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Abstract. We aim at quantifying the impact of flow state uncertainties in lit-

toral erosion to provide confidence bounds on deterministic predictions of bottom

morphodynamics. Two constructions of the bathymetry standard deviation are

discussed. The first construction involves directional quantile-based extreme sce-

narios using what is known on the flow state Probability Density Function (PDF)

from on site observations. We compare this construction to a second cumulative

one using the gradient by adjoint of a functional involving the energy of the sys-

tem. These ingredients are illustrated for two models for the interaction between

a soft bed and a flow in a shallow domain. Our aim is to keep the computational

complexity comparable to the deterministic simulations taking advantage of what

already available in our simulation toolbox.

1. Introduction

Littoral transformations represent obviously major societal concerns as more than

two third of sand beaches worldwide face erosion or accretion with growing trends

due to expected rises in the sea levels. Tremendous efforts are dedicated to the

understanding of these mechanisms to help their prediction and possibly to develop

protection or attenuation devices.

The literature on coastal morphodynamics is huge [12, 11, 37, 13, 49] and concerns,

for instance, dunes morphodynamics, sediment transports using fluid-induced shear

in the sediment modelling, sea bed friction and the feedback of bed shapes on the

Key words and phrases. Backward propagation, quantile, uncertainty, littoral morphodynamics,
Shallow water equations, sensitivity analysis, worst-case analysis.
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flow, global beach morphodynamics based on long and cross-shore fluxes and beach

lines morphodynamics. Hence, coastal morphodynamics occur over a broad range of

time and length scales. Some events take place over small space and time scales such

as the removal of sediment from the toe of coastal structures which often occurs and

recovers completely during the course of a single tide (hourly basis). The next time

and space scales concern storm response lasting for a few tides (say daily basis).

Here the beach can be modified both long and cross-shore by hundreds of meters.

Recovery between storms will take longer (weekly basis). This classification can

continue with seasonal and inter-annual variability etc. In general, the spatial scale

increases with the time scale and therefore long-shore transport gains in importance

over cross-shore with increasing time scale. The physical models we use in this

work are valid for time scales of a few days and do not account for seasonal and

inter-annual variabilities. However, the proposed Uncertainty Quantification (UQ)

procedures remain valid and can be used with more general models.

In the past, we used minimization principle to design defense structures against

beach erosion [27, 28, 14]. In these works, the designed structures were independent

of time and built once for all. We also considered situations where the structure

changes in time. In particular, we considered the sea bed as a structure with low

stiffness with the fundamental assumption that outside storm periods the bed adapts

to the flow by some sort of minimal sand transport in order to minimize the wave

energy [3, 4]. This formulation permits the application of concepts from control

theory to the evolution of sand beds. We also showed how to define extreme scenarios

using the theory of quantiles when the bed porosity is seen as a random variable

with known probability density function [45].

In this work we would like to extend our uncertainty analysis to account for

flow state uncertainties which can be by nature either aleatoric and/or epistemic.

The former comes, for instance, from non reducible variability in the definition

of incoming waves, and the latter from imperfect models or numerical procedures

[41, 43].
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In particular, we would like to address one aspect of UQ for a parameter ψ when

a target state u∗ used in an inverse problem is uncertain. This is the case, for

instance, minimizing j(ψ) = ‖u(ψ) − u∗‖ to reduce the distance(in some suitable

norm) between a model state u(ψ) and uncertain observations u∗. This work there-

fore concerns backward uncertainty propagation1 and not forward as the aim is to

propagate backward the uncertainty on the state (known or assumed) into the op-

timization parameters (here the shape of the bottom). This is similar to a shape

optimization problem for an unsteady flow by a gradient method and we are in-

terested by the uncertainty on the optimal shape knowing the uncertainty on the

computed or observed state (here the water height). Monte Carlo approaches, or

accelerated versions of them like the multi-level Monte Carlo method [21], are usu-

ally for forward propagation. Typically a multi-level Monte Carlo method has been

used in [38] for the forward propagation of bathymetry uncertainties into the shallow

water solution. One could consider reverse Monte Carlo method which are similar to

Metropolis algorithms for inverse problems, or backward Monte Carlo methods such

as the Markov Chain Monte Carlo (MCMC)[35] or, of course, Ensemble Kalman

Filters (EnKF) [16, 43]. These permit to propagate backward the uncertainty on

the observation into the parameters but their cost is high especially with these large

dimensional problems where the uncertainty is on the state and distributed all over

the domain.

Our goal is to propose low-complexity evaluations of Covψ the covariance matrix

of ψ knowing Covu∗ . A first approach uses quantiles and builds directional extreme

scenarios for the state from which an approximation of the shape covariance matrix

is obtained after two extra inversions. This is similar to the approach adopted in [45]

1 Forward uncertainty propagation aims at defining a probability density function for a functional
j(ψ) knowing those of optimization parameters ψ. This can be done, for instance, through Monte
Carlo simulations or a separation between deterministic and stochastic features using the Karhunen-
Loeve theory (polynomial chaos theory belongs to this class)[19, 58, 20, 56]. Backward propagation
aims at reducing models bias or calibrating models parameters knowing the probability density
function of j [1, 6, 33, 54, 31, 7]. This can be seen as a minimization problem and Kalman filters
[32] give, for instance, an elegant framework for this inversion assimilating the uncertainties on the
observations.



4

but applied not to the sand porosity but to the state or observations. This approxi-

mation is compared to a cumulative construction of the variance during optimization

iterations assuming a local linear relationship between the control parameter (here

the bottom) and the state.

In terms of calculation complexity and code development, we would like to achieve

this without any sampling of a large dimension space. Also, we would like the ap-

proaches to be feasible at a cost nearly comparable to a single deterministic mini-

mization. Finally, we would like both approaches to only use what already available

in terms of code and not to require intense new developments. This makes them

comparable to Monte Carlo type constructions in term of coding complexity but for

reverse propagation.

The paper starts recalling the general minimization framework in which our fluid-

structure coupling is cast. We describe how state variability can be accounted for

in this formulation. Then the two derivations of the bottom covariance matrix are

introduced. These ingredients are then illustrated on a model problem and for a

more realistic coupling involving the shallow water equations.

2. General settings

We are interested in a class of minimization problems where the cost function

involves a parameter u∗ not being an optimization parameter:

(1) min
ψ∈Oad

j(ψ, u∗), u∗ ∈ I ⊂ IRp,Oad ⊂ IRn.

where ψ is the optimization parameter (here the bed parameterization) belonging

to Oad the optimization admissible domain [46]. This is a very general context and

we visited it to address robustness issues in optimization with respect to ψ and u∗

[42, 40, 41, 39]. In this work we are interested in functionals j of the form:

(2) j(ψ, u∗) = f(ψ, u(ψ)) +
1

2
‖Πu(ψ)− u∗‖2,
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where the flow state u(ψ) ∈ IRN is solution of a state equation F (u(ψ)) = 0 (here a

flow model) and operator Π : IRN → Rp makes the state available at data locations

(e.g. an interpolation operator).

2.1. Uncertain data. We assume that the data u∗ are uncertain, independent and

given by their probability density functions here assumed Gaussian N (µi, σ
2
i ), i =

1, ..., p with mean µi and variance of σ2
i . The covariance matrix Covu∗ is therefore

diagonal. Our aim is to use the information on the uncertainty on the observation

data u∗ to estimate the uncertainty on ψ.

The simplest way to measure the effect of these uncertainties on the inversion

result is to proceed with some Monte Carlo like simulations (which we will call

inverse Monte Carlo in section 6). This means we proceed with M independent

inversions for M data sets defined by independent choices compatible with the PDF

of u∗ given by:

N (µi, σ
2
i )→ (u∗i )

m, i = 1, ..., p, m = 1, ...,M.

These independent simulations will produceM optimal control parameters ψmopt, m =

1, ...,M from which statistical moments can be defined (typically the mean and vari-

ance) with a rate of convergence in M−1/2 independent of the size p. Of course, such

generation of scenarios is very computationally demanding even if the calculations

are independent and manageable in parallel. As discussed in the introduction, this

is also because such a Monte Carlo type approaches requires full inversions (to get

ψmopt) for each of the sample point (u∗i )
m and do not only involve direct simulations

(i.e. evaluation of j) as in a forward propagation.

2.2. Link with epistemic uncertainty. Formulation (1)-(2) can also be used to

quantify epistemic uncertainties considering u∗ not as target data but as the state

u∗ corresponding to a first optimal solution ψ∗.
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More precisely, let us proceed first with the solution of a minimization problem

for f and find:

ψ∗ = Argminψ∈Oad
f(ψ, u(ψ)).

Now, let us consider u∗ = u(ψ∗) and assume this is a random variable with known

PDF. For simplicity, let us assume it is centered and Gaussian with variance σ a

function of space. Larger values of σ are introduced where the model is known to

be inadequate. In our situation, with the Saint Venant equations for instance, σ

increases, for instance, toward the beaches. To account for the numerical discrepan-

cies σ can also be, for instance, a function of the mesh and proportional to the linear

interpolation error (σ ∼ LtH(u∗)L) with L being a local vector characterizing the

mesh (i.e. L = (δx1 , δx2) locally defined involving local mesh size along directions

x
i=1,2

for a 2D structured mesh) and H = (∂2u/∂xij)i,j=1,2
the Hessian of the solu-

tion, here taken as a scalar function. The next step is to analyze the impact of this

uncertainty on the solution of the minimization problem and eventually estimate

the covariance matrix Covψ knowing Covu∗ through the second term in (2). We will

discuss in the sequel two solutions to this question.

3. Low-complexity estimation of Covψ

In the sequel, we discuss two low-complexity constructions of Covψ the covariance

matrix [57] of the bathymetry from Covu∗ the covariance matrix of the data:

• section 4 shows how to use α-quantiles and directional extreme scenarios to

build a first approximation to Covψ,

• section 5 shows how to use a local linear relationship between the control

parameter variations δψ and the state variations to provide an approximation

to Covδψ and a second cumulative approximation to diag(Covψ).

We want these constructions to have a cost comparable to a deterministic inversion

and we want to avoid any sampling of a large dimension space.
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4. From α-quantiles and directional extreme scenarios to Covψ

Our first construction uses the concept of α-quantile (denoted by VaR in the

sequel) and directional extreme scenarios from which an estimation of the covariance

matrix of the sea bottom ψ is obtained.

4.1. Bounding the uncertainty domain using α-quantiles. Consider a given

random variable u with its PDF known (either analytic or tabulated). The tail of

the PDF can be characterized defining for a given probability level (0 < α < 1) the

following threshold value:

VaRα = inf{l ∈ IR : P (u > l) 6 1− α}.

Different α-quantile are available. One very well known is the Value at Risk (VaR)

which has been widely used in financial engineering as a measure of risk of loss on

a given asset [30]. Time dependency issue is interesting as it permits to account

for possible improvement or degradation of measurement accuracy as discussed in

[42, 45] or in the context of epistemic uncertainty quantification as described in

section 2.1 for time dependent solutions.

With our quantile in hand, our aim is to define a closed domain of variation for

the uncertain data. Given a threshold 0 6 α < 1, the ith component of the data

u∗i=1,...,p ∈ [µi + VaR−α , µi + VaR+
α ] with VaR−α 6 0 6 VaR+

α with probability α.

We have therefore, with probability α, an uncertainty domain for the data given

by:

Bα(µ) = Πp
i=1[µi − 1.65σi, µi + 1.65σi] ⊂ IRp

In the case of Gaussian probability density functions we have VaR−α = −VaR+
α and

the values at risk are explicitly known. For instance, with, respectively, α = 0.99

and 0.95 we have VaR0.99(N (0, 1)) = 2.33, and VaR0.95(N (0, 1)) = 1.65, and

VaRα(N (0, σ)) = σVaRα(N (0, 1)).
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Figure 1. (u∗)± Directional extreme data sets as the intersection
of Bα(µ) and d = µ+ t ∂u∗j, t ∈ IR.

4.2. Directional Extreme Scenarios (DES). Bα(µ) ⊂ IRp is a large dimen-

sional domain and we cannot seriously consider any sampling of it. However, us-

ing the sensitivity of the functional with respect to the data we can identify two

directional extreme sets of data corresponding to the intersection of Bα(µ) and

d = µ + τ ∂u∗j, τ ∈ IR with µ = (µ1, ..., µp). Let us call these two data sets (u∗)±

defined by:

(3) (u∗)±i = µi ± 1.65 σi

(
∂u∗j

‖∂u∗j‖

)
i

, i = 1, ..., p,

where we have assumed the data independent and their covariance matrix diagonal.

∂u∗j is easy to access for functional (2) as described in the next section. A sketch

of this construction is shown in figure 1.

To measure the impact of this variability on the result of the minimization, we

proceed with two deterministic gradient-based minimizations [29, 52] with an adjoint

formulation for∇ψj with the target data given by (u∗)±. Let us call (ψ∗)± the results

of these inversions: (ψ∗)± = Argminψ∈Oad
j(ψ, (u∗)±).

We have therefore three solutions ψ± = {ψ∗, (ψ∗)±} for our optimization which

can be used to provide confidence bounds for the deterministic inversion. This is a

very small sampling of the domain of variation ψ would have due to the uncertainty

on u∗. Still we think these are important points as we assume monotonic behavior

for the outcome of the minimization with respect to the data which means that

larger deviations in data bring larger variations in the outcome of the minimization.

Also, this suggests that the maximum deviation for the results of the inversion due
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to the uncertainty on the data can be estimated through (ψ∗)+−(ψ∗)−. We consider

the matrix Covψ± :

(4) Covψ± = IE((ψ±)(ψ±)t)− IE(ψ±)IE(ψ±)t,

where the expectations are only evaluated over the sub-sampling ψ±. We are in

particular interested in the standard deviation for each of the components of ψ∗

expressed through diag(Covψ±)1/2. We would like to compare these to diag(Covψ)1/2

build in the next section.

5. Adjoint-based covariance matrix of the bathymetry

We work in the context of a deterministic gradient based minimization using an

adjoint formulation to access ∇ψj(ψ, u(ψ)) with j given by (2) [47, 46]. We would

like to take advantage of our adjoint calculation to estimate diag(Covψ)1/2.

5.1. Sensitivity evaluation. Let us briefly recall the adjoint derivation for a generic

state equation F (u(ψ)) = 0. The gradient of j with respect to ψ writes:

∇ψj =
∂j

∂ψ
+

(
(
∂j

∂u
)t ∇ψu

)t
=
∂j

∂ψ
+

(
(
∂j

∂u
)t (∇uF )−1 ∇ψF

)t
=
∂j

∂ψ
+
(
vt ∇ψF

)t
,

where we have introduced the adjoint variable v solution of:

(5) (∇uF )t v =
∂j

∂u
.

In cases the governing equations are self adjoint (i.e. ∇uF = (∇uF )t), one can use

the corresponding solver with ∂j
∂u

as the right-hand side and simply solve:

∇uFv =
∂j

∂u
.

Also, if F is linear, ∇uF is a constant operator independent of u. The interest of the

adjoint formulation is that the cost of getting∇ψj becomes independent of the size of

ψ. But, the problem with the adjoint approach is that, except for the two situations
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we mentioned (linear or self adjoint state equations), it needs the development of a

new code. This is why we use automatic differentiation when possible. We give an

example of continuous adjoint derivation for a time dependent nonlinear problem in

appendix.

In (2) the functional j involves the least-square deviation at data location between

model and data. ∂uj in the right-hand side of (5) is a vector of size N and can be

obtained writing:

j(ψ, u∗) = f(ψ, u(ψ)) +
1

2
‖Πu− u∗‖2 = f(ψ, u(ψ)) +

1

2
< Πu− u∗,Πu− u∗ >

= f(ψ, u(ψ)) +
1

2
< ΠtΠu, u > − < Πtu∗, u > +

1

2
< u∗, u∗ >,

and we have therefore

∂uj = ∂uf + ΠtΠu− Πtu∗.

On the other hand, ∂u∗j the sensitivity of j with respect to the data needed in

(3) is a vector of size p. We consider ∂u∗j = Πt∂uf(u∗) − (Πu − u∗) = Πt∂uf(u∗)

because we have taken u∗ = u(ψ∗) and the second term in (2) therefore vanishes as

Πu(ψ∗) = u∗.

5.2. From ∇ψj to Covψ . We would like to take advantage of our adjoint calculation

leading to ∇ψj to estimate the covariance matrix of ψ.

Let us start establishing the expression for the covariance matrix of ψ considered

as a vector of zero-mean random variables with independent components. This

means we assume the covariance matrix diagonal which is fine as we are interested

by its diagonal components.

Denote, for simplicity, by u the model solution (also zero mean valued: u← u−µ)

at data location and suppose it is linked to the parameters through a linear model:

u = Lψ. The covariance matrix for u is therefore:

Covu = IE(uut) = IE(L ψψt Lt) = L IE(ψψt) Lt = L Covψ L
t.



11

If the dependency of u with respect to the parameter ψ is nonlinear the analysis still

holds for the linearized model and the uncertainty on ψ can be reached accumulating

those on successive δψ during our minimization procedure.

To illustrate the idea, let us consider the following sequence:

(6) ψ0 = given, ψk+1 = ψk + δψk, k = 0, ..., kmax − 1,

where δψk = −ρ∇ψj(ψk), for instance, in a descent method as we will see in sections

6 and 7. This sequence illustrates the path we take to go from the initial shape ψ0

to the optimal one ψ∗ = ψkmax .

Considering ψk and δψk as random variables we have (this is for each of their

components):

(7) σ2(ψk+1) = σ2(ψk + δψk) = σ2(ψk) + σ2(δψk) + 2Cov(ψk, δψk).

This recurrence permits to accumulate the incremental variances.

Let us discuss how to evaluate Covδψ for a given couple (δψ, δu) omitting sub-

scripts for simplicity. Introducing δu = J δψ with J = ∇ψu we have:

Covδu = J Covδψ J t.

To get Covδψ we need therefore to invert this expression and because the amount

of data can be large and probably impossible to exactly fit, we proceed with a

least-square formulation looking for Covδψ minimizing:

1

2
< J Covδψ J t,J Covδψ J t > − < Covδu,J Covδψ J t > .

First order optimality condition with respect to Covδψ gives:

J tJ Covδψ J tJ − J t Covδu J = 0,

which leads to

Covδψ = (J tJ )−1 J t Covδu J (J tJ )−1,
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and eventually, to

(8) Covδψ = J −1 Covδu J −t =
(
J t Cov−1

δu J
)−1

.

To get Covδψ and knowing Covδu, it is therefore sufficient to evaluate J . The second

expression in (8) is interesting as it involves the inversion of a n×n matrix and gives

a least-square sense to the inversion of N × n matrices.

If the optimization is successful and model u and data u∗ close, we can use the fact

that data are usually independent and use the covariance matrix of the observation

instead of Covu:

Covu ∼ Covu∗ ,

which is then diagonal and its inversion straightforward. The accumulation rule

mentioned above can be applied to Covδu as well giving:

σ2(u∗) = σ2(u0 +

kmax−1∑
k=0

δuk) = σ2(u0) +

kmax−1∑
k=0

σ2(δuk) + 2

kmax−1∑
k=0

Cov(uk, δuk),

where uk = uk−1 + δuk−1 for k > 0. To simplify the calculation we assume zero

uncertainty on the initial state (e.g. a uniform state), intermediate state varia-

tions independent from intermediate states (i.e. Cov(uk, δuk) = 0) and intermediate

variances given by:

σ2(δuk) =
1

kmax
σ2(u∗).

These assumptions guarantee that the total data variance σ2(u∗) is well preserved.

The question is therefore how to efficiently evaluate J . The model at data loca-

tions Πu is obtained applying, for instance, a linear interpolation operator Π to the

model solution u on the mesh. Therefore, we have:

J = Π∇ψu.
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Now recall that ∇ψj is available and has been computed with an adjoint approach

in section 5.1. We now use it to access ∇ψu without extra calculation:

∇ψj =
∂j

∂ψ
+

(
(
∂j

∂u
)t ∇ψu

)t
=
∂j

∂ψ
+

(
(
∂j

∂u
)t Π−1J

)t
,

The first terms in the right-hand sides vanishes for (2) but is non-zero if, for instance,

a Tykhonov regularization term is introduced in the functional [54]. This leads to:

(
∂j

∂u
)t Π−1J = (∇ψj −

∂j

∂ψ
)t,

and eventually to,

(9) J = Π (
∂j

∂u
)−t (∇ψj −

∂j

∂ψ
)t.

(∂j/∂u)−t is a vector of size N with components given by the inverse of those of

(∂j/∂u) divided by N in order to have (∂j/∂u)t.(∂j/∂u)−t = 1.

Alternatively, to avoid numerical difficulties with small components of (∂j/∂u),

(9) can again be seen in a least-square sense involving the inverse of the information

matrix:

(10) J = Π

(
(
∂j

∂u
)(
∂j

∂u
)t
)−1

∂j

∂u
(∇ψj −

∂j

∂ψ
)t.

The information matrix is symmetric. If its condition number is large the Bunch

and Kaufman [5] algorithm can be used writing the matrix as PLDLtP t with P a

permutation matrix, L unit-lower triangular and D block-diagonal with 1×1 or 2×2

blocks. The inversion hence only requires those of simple block-diagonal matrices.

Also rank deficiency can be treated using the Moore-Penrose inverse based on the

eigenvalue decomposition of the information matrix [8]. Under the hypothesis of the

validity of the physical model, this analysis gives indications on the level of backward

sensitivity of the optimization parameters with respect to the model solution which

is also the sensitivity with respect of the deviation between the model and data at
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the data locations as data are independent of ψ:

∇ψu = ∇ψ(u− u∗).

Because the cumulative rule (7) is for the variance, this construction only provides

diag(Covψ) and not the full covariance matrix.

6. An illustrative model

Let us illustrate our purpose on a model problem for the interaction between

the flow surface h(t, x) : IR+ × [−100m,−20m] → IR+ over a bed ψ(t, x) : IR+ ×

[−100m,−20m] → IR+ with h > ψ. The model expresses the changes in the bed

with time due to elevations h(t, x) and also how the flow elevation responds to the

bed evolution.

We consider the following expression for h:

h(t, x) = h0 + β sin(ωx(h0 − ψ(t, x))),

where h0 indicates the level at rest, β and ω are given such that 0 6 β < 1 and

ω > 0. This is a monochromatic wave, but superimposed waves can be considered

as well without restriction. The bed is supposed initially flat ψ(0, x) = ψ0(x) = 1m

and the water height at rest h0 = 1.3m.

To close this model, we need to provide a model for ψ(t, x). Introducing the bed

velocity V , the bed motion can be seen through:

(11) ∂tψ = −V (t, x)∂xψ, ψ(t = 0, x) = ψ0(x).

At this point we still need to link V to h. One can make the hypothesis that the

bed adapts to the flow elevation in order to reduce the functional j:

(12)

j(ψ, h) =
1

2h2
0

(‖h(t, x)‖2 + ‖ψ − ψ0‖2)

=
1

2h2
0

∫ −20

−100

(h2(t, x) + (ψ − ψ0)2)dx.
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The scaling coefficient is chosen in order for ∇ψj to be dimensionless (here j and ψ

are in meter).

The simplest path to minimize j is following:

(13)

∂tψ = −ρ∇ψj, ψ(0, x) = ψ0(x),

with ∇ψj = jψ + jhhψ

= (−hβωx cos(ωx(h0 − ψ)) + (ψ − ψ0)) /h2
0,

where ρ(m/s) > 0 models the receptivity of the bed and is constant for a homoge-

neous bed. Larger ρ indicates larger bed porosity.

Considering the two expressions (11) and (13) for the evolution of ψ, the velocity

V can now be expressed as V (t, x) = ρ∇ψj/∂xψ. We have now a closed relation

between h and ψ for given ρ which describes the bed characteristics. Figure 2 shows

snapshots of h∗, ψ∗ and V for an example of interactions starting from a flat bed

and for an initial monochromatic wave. It shows how the coupling decreases the

wave heights and therefore the wave energy. For regular beds, this model suggests

that the bed velocity increases when the bed is or gets flat. In other words, flat beds

appear being unstable which is something one observes in nature. Also, V has jumps

where the bed is irregular. Finally V is bounded, for instance because of the orbital

distribution of the motion of the fluid particles beneath the surface with decreasing

velocity toward the bed. V cannot exceed this limit. The figure shows snapshots of

an estimation of this bound Vmax for the bed velocity V . One sees that the particles

on the bed cannot move faster than at 5 cm/s. Establishing this bound is discussed

in section 7 for a more sophisticated flow model.

Now that the model is defined and a first interaction between h and ψ analyzed

giving the coupled solution (ψ∗, h∗), we would like to analyze the variability of the

bed ψ∗ due to uncertainty on the state h∗ using the two approaches described in the

previous sections. In both constructions, we assume having some knowledge of the

state variability. Hence, we need to know σh and, as suggested in section 2.1, we

can assume it proportional to the linear interpolation error together with a cut-off
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Figure 2. Snapshots of surface elevation h∗(t, x)(m), bed
ψ∗(t, x)(m), maximum absolute bed velocity Vmax(t, x)(m/s) and bed
velocity V (t, x)(m/s) for the model of section 6. This corresponds
to 2 hours of coupling minimizing functional (12). Initial (at t = 0)
quantities are also shown.

to impose a minimum uncertainty level: σh(t, x) = δx2 max(0.05, |∂2
xh(t, x)|) with

δx ∼ 0.8m being the mesh size for a 100 points mesh of the [−100,−20] calculation

domain. This is therefore a function of both time and space.



17

6.1. Extreme scenarios. The first construction builds extreme scenarios for h:

(14) (h∗)±(t, x) = h∗(t, x)± 1.65 σh(t, x)
∂h∗j

‖∂h∗j‖
,

where ∂h∗j = h∗(t, x)/h2
0 and proceeds with two couplings minimizing respectively:

(15) j± = j +
1

2h2
0

‖h(t, x)− (h∗)±(t, x)‖2,

giving two scenarios (ψ∗)±. These scenarios permit to build an estimation of σψ(t, x) =

diag(Covψ±)1/2 using (4). This is shown in figure 3. One sees that a same level of

uncertainty on the state h does not produce necessarily equidistributed variability

on the bottom ψ. These constructions can take place at any time and not only at the

end of the coupling. For instance, results in figure 3 are obtained after 30 minutes

of coupling

6.2. Covψ matrix from Covh. Let us pursue our construction of Covψ following

section 5 and compare its outcome to the previous extreme scenarios estimation of

diag(Covψ±)1/2. Having in hand ∇ψj from (13) we follow the linear analysis and

the cumulative construction presented in section 5 where the state u is replaced by

h and where kmax = 200 iterations of coupling have been applied over more than

two hours. The functional j is given by (12) and we have ∂j/∂ψ = (ψ − ψ0)/h2
0

and ∂j/∂h = h/h2
0 and Π = Id in (10) as the state is considered everywhere in

the domain for the analysis. Figure 4 compares diag(Covψ±)1/2 and diag(Covψ)1/2.

These constructions are compared to the result by an inverse Monte Carlo simulation

described in section 2.1 with a sampling of size 1000. This is only feasible for such

a simple model and it should be seen as a reference solution. The results show

that the two approximations recover the right spatial distribution of the standard

deviation with some over or underestimation of the maximum variability for ψ due,

in one hand, to the cumulative nature of the variance in the second construction

and, on the other hand, due to the reduced sampling used in the first. Overall

one can consider that the constructions are useful for cheap backward uncertainty
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Figure 3. Upper: h∗(t = 1h, x) and errorbars illustrating state vari-
ability through σh(t = 1h, x). Lower: ψ∗(t = 1h, x) and errorbars
given by σψ = diag(Covψ±)1/2.

quantification in situations where the Monte Carlo approach would be out of reach.

We discuss this issue more extensively in the next section.

7. Uncertainty quantification for the evolution of the bed of a

shallow water

Let us now discuss how the ingredients of the paper can be used to derive confi-

dence bounds for the evolution of a shape under external forces. This is useful, for

instance, in the definition of extreme scenarios in littoral erosion.
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Figure 4. Comparisons between three constructions of
diag(Covψ)1/2 (in meter) at the same instant. The DES esti-
mation underpredicts and the cumulative adjoint based construction
overpredicts the Monte Carlo prediction.

7.1. Flow-bottom interactions. We consider the interactions between the bottom

of a shallow domain, seen as a soft shape, and the water motion described by shallow

water equations. The sea bed ψ changes with time following the changes in the

state given by the flow variables U. We use a bed parameterization based on the

bathymetry given at all the nodes of the fluid mesh [4, 3].

The model for the sea bed evolution is based on the minimization of a time

dependent functional J involving the state evolution in time, solution of a state

equation. We consider the Saint Venant shallow water equations as state equations

for the fluid with U = t(h, hu) where u = t(u, v) is the depth-averaged velocity with

u and v the scalar components in the horizontal directions and h the local water

depth:

∂tU + F (U, ψ) = 0, with initial and boundary conditions,
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where

(16) F (U, ψ) =

 ∇.(hu)

∇.(hu⊗ u) + gh∇(h+ ψ)

 ,

where g(m.s−2) is acceleration due to the gravity.

As in our illustrative problem of section 6, J is minimized looking for the evolution

in time of ψ following:

(17) ∂tψ = −ρ(t, x)∇ψJ, ψ(t = 0, x) = ψ0(x) = given,

where ρ(t, x) is a positive parameter which depends on the local porosity of the bed

and quantify its receptivity to flow perturbations. The physical time scales for the

fluid and structure (bed motion) are quite different. Indeed, flows have time scales

of the order of seconds and the sea bed motion takes place over hours.

The cost function involves the state evolution as, for instance, in:

(18) J = K

∫ t

t−T
j(ψ,U(ψ, τ))dτ,

where T indicates a time dependency window and also permits to introduce a dif-

ference in time scales between sea bed and flow motions. The scaling K is to make

∇ψJ dimensionless. One looks for the bed acting as a flexible structure and adapting

to the flow conditions in order to minimize some energy-based functional. In [3, 4]

we consider a functional made of the L2 norm of the deviation of the wave elevation

from a low frequency component by a moving average over a time interval T :

(19) η(t, x) = h(t, x)− h(t, x) with h(t, x) =
1

T

∫ t

t−T
h(τ, x)dτ,

and involving a constraint on sand displacements requiring minimal bottom changes

from the bathymetry ψ(t−T ) at the beginning of a time interval of influence [t−T, t]:

(20) J =
1

|Ω|1/2Th2
0

∫ t

t−T

∫
Ω

(
η2 + (ψ(τ, x)− ψ(t− T, x))2

)
dτdΩ,

where Ω is the observation domain and h0 is the water level at rest.
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If the simulation takes place in a closed domain Ω the amount of the material

making the bed must be conserved:

(21)

∫
Ω

∂tψ dω = 0 or

∫
Ω

ψ dω = constant,

which is a global constraint on the shape. In [45] we showed why this constraint

implies that a basin experience cannot represent the evolution of a bottom in open

sea and that the conclusions of such experiences should not simply be extended to

open sea sites.

Also, as in the model problem, an equivalent bed velocity can be defined:

(22) ∂tψ = −V (t, x)∇xψ with V = (ρ∇ψJ/∂x1ψ, ρ∇ψJ/∂x2ψ).

This permits to provide upper bounds for local bed deformation velocity using the

orbital velocity damping function [53]:

ϕ(x, x3) =
cosh(k(x)(h(x) + x3(x)))

cosh(k(x)h(x))
,

where x3 indicates the vertical direction with x3 = −h(x) being the bottom at

location x = (x1, x2) and k(x) = 2π/λ(x) the wave number. Figure 5 shows three

instances of ϕ over the depth for different wave numbers.

Figure 5. ϕ(., x3) (right) describes how the orbital velocity dimin-
ishes with water depth for different wave numbers and its application
to the bottom shown in figure 6.
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However, in the context of a Saint Venant model getting λ(x), and therefore k(x),

is not simple as the simulation only provides instantaneous vertically mean valued

quantities. We introduce a linear approximation for the decay of λ(x) toward the

beach:

λ(x) ∼ λ(xin) max(0.1,
‖x− Γb‖
‖xin − Γb‖

),

where ‖x−Γb‖ is the distance of a given point to the beach Γb (i.e. where h 6 10−3)

and ‖xin−Γb‖ the distance of a given point on the inlet boundary Γin to the beach. In

frozen bed simulations for the cases discussed here, a posteriori analysis gives a value

of h(xin) ∼ 4m and k(x)h(x) between 1 and 4. Using these information, we make

the following assumption for the maximal gradient-based local shape deformation:

|∂tψ| 6 max(ϕ(x, x3 = −h) (|u∂x1ψ|+ |v∂x2ψ|) , 0.1‖u(x)‖).

The lower cutoff becomes active when the bed is or becomes flat which we saw is an

unstable situation [45]. Figure 5 shows the damping orbital function ϕ(x, x3 = −h)

for the simulation shown in figure 6. As this estimation is destined to establish

bounds for the instantaneous bed deformation dynamics, an accurate definition is not

necessary. Actually, this should be seen as a source of uncertainty to be accounted

for in the definition of the uncertainty on the bed deformation. This uncertainty

can be combined together with the uncertainty on the bed receptivity ρ(t, x), for

instance, using quantile-based scenarios as shown in [45, 42]. In this work we assume

ρ constant which means the bed is constituted of a single sand type.

7.2. Shallow water solver. Shallow water equations are discretized by a finite

volume formulation [51]. Our finite volume implementation preserves steady state

solutions on non flat sea beds in the absence of perturbations [15, 2]. It is also suit-

able for the capture of wetting and drying phenomena [17, 36]. Four boundary con-

ditions are needed at slip, inlet, shoreline and outlet boundaries. The slip boundary

condition (u.n = 0) is naturally taken into account in a finite volume formulation.

The outlet condition is a transmissive boundary condition. Values at boundary cells
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are obtained by second order extrapolations normal to the boundary from the values

inside the domain. To describe incoming waves we use an absorbing/generating inlet

boundary condition where the values of water depth are prescribed. In subcritical

regimes, characteristic curves and Riemann invariants provide normal velocity. In

open sea we allow for reflected waves to freely exit the domain [48]. This is another

major difference between basin experiments and open sea. A numerical simulation

of a basin can account for outgoing waves but an experimental set up cannot. In

our implementation the waves are produced on the inlet boundary where the water

wave elevation is represented by the addition of N monochromatic waves:

(23) h(t) = h0 + 2A
∑

i=1,..,N−1

sin

(
ωi + ωi+1

2
t

)
cos

(
ωi − ωi+1

2
t

)
,

with h0 being the water height at rest, A the inlet water wave amplitude and ωi =

2π/Ti the wave pulses2.

7.3. Flow in a basin. Let us consider Ω to be the Sogreah 3D wave basin in Greno-

ble (France) which is a square of side 30 m already mentioned in [4, 3, 45]. Figure 6

shows the initial bottom depth linearly increasing cross-shore. The incoming waves

(23) are defined with h0 = 0.75m, A = 0.12m. We consider two modes with periods

T1 of 3.5s and T2 of 2.5s. The time scale of coupling between the fluid motion and

changes in the bed is taken as T = 3.5s. This means that several time steps are

taken in the flow solver (several hundreds because of the CFL condition in the shal-

low water solver δt 6 0.5δx/(‖u‖+
√
gh)) before a new time step by the bed model

corresponding to one minimization iteration. Figure 6 shows the solution (ψ∗, h∗)

after more than two hours of coupling. This corresponds to kmax ∼ 800 iterations of

coupling as we take T = 3T1 in 20. This is an a priori choice and also a source of

uncertainty. It is present in any coupling strategy. Unlike with a numerical spatial

mesh size or time step, one cannot make it go to zero as there will be no interaction

then. On site observations suggest the coupling should take place at every few wa-

ter waves. The bottom variations decrease when the system achieves an equilibrium

2More realistic conditions can be applied following a Jonswap distribution [10].



24

between the flow perturbations and the bottom motion. One sees in particular that

the model predicts long shore sand bars damping the wave energy; something which

corresponds to on site observations.

Figure 7 shows three instances of the normalized equivalent bottom velocity V

given by (22) illustrating the instantaneous directions of the motion of the bed. One

sees that the adjoint based bottom deformation is equivalent to a transport model

for the bathymetry with an advection velocity bearing very complex patterns both

long and cross-shore. These are instantaneous snapshots and show non intuitive

equivalent instantaneous bottom velocity fields while the final bottom shown in fig-

ure 6 features longshore sand bars observed in nature and low longshore variability.

This is despite we did not enforce the conservation constraint (21). This is an in-

dication of why basin experiments cannot correctly represent open sea phenomena.

Indeed, to represent open sea we would need transparent boundary conditions there

instead of symmetry representing slipping walls. However, the equivalent bottom ve-

locity snapshots clearly show both cross and longshore sand transports along lateral

boundaries incompatible with a lateral slip boundary condition.

7.4. Covψ and Covψ±. Now we would like to proceed with the quantification of the

uncertainties on ψ∗(t, x) following what has been presented for our model problem.

The first construction builds extreme scenarios for the water height. This also

induces variability on the velocity through the shallow water equations. As in our

model problem, knowing σh(t, x) we consider two scenarios around h∗(t, x):

(24) (h∗)±(t, x) = h∗(t, x)± 1.65 σh(t, x)
∂h∗J

‖∂h∗J‖
,

with J given by (20) and proceed with two couplings minimizing respectively:

(25) J± = J +
1

|Ω|1/2Th2
0

∫ t

t−T

∫
Ω

(Πh(t, x)− Π(h∗)±(t, x))2 dτdΩ,

giving two scenarios (ψ∗)±. But, if Π = Id, this would require the storage of all

instances of h∗(t, x) which is very challenging. At this point, we need therefore a
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Figure 6. Initial bottom ψ(0, x), coupled solution (h∗, ψ∗) after more
than two hours of interaction and the moving averaged water level η =
h. Vertical bars indicate longshore variability. Normalized histories of
J and ∇ψJ show that the system reaches some equilibrium.

low-storage solution to make the approach viable. One alternative is to only consider

q snapshots and Π will then be an indicator function Π = 1{ti,i=1,...,q}. But, this will

bring new questions on the robustness and sensitivity of the approach with respect to

the choice of these snapshots. The solution we adopt is to consider for Π the moving

average operator which is linear and therefore makes that the analysis presented in

sections (5.1) and (5) remains valid. This is also physically sound as the average

water level is an important quantity in erosion and submersion phenomena and

deterministic prediction must account for the uncertainty on this quantity. Hence,

we consider:

(26) J± = J +
1

|Ω|1/2Th2
0

∫ t

t−T

∫
Ω

(h(t, x)− (h∗)±(t, x))2 dτdΩ,
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where (h∗)± is built applying (19) to (24):

(h∗)±(t, x) = h∗(t, x)± 1.65
1

T

∫ t

t−T
σh(τ, x)

∂hJ(h∗)

‖∂hJ(h∗)‖
dτ

Which reduces to:

(27) (h∗)±(t, x) = h∗(t, x)± 1.65
1

T

∫ t

t−T
σh(τ, x) η̃(τ, x) dτ with η̃ = η∗/‖η∗‖.

To close this model, we need to provide an expression for σh(t, x) which can account

for both aleatoric or non reducible and epistemic or reducible variability on the

state. We assume zero mean Gaussian uncertainty for h∗ with σh(t, x) linearly

increasing toward the beach. This is justified, in one hand, by the fact that the

shallow water equations are not valid when h tends to zero and, on the other hand,

because we assume the uncertainty on the characteristics of the incoming waves

(the inlet boundary condition) is propagated and amplified by the model toward the

beach. In all cases, as shown in figure 6 the largest variability cross-shore on h∗ is

reached in the swash zone. Of course, this is illustrative and other assumptions can

be made for σh assimilating, for instance, available on site observations. We assume

σh(t, x) is given by:

(28) σh(t, x) = σin
h

1+δ
(t,Γin)

h
1+δ

(t, x) + ε
(γ
‖x− xin‖
‖Γb − xin‖

+ 1),

with typical values of σin = 0.03m, γ = 2, 0 < δ(= 0.2), ε = 10−3 and with h(t,Γin)

being the mean water height along the inlet boundary. The dependency in h is to

avoid lim
h̃→0

σh(t, x) h̃ = 0 toward the beach which would mean no uncertainty there.

Figure 8 shows the covariance matrix Covh = diag (σ2
h) with σh given by (28).

σin needs to be compared to h0 = 0.75m in our simulation which means we assume

about 4% variability in the mean water height. This perturbation already produces

non negligible effects on the bottom. This means that a rise of 3-5% of the sea level

can produce noticeable environmental impacts as it is accompanied by an important

increase in the energy of the system. Figure 9 shows the two extreme scenarios
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(h, ψ)± minimizing J± given by (26) after one hour. Curves are for the mean water

height and the bathymetry with indication of longshore variability. These scenarios

give a first estimation of the impact of the uncertainty on the water height on the

bathymetry.

These scenarios permit to build an estimation of the covariance matrix for ψ

using (4). Figure 10 shows diag(Covψ±)1/2 after 60min. One sees that a same level

of uncertainty on the state h shown in figure 9 does not lead to similar variability

distribution for the bottom ψ. This can be seen, for instance, along a parallel line

to the shore along which the uncertainty on the state is constant.

Finally, the extreme scenarios covariance construction Covψ± is compared to the

cumulative adjoint-based construction Covψ given in section 5 and previously ap-

plied to a model problem in section 6.2. As in the model problem, both constructions

recover similar spatial distribution of the standard deviation. We cannot afford here

an inverse Monte Carlo simulation for comparison. As we expect the cumulative

approach to over-estimate the variance levels, the two constructions can be seen

providing lower and upper bounds for the standard deviation. Also both construc-

tions identify important sensitivity along the lateral boundaries which is another

reason basin experiments should not be used to represent open seas.

Finally, despite the state variability σh(t, x) is assumed maximum in the swash

zone, the bottom variability appears quite low there. Let us consider the following

relative variability with respect to the mean water depth. This quantity permits

to better highlight the variability in the swash zone. It shows that the highest

impact is near and along the swash area and actually in some places up to 40%

of the bathymetry predicted by the deterministic simulation. The adjoint based

construction also predicts high relative variability just before the swash zone. The

figure also compares the longshore distributions of the two estimations of the rela-

tive variabilities. In all cases, this suggests the importance of providing with any

deterministic prediction serving in the definition of beach protection guidelines an
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indication of the associated uncertainties, especially if the interest is on beach lines

morphodynamics.

8. Application with other bed models

The ingredients of the paper have been illustrated with a variational model for

the bed motion used in both the model problem and also together with the shallow

water equations:

(29) ψt = −ρ∇ψJ, ψ(t = 0, x) = ψ0.

This approach has been previously introduced in [3, 4]. It is based on the application

of control theory to the evolution of a low stiffness structure coupled with a fluid

using minimization principles. The fundamental assumption is that the bed adapts

to the flow by some sort of minimal sand transport in order to minimize some energy

expression.

But the discussion of the paper on the impact of flow state uncertainties is not

limited to such a model. Indeed, one well-known approach to model sea bed motion

is through the Exner equation [50]. Also, many techniques have been proposed to

solve the system of Saint-Venant and Exner equations [2, 26, 55]. Below, we show

that our variational model has a similar interpretation.

The Exner equation models the conservation of mass between the bed and trans-

ported sediments.

(30) ψt = − 1

1− λp
∇.q, ψ(t = 0, x) = given,

where λp ∈ [0, 1[ is the porosity of the bed and q is the flux of transported sediments.

To estimate this flux q, scientists propose a variety of formula such as the Meyer-

Peter & Müller or Gras formulas [22]. The former suggests that the flux q is directly

related to the shear stress and the latter to the fluid velocity .
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ρ in our minimization equation (29) should increase with the porosity of the bed.

Indeed, one expects the influence of a same flow condition on a bed to grow for

lighter sands and to be none for rocky beds (i.e. nearly no porosity). Hence, we

consider the following relationship between ρ and λp:

ρ(1− λp) = ρr = cste,

where we typically consider ρr = 0.001m/s. Let us suppose that the porosity is

constant everywhere (i.e. bed of a same sand), then we simply have:

(31) ∇.q = ρr∇ψJ,

where ∇. is the divergence in space and ∇ψ the gradient with respect to the shape

ψ. Consider a one dimensional situation. Our minimization approach is equivalent

to an Exner equation with a nonlocal expression for q:

q(t, x) = q(t,−∞) + ρr

∫ x

−∞
∇ψJ(t, ζ)dζ,

where without harm one can suppose q(t,−∞) = 0 and ∇ψJ(t, ζ) → 0 when ζ →

−∞ as the influence of the flow on the bed decreases offshore with the flow depth

increasing. The nonlocal term depends on the choice of the cost function. Similar

nonlocal terms can be found, for instance, in two models for the motion of sand dunes

sheared by a fluid flow [18, 34]. In these models, the nonlocality only concerns the

space and there is no minimal transport issue involved. The time scale T in (18)

permits to better focus on the differences in the time scales between sea bed and

flow motions. It is derived in order for the computed mean water level to coincide

with on site observations.

9. Concluding remarks

An original procedure for the quantification of the impact of state uncertainties

in littoral erosion has been presented and it has been shown how confidence margins
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can be established for the sea bed evolution predicted by deterministic high-fidelity

simulations.

Two low-complexity backward uncertainty quantification constructions have been

proposed. These are generic and can be used with any deterministic beach mor-

phodynamic platform. Both have been thought in order for the cost of the analysis

to remain comparable to the original deterministic prediction. This makes them

attractive and permits to consider high-fidelity simulation tools and avoids reduced

order modeling usually used in UQ.

Also the approaches have been requested to only use what already available in

terms of code and not to require intense new developments. This makes them com-

parable to Monte Carlo type constructions in term of coding complexity. The first

approach uses PDF quantiles and builds directional extreme scenarios from which

an approximation of the shape covariance matrix is obtained. This approximation

is compared to an incremental construction using a local linear relationship between

the optimization parameter and the state and the adjoint of the functional.

The constructions have been illustrated on a model problem for this fluid-structure

interaction and a more sophisticated model involving the Saint Venant shallow wa-

ter equations. The conclusion is that both approaches seem to give good estimation

of the spatial distribution of the standard deviation for the bathymetry. However,

due to its cumulative nature, the second approach seems to overestimate the vari-

ance levels compared to inverse Monte Carlo predictions. This suggests that the

uncertainties do not sum up necessarily here. This approach rather corresponds to

a worst-case estimation of the variance and provides upper bounds for the variance.

On the other hand, because it is based on a reduced sample, the extreme scenarios

construction rather provides lower bounds. With these bounds in hand two situ-

ations can be considered. Either the two estimations are close, which a posteriori

confirms that the considered reduced sample well represents the extreme scenarios.

This is of major interest from an engineering point of view and the bounds can be

used for the quantification of the impact of state uncertainties on the bed evolution.
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Or the estimations are very different, in which case the worst-case estimation, even

rough, is still of interest for risk management while the reduced sampling should be

considered with great caution as some important scenarios are probably missing.

Also, it has been discussed why conclusions from basin experiments cannot simply

be extended to open seas situations. This is annoying as most of industrial designs

in coastal engineering for sand beaches is still experimental based. We are not in the

situation of wind tunnels or anechoic chambers where the effort mainly goes to the

minimization of the influences of the boundaries. Here we have an extra difficulty

with the sand conservation constraint induced by basin experiments which does not

exist in open sea situations.

From a broader point of view this work enters the domain of epistemic and

aleatoric uncertainty quantification for shape optimization for unsteady fluids. It

permits to quantify our confidence on an optimal shape without any sampling of a

large dimensional parameter space.
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10. Appendix: Sensitivity evaluation by adjoint

Sensitivity evaluation in large dimension needs an adjoint variable approach to

make the cost of the evaluation independent from the size of the control space. In

time dependent problems, this implies storage of all intermediate states which can

be optimized by check-pointing technics [23, 24]. This appendix briefly describes the

adjoint method with a time dependent state equation (the Saint Venant equations

in our case).

Let us consider the following formal dependency chain:

ψ → {U(ψ, τ), τ ∈ [0, T ]} → J(ψ, T ).
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Here, ψ is the independent variable and U and J are the dependent ones. U(ψ, τ)

are solutions in time of

(32) ∂tU + F (U, ψ) = 0, U(0) = U0(ψ).

To be accurate, one should also consider the independent physical parameters such

as those describing the waves. But, this would have introduced unnecessary compli-

cations into the notations.

Consider a functional involving an integral over time:

J(ψ, T ) =

∫
(0,T )

j(ψ,U(ψ, t)).

Linearizing J gives:

J
ψ
(ψ, T ) =

∫
(0,T )

(j
ψ

+ j
U
U

ψ
).

In this expression only U
ψ

is costly to get as it requires the linearization of the

shallow water equations.

The linearized state equation:

(33) ∂t(Uψ
) + F

ψ
(U, ψ) + F

U
(U, ψ)U

ψ
= 0, U

ψ
(0) = U′0(ψ),

permits to write for all function V (where V has the same structure than U):

0 =

∫
(0,T )×Ω

(∂t(Uψ
) + F

ψ
(U, ψ) + F

U
(U, ψ)U

ψ
) V.

Introducing the adjoint operator F ∗
U

, it gives:

0 =

∫
(0,T )×Ω

(−∂tV + F ∗
U

(U, ψ) V)U
ψ

+

∫
Ω

[VU
ψ
]T0 +

∫
(0,T )×Ω

VF
ψ
(U, ψ).

Let us introduce a backward adjoint problem:

(34) ∂tV + F ∗
U

(U, ψ)V = j
U
, V(T ) = 0.
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Therefore, with V solution of the backward adjoint equation (34) with the chosen

final condition one has:∫
(0,T )×Ω

j
U
U

ψ
=

∫
Ω

V(0)U′0(ψ)−
∫

(0,T )×Ω

VF
ψ
(U, ψ).

If there is no direct dependency between the initial condition U(0) and ψ the first

term in the right-hand-side vanishes. Also, for the Saint Venant equations the direct

dependency in ψ is in gh∇ψ in the equations for hu, see (16). Denoting V = (v1,v2)t

with v2 the adjoint variable associated to u, one has in weak form:∫
(0,T )×Ω

VF
ψ
(U, ψ) = −

∫
(0,T )×Ω

g∇.(hv2).

As described in section 7.2 we use either slip or Dirichlet boundary conditions for

the velocity which give for the corresponding adjoint variable slip or homogeneous

Dirichlet conditions removing the boundary term in the weak form. We see that,

unlike with the linearized equation, with ψ of any dimension V is computed only

once. One remarks however that states U are needed in reverse order because

the backward integration in (34). The previous analysis has been implemented by

automatic differentiation [24, 46, 47] applied to our shallow water solver. Tapenade

uses advanced checkpointing techniques to address the previous storage issue [9, 25,

44].
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Figure 7. Three instances of V/‖V ‖ with V the equivalent bottom
velocity given by (22). This indicates the instantaneous directions of
the motion of the bed. Complex directions pattern appear with both
long and cross-shore variability.
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Figure 8. Covariance matrix Covh = diag (σ2
h) with σh given by (28).
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Figure 9. (h, ψ)± are two extreme scenarios obtained minimizing J±

given by (26). The picture shows the moving average over T of the
water height h and the bottom ψ for each of the scenario after one
hour accounting for the uncertainty on the water height introduced
through the covariance matrix Covh shown in picture 8.
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Figure 10. diag(Covψ±)1/2 (left column) and diag(Covψ)1/2 (right
column) after 60min of coupling. Upper pictures show absolute vari-
abilities and middle pictures relative ones with respect to the mean
water depth. Relative variability shows that the highest impact is
near and along the swash zone and up to 40% of the bathymetry pre-
dicted by the deterministic simulation. Lower picture compares the
two bounds and illustrates their longshore distribution.
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