, constant. Combining with (3.17) we deduce

LΩ 2π χ2 |u| 4 + |∇|ηu|| 2 CL 2 + CLλ -3 CL 2 (3.18)
since we have chosen λ L -1/3 . We note that this bound implies for the mass in a shell

K ℓ of thickness ℓ in LΩ \ K λ K ℓ |u| 2 |K ℓ | 1/2 K ℓ χ2 |u| 4 1/2 ℓ 1/2 L 3/2 . (3.19)
Step 2, finding a good shell. We now select a region where the bounds (3.18) and (3.19) can be improved. Consider dividing LΩ \ K λ into shells of thickness ℓ that form a layer closest to the shell K λ , of total thickness h ∼ L 1-ε ≫ ℓ (again, see Figure 2). Hence, we have

N s := h/ℓ ≫ 1
such shells in the layer. Denote by N M the number of such shells K ℓ with K ℓ |u| 4 M . If N M < N s , there must exist a shell K ℓ with K ℓ |u| 4 M . But, using (3.18) and the fact that all the shells are included in the region where χ = 1, we have

M N M LΩ χ2 |u| 4 CL 2 .
We can thus ensure that N M < N s by setting

N s = h/ℓ ∼ L 1-ε ℓ -1 ∼ L 2 /M,
i.e. taking M ∼ ℓL 1+ε . Hence we have found a shell K ℓ with

K ℓ |u| 4 CℓL 1+ε , (3.20)
and thus

K ℓ |u| 2 C(ℓL) 1/2 (ℓL 1+ε ) 1/2 = CℓL 1+ε/2 , (3.21) improving (3.19).
Step 3, IMS localization in the good shell. We now perform a new magnetic localization on this K ℓ . We pick a partition χ 2 + η 2 = 1, s.t. χ varies smoothly from 1 to 0 outwards on K ℓ , so that χ = 1 resp. η = 1 on the inner resp. outer component of K c ℓ . Then, using Lemma 3.3, we have

E af LΩ,1 [u] (1 -δ)E af LΩ,1 [ψ] -(δ -1 -1) LΩ |A[|ηu| 2 1 K ]| 2 |χu| 2 - K ℓ (|∇χ| 2 + |∇η| 2 )|u| 2 , (3.22)
for any δ ∈ (0, 1), where we have denoted ψ = χe iφ u and K = supp χ ∩ supp η ⊆ K ℓ . Since ψ is compactly supported in LΩ we have for the first term

E af LΩ,1 [ψ] E 0 LΩ, 1, ψ 2 L 2 (LΩ) = E 0 LΩ, 1, χu 2 L 2 (LΩ) .
Recalling the scaling relation (3.9) (taking µ = λ -1 = L/L) and denoting

M = LΩ χ 2 |u| 2 , L = M/ρ,
we have

E 0 (LΩ, 1, M ) = M ρL 2 E 0 ( LΩ, 1, ρ L2 ). (3.23)
We need to estimate the deviation of the mass M of χ 2 |u| 2 from ρL 2 = LΩ |u| 2 :

ρL 2 - LΩ χ 2 |u| 2 = LΩ η 2 |u| 2 = LΩ η2 |u| 2 + LΩ χ2 η 2 |u| 2 Cλ 2 K λ |∇|ηu|| 2 + LΩ η 2 χ2 1/2 LΩ χ2 |u| 4 1/2 Cλ 2 L 2 + Ch 1/2 L 3/2 ≪ L 2 . (3.24)
Here we have used a Poincaré inequality to control the η2 |u| 2 term, making use of the fact that this function vanishes at the inner boundary of K λ . It is not difficult (see the proof methods of [Eva98, Theorem 1 and 2 in Section 5.8.1] and [LL01, Theorem 8.11]) to realize that the constant involved in this inequality applied on the set K λ can be taken to be proportional to λ 2 . Note that L → ∞, if L → ∞, thanks to (3.24). Hence, inserting the above estimate in (3.23), we get

E af LΩ,1 [ψ] L 2 E 0 (LΩ, 1, M ) L 2 = M 2 (ρL 2 ) 2 E 0 ( LΩ, 1, ρ L2 ) L2 = (1 + o(1)) E 0 ( LΩ, 1, ρ L2 ) L2 . (3.25)
Then, there only remains to control the error terms in (3.22): Using the Hölder and generalized Young inequalities ( • p,w denotes the weak-L p norm [LL01, Theorem 4.3, Remarks]),

LΩ A[|ηu| 2 1 K ] 2 |χu| 2 ∇w 0 * |ηu| 2 1 K 2 2p χu 2 2q c ∇w 0 2 2,w ηu1 K 4 2r χu 2 2q C K ℓ |ηu| 4q 2q-1 2q-1 q LΩ |χu| 2q 1 q , where 1 p + 1 q = 1 and 1 + 1 2p = 1 2 + 1 r , i.e., r = 2q 2q -1 ∈ (1, 2) with q ∈ (1, ∞).
We can take q = 2 and insert (3.18)-(3.20) to obtain

K ℓ |ηu| 8/3 3/2 LΩ |χu| 4 1/2 |K ℓ | 1/2 K ℓ |ηu| 4 LΩ |χu| 4 1/2 (ℓL) 1/2 ℓL 1+ε (L 2 ) 1/2 = ℓ 3/2 L 5/2+ε .
The last term in (3.22) is, using (3.21), bounded by

cℓ -2 K ℓ |u| 2 ℓ -1 L 1+ε/2 .
There only remains to optimize the error terms in (3.22):

δE 0 LΩ, 1, ψ 2 L 2 (LΩ) + c 1 (δ -1 -1)ℓ 3/2 L 5/2+ε + c 2 ℓ -1 L 1+ε/2 c 3 δL 2 + c 4 δ -2 5 L 8 5 + 7 10 ε ,
where we have picked ℓ = L -3/5-ε/5 δ 2/5 , assuming that δ ≪ 1, as it will be. Thus, optimizing now over δ, i.e., taking δ ∼ L -2/7+ε/2 , we have the bounds

E 0 (LΩ, 1, ρL 2 ) L 2 E(LΩ, 1, ρL 2 ) L 2 E 0 LΩ, 1, ψ 2 L 2 (LΩ) L 2 -cL -2 7 + ε 2 . (3.26)
Combining with (3.25) and passing to the liminf completes the proof.

Proof of Lemma 3.9. The result is proven as usual by comparing suitable upper and lower bounds to the energy.

Step 1: upper bound. We first cover LΩ with squares Q j , j = 1, . . . , N ℓ , of side length ℓ = L η , 0 < η < 1, retaining only the squares Q j completely contained in LΩ. One can estimate the area not covered by such squares as

Ω \   N ℓ j=1 Q j   CℓL = o(L 2 ). (3.27)
Then we define the trial state

u(x) := N ℓ j=1
u j e -iβφ j , (3.28) where

u j (x) := u 0 (x -x j )1 Q j , (3.29)
with u 0 a minimizer of the Dirichlet problem with mass ρL 2 |Ω|/N ℓ in a square Q with side length ℓ centered at the origin, and x j the center point of Q j . The phases φ j are chosen in such a way that (see the proof of Lemma 3.1 again)

N ℓ k=1,k =j A[|u k | 2 ] = ∇φ j , in Q j .
The existence of such phases is indeed guaranteed by the fact that

N ℓ k=1,k =j curl A[|u k | 2 ] = 0, in Q j .
Hence

E af LΩ,β [u] = N ℓ j=1 E af Q j ,β [u j ] = N ℓ j=1 E 0 (ℓQ, β, ρL 2 |Ω|N -1 ℓ ),
which implies

E 0 (LΩ, β, ρL 2 ) L 2 |Ω| 1 L 2 |Ω| N ℓ j=1 E 0 (ℓQ, β, ρL 2 |Ω|N -1 ℓ ) (3.30) = ℓ 2 L 2 |Ω| N ℓ j=1 E 0 (ℓQ, β, (1 + o(1))ρℓ 2 )/ℓ 2 = (1 + o(1))e(β, ρ), (3.31) 
where we have estimated

N ℓ = | j Q j | |Q j | = (1 + o(1))L 2 |Ω| ℓ 2 ,
and used Lemma 3.7. Notice that, thanks to the assumption on η, we have ℓ → ∞, which is crucial in order to apply Lemma 3.7.

Step 2: lower bound. We again cover LΩ with squares Q j=1,...,N ℓ , this time keeping the full covering but still having ℓ 2 N ℓ /|LΩ| → 1 as L → ∞. We pick a minimizer u af = u af L ∈ H 1 0 (LΩ) of E af LΩ,β , with mass ρL 2 |Ω|, and set

u af j := u af 1 Q j , ρ j := - Q j u af (x) 2 dx. (3.32) 
The idea of the proof is reminiscent of that in the upper bound part: we gauge away the magnetic interaction between the cells, and this leads to a lower bound in terms of the Neumann energy of the cells. Note that u af j ∈ H 1 (Q j ) for each j, and

N ℓ j=1 ρ j ℓ 2 = ρL 2 |Ω|.
Before estimating the energy we need to distinguish between squares with sufficient mass and squares which will not contribute to the energy to leading order. We thus set

Q L := Q j , j ∈ {1, . . . , N ℓ } : ρ j L -2η+δ , (3.33) 
for some 0 < δ < 2η. Note that the mass concentrated outside cells Q L is relatively small:

Q j / ∈Q L ρ j ℓ 2 Cℓ 2 N ℓ L -2η+δ = o(L 2 ). (3.34) 
We can now estimate, using the gauge covariance of the functional on each Q j ,

E 0 (LΩ, β, ρL 2 |Ω|) = E af LΩ,β [u af ] N ℓ j=1 Q j -i∇ + βA |u af | 2 u af 2 = N ℓ j=1 Q j -i∇ + βA |u af j e iβφ j | 2 u af j e iβφ j 2 N ℓ j=1 ρ j ℓ 2 E(ℓQ, β, ρ j ℓ 2 ) ρ j ℓ 2 j:Q j ∈Q L ρ 2 j ℓ 2 E(ℓ j Q, β, ℓ 2 j ) ℓ 2 j , (3.35) 
where φ j satisfies (observe that the left-hand side is curl-free on Q j )

N ℓ k=1,k =j A |u af k | 2 = ∇φ j , in Q j ,
and in the last step we used the scaling law (3.9) with µ = 1/λ = √ ρ j . Also,

ℓ j := √ ρ j ℓ L δ/2 ----→ L→∞ +∞
uniformly in j for cells Q j ∈ Q L , and we thus conclude by Lemma 3.7 and 3.8 that

1 L 2 |Ω| E 0 (LΩ, β, ρL 2 |Ω|) (1 -o(1)) e(β, 1) L 2 |Ω| j:Q j ∈Q L ρ 2 j ℓ 2 = (1 -o(1)) e(β, 1) L 2 |Ω| Q ̺2 , (3.36) 
where we consider here the step function ̺ := j:Q j ∈Q L ρ j 1 Q j and denote by Q the union of the cells Q L . It remains then to observe that the constrained minimum

B = min Q ̺ 2 : 0 ̺ ∈ L 2 (Q), Q ̺ = (1 -o(1))ρL 2 |Ω| .
is achieved by ̺ constant and thus

Q ̺2 B = (1 -o(1))ρL 2 |Ω| 2 |Q| -1 (1 -o(1))ρ 2 L 2 |Ω|.
Inserting this in (3.36) and using ρ 2 e(β, 1) = e(β, ρ) leads to the desired energy lower bound.

4. Proofs for the trapped gas 4.1. Local density approximation: energy upper bound. Here we prove the upper bound corresponding to (2.19):

E af β E TF β (1 + o(1)) , as β → ∞. (4.1)
We start by covering the support of ̺ TF β with squares Q j , j = 1, . . . , N β , centered at points x j and of side length L with

L = β η , - s 2(s + 2) < η < 1 s + 2 . (4.2)
We choose the tiling in such a way that for any j = 1, . . . , N β , Q j ∩ supp(̺ TF β ) = ∅. The upper bound on L indicates that the length scale of the tiling is much smaller than the size of the TF support. The lower bound ensures that it is much larger than the scale on which we expect the fine structure of the minimizer to live.

Our trial state is defined similarly as in the proof of Lemma 3.9:

u test := N β j=1 u j e -iβφ j (4.3)
where u j realizes the Dirichlet infimum

E 0 (Q j , β, M j ) := min E af j [u] : u ∈ H 1 0 (Q j ), Q j |u| 2 = M j ,
where of course

E af j [u] = E af Q j ,β [u] = Q j -i∇ + βA[|u| 2 ] u 2
and we set

M j = Q j |u j | 2 := Q j ̺ TF β , ρ j := M j /L 2 = - Q j ̺ TF β . (4.4) 
The phase factors in (4.3) are again defined so as to gauge away the interaction between cells, i.e.,

N β k=1,k =j A[|u k | 2 ] = ∇φ j , in Q j .
This construction yields an admissible trial state since u test is locally in H 1 , continuous across cells by being zero on the boundaries, and clearly

R 2 |u test | 2 = N β j=1 Q j |u j | 2 = N β j=1 Q j ̺ TF β = 1.
Similarly as in the proofs of Lemmas 3.1 and 3.9 we thus obtain

E af β E af β [u test ] = N β j=1 E af j [u j ] + R 2 V |u test | 2 = N β j=1 E 0 (Q j , β, M j ) + R 2 V |u test | 2 . (4.5)
Our task is then to estimate the right-hand side. We denote, for some ε > 0 small enough

S ε = x ∈ supp(̺ TF β ) ̺ TF β (x) β -2 s+2 -ε
and split the above sum into two parts, distinguishing between cells fully included in S ε and the others. Using (2.13), it is clear that

supp ̺ TF β \ S ε Cβ 1 s+2 • β 1 s+2 -ε
where the first factor comes from the dilation transforming ̺ TF 1 into ̺ TF β and the second one is an estimate of the thickness of S ε based on (2.16)-(2.18).

By a simple estimate of the potential V in the vicinity of S ε we obtain

j:Q j Sε Q j V |u j | 2 Cβ s s+2 • β 2 s+2 -ε • β -2 s+2 -ε = Cβ s s+2 -2ε ≪ E TF β ,
where the factor β s s+2 accounts for the supremum of V , the factor β 2 s+2 -ε for the volume of the integration domain and the factor β -2 s+2 -ε for the typical value of |u j | 2 on this domain. Also, using in addition Lemma 3.4 and 3.1, we deduce

j:Q j Sε E 0 (Q j , β, M j ) = j:Q j Sε E 0 (β η Q, β, β 2η ρ j ) ≪ E TF β .
For the main part of the sum in (4.5) we use the scaling law (take λ = √ ρ j and µ = βρ j in Lemma 3.4) to write

E 0 (Q j , β, M j ) = ρ j E 0 (L βρ j Q, 1, L 2 βρ j )
with Q the unit square. Then

j:Q j ⊆Sε E 0 (Q j , β, M j ) = j:Q j ⊆Sε L 2 βρ 2 j e(1, 1) + j:Q j ⊆Sε L 2 βρ 2 j E 0 (L j Q, 1, L 2 j ) L 2 j -e(1, 1)
with, provided ε is suitably small and in view of the lower bound in (4.2) and the fact that we sum over squares included in S ε , L j := L βρ j β η+ s 2(s+2) -ε/2 -→ +∞, uniformly with respect to j = 1, . . . N β .

We thus obtain (recall the definition of the thermodynamic energy in (2.5))

E 0 (L j Q, 1, L 2 j ) L 2 j ----→ L j →∞ e(1, 1)
uniformly in j, and deduce that

j:Q j ⊂Sε E 0 (Q j , β, M j ) = (1 + o(1)) βe(1, 1) j:Q j ⊂Sε ρ 2 j L 2 .
Recalling that

ρ j = - Q j ̺ TF β (x) dx,
we recognize a Riemann sum in the above. Using (2.17) and the upper bound in (4.2) we may approximate ̺ TF β by a constant in each square (this is most easily seen by rescaling to ̺ TF 1 and observing that the size of squares then tends to zero), and bound the part of the integral located in the complement of S ε similarly as above to conclude that

j:Q j ⊂Sε E 0 (Q j , β, M j ) = (1 + o(1))βe(1, 1) R 2 ̺ TF β 2 .
Using (2.11) and (2.16) we obtain

|∇V (x)| Cβ s-1 s+2
for any x ∈ S ε . Combining with (4.2) we deduce as above that thus completing the proof of (2.19). We again tile the plane with squares Q j , j = 1, . . . , N β , of side length L = β η satisfying (4.2), and taken to cover the finite disk B β t (0) with

j:Q j ⊂Sε Q j V |u j | 2 = (1 + o(1)) R 2 V ̺ TF
t := 1 2 + s + ε
for some ε > 0 to be chosen small enough. We also denote

Q β := Q j ⊂ B β t (0) L ρ j β β µ (4.7)
where u af = u af β is a minimizer for E af β with unit mass and

ρ j := - Q j |u af (x)| 2 dx.
Define the piecewise constant function ̺af (x) :=

Q j ∈Q β ρ j 1 Q j (x). (4.8)
We claim that one may find some µ > 0 in (4.7), such that

M := R 2 ̺af ---→ β→∞ 1.
(4.9) Indeed, using (2.11) and (2.12) we get that for any

x ∈ B c β t (0) V (x) Cβ st min B c 1 (0) V Cβ st
for β large enough. Thus, using the energy upper bound (4.1) and dropping some positive terms we obtain On the other hand, by definition of Q β ,

β st B c β t (0) |u af | 2 R 2 V |u af | 2 E af β [u af ] Cβ
Q j / ∈Q β Q j |u af | 2 N β β 2µ-1
where N β is the total number of squares needed to tile B β t (0). Clearly, we may estimate N β Cβ 2t L -2 = Cβ 2(t-η) and then

Q j / ∈Q β Q j |u af | 2 Cβ 2t-2η+2µ-1 ≪ 1 (4.11)
because of (4.2), which implies -s/(s + 2) -2η < 0, and provided we take ε and µ positive and small enough, e.g. (recall that L = β η is the side-length of the tiling squares), 0 < ε 1 4

s s + 2 + 2η , 0 < µ ε. (4.12)
Combining (4.10) and (4.11) and recalling that u af is L 2 -normalized proves (4.9). With this in hand we turn to the energy lower bound per se. Let us again set

u af j = u af 1 Q j , M j = ρ j L 2 = Q j |u af | 2 .
Dropping some positive terms we get

E af β = E af β [u af ] Q j ∈Q β Q j -i∇ + βA |u af | 2 u af 2 + V |u af | 2 = Q j ∈Q β Q j -i∇ + βA |u af j e iβφ j | 2 u af j e iβφ j 2 + V |u af j | 2 Q j ∈Q β E(Q j , β, M j ) + Q j V |u af j | 2 Q j ∈Q β ρ j E L βρ j Q, 1, (L βρ j ) 2 + Q j V |u af j | 2 , (4.13)
where the local gauge phase factors are defined as in previous arguments by demanding that (this is again possible because the left-hand side is curl-free in the simply connected domain

Q j ) N β k=1,k =j A |u af k | 2 = ∇φ j , in Q j .
The minimum (Neumann) energy E(Q j , β, M j ) in the square Q j is defined as in (2.4) and we used the scaling laws following from Lemma 3.4 as previously to obtain

E(Q j , β, M j ) = ρ j E L βρ j Q, 1, (L βρ j ) 2
with Q the unit square. Next, we note that (4.2) and (4.7) imply, using (4.12),

L j = L βρ j β µ -→ ∞
uniformly in j for all j such that Q j ∈ Q β . Then, by Theorem 2.1,

Q j ∈Q β ρ j E L βρ j Q, 1, (L βρ j ) 2 = Q j ∈Q β βL 2 ρ 2 j E L j Q, 1, L 2 j /L 2 j = (1 + o(1))βe(1, 1) Q j ∈Q β L 2 ρ 2 j = (1 + o(1))βe(1, 1) R 2 ̺af 2 .
On the other hand, it follows from (2.11) that, on all the squares of Q β ,

|∇V | Cβ s-1 s+2 +ε(s-1)
and thus if Ṽ (x) :=

Q j ∈Q β V (x j )1 Q j (x). (4.14)
we have that

V (x) -Ṽ (x) CLβ s-1 s+2 +ε(s-1) = o(E TF β ), for any x ∈ Q β .
Recalling (4.8) and (4.9) we then have

Q j ∈Q β Q j V |u af j | 2 = R 2 Ṽ ̺af + O Lβ s-1 s+2 +ε(s-1) = R 2 Ṽ ̺af + o E TF β . (4.15)
The last assertion follows from (2.13) and (4.2), provided we take ε small enough, e.g., for s > 1 (recall that the tiling squares have side-length L = β η ),

ε 1 2(s -1) s -1 s + 2 + η . (4.16)
In the very same way however we can put back V in place of Ṽ , obtaining

Q j ∈Q β Q j V |u af j | 2 = R 2 Ṽ ̺af + o E TF β = R 2 V ̺af + o E TF β , (4.17) 
Combining (4.13), (4.15) and (4.17) yields

E af β R 2 V ̺af + (1 + o(1))βe(1, 1) R 2 ̺af 2 + o(E TF β ) (1 + o(1))E TF β [̺ af ] + o(E TF β ) (1 + o(1))E TF β (M ) + o(E TF β ), (4.18) 
where the latter energy denotes the ground state energy of the TF functional (2.9) minimized under the constraint that the L 1 -norm be equal to M . Inserting (4.9) and using explicit expressions as in (2.13) and (2.14), one obtains

E TF β (M ) = (1 + o( 1 
))E TF β in the limit β → ∞, thus completing the proof of (4.6).

4.3. Density convergence. The lower bound in (4.6) together with the energy upper bound (4.1) implies that ̺af , the piecewise constant approximation of ̺ af on scale L = β η , is close in strong L 2 sense to ̺ TF β . We will deduce (2.20) from the following Lemma 4.1 (Convergence of the piecewise approximation). Let ̺af be defined as in (4.8) and ̺ TF β be the minimizer of (2.9). Then

̺af -̺ TF β L 2 (R 2 ) = o(β -1/(s+2) ) (4.19) in the limit β → ∞.
Proof. Combining (4.1) and (4.18) we have

E TF β [̺ af ] E af β + o(1)β s s+2 E TF β + o(1)β s s+2 . (4.20)
The variational equation for ̺ TF β takes the form

2βe(1, 1)̺ TF β + V = λ TF β = E TF β + βe(1, 1) R 2 (̺ TF β ) 2
on the support of ̺ TF β (recall (2.14) and (2.15)). Thus,

R 2 ̺af -̺ TF β 2 = R 2 (̺ af ) 2 + (̺ TF β ) 2 -2 R 2 ̺af ̺ TF β = R 2 (̺ af ) 2 + R 2 (̺ TF β ) 2 - 1 βe(1, 1) R 2 ̺af λ TF β -V + 1 βe(1, 1) E TF β ̺af -λ TF β + βe(1, 1) R 2 (̺ TF β ) 2 = 1 βe(1, 1) E TF β ̺af -E TF β = o(β -2 s+2 ),
where we used (4.20) in the last step.

By the definition (4.8) of ̺af we also have, for any Lipschitz function φ with compact support,

R 2 φ β -1/(s+2) x ̺af (x) dx = N β j=1 Q j φ β -1/(s+2) x ̺af (x) dx = N β j=1 φ β -1/(s+2) x Q j ̺ af (x) dx + O β η-1 s+2 φ Lip = R 2 φ β -1/(s+2) x ̺ af (x) dx + O β η-1 s+2 φ Lip ,
using the normalization of ̺ af . Furthermore, by Cauchy-Schwarz and Lemma 4.1 we obtain

R 2 φ β -1/(s+2) x ̺af (x) -̺ TF β (x) dx = o(1) φ L 2 (R 2 ) .
Since the above estimates are uniform with respect to the Lipschitz norm of φ, we can take η < 1/(s + 2), change scales in the above and recall (2.13) to deduce sup

φ∈C 0 (B R (0)) φ Lip 1 R 2 φ(x) β 2/(s+2) ̺ af (β 1/(s+2) x) -̺ TF 1 (x) dx = o(1), β → ∞,
for fixed R > 0, hence (2.20).

Appendix A. Properties of minimizers

In this appendix we recall a few fundamental properties of the average-field functional (1.1) in a trap V , respectively (2.1) on a domain Ω, as well as their minimizers.

As discussed in [LR15, Appendix], the natural, maximal domain of E af is

D af := u ∈ H 1 (Ω) : R 2 V |u| 2 < ∞ ,
and one may also use that the space C ∞ c (R 2 ) is dense in this form domain w.r.t. E af . Furthermore, [LR15, Appendix: Proposition 3.7] ensures the existence of a minimizer u af ∈ D af of E af β for any value of β ∈ R for confining potentials V , and by a similar proof and the compactness of the embedding H 1 0 (Ω) ⊂ H 1 (Ω) ֒→ L p (Ω), 1 p < ∞, the same holds for E af Ω for any bounded Ω with Lipschitz boundary: Proposition A.1 (Existence of minimizers). Let β ∈ R be arbitrary. Given any V : R 2 → R + such that -∆ + V has compact resolvent, there exists u af ∈ D af with R 2 |u af | 2 = 1 and E af β [u af ] = E af . Moreover, if M 0 and Ω ⊂ R 2 is bounded with Lipschitz boundary then there exists u af ∈ H C ′ (M + E af Ω [u]) 3/2 , and therefore

∇u L 2 (Ω) = ∇u + iβA[|u| 2 ]u -iβA[|u| 2 ]u L 2 (Ω) E af [u] 1/2 + C ′ |β|(M + E af Ω [u]
) 3/2 . Hence, given a minimizing sequence

(u n ) n→∞ ⊂ H 1 (0) (Ω), u n 2 L 2 (Ω) = M, lim n→∞ E af Ω [u n ] = E (0) (Ω, β, M ),
by uniform boundedness and the Rellich-Kondrachov theorem (see, e.g., [LL01, Theorem 8.9]) there exists a convergent subsequence (again denoted u n ) and a limit u af ∈ H 1 (0) (Ω) such that u n → u af in L p (Ω), 1 p < ∞, ∇u n ⇀ ∇u af in L 2 (Ω). Furthermore, by estimating 
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  and this completes the proof of (4.1).4.2. Local density approximation: energy lower bound. Let us now complement (4.1) by proving the lower boundE af

  |u af | 2 Cβ -sε .(4.10)

  1 (0) (Ω) with Ω |u af | 2 = M and E af Ω,β [u af ] = E (0) (Ω, β, M ).Proof. The first part is [LR15, Appendix: Proposition 3.7]. For Ω ⊂ R 2 we have by the Hölder, weak Young, and Sobolev inequalities, as well as Lemma 3.2, thatA[|u| 2 ]u L 2 (Ω) A[|u| 2 ] L 4 (Ω) u L 4 (Ω) C |u| 2 L 4/3 (Ω) ∇w 0 L 2,w (R 2 ) u L 4 (Ω) C ′ |u| 3 H 1 (Ω)

A 2 F

 2 [|u n | 2 ]u n -A[|u af | 2 ]u af 2 A[|u n | 2 -|u af | 2 ]u n 2 + A[|u af | 2 ](u nu) 2as above and using the strong convergence in L p (Ω) for any 1 p < ∞, we have thatA[|u n | 2 ]u n → A[|u af | 2 ]u af in L 2 (Ω).Hence,(∇ + iβA[|u af | 2 ])u af 2 = sup v =1 | ∇u af + iβA[|u af | 2 ]u af , v | = sup v =1 lim n→∞ | ∇u n + iβA[|u n | 2 ]u n , v | lim inf n→∞ sup v =1 | ∇u n + iβA[|u n | 2 ]u n , v | = lim inf n→∞ (∇ + iβA[|u n | 2 ])u n 2 , that is E (0) (Ω, β, M ) E af Ω [u af ] lim inf n→∞ E af Ω [u n ] = E (0) (Ω, β, M ), and furthermore Ω |u af | 2 = lim n→∞ Ω |u n | 2 = M .For completeness, we finish with a derivation of the variational equation associated to the minimization of the energy functional (1.1). Let us denoteJ[u] := i 2 (u∇ū -ū∇u)and for two vector functions F, G : R 2 → R 2 , their convolutionF * G(x) := R (xy) • G(y) dy.Lemma A.2 (Variational equation).Let u = u af be a solution to (2.8). Then-i∇ + βA[|u| 2 ] 2 + V -2β∇ ⊥ w 0 * βA[|u| 2 ]|u| 2 + J[u] u = λu, (A.1)whereλ = E af [u] + R 2 2βA[|u| 2 ] • J[u] + 2β 2 |A[|u| 2 ]| 2 |u| 2 = R 2 1(|∇u| 2 + V |u| 2 ) + 2 • 2βA[|u| 2 ] • J[u] + 3β 2 |A[|u| 2 ]| 2 |u| 2 . (A.2)(Note that the factors 1, 2, resp. 3 correspond to the total degree of |u| 2 in each term.)Proof. Let F[u, ū, λ] := E af [u, ū] + λ(1 -|u| 2 ) = |∇u| 2 + (Vλ)|u| 2 + β 2 |A[|u| 2 ]| 2 |u| 2 + 2βA[|u| 2 ] • J[u] + λ, E 1 [u, ū] := |A[uū]| 2 uū = ∇ ⊥ w 0 (xy) • ∇ ⊥ w 0 (xz)uū(x)uū(y)uū(z) dxdydz, E 2 [u, ū] := A[uū] • i(u∇ū -ū∇u) = ∇ ⊥ w 0 (xy)uū(y) • i(u∇ū -ū∇u)(x) dxdy.We haveE 1 [u, ū + εv] = E 1 [u, ū] + ε ∇ ⊥ w 0 (xy) • ∇ ⊥ w 0 (xz) v(x)u(x)|u(y)| 2 |u(z)| 2 + |u(x)| 2 u(y)v(y)|u(z)| 2 + |u(x)| 2 |u(y)| 2 u(z)v(z) dxdydz + O(ε 2 ), hence at O(ε), x v(x)u(x)A[|u| 2 ] 2 dxy v(y)u(y) x ∇ ⊥ w 0 (y-x)|u(x)| 2 • z ∇ ⊥ w 0 (x-z)|u(z)| 2 dzdxdy z v(z)u(z) x ∇ ⊥ w 0 (zx)|u(x)| 2 • y ∇ ⊥ w 0 (xy)|u(y)| 2 dydxdz = vuA[|u| 2 ] 2 -2 vu∇ ⊥ w 0 * |u| 2 A[|u| 2 ]. Also E 2 [u, ū + εv] = E 2 [u, ū] + ε ∇ ⊥ w 0 (xy)u(y)v(y) • i(u∇ū -ū∇u)(x) + ∇ ⊥ w 0 (xy)|u(y)| 2 • i u(x)∇v(x)v(x)∇u(x) dxdy + O(ε 2 ), hence at O(ε) and using ∇ • A = 0, y v(y)u(y) x ∇ ⊥ w 0 (yx) • 2J[u](x) dxdyi v(x)∇u(x) • A[|u| 2 ](x) dx + i u(x)A[|u| 2 ](x) • ∇v(x) dx ={P I}=-i ∇u•Av-i u(∇•A)v = -2 vu∇ ⊥ w 0 * J[u] -2i v∇u • A[|u| 2 ]HenceF[u, ū + εv, λ] = F[u, ū, λ] + ε v (-∆ + Vλ)u + β 2 |A[|u| 2 ]| 2 u -2β 2 ∇ ⊥ w 0 * |u| 2 A[|u| 2 ]u -2β∇ ⊥ w 0 * J[u]u -2iβA[|u| 2 ] • ∇u + O(ε 2 ),and using(-i∇ + βA[|u| 2 ]) 2 u = -∆u -2iβA[|u| 2 ] • ∇u + β 2 A[|u| 2 ] 2 u,we arrive at (A.1). For (A.2) we use |u| 2 = 1 by multiplying (A.1) with ū and integrating:λ = E af [u] -2β |u| 2 ∇ ⊥ w 0 * (βA[|u| 2 ]|u| 2 + J[u]).We then use that|u| 2 ∇ ⊥ w 0 * A[|u| 2 ]|u| 2 = |u(x)| 2 ∇ ⊥ w 0 (x-y)•∇ ⊥ w 0 (y-z)|u(z)| 2 |u(y)| 2 dxdydz = -∇ ⊥ w 0 (yx) • ∇ ⊥ w 0 (yz)|u(x)| 2 |u(z)| 2 |u(y)| 2 dxdzdy = -A[|u| 2 ] 2 |u| 2 and 2 |u| 2 ∇ ⊥ w 0 * J[u] = |u(x)| 2 ∇ ⊥ w 0 (xy) • i (u(y)∇ū(y)ū(y)∇u(y)) dxdy =y i(u∇ū -ū∇u)(y) • x ∇ ⊥ w 0 (yx)|u(x)| 2 dx dy = -2 J[u] • A[|u| 2 ] to arrive at (A.2).

Because of the periodicity of the exchange phase e iαπ , it is known that such an approximation can only be valid for certain values of α and ̺. See[START_REF] Larson | Exclusion bounds for extended anyons[END_REF][START_REF] Lundholm | Many-anyon trial states[END_REF][START_REF] Trugenberger | Ground state and collective excitations of extended anyons[END_REF] for further discussion.
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