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THE DIRICHLET PROBLEM FOR SECOND ORDER

PARABOLIC OPERATORS IN DIVERGENCE FORM

PASCAL AUSCHER, MORITZ EGERT, AND KAJ NYSTRÖM

Abstract. We study parabolic operators H = ∂t − divλ,x A(x, t)∇λ,x in the parabolic upper half
space R

n+2

+ = {(λ, x, t) : λ > 0}. We assume that the coefficients are real, bounded, measurable,
uniformly elliptic, but not necessarily symmetric. We prove that the associated parabolic measure is
absolutely continuous with respect to the surface measure on R

n+1 in the sense defined by A∞(dx dt).
Our argument also gives a simplified proof of the corresponding result for elliptic measure.

1. Introduction and statement of main results

A classical result due to Dahlberg [8] states in the context of Lipschitz domains that harmonic
measure is absolutely continuous with respect to surface measure, and that the Poisson kernel (its
Radon-Nykodim derivative) satisfies a scale-invariant reverse Hölder inequality in L2. Equivalently,
the Dirichlet problem with L2-data can be solved with L2-control of a non-tangential maximal func-
tion. Ever since Dahlberg’s original work the study of elliptic measure has been a very active area of
research and a number of fine results have been established, see [1, 14,19] for recent accounts of the
state of the art.

In contrast to the study of elliptic measure, the fine properties of parabolic measure are consid-
erably less understood. In [13] a parabolic version of Dahlberg’s result was established for the heat
equation in time-independent Lipschitz cylinders. A major contribution in the study of boundary
value problems and parabolic measure for the heat equation in time-dependent Lipschitz type do-
mains was achieved in [15, 20, 21]. In these papers the correct notion of time-dependent Lipschitz
type cylinders, correct from the perspective of parabolic measure and parabolic layer potentials, was
found. In particular, in [20,21] the mutual absolute continuity of parabolic measure and surface mea-
sure and the A∞-property were established and in [15] the authors obtained a version of Dahlberg’s
result for parabolic measure associated to the heat equation in time-dependent Lipschitz-type do-
mains. In this context the properties of parabolic measures were further analyzed in the influential
work [16], parts of which have been simplified in [27].

Very recently, there have been advances in the theory of boundary value problems for second order
parabolic equations (and systems) of the form

Hu := ∂tu− divλ,xA(x, t)∇λ,xu = 0,(1.1)

in the upper-half parabolic space R
n+2
+ := {(λ, x, t) ∈ R × R

n × R : λ > 0}, n ≥ 1, with boundary
determined by λ = 0, assuming only bounded, measurable, uniformly elliptic and complex coeffi-
cients. In [6, 25, 26], the solvability for Dirichlet, regularity and Neumann problems with L2-data
were established for the class of parabolic equations (1.1) under the additional assumptions that the
elliptic part is also independent of the time variable t and that it has either constant (complex) coef-
ficients, real symmetric coefficients, or small perturbations thereof. Focusing on parabolic measure,
a particular consequence of Theorem 1.3 in [6] is the generalization of [13] to equations of the form
(1.1) but with A real, symmetric and time-independent. This analysis was advanced further in [4],
where a first order strategy to study boundary value problems of parabolic systems with second order
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elliptic part in the upper half-space was developed. The outcome of [4] was the possibility to address
arbitrary parabolic equations (and systems) as in (1.1) with coefficients depending also on time and
on the transverse variable with additional transversal regularity.

In this paper we advance the study of parabolic boundary value problems and parabolic measure
even further. We consider parabolic equations as in (1.1), assuming that the coefficients are real,
bounded, measurable, uniformly elliptic, but not necessarily symmetric. We prove that the associated
parabolic measure is absolutely continuous with respect to the surface measure on R

n+1 (dxdt) in
the sense defined by the Muckenhoupt class A∞(dxdt). As consequences, the associated Poisson
kernel exists, satisfies a scale-invariant reverse Hölder inequality in Lp for some p ∈ (1,∞), and the
Dirichlet problem with Lq-data, q being the index dual to p, can be solved with appropriate control
of non-tangential maximal functions. In particular, our main result, which is new already in the
case when A is symmetric and time-dependent, gives a parabolic analogue of the main result in [14]
concerning elliptic measure. Our proof heavily relies on square function estimates and non-tangential
estimates for parabolic operators with time-dependent coefficients that were only recently obtained
by us in [4] as well as the reduction to a Carleson measure estimate proved in [9]. As we shall
avoid the change of variables utilized in [14], this also gives a simpler and more direct proof of the
A∞-property of elliptic measure.

1.1. The coefficients. We assume that A = A(x, t) = {Ai,j(x, t)}n
i,j=0 is a real-valued (n + 1) ×

(n+ 1)-dimensional matrix, not necessarily symmetric, satisfying

κ|ξ|2 ≤
n∑

i,j=0

Ai,j(x, t)ξiξj, |A(x, t)ξ · ζ| ≤ C|ξ||ζ|,(1.2)

for some κ,C ∈ (0,∞), which we refer to as the ellipticity constants of A, and for all ξ, ζ ∈ R
n+1,

(x, t) ∈ R
n+1. Here, given u = (u0, ..., un), v = (v0, ..., vn) ∈ R

n+1 we write u · v := u0v0 + ...+ unvn.

1.2. Weak solutions. If Ω is an open subset of R
n+1, we let H1(Ω) = W1,2(Ω) be the standard

Sobolev space of complex valued functions v defined on Ω, such that v and ∇v are in L2(Ω) and
L2(Ω;Cn), respectively. A subscripted ‘loc’ will indicate that these conditions hold locally. A function

u is called weak solution to the equation Hu = 0 on R
n+1
+ × R if it satisfies u ∈ L2

loc(R; W1,2
loc(Rn+1

+ ))
and ∫

R

∫∫

R
n+1

+

A∇λ,xu · ∇λ,xφ dxdt dλ−

∫

R

∫∫

R
n+1

+

u · ∂tφ dxdt dλ = 0

for all φ ∈ C∞
0 (Rn+2

+ ).

1.3. Parabolic measure. Given (x, t) ∈ R
n+1 and r > 0 we let Q = Qr(x) := B(x, r) ⊂ R

n be the
standard Euclidean ball centered at x and of radius r, and we let I = Ir(t) := (t− r2, t+ r2). We let
∆ = ∆r(x, t) = Qr(x)× Ir(t) and write ℓ(∆) := r. We will use the convention that cQ and cI denote
the dilates of balls and intervals, respectively, keeping the center fixed and dilating the radius by c
and we let c∆ := cQ× c2I.

Given A real, satisfying (1.2), and f continuous and compactly supported in R
n+1, there exists a

unique (weak) solution u to the continuous Dirichlet problem Hu = (∂t − divλ,xA(x, t)∇λ,x)u = 0 in

R
n+2
+ , u continuous in R

n+2
+ and u(0, x, t) = f(x, t) whenever (x, t) ∈ R

n+1. Indeed, assume f ≥ 0
and let uk, k ≥ 1, be the unique weak solution to Hu = 0 in Ωk := (0, k) × ∆k(0, 0), with boundary

values f(x, t)ψ(||(x, t)||/k) on ∆k(0, 0t), and zero otherwise. Here, ||(x, t)|| := |x| + |t|1/2 and ψ is
a continuous decreasing function on [0,∞) such that 0 ≤ ψ ≤ 1, ψ(r) = 1 for 0 ≤ r ≤ 1/2, and
ψ(r) = 0 for r > 3/4. Then 0 ≤ uk ≤ uk+1 ≤ ||f ||∞ in Ωk and one can deduce, by the maximum
principle and the Harnack inequality, see [24] for these estimates, that

sup
Ωl

|uk − uj| ≤ c(uk − uj)(l, 0, 4l2), if k > j ≫ l.

In particular, u can be constructed as the monotone and uniform limit of {uk} as k → ∞ on the
closure of Ωl for each l ≥ 1. Uniqueness follows from the maximum principle. Furthermore, by the
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maximum principle and the Riesz representation theorem we deduce

u(λ, x, t) =

∫∫

Rn+1

f(y, s) dω(λ, x, t, y, s), for all (λ, x, t) ∈ R
n+2
+ ,

where {ω(λ, x, t, ·) : (λ, x, t) ∈ R
n+2
+ } is a family of regular Borel measures on R

n+1 and we refer to
ω(λ, x, t, ·) as H-parabolic measure, or simply parabolic measure (at (λ, x, t)).

Given r > 0 and (x0, t0) ∈ R
n+1 we let

A+
r (x0, t0) := (4r, x0, t0 + 16r2).

Assume that A satisfies (1.2). Then parabolic measure is a doubling measure in the sense that there
exists a constant c, 1 ≤ c < ∞, depending only on n and the ellipticity constants such that the
following is true. Let (x0, t0) ∈ R

n+1, 0 < r0 < ∞, ∆0 := ∆r0
(x0, t0). Then

ω
(
A+

4r0
(x0, t0), 2∆

)
≤ cω

(
A+

4r0
(x0, t0),∆

)

whenever ∆ ⊂ 4∆0. We refer to [11], [12] and [24] for details. The doubling property of parabolic
measure serves as a starting point for further investigation. In this paper we are interested in scale
invariant quantitative version of absolute continuity of parabolic measure with respect to the measure
dxdt on R

n+1. Given a set E ⊂ R
n+1 we let |E| denote the Lebesgue measure of E.

Definition 1.1. Let (x0, t0) ∈ R
n+1, 0 < r0 < ∞, ∆0 := ∆r0

(x0, t0). We say that parabolic measure
associated to H = ∂t − divλ,xA(x, t)∇λ,x at A+

4r0
(x0, t0) is in A∞(∆0, dxdt) if for every ε > 0 there

exists δ = δ(ε) > 0 such that if E ⊂ ∆ for some ∆ ⊂ ∆0, then

ω
(
A+

4r0
(x0, t0), E

)

ω
(
A+

4r0
(x0, t0),∆

) < δ =⇒
|E|

|∆|
< ε.

Parabolic measure ω belongs to A∞(dxdt) if ω
(
A+

4r0
(x0, t0), ·

)
∈ A∞(∆0, dxdt) for all ∆0 as above

and with uniform constants.

If ω belongs to A∞(dxdt), then ω(A+
4r0

(x0, t0), ·) and dxdt are mutually absolutely continuous
and hence one can write

dω
(
A+

4r0
(x0, t0), x, t

)
= K

(
A+

4r0
(x0, t0), x, t

)
dxdt.

We refer to K
(
A+

4r0
(x0, t0), x, t

)
as the associated Poisson kernel (at A+

4r0
(x0, t0)).

Definition 1.2. For p ∈ (1,∞) we say that ω belongs to the reverse Hölder class Bp(dxdt) if there

exists a constant c, 1 ≤ c < ∞, such that for all ∆0 := ∆r0
(x0, t0) the Poisson kernel K

(
A+

4r0
(x0, t0), ·

)

satisfies the reverse Hölder inequality

(
−

∫
−

∫

∆
(K
(
A+

4r0
(x0, t0), x, t

)
)p dxdt

)1/p

≤ c−

∫
−

∫

∆
K
(
A+

4r0
(x0, t0), x, t

)
dxdt

whenever ∆ ⊂ ∆0.

Note that as parabolic measure has the doubling property the statement that parabolic measure ω
belongs to A∞(dxdt) has several equivalent formulations. Furthermore, A∞(dxdt) =

⋃
p>1Bp(dxdt).

We refer to [7] for more on A∞. For (x, t) ∈ R
n+1, and a function F , we define the non-tangential

maximal function

N∗F (x, t) = sup
λ>0

sup
Λ×Q×I

|F (µ, y, s)|,(1.3)

where Λ = (λ/2, λ), Q = B(x, λ) and I = (t − λ2, t + λ2). Given (x0, t0) ∈ R
n+1, η > 0, we also

introduce the parabolic cone

Γη(x0, t0) := {(λ, x, t) ∈ R
n+2
+ : ||(x− x0, t − t0)|| < ηλ}.(1.4)
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Definition 1.3. Let q ∈ (1,∞). We say that the Dirichlet problem for H in R
n+2
+ with data in

Lq(Rn+1), Dq for short, is uniquely solvable if the following holds. Given f ∈ Lq(Rn+1) then there
exists a unique weak solution u such that

Hu = 0 in R
n+2
+ ,

lim
λ→0

u(λ, ·, ·) = f(·, ·) in Lq(Rn+1) and n.t.,

||N∗u||q < ∞.

Here, n.t. is short for non-tangentially and means u(λ, x, t) → f(x0, t0) for almost every (x0, t0) ∈
R

n+1 as (λ, x, t) → (x0, t0) through the parabolic cone Γη(x0, t0) for some η > 0.

Assume that parabolic measure ω belongs to A∞(dxdt) and, in particular, that ω belong to
Bp(dxdt) for some p ∈ (1,∞). This is equivalent to the solvability of Dq for H, q being the dual
index to p, see for example Theorem 6.2 in [24]. The results in [24] are derived under the assumption
of symmetric coefficients. However, the lemmas underlying the proof of Theorem 6.2 in [24] do not
rely on this assumption.

1.4. Statement of the main result. The following theorem is our main result.

Theorem 1.4. Assume that A satisfies (1.2). Then parabolic measure ω belongs to A∞(dxdt) with

constants depending only n and the ellipticity constants. In particular, there exists p ∈ (1,∞) such

that ω belongs to the reverse Hölder class Bp(dxdt) with p and the constant in the reverse Hölder

inequality depending only n and the ellipticity constants. Equivalently, Dq, where q is the index dual

to p, is solvable.

Theorem 1.4 is new and gives the parabolic counterpart of the corresponding recent result for
elliptic measure obtained in [14], with a simplified argument compared to [14]. As mentioned before,
Theorem 1.4 is new even in the case when A is symmetric and time-dependent. Note that in [18]
the result of Dahlberg was proved for elliptic measure associated to the elliptic counterpart of (1.1)
with symmetric A, that is, in this case the associated Poisson kernel exists and belongs to B2. In
contrast, in the parabolic case it is not clear if such a result holds true if we allow for time-dependent
coefficients (the case of time-independent coefficients was treated in [6] and does give B2).

Theorem 1.4 generalizes immediately to the setting of time-independent Lipschitz domains in
the following sense. Consider the domain {(x0, x, t) : x0 > ϕ(x)} above the graph of the time-
independent Lipschitz function ϕ and consider the equation

∂tu− divx0,xA(x, t)∇x0,xu = 0

in this domain. Using the simple change of variables (λ, x, t) 7→ (λ + ϕ(x), x, t), this equation is
equivalent to an equation in the upper parabolic half space to which Theorem 1.4 applies. In contrast,
this argument does not apply to a time-dependent domain of the form {(x0, x, t) : x0 > ϕ(x, t)} as
the change of variables (λ, x, t) 7→ (λ + ϕ(x, t), x, t) with ϕ Lipschitz in both x and t destroys the
structure of the equations studied here. If ϕ is only Lipschitz with respect to the parabolic metric,
that is, Lipschitz continuous in x and 1/2-Hölder continuous in t, then more elaborate changes of
variables have to be employed but this changes the nature of the assumption on the coefficients,
see [16] for details.

1.5. Outline of the proof of Theorem 1.4. The proof consists of three parts: a reduction to
a Carleson measure estimate, the construction of a particular set F , and the proof of the Carleson
measure estimate by partial integration. These three parts have four sources of insights [4, 9, 14,19].
In general, c will denote a generic constant, not necessarily the same at each instance, which, unless
otherwise stated, only depends on n and the ellipticity constants. We often write c1 . c2 when we
mean that c1/c2 is bounded by a constant depending only n and the ellipticity constants.
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Reduction to a Carleson measure estimate. The key insight in [19] is that the A∞-property of elliptic
measure follows once a certain Carleson measure condition is verified. More recently, this idea has
also been implemented in the parabolic context: On pp.19-22 in [9] it is shown that in order to
conclude ω ∈ A∞(dxdt) it suffices to prove the following result, which we state here as our second
main theorem.

Theorem 1.5. Let S ⊂ R
n+1 be a bounded Borel set and let u(λ, x, t) := ω(λ, x, t, S) be the corre-

sponding weak solution to (1.1) created by the H-parabolic measure ω. Then u satisfies the following

Carleson measure estimate: for all parabolic cubes ∆ ⊂ R
n+1,

∫ ℓ(∆)

0

∫∫

∆
|∇λ,xu|2 λ dxdt dλ . |∆|.(1.5)

Remark 1.6. Theorem 1.5 is a priori equivalent to the statement that (1.5) holds for all parabolic
cubes whenever u is the unique solution to the continuous Dirichlet problem for Hu = 0 with
continuous compactly supported boundary data f satisfying |f | ≤ 1, see Remark 5 in [9]. Note
that in this case |u| ≤ 1 by the maximum principle. This reformulation has the advantage that it
allows one to assume that A is smooth as long as all bounds depend on A only through its ellipticity
constants, see p. 20 in [16] for this type of reduction.

Based on Remark 1.6 we can assume qualitatively that A is smooth and we are left with the task
of proving the Carleson measure estimate (1.5) if u is any weak solution to (1.1) bounded by |u| ≤ 1.
The fact that u could be chosen continuous up to the boundary will not enter the argument.

Using that ∂λu is a solution to Hu = 0 (A is independent of λ), integration by parts in the integral
in (1.5) and the standard Caccioppoli inequality on (parabolic) Whitney cubes, see Lemma 2.1 below,
it follows that to prove (1.5) it suffices to prove for all parabolic cubes ∆ the inequality

∫ ℓ(∆)

0

∫∫

∆
|∂λu|2 λ dxdt dλ . |∆|.(1.6)

Furthermore, as our equations have real and uniformly elliptic coefficients, the solution ∂λu satisfies
De Giorgi-Moser-Nash estimates, see for example Lemmas 3.4 and 3.5 in [16]. From a John-Nirenberg
Lemma for Carleson measures, Lemma 2.14 in [5], it follows that for (1.6) it is enough to prove that
the following holds: for each parabolic cube ∆ ⊂ R

n+1, r := ℓ(∆), there is a Borel set F ⊂ ∆ with
|∆| . |F |, such that

∫ r

0

∫∫

F
|∂λu|2 λdxdt dλ . |∆|.(1.7)

This completes our reduction to a Carleson measure estimate. To avoid duplication with [9] and for
the sake of brevity, we will not give more details concerning these facts. Instead we will simply prove
Theorem 1.5 and Theorem 1.4 by verifying (1.7) for a properly constructed set F and this is the
main contribution of the paper.

Construction of the set F . In the context of elliptic measure the freedom of having a set F ⊂ ∆ at
one’s disposal in (1.7) was cleverly brought into play in [14] via an adapted Hodge decomposition.
Inspired by this, we look for a parabolic Hodge decomposition. To this end, we split the coefficient
matrix A as

A(x, t) =

[
A⊥⊥(x, t) A⊥‖(x, t)
A‖⊥(x, t) A‖‖(x, t)

]
.(1.8)

Then A⊥‖ is an n-dimensional row vector and A‖⊥ is an n-dimensional column vector. We have a
similar decomposition of A∗, which is the transpose of A since A has real coefficients.

Introduce the parabolic operator H‖ := ∂t − divxA‖‖∇x and its adjoint H∗
‖ := −∂t − divxA

∗
‖‖∇x

on R
n+1. Let us recall that H‖ and H∗

‖ admit the following hidden coercivity used systematically

in [4, 6, 25, 26]. In fact, it appeared before in [17]. First, we define the homogeneous energy space

Ė(Rn+1) by taking the closure of test functions v ∈ C∞
0 (Rn+1) with respect to the norm

‖v‖2
Ė(Rn+1)

:=

∫∫

Rn+1

|∇xv|2 + |D
1/2
t v|2 dxdt
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and identifying functions that differ only by a constant. Here, the half-order t-derivative D
1/2
t

is defined via the Fourier symbol i|τ |1/2. This closure can be realized in L2(Rn+1) + L∞(Rn+1)
and modulo constants Ė(Rn+1) becomes a Hilbert space, see for example Section 3.2 in [4]. The
corresponding inhomogeneous energy space E(Rn+1) = Ė(Rn+1) ∩ L2(Rn+1) is equipped with the
obvious Hilbertian norm. Denoting by Ht the Hilbert transform with respect to the t-variable, we

can factorize ∂t = D
1/2
t HtD

1/2
t and this in turn allows us to define H‖ as a bounded operator from

Ė(Rn+1) into its (anti)-dual Ė(Rn+1)∗ via

(H‖u)(v) :=

∫∫

Rn+1

D
1/2
t u ·HtD

1/2
t v +A‖‖∇xu · ∇xv dxdt.(1.9)

The hidden coercivity of the sesquilinear form on the right-hand side now pays for this operator being
invertible with operator norm depending only on n and the ellipticity constants of A‖‖, see Section 7
of [17] or Lemma 5.9 in [6]. An analogous construction applies to H∗

‖. Considering a parabolic cube

∆ = ∆r ⊂ R
n+1, we let χ8∆ = χ8∆(x, t) be a smooth cut off for 8∆ which is 1 on 8∆, vanishes

outside of 16∆ and satisfies r|∇xχ8∆| + r2|∂tχ8∆| ≤ c. Then, there exist ϕ, ϕ̃ ∈ Ė(Rn+1) solving

H∗
‖ϕ = divx(A⊥‖χ8∆), H‖ϕ̃ = divx(A‖⊥χ8∆),(1.10)

and satisfying the a priori estimates
∫∫

Rn+1

|∇xϕ|2 + |HtD
1/2
t ϕ|2 dxdt .

∫∫

16∆
|A⊥‖|2 dxdt . |∆|,

∫∫

Rn+1

|∇xϕ̃|2 + |HtD
1/2
t ϕ̃|2 dxdt .

∫∫

16∆
|A‖⊥|2 dxdt . |∆|.

(1.11)

As we can undo the factorization of ∂t leading to (1.9) if v is a test function, (1.10) holds a fortiori

in the usual weak sense. More in the spirit of operator theory, Lemma 4 in [3] shows that the part
of H‖ in L2(Rn+1) with maximal domain

D(H‖) = {u ∈ E(Rn+1) : H‖u ∈ L2(Rn+1)}

is maximal accretive, that is, for every µ ∈ C with Reµ > 0 the operator µ + H‖ is invertible

and ‖(µ + H‖)−1‖L2→L2 ≤ (Reµ)−1 holds. The recent resolution of the Kato problem for parabolic

operators identifies the domain of its unique maximal accretive square root as D(H
1/2
‖ ) = E(Rn+1)

with a homogeneous estimate

‖H
1/2
‖ v‖2 ∼ ‖∇xv‖2 + ‖HtD

1/2
t v‖2 for v ∈ E(Rn+1),

see Theorem 2.6 in [4]. Thus, writing

(µ+ H‖)−1v = H
−1/2
‖ (µ+ H‖)−1H

1/2
‖ v,

we can extend (µ+H‖)−1 by density from E(Rn+1) to a bounded and invertible operator on Ė(Rn+1).
Again we also have the analogous results for H∗

‖. In particular, for m a natural number and λ > 0

we can introduce the higher order resolvents of ϕ, ϕ̃,

P ∗
λϕ := (1 + λ2H∗

‖)−mϕ, Pλϕ̃ := (1 + λ2H‖)−mϕ̃,(1.12)

within the homogeneous energy space Ė(Rn+1). In the further course we will fix m large enough
(without trying to get optimal values) to have a number of estimates at our disposal.

Coming back to the actual construction of F , we also introduce the parabolic maximal differential
operator

Dv(x, t) := sup
̺>0

−

∫
−

∫

∆̺(x,t)

|v(x, t) − v(y, s)|

||(x− y, t− s)||
dy ds, v ∈ Ė(Rn+1),(1.13)

which maps boundedly into L2(Rn+1) as we shall prove later on in Lemma 2.3. Here, ‖ · ‖ indicates
again the parabolic distance. In particular, (1.11) implies

‖Dϕ‖2 + ‖Dϕ̃‖2 . |∆|
1

2 .(1.14)
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The non-tangential maximal function operator N∗ acting on measurable functions F on R
n+2
+ was

introduced in (1.3). For (x, t) ∈ R
n+1 we also introduce the integrated non-tangential maximal

function

Ñ∗F (x, t) = sup
λ>0

(
−

∫
−

∫
−

∫

Λ×Q×I
|F (µ, y, s)|2 dµ dy ds

)1/2

,(1.15)

where Λ = (λ/2, λ), Q = B(x, λ) and I = (t − λ2, t + λ2). If g : Rn+1 → R and is locally integrable
we let M(g) be the (n+ 1)-dimensional (parabolic) Hardy-Littlewood maximal function

M(g)(x, t) = sup
̺>0

−

∫
−

∫

∆̺(x,t)
|g| dy ds

and we let Mx and Mt denote the standard (euclidean) Hardy-Littlewood maximal operators in the
x and t variables only. Our construction of F is then done through the following definition.

Definition 1.7. Let ∆ be fixed and also fix m = n + 1. Given κ0 ≫ 1, we let F ⊂ 16∆ be the set
of all (x, t) ∈ 16∆ such that the following requirements are met:

(i) M(|∇xϕ|2)(x, t) + M(|∇xϕ̃|2)(x, t) ≤ κ2
0,

(ii) Mx Mt(|HtD
1/2
t ϕ|)(x, t) + Mx Mt(|HtD

1/2
t ϕ̃|)(x, t) ≤ κ0,

(iii) Dϕ(x, t) + Dϕ̃(x, t) ≤ κ0,

(iv) N∗(∂λP
∗
λϕ)(x, t) +N∗(∂λPλϕ̃)(x, t) ≤ κ0,

(v) Ñ∗(∇xP
∗
λϕ)(x, t) + Ñ∗(∇xPλϕ̃)(x, t) ≤ κ0.

Given ∆ and κ0 ≫ 1, let F be defined as above. Then, using the weak type (1, 1) of M, the strong
type (2, 2) of Mx Mt, the estimates (1.11) and (1.14) and the L2-bounds for the non-tangential
maximal functions that will later be obtained in Lemma 4.2 and Lemma 4.5, it follows that

|16∆ \ F | . (κ−2
0 + κ−1

0 )|∆|.

In particular, we can now choose κ0, depending only on n and the ellipticity constants, so that

|16∆ \ F |

|∆|
≤ 1/1000.(1.16)

This completes our construction of the set F and from now on κ0 is fixed as stated ensuring that
(1.16) holds.

Proof of the Carleson measure estimate. Based on the previous steps, the proofs of Theorem 1.4 and
Theorem 1.5 are reduced to verifying (1.7). To do this we construct, given ∆ = ∆r, F ⊂ ∆ a Borel
set and ǫ > 0, a parabolic sawtooth region above F using parabolic cones of aperture 0 < η ≪ 1.
The parameter η is an important degree of freedom in the argument. In (5.4) we will construct a
(smooth) cut-off function Ψ = Ψη,ǫ such that Ψ(λ, x, t) = 1 on F × (2ǫ, 2r) and Ψ(λ, x, t) = 0 if
λ ∈ (0, ǫ) ∪ (4r,∞), and we let

Jη,ǫ :=

∫∫∫

R
n+2

+

A∇λ,xu · ∇λ,xuΨ2λdxdt dλ.

Then, by ellipticity of A,
∫ r

2ǫ

∫∫

F
|∂λu|2 λ dxdt dλ . Jη,ǫ.(1.17)

Since Ψ has compact support in the upper half space, we can ensure finiteness of Jη,ǫ and hence
everything boils down to the following key lemma:

Lemma 1.8 (Key Lemma). Let σ, η ∈ (0, 1) be given degrees of freedom. Then there exist a fi-

nite constant c depending only on n and the ellipticity constants, and a finite constant c̃ depending

additionally on σ and η, such that

Jη,ǫ ≤ (σ + cη)Jη,ǫ + c̃|∆|.
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Indeed, choosing σ and η small, both depending at most on n and the ellipticity constants, we
first derive

Jη,ǫ ≤ 2c̃|∆|,

where now η is fixed but c̃ is still independent of ǫ. On letting ǫ → 0, we see from (1.17) that the
estimate (1.7) holds. As discussed before, this completes the proofs of Theorem 1.5 and Theorem 1.4.

1.6. Organization of the paper. Section 2 is partly of preliminary nature and we here prove
(1.14). Section 3 is devoted to the important square function estimates underlying the proof of
Theorem 1.8. These estimates rely on recent results established in [4]. In Section 4 we prove the non-
tangential maximal function estimates underlying the statements in Definition 1.7 (iv)-(v). Based on
the material of Sections 2-4 the set F introduced in Definition 1.7 is well-defined and we can ensure
(1.16). In particular, thereby the set F ⊂ 16∆ is fixed as we proceed into Section 5 and Section 6.
In Section 5 we then introduce sawtooth domains above F , we define the cut-off function Ψ = Ψη,ǫ

referred to above and we prove some auxiliary Carleson measure estimates. The proof of Lemma 1.8
is given in Section 6.

2. Technical tools

In this section we collect three technical lemmas that shall prove useful in the further course. We
begin with standard Caccioppoli estimate which we here state without proof.

Lemma 2.1 (Caccioppoli estimate). Let u be a weak solution to ∂tu − divλ,xA∇λ,xu + αu = 0 on

R
n+2
+ where α ∈ L∞(Rn+2

+ ), α ≥ 0, and let ψ ∈ C∞
0 (Rn+2

+ ). Then

∫∫∫
|∇λ,xu|2ψ2 dxdλdt ≤ c

∫∫∫
|u|2|∇λ,xψ|2 dxdλdt

for some finite constant c depending on n and the ellipticity constants of A.

Next, we record a Poincaré-type estimate for functions in the homogeneous energy space Ė(Rn+1).
We use the standard notation for parabolic cubes introduced in Section 1.3.

Lemma 2.2. Let v ∈ Ė(Rn+1) and let ∆̺ = ∆̺(x0, t0) ⊂ R
n+1 be a parabolic cube. Then

1

̺
−

∫
−

∫

∆̺

∣∣∣∣v − −

∫
−

∫

∆̺

v

∣∣∣∣ dxdt . M(|∇xv|)(x0, t0) + Mx Mt(|HtD
1/2
t v|)(x0, t0).

Proof. We write ∆̺ = Q̺ × I̺ and we let

f(t) := −

∫

Q̺

v(x, t) dx,

noting that this function is contained in the homogeneous fractional Sobolev space Ḣ1/2(R), see
Section 3.1 in [4]. Then

−

∫
−

∫

∆̺

∣∣∣∣v − −

∫
−

∫

∆̺

v

∣∣∣∣ dxdt . ̺M(|∇xv|)(x0, t0) + −

∫

I̺

∣∣∣∣f − −

∫

I̺

f

∣∣∣∣ dt

by Poincaré’s inequality in the spatial variable x only. Furthermore, for f ∈ Ḣ1/2(R) we have at hand
the non-local Poincaré inequality

−

∫

I̺

∣∣∣∣f − −

∫

I̺

f

∣∣∣∣ dt ≤ ̺
∑

k∈Z

1

1 + |k|3/2
−

∫

k̺2+I̺

|HtD
1/2
t f | dt,
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see Lemma 8.3 in [4]. Rearranging the covering of the real line by translates of I̺ into a covering by
dyadic annuli, we obtain

−

∫

I̺

∣∣∣∣f − −

∫

I̺

f

∣∣∣∣ dt ≤ ̺
∑

m≥0

2−m −

∫

4mI̺

|HtD
1/2
t f | dσ

≤ ̺
∑

m≥0

2−m −

∫
−

∫

Q×4mI̺

|HtD
1/2
t v| dxdt

≤ 2̺Mx(Mt(|HtD
1/2
t v|)(x0, t0),

where the second step can rigorously be justified using Fubini’s theorem, see Lemma 3.10 in [4]. �

As a consequence, we obtain an important estimate for the parabolic maximal differential operator
D defined in (1.13).

Lemma 2.3. The operator D maps Ė(Rn+1) boundedly into L2(Rn+1).

Proof. Let v ∈ Ė(Rn+1). We first claim that

|v(x, t) − v(y, s)|

‖(x− y, t− s)‖
. M(|∇xv|)(x, t) + Mx Mt(|HtD

1/2
t v|)(x, t)

+ M(|∇xv|)(y, s) + Mx Mt(|HtD
1/2
t v|)(y, s)

(2.1)

holds for almost every (x, t), (y, s) ∈ R
n+1. Indeed, let (x, t) be a Lebesgue point for v and for ̺ > 0

let v̺ denote the average of v over the parabolic cube ∆̺ := ∆̺(x, t). Then, by a telescoping sum
and an application of Lemma 2.2,

|v(x, t) − v̺| ≤
∞∑

k=0

|v2−k−1̺ − v2−k̺|

.
∞∑

k=0

2−k̺

(
M(|∇xv|)(x, t) + Mx Mt(|HtD

1/2
t v|)(x, t)

)

≤ 2̺

(
M(|∇xv|)(x, t) + Mx Mt(|HtD

1/2
t v|)(x, t)

)
.

Furthermore, let also (y, s) be a Lebesgue point for v and assume that (y, s) ∈ ∆̺(x, t). Then
∆̺(x, t) ⊂ ∆2̺(y, s) and we obtain as above,

|v(y, s) − v̺| ≤

∣∣∣∣v(y, s) − −

∫
−

∫

∆2̺(y,s)
v

∣∣∣∣ +

∣∣∣∣−
∫
−

∫

∆2̺(y,s)
v − v̺

∣∣∣∣

. ̺

(
M(|∇xv|)(y, s) + Mx Mt(|HtD

1/2
t v|)(y, s)

)
.

Now, for (x, t) 6= (y, s) as above we can specify ̺ := ||(x− y, t − s)|| and (2.1) follows by adding up
the previous two estimates. In particular, we obtain

Dv(x, t) . M(|∇xv|)(x, t) + Mx Mt(|HtD
1/2
t v|)(x, t)

+ M M(|∇xv|)(x, t) + M Mx Mt(|HtD
1/2
t ϕ|)(x, t)

for almost every (x, t) ∈ R
n+1 and since all occurring maximal operators are L2-bounded, we conclude

‖Dv‖2 . ‖∇xv‖2 + ‖HtD
1/2
t v‖2 as required. �

3. Functional calculus and square function estimates

In this section we prove the important square function estimates for H‖ and H∗
‖ underlying the

proof of Lemma 1.8. Most of this material is taken from [4].
Given µ ∈ (0, π/2) we let

Sµ := {z ∈ C : | arg z| < µ or | arg z − π| < µ}
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denote the open double sector of angle µ. We let

Ψ(Sµ) := {ψ ∈ H∞(Sµ) : ∃ α > 0, C > 0, such that |ψ(z)| ≤ C min{|z|α, |z|−α}}

where H∞(Sµ) is the set of all bounded holomorphic functions on Sµ. Furthermore, recall that an
operator T in a Hilbert space is bisectorial of angle ω ∈ (0, π/2) if its spectrum is contained in the
closure of Sω and if, for each µ ∈ (ω, π/2), the map z 7→ z(z − T )−1 is uniformly bounded on C \ Sµ.
In this case a bounded operator ψ(T ) is defined by the functional calculus for bisectorial operators
and we refer to [23] or [10] for the few essentials of this theory used in this section. Turning to
concrete operators, we represent vectors h ∈ C

n+2 as

h =



h⊥
h‖
hθ


 ,

where the normal part h⊥ is scalar valued, the tangential part h‖ is valued in C
n and the time part

hθ is again scalar valued and let

P :=




0 divx −D
1/2
t

−∇x 0 0

−HtD
1/2
t 0 0


 , M :=




1 0 0
0 A‖‖ 0

0 0 1


 .

Here, M is considered as a bounded multiplication operator on L2(Rn+1;Cn+2) and the parabolic
Dirac operator P is an unbounded operator in L2(Rn+1;Cn+2) with maximal domain. The link with
the parabolic operator H‖ is that (PM)2 and (MP )2 are operator matrices in block form

(3.1) (PM)2 =




H‖ 0 0
0 ∗ ∗
0 ∗ ∗


 , (MP )2 =




H‖ 0 0
0 ∗ ∗
0 ∗ ∗


 ,

where the entries ∗ do not play any role in the following but of course they could be computed
explicitly. Note that taking adjoints in (3.1), hence using (P ∗M∗)2 or (M∗P ∗)2, allows to obtain H∗

‖.

The following theorem provides square function estimates.

Theorem 3.1. The operator PM is a bisectorial operator in L2(Rn+1;Cn+2) with angle ω of bi-

sectoriality depending only upon n and the ellipticity constants of A and the same range as P , that

is, R(PM) = R(P ). Let µ ∈ (ω, π/2) and consider ψ ∈ Ψ(Sµ) non vanishing on each connected

component of Sµ. Then
∫ ∞

0
‖ψ(λPM)h‖2

2

dλ

λ
∼ ‖h‖2

2 if h ∈ R(PM)

and the implicit constants in this estimate depend only upon n, the ellipticity constants of A, µ and

ψ. The same holds true for MP on R(MP ) = MR(P ) and with PM , MP , replaced by P ∗M∗,

M∗P ∗.

Proof. For PM , this is a mere consequence of Theorem 2.3 in [4]: Indeed, this theorem states all
assertions apart from that only the quadratic estimate

∫ ∞

0
‖λPM(1 +λ2PMPM)−1h‖2

2

dλ

λ
∼ ‖h‖2

2 for h ∈ R(PM)

is mentioned. But due to a general result on quadratic estimates for bisectorial operators on Hilbert
spaces, see [23] or Theorem 3.4.11 in [10], this quadratic estimate is in fact equivalent to the set of
quadratic estimates stated above. The statement for MP follows from the fact that this operator is
similar to PM on their respective ranges by MP = M(PM)M−1. The statements for P ∗M∗, M∗P ∗

follow by duality, see again [10,23]. �

Below, we single out some particular instances of the theorem above and reformulate them in
terms of H‖ and H∗

‖ to have direct references later on. Throughout, we let ϕ, ϕ̃ be as in (1.10),

(1.11) and we recall that the resolvent operators P ∗
λ , Pλ were defined in (1.12) for the moment with

m unspecified.
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Lemma 3.2. There exists c, 1 ≤ c < ∞, depending only on n, the ellipticity constants and m ≥ 1
such that

(i)

∫∫∫

R
n+2

+

|∂λP
∗
λϕ|2 + |∂λPλϕ̃|2

dxdt dλ

λ
≤ c|∆|,

(ii)

∫∫∫

R
n+2

+

|λ∇x∂λP
∗
λϕ|2 + |λ∇x∂λPλϕ̃|2

dxdt dλ

λ
≤ c|∆|,

(iii)

∫∫∫

R
n+2

+

|λH∗
‖P

∗
λϕ|2 + |λH‖Pλϕ̃|2

dxdt dλ

λ
≤ c|∆|,

(iv)

∫∫∫

R
n+2

+

|λ2H∗
‖∂λP

∗
λϕ|2 + |λ2H‖∂λPλϕ̃|2

dxdt dλ

λ
≤ c|∆|.

Proof. In the following we will only prove the estimates for Pλϕ̃, the estimates for P ∗
λϕ being proved

similarly with P ∗ and M∗ replacing P and M . Note that ϕ̃ ∈ Ė(Rn+1) and hence the following
calculations can be justified, for example, by approximating ϕ̃ by smooth and compactly supported
functions in the semi-norm of Ė(Rn+1). Keeping this in mind, we may directly argue with ϕ̃. We
begin with (iii). Let

h :=




0
−∇xϕ̃

−HtD
1/2
t ϕ̃


 = P




ϕ̃
0
0



 ∈ R(P ) = R(PM),

and note, using (3.1) and elementary manipulations of resolvents of PM and MP , that


λH‖Pλϕ̃

0
0


 = λ(MP )2(1 + (λMP )2)−m



ϕ̃
0
0


 = M(λPM)(1 + (λPM)2)−mP



ϕ̃
0
0


 = Mψ(λPM)h

where ψ(z) := z(1 + z2)−m. Hence,
∫∫∫

R
n+2

+

|λH‖Pλϕ̃|2
dxdt dλ

λ
. ‖h‖2

2 = ||∇xϕ̃||22 + ||HtD
1/2
t ϕ̃||22 . |∆|,

by an application of Theorem 3.1 and (1.11). This proves (iii). Likewise, (i) and (iv) follow with
ψ(z) = −2mz2(1 + z2)−m−1 and ψ(z) = −2mz3(1 + z2)−m−1, respectively. Finally, to prove (ii) we
write analogously




0
−λ∇x∂λPλϕ̃

−λHtD
1/2
t ∂λPλϕ̃


 = P



λ∂λPλϕ̃

0
0


 = −2mP (λMP )2(1 + (λMP )2)−m−1



ϕ̃
0
0


 = ψ̃(λPM)h

with ψ̃(z) = −2mz2(1+z2)−m−1 and the claim follows by yet another application of Theorem 3.1. �

Lemma 3.3. There exists c, 1 ≤ c < ∞, depending only on n, the ellipticity constants and m ≥ 1
such that

∫∫∫

R
n+2

+

|(I − P ∗
λ )ϕ|2 + |(I − Pλ)ϕ̃|2

dxdt dλ

λ3
≤ c|∆|.

Proof. We have

(I − Pλ)ϕ̃ =

∫ λ

0
∂σPσϕ̃ dσ.

Applying Hardy’s inequality and Lemma 3.2 (i) we see that
∫∫∫

R
n+2

+

|(I − Pλ)ϕ̃|2
dxdt dλ

λ3
.

∫∫∫

R
n+2

+

|∂λPλϕ̃|2
dxdt dλ

λ
≤ c|∆|.

The proof of the estimate for (I − P ∗
λ )ϕ is similar. �
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4. Non-tangential maximal function estimates

The pointwise non-tangential maximal operator N∗ was introduced in (1.3) and its integrated

version Ñ∗ was defined in (1.15). In this section we use the previously obtained square function
estimates to derive bounds for these maximal functions.

Theorem 4.1. Let h ∈ R(PM) and let F (λ, x, t) = (e−λ[P M ]h)(x, t), with [PM ] :=
√

(PM)2. Then

‖Ñ∗F‖2 ∼ ‖h‖2,

where the implicit constants depend only on dimension and the ellipticity constants of A. The con-

clusion remains true also with PM replaced by P ∗M∗.

Proof. For PM , this is Theorem 2.12 in [4]. The same statement can be proved for P ∗M∗. �

In the following P ∗
λϕ, Pλϕ̃ are again as defined in (1.12).

Lemma 4.2. There exists c, 1 ≤ c < ∞, depending only on n, the ellipticity constants and m ≥ 1
such that

‖Ñ∗(∇xP
∗
λϕ)‖2

2 + ‖Ñ∗(∇xPλϕ̃)‖2
2 ≤ c|∆|.

Proof. We only give the proof of the estimate of Ñ∗(∇xPλϕ̃). To start the proof we first note as in
the proof of Lemma 3.2 (ii) that




0
−∇xPλϕ̃

−HtD
1/2
t Pλϕ̃


 = ϑ(λPM)h, h =




0
−∇xϕ̃

−HtD
1/2
t ϕ̃


 = P



ϕ̃
0
0


 ∈ R(PM)

where now ϑ(z) = (1+z2)−m. Thus, −∇xPλϕ̃ = (ϑ(λPM)h)‖ and we have to estimate ‖Ñ∗(ϑ(λPM)h)‖2.
To this end, we first note

‖Ñ∗(e−λ[P M ]h)‖2
2 . ‖h‖2

2 = ‖∇xϕ̃‖2
2 + ‖HtD

1/2
t ϕ̃‖2

2 . |∆|,(4.1)

using Theorem 4.1, the construction of h and (1.11). Now let ψ(z) := ϑ(z)−e−
√

z2

. Tonelli’s theorem
yields

‖Ñ∗(ψ(λPM)h)‖2
2 .

∫ ∞

0
‖ψ(λPM)h‖2

2

dλ

λ
,

see for example Lemma 8.9 in [4] for an explicit proof. Since ψ ∈ Ψ(Sµ) for every µ ∈ (0, π/2), we
deduce from Theorem 3.1 that

‖Ñ∗(ψ(λPM)h)‖2
2 . ‖h‖2

2 . |∆|,

which in combination with (4.1) yields the claim. �

For the λ-derivatives of P ∗
λϕ and Pλϕ̃ we could get L2-bounds for the integrated non-tangential

maximal function immediately from the square function estimate in Lemma 3.2 (i). However, this
would not be enough for our purpose. To derive the required bounds for the pointwise non-tangential
maximal function, we need the following lemma.

Lemma 4.3. For λ > 0 and m ≥ 1, the resolvent Pλ = (1+λ2H‖)−m, defined as a bounded operator

on L2(Rn+1), is represented by an integral kernel Kλ,m with pointwise bounds

(4.2) |Kλ,m(x, t, y, s)| ≤
C1(0,∞)(t− s)

λ2m
(t− s)−n/2+m−1e− t−s

λ2 e−c
|x−y|2

t−s ,

where C, c > 0 depend only on n, the ellipticity constants and m. An analogous representation holds

for (1 + λ2H∗
‖)−m with adjoint kernel K∗

λ,m.
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Proof. It suffices to do it when m = 1 as iterated convolution in (x, t) of the estimate on the right
hand side of (4.2) with m = 1 yields the result.

Let f ∈ C∞
0 (Rn+1). Let u = (1 + λ2H‖)−1f given by the functional calculus of H‖. Then

u ∈ L2(Rn+1) and, in particular, u is a weak solution to λ2∂tu − λ2 divxA‖‖∇xu + u = f . On
the other hand, by Aronson’s result [2], the operator H‖ has a fundamental solution, denoted by
K(x, t, y, s), having bounds

|K(x, t, y, s)| ≤ C1(0,∞)(t − s) · (t − s)−n/2e−c
|x−y|2

t−s for x, y ∈ R
n, t, s ∈ R

with constants C, c depending only on dimension and the ellipticity constants, and satisfying
∫

Rn
K(x, t, y, s) dy = 1 for x ∈ R

n, t, s ∈ R, t > s.(4.3)

Set Kλ,1(x, t, y, s) = λ−2K(x, t, y, s)e− t−s

λ2 and v(x, t) =
∫∫

Rn+1 Kλ,1(x, t, y, s)f(y, s) dy ds. Aronson’s

estimate implies v ∈ L2(Rn+1) and a calculation shows that v is a weak solution to the same equation
as u. Thus, w := u − v is a weak solution of ∂tw − divxA‖‖∇xw + λ−2w = 0 and we may use the

Caccioppoli estimate of Lemma 2.1 in R
n+1. Choosing test functions ψ that converge to 1 reveals

∇xw = 0 as w ∈ L2(Rn+1). Hence w depends only on t. Again, as w ∈ L2(Rn+1), w must be 0. This
shows that Pλf has the desired representation for all f ∈ C∞

0 (Rn+1) and we conclude by density. �

Remark 4.4. The kernel representation from Lemma 4.3 can be extended from L2(Rn+1) to Ė(Rn+1)
since the latter embeds continuously into L2(Rn+1) + L∞(Rn+1) modulo constants, see for example
Lemma 3.11 in [4]. In this sense (1 + λ2H‖)−m1 = 1 holds due to (4.3).

Lemma 4.5. Fix m = n+ 1 in the definitions of P ∗
λ and Pλ. There exists c, 1 ≤ c < ∞, depending

only on n and the ellipticity constants such that

||N∗(∂λP
∗
λϕ)||22 + ||N∗(∂λPλϕ̃)||22 ≤ c|∆|.

Proof. By symmetry of definitions, we only have to prove one of the estimate and we do the one of
N∗(∂λP

∗
λϕ) for a change.

To start the proof, fix (µ, y, s) ∈ W (λ, x, t), where W (λ, x, t) := Λλ × Qλ(x) × Iλ(t) = and
Λλ = (λ/2, λ), Qλ(x) = B(x, λ) and Iλ(t) = (t−λ2, t+ λ2) is one of the Whitney regions used in the
definition of N∗ and recall that ∆λ(x, t) = Qλ(x) × Iλ(t). Let σ ∈ Λλ be arbitrary for the moment.
We note that within the functional calculus for H∗

‖,

∂µP
∗
µ = −2mµH∗

‖(1 + µ2H∗
‖)−m−1,

and we introduce P̃ ∗
µ := (1 + µ2H∗

‖)−1 to write

∂µP
∗
µϕ = −

2mµ

σ
(1 + µ2H∗

‖)−m(1 + µ2H∗
‖)−1(1 + σ2H∗

‖)σH∗
‖P̃

∗
σϕ.

It is convenient to expand this identity as

∂µP
∗
µϕ = −

2mµ

σ
(1 + µ2H∗

‖)−m

(
σ2

µ2
+

(
1 −

σ2

µ2

)
(1 + µ2H∗

‖)−1

)
σH∗

‖P̃
∗
σϕ(4.4)

since this reveals ∂µP
∗
µϕ = T (σH∗

‖P̃
∗
σϕ), where the operator T is given by a linear combination of

the resolvent kernels K∗
µ,m and K∗

µ,m+1 provided by Lemma 4.3. Setting G0(x, t) := ∆2λ(x, t) and
Gj(x, t) := ∆2j+1λ(x, t) \ ∆2jλ(x, t), j ≥ 1, since (µ, y, s) ∈ Λλ × ∆λ(x, t), we can infer pointwise
estimates

|K∗
µ,m+k(y, s, z, τ)| ≤

C

λn+2
e−c4j

if (z, τ) ∈ Gj(x, t), j ≥ 0, m+ k ≥ n/2 + 1,

where C, c > 0 depend only on n, the ellipticity constants and m+ k. Note that the bound for j = 0
only holds since m + k ≥ m = n + 1 ≥ n/2 + 1 guarantees that K∗

µ,m+k is bounded. As we have
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λ/2 < σ < λ, the kernel K∗ of the operator acting on σH∗
‖P̃

∗
σϕ on the right-hand side of (4.4) has

analogous bounds and we can eventually record

|∂µP
∗
µϕ(y, s)| =

∣∣∣∣
∫∫

Rn+1

K∗(y, s, z, τ)σH∗
‖P̃

∗
σϕ(z, τ) dz dτ

∣∣∣∣

≤
∞∑

j=0

C2j(n+2)e−c4j
−

∫
−

∫

Gj(x,t)
|σH∗

‖P̃
∗
σϕ(z, τ)| dz dτ

with C, c > 0 depending only on n and the ellipticity constants. As (µ, y, s) ∈ W (λ, x, t) was arbitrary
in this argument, we have in fact

sup
(µ,y,s)∈W (λ,x,t)

|∂µP
∗
µϕ(y, s)|2 .

∞∑

j=0

e−c4j
−

∫
−

∫

2j+1Qλ(x)×4j+2Iλ(t)
|σH∗

‖P̃
∗
σϕ(z, τ)|2 dz dτ,(4.5)

where we have also used Cauchy-Schwarz to switch to L2-averages and exploited the exponential
decay. Since only the right-hand side depends on σ ∈ Λλ, we can average in σ and take the supremum
in λ to find

N∗(∂λP
∗
λϕ)(x, t)2 .

∞∑

j=0

e−c4j
sup
λ>0

∫ λ

λ/2
−

∫
−

∫

2j+1Qλ(x)×4j+2Iλ(t)
|σH∗

‖P̃
∗
σϕ(z, τ)|2

dz dτ dσ

σ
.

By a direct application of Tonelli’s theorem, see Lemma 8.9 in [4] for an explicit proof, this implies
∫∫

Rn+1

|N∗(∂λP
∗
λϕ)(x, t)|2 dxdt .

∞∑

j=0

e−c4j
∫∫∫

R
n+2

+

|σH∗
‖P̃

∗
σϕ(z, τ)|2

dz dτ dσ

σ

and hence the claim follows from Lemma 3.2 (i) applied with m = 1. �

5. Parabolic sawtooth domains associated with F

Throughout this section, let ∆ and κ0 ≫ 1 be given and let F ⊂ 16∆ be the set introduced
in Definition 1.7 with Pλ = (1 + λ2H‖)−n−1, P ∗

λ = (1 + λ2H∗
‖)−n−1 from now on. Let us recall

that the non-tangential maximal operators N∗ and Ñ∗ at (x0, t0) ∈ R
n+1 are defined with reference

to the Whitney regions Λλ × Qλ(x0) × Iλ(x0), where Λλ = (λ/2, λ), Qλ(x0) = B(x0, λ), Iλ(t0) =
(t0 −λ2, t0 +λ2), and that Γ(x0, t0) denotes the parabolic cone with vertex (x0, t0) and aperture one,
see (1.4). In particular, we have

Γ(x0, t0) ⊂
⋃

λ>0

Λλ ×Qλ(x0) × Iλ(t0).

Next, we introduce a sawtooth domain associated with F ,

Ω :=
⋃

(x0,t0)∈F ∩∆

Γ(x0, t0),

and establish pointwise estimates for the differences

θλ := ϕ− P ∗
λϕ, θ̃λ := ϕ̃− Pλϕ̃.

Lemma 5.1. We have

(i) |θλ(x, t)| + |θ̃λ(x, t)| ≤ κ0λ if (λ, x, t) ∈ (0,∞) × F,

(ii) |∂λθλ(x, t)| + |∂λθ̃λ(x, t)| = |∂λP
∗
λϕ(x, t)| + |∂λPλϕ̃(x, t)| ≤ κ0 if (λ, x, t) ∈ Ω,

(iii) |Ñ∗(∇xθλ)(x, t)| + |Ñ∗(∇xθ̃λ)(x, t)| ≤ 2κ0 if (x, t) ∈ F.

Proof. If (x, t) ∈ F , then by the fundamental theorem of calculus and the construction of the set F ,
see Definition 1.7 (iv),

|θλ(x, t)| + |θ̃λ(x, t)| =

∫ λ

0
|∂σP

∗
σϕ(x, t)| + |∂σPσϕ̃(x, t)| dσ ≤ κ0λ.
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This proves (i). Similarly, consider (λ, x, t) ∈ Ω. Then (λ, x, t) ∈ Γ(x0, t0) for some (x0, t0) ∈ F and
since ϕ and ϕ̃ are functions of (x, t) only, we obtain

|∂λθλ(x, t)| = |∂λP
∗
λϕ(x, t)| ≤ N∗(∂σP

∗
σϕ)(x0, t0)

together with an analogous estimate for ∂λθ̃λ(x, t). Hence, (ii) is again a consequence of Defini-
tion 1.7 (iv). As ϕ and ϕ̃ do not depend on λ, we also have

|Ñ∗(∇xθλ)(x, t)| + |Ñ∗(∇xθ̃λ)(x, t)| ≤ M(|∇xϕ|2)(x, t)1/2 + M(|∇xϕ̃|2)(x, t)1/2

+|Ñ∗(∇xP
∗
λϕ)(x, t)| + |Ñ∗(∇xPλϕ̃)(x, t)|,

showing that (iii) is a consequence of parts (i) and (v) in Definition 1.7. �

Our next lemma extends the bound in part (ii) above to the whole sawtooth region.

Lemma 5.2.

|θλ(x, t)| + |θ̃λ(x, t)| . κ0λ for (λ, x, t) ∈ Ω.

Proof. By symmetry of the definitions it suffices to prove the bound for θλ. As a preliminary ob-
servation note that if (λ, x, t) ∈ Ω, then (λ, x, t) ∈ Γ(x0, t0) for some (x0, t0) ∈ F and in particular
(x, t) ∈ ∆λ(x0, t0). Since ϕ is a weak solution to the equation H∗

‖ϕ = divx(A⊥‖χ8∆) on R
n+1, we can

then use the classical local estimates for weak solutions with real coefficients, see e.g. Theorem 6.17
in [22], to the effect that

sup
(x,t)∈∆λ(x0,t0)

|ϕ(x, t) − ϕ(x0, t0)| . λ+ −

∫
−

∫

∆2λ(x0,t0)
|ϕ(x, t) − ϕ(x0, t0)| dxdt.

Hence, using the construction of the set F , see Definition 1.7 (iii), we deduce

sup
(x,t)∈∆λ(x0,t0)

|ϕ(x, t) − ϕ(x0, t0)| . λ+ λDϕ(x0, t0) ≤ λ+ κ0λ.(5.1)

To start with the actual proof of the estimate stated in the lemma, we let (λ, x, t) and (x0, t0) be
fixed as above and we denote by ϕ2λ the average of ϕ over the set ∆2λ(x0, t0). Thinking of P ∗

λ as given
by kernel representation from Lemma 4.3, see also Remark 4.4, we have P ∗

λ1 = 1 and consequently,

|θλ(x, t)| = |(I − P ∗
λ )ϕ(x, t)| ≤ |ϕ(x, t) − ϕ(x0, t0)| + |(I − P ∗

λ )ϕ(x0, t0)|

+|P ∗
λ (ϕ− ϕ2λ)(x0, t0)| + |P ∗

λ (ϕ− ϕ2λ)(x, t)|.

Hence, using (5.1) and Lemma 5.1 (i), we deduce

|θλ(x, t)| . κ0λ+ |P ∗
λ (ϕ− ϕ2λ)(x0, t0)| + |P ∗

λ (ϕ− ϕ2λ)(x, t)|.(5.2)

To estimate the remaining two terms on the right, we bring in the kernel of P ∗
λ explicitly. Indeed,

Lemma 4.3 yields

P ∗
λ (ϕ− ϕ2λ)(x0, t0) =

∫∫

Rn+1

K∗
λ,n+1(x0, t0, z, τ)(ϕ(z, τ) − ϕ2λ) dz dτ

with a kernel enjoying the bound

|K∗
λ,n+1(x0, t0, z, τ)| ≤ 1(0,∞)(τ − t0)

C|t0 − τ |−n/2+n+1−1

λ2+2n
e− |t0−τ |

λ2 e
−c

|x0−z|2

|t0−τ |

. 1(0,∞)(τ − t0)
C

λn+2
e− |t0−τ |

λ2 e
−c

|x0−z|2

|t0−τ |

for some constants C, c > 0 depending only on dimension and ellipticity. So, splitting R
n+2 into

∆2λ(x0, t0) and annuli ∆2j+1λ(x0, t0) \ ∆2jλ(x0, t0), j ≥ 1, we can infer that

|P ∗
λ (ϕ− ϕ2λ)(x0, t0)| .

∞∑

j=0

2(n+2)je−c4j
−

∫
−

∫

∆
2j+1λ

(x0,t0)
|ϕ(z, τ) − ϕ2λ| dz dτ.(5.3)
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Next, by a telescopic sum and Lemma 2.2 we deduce that

−

∫
−

∫

∆
2j+1λ

(x0,t0)
|ϕ(z, τ) − ϕ2λ| dz dτ ≤

j+1∑

k=1

−

∫
−

∫

∆
2kλ

(x0,t0)
|ϕ(z, τ) − ϕ2kλ| dz dτ

≤ 2j+2λ

(
M(|∇xϕ|)(x0, t0) + Mx Mt(|HtD

1/2
t ϕ|)(x0, t0)

)

and parts (i) and (ii) of Definition 1.7 guarantee that the last term is no larger than 2j+3λκ0. In
particular, summing up in (5.3), we can conclude |P ∗

λ (ϕ − ϕ2λ)(x0, t0)| . κ0λ. The estimate of
|P ∗

λ (ϕ − ϕ2λ)(x, t)| can be done similarly, taking into account ∆λ(x0, t0) ⊂ ∆2λ(x, t) when writing
out the telescopic sum of averages. Now, the claim follows from (5.2). �

5.1. An adapted cut-off and associated Carleson measures. Here, we bring into play the
degree of freedom 0 < η ≪ 1 and the parameter 0 < ǫ ≪ r that already appeared in the outline of
Section 1.5.

Writing Γη(x0, t0) for the parabolic cone with vertex (x0, t0) and aperture η, we define the thinner
sawtooth domains

Ωη :=
⋃

(x0,t0)∈F ∩∆

Γη/8(x0, t0).

Then Ωη ⊂ Ω. We are now going to define a smooth cut off adapted to Ωη.
Let Φ ∈ C∞

0 (R) be such that Φ(̺) = 1 if ̺ ≤ 1/16 and Φ(̺) = 0 if ̺ > 1/8 and let Υ ∈ C∞
0 (Rn+2)

be supported in B(0, 1/2048) ⊂ R
n+2 and satisfy 0 ≤ Υ ≤ 1 and

∫
Rn+2 Υ(µ, y, s) dµ dy ds = 1. We

then set

Ψ(λ, x, t) := Ψη,ǫ(λ, x, t)

:= Φ

(
λ

32r

)(
1 − Φ

(
λ

32ǫ

))∫

Ωη/2

Υ

(
λ− µ

λ
,
x− y

λη
,
s− t

(λη)2

)
dµ dy ds

λ(λη)n+2
.

(5.4)

By construction, we have Ψ ∈ C∞
0 (Rn+2

+ ), 0 ≤ Ψ ≤ 1, Ψ = 1 on the open set Ωη/4 ∩ ((2ǫ, 2r) ×R
n+1)

and in particular on (F ∩∆)× (2ǫ, 2r) and the support of Ψ is a subset of Ωη ∩ ((ǫ, 4r)×2∆). Making
the link with the sawtooth domain Ω from the previous section, we note

(λ, x, t) ∈ supp Ψ =⇒ (ηλ, x, t) ∈ Ω.

Now, let δ(x, t) denote the parabolic distance from the point (x, t) ∈ R
n+1 to F ⊂ R

n+1 and let

E1 := {(λ, x, t) ∈ (0, 4r) × 2∆ : ηλ/32 ≤ δ(x, t) ≤ ηλ/8},

E2 := {(λ, x, t) ∈ (2r, 4r) × 2∆ : δ(x, t) ≤ ηλ/8},

E3 := {(λ, x, t) ∈ (ǫ, 2ǫ) × 2∆ : δ(x, t) ≤ ηλ/8}.

(5.5)

Let (α, β, γ) = (α, β1, ..., βn, γ) ∈ N
n+2 \{0} be a multiindex. Again by construction of Ψ there exists

a constant c̃ depending only on α, β, γ, η and n such that
∣∣∣∣
∂α+|β|+γ

∂λα∂xβ∂tγ
Ψ(λ, x, t)

∣∣∣∣ ≤
c̃

|λ|α+|β|+γ
1E1∪E2∪E3

(λ, x, t).(5.6)

The following Carleson lemma is also important in the next section.

Lemma 5.3. It holds
∫∫∫

E1∪E2∪E3

dλdx dt

λ
≤ log(8)2n+2|∆|.

In particular, let η, ǫ and Ψ = Ψη,ǫ be as above, let (α, β, γ) = (α, β1, ..., βn, γ) ∈ N
n+2 \ {0} be a

multiindex and let p ∈ (0,∞). Then there exists c̃ = c̃(α, β, γ, p, n, η) < ∞, such that

∫∫∫

R
n+2

+

∣∣∣∣
∂α+|β|+γ

∂λα∂xβ∂tγ
Ψ(λ, x, t)

∣∣∣∣
p

λp(α+|β|+2γ)−1 dxdt ≤ c̃|∆|.
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Proof. By definition of the sets E1, E2 and E3, integration in (x, t) takes place only on the cube 2∆

and for (x, t) ∈ 2∆ fixed, integration in λ is at most over the intervals (8δ(x,t)
η , 32δ(x,t)

η ), (2r, 4r) and

(ǫ, 2ǫ), yielding a total contribution of log(8). Hence, the first claim follows from Tonelli’s theorem
and then the second one is a consequence of (5.6) �

6. Proof of the Key Lemma

We are now ready to prove the Key Lemma, hence completing the proof of Theorem 1.4. As
discussed in Section 1.5, throughout the proof we can qualitatively assume that A is smooth. In that
case, one can see that qualitatively ϕ, ϕ̃, Pλϕ̃ and P ∗

λϕ as well as u are smooth by interior parabolic
regularity. Furthermore, we will simply write J for Jη,ǫ and we note – and this is a consequence of
the introduction of ǫ – that no boundary terms will survive when we perform partial integration.
Similarly, we will write Ψ for Ψη,ǫ defined in Section 5.1. Throughout, σ will denote a positive degree
of freedom and c will denote a generic constant (not necessarily the same at each instance), which
depends only on the dimension n and the ellipticity constants. In contrast, c̃ will denote a generic
constant that may additionally depend on σ and η. The fact that |u| ≤ 1 will be used repeatedly in
the proof.

To start the estimate of J we first note that uΨ2λ is a test function for the weak formulation of
the equation for u. Hence,

0 =

∫∫∫

R
n+2

+

A∇λ,xu · ∇λ,x(uΨ2λ) + ∂tu(uΨ2λ) dxdt dλ.(6.1)

As

∇λ,x(uΨ2λ) = (∇λ,xu)Ψ2λ+ uλ∇λ,xΨ2 + uΨ2∇λ,xλ,

we have

J =

∫∫∫

R
n+2

+

A∇λ,xu · ∇λ,x(uΨ2λ) dxdt dλ−

∫∫∫

R
n+2

+

(A∇λ,xu · ∇λ,xΨ2)uλdxdt dλ

−

∫∫∫

R
n+2

+

(A∇λ,xu · ∇λ,xλ)uΨ2 dxdt dλ.

Combining this with (6.1), we see that J = J1 + J2 + J3, where

J1 := −

∫∫∫

R
n+2

+

(A∇λ,xu · ∇λ,xΨ2)uλdxdt dλ,

J2 := −

∫∫∫

R
n+2

+

(A∇λ,xu · ∇λ,xλ)uΨ2 dxdt dλ,

J3 := −

∫∫∫

R
n+2

+

∂tu(uΨ2λ) dxdt dλ.

The estimates of J1 and J3 turn out to be straightforward: Indeed, by the Cauchy-Schwarz inequality

|J1| ≤ c

(∫∫∫

R
n+2

+

|∇λ,xu|2Ψ2 λdxdt dλ

)1/2(∫∫∫

R
n+2

+

|∇λ,xΨ|2 λdxdt dλ

)1/2

and hence, using the elementary Young’s inequality, ellipticity of A and the Carleson measure esti-
mates in Lemma 5.3,

|J1| ≤ σJ + c̃|∆|.

Furthermore,

J3 = −
1

2

∫∫∫

R
n+2

+

(∂tu
2)Ψ2λ dxdt dλ =

1

2

∫∫∫

R
n+2

+

u2∂t(Ψ
2)λ dxdt dλ.

Thus, by the Carleson measure estimates in Lemma 5.3 and as |u|, |Ψ| ≤ 1,

|J3| ≤ c

∫∫∫

R
n+2

+

|∂tΨ|λ dxdt dλ ≤ c̃|∆|.
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As for J2, we first use the decomposition (1.8) of the coefficients and split J2 = J21 + J22, where

J21 := −

∫∫∫

R
n+2

+

(
A⊥‖ · ∇xu

)
uΨ2 dxdt dλ,

J22 := −

∫∫∫

R
n+2

+

(
A⊥⊥∂λu

)
uΨ2 dxdt dλ.

Since A does not depend on λ, integration by parts yields

J22 = −
1

2

∫∫∫

R
n+2

+

A⊥⊥∂λu
2Ψ2 dxdt dλ =

1

2

∫∫∫

R
n+2

+

A⊥⊥u
2∂λΨ2 dxdt dλ

and hence |J22| ≤ c̃|∆| follows again by Lemma 5.3. To estimate J21 we use that

A⊥‖ · ∇x

(
u2Ψ2

2

)
= (A⊥‖ · ∇xu)uΨ2 + (A⊥‖ · ∇xΨ)u2Ψ

and we write J21 = J211 + J212, where

J211 := −

∫∫∫

R
n+2

+

A⊥‖ · ∇x

(
u2Ψ2

2

)
dxdt dλ,

J212 :=

∫∫∫

R
n+2

+

(A⊥‖ · ∇xΨ)u2Ψ dxdt dλ.

Once again, |J212| ≤ c̃|∆| follows by Lemma 5.3. In order to handle J211, we introduce ϕ as in (1.10),
that is, as the energy solution on R

n+1 to the problem

divx(A⊥‖χ8∆) = −∂tϕ− divx(A∗
‖‖∇xϕ) = H∗

‖ϕ.

The weak formulation with φ = u2Ψ2(λ, ·, ·)/2 as test function for λ > 0 fixed, which by construction
of Ψ is supported in 8∆, yields

J211 =

∫

R+

∫∫

Rn+1

ϕ∂t

(
u2Ψ2

2

)
dxdt dλ+

∫

R+

∫∫

Rn+1

A∗
‖‖∇xϕ · ∇x

(
u2Ψ2

2

)
dxdt dλ.

Recall that we write θηλ = ϕ−P ∗
ηλϕ. Then, splitting ϕ = θηλ +P ∗

ηλϕ in both integrals, we may write

J211 = J2111 + J2112 + J2113 + J2114,(6.2)

where

J2111 :=

∫∫∫

R
n+2

+

(θηλ)∂t

(
u2Ψ2

2

)
dxdt dλ,

J2112 :=

∫∫∫

R
n+2

+

(P ∗
ηλϕ)∂t

(
u2Ψ2

2

)
dxdt dλ,

J2113 :=

∫∫∫

R
n+2

+

A∗
‖‖∇xθηλ · ∇x

(
u2Ψ2

2

)
dxdt dλ,

J2114 :=

∫∫∫

R
n+2

+

A∗
‖‖∇xP

∗
ηλϕ · ∇x

(
u2Ψ2

2

)
dxdt dλ.
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For the time being, let us concentrate on the second and fourth term in (6.2). Integrating by parts
with respect to λ leads us to

J2112 + J2114 = −

∫∫∫

R
n+2

+

(∂λP
∗
ηλϕ)∂t

(
u2Ψ2

2

)
λdxdt dλ

−

∫∫∫

R
n+2

+

(P ∗
ηλϕ)∂t∂λ

(
u2Ψ2

2

)
λdxdt dλ

−

∫∫∫

R
n+2

+

(A∗
‖‖∇x∂λP

∗
ηλϕ) · ∇x

(
u2Ψ2

2

)
λdxdt dλ

−

∫∫∫

R
n+2

+

(A∗
‖‖∇xP

∗
ηλϕ) · ∇x∂λ

(
u2Ψ2

2

)
λdxdt dλ,

where we have again used the λ-independence of the coefficients. We stress that throughout (and
with a slight abuse of notation) ∂λP

∗
ηλϕ denotes the derivative in λ of the function λ 7→ P ∗

ηλϕ, so
that there is a factor η showing up in front by the chain rule. A similar notational convention will
apply to ∂λθηλ. Taking into account the definition of the parabolic operator H∗

‖, we can regroup

these terms as

J2112 + J2114 = I1 + I2 + I3,

where

I1 := −

∫∫∫

R
n+2

+

(∂λP
∗
ηλϕ)∂t

(
u2Ψ2

2

)
λdxdt dλ,

I2 := −

∫∫∫

R
n+2

+

(A∗
‖‖∇x∂λP

∗
ηλϕ) · ∇x

(
u2Ψ2

2

)
λdxdt dλ,

I3 :=

∫∫∫

R
n+2

+

(H∗
‖P

∗
ηλϕ)∂λ

(
u2Ψ2

2

)
λdxdt dλ.

By the Cauchy-Schwarz inequality and the square function estimates stated in parts (ii) and (iii) of
Lemma 3.2 we first deduce that

|I2| + |I3| ≤ c̃|∆|1/2
(∫∫∫

R
n+2

+

∣∣∣∣∇λ,x

(
u2Ψ2

2

)∣∣∣∣
2

λdxdt dλ

)1/2

≤ c̃|∆|1/2
(∫∫∫

R
n+2

+

|∇λ,xu|2Ψ + |∇λ,xΨ|2 λdxdt dλ

)1/2

and then, by Lemma 5.3 and Young’s inequality, we can conclude |I2|+ |I3| ≤ σJ+ c̃|∆|. To estimate
I1, we write I1 = I11 + I12, where

I11 := −

∫∫∫

R
n+2

+

(∂λP
∗
ηλϕ)u2∂t

(
Ψ2

2

)
λdxdt dλ,

I12 := −

∫∫∫

R
n+2

+

(∂λP
∗
ηλϕ)u∂tuΨ2 λdxdt dλ.

By a familiar argument relying on Cauchy-Schwarz, Lemma 3.2 and Lemma 5.3 we deduce |I11| ≤
c̃|∆|. The estimate of I12 is more involved. Here, we first use the equation ∂tu = divλ,xA∇λ,xu,
which thanks to our smoothness assumption may be interpreted in the classical (pointwise) sense, in
order to split I12 = I121 + I122, where

I121 := −

∫∫∫

R
n+2

+

(∂λP
∗
ηλϕ)udivx(A∇λ,xu)‖Ψ2 λdxdt dλ,

I122 := −

∫∫∫

R
n+2

+

(∂λP
∗
ηλϕ)u(A∇λ,x∂λu)⊥Ψ2 λdxdt dλ.
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Then,

I121 =

∫∫∫

R
n+2

+

∇x(∂λP
∗
ηλϕ)u · (A∇λ,xu)‖Ψ2 λdxdt dλ

+

∫∫∫

R
n+2

+

(∂λP
∗
ηλϕ)∇xu · (A∇λ,xu)‖Ψ2 λdxdt dλ

+

∫∫∫

R
n+2

+

(∂λP
∗
ηλϕ)u(A∇λ,xu)‖ · ∇xΨ2 λdxdt dλ.

For the first term on the right-hand side we can infer control by σJ + c̃|∆| using Cauchy-Schwarz,
Lemma 3.2 and Young’s inequality in a by now familiar manner. For the other two terms we shall use
for the first time the definition of the set F . More precisely, in virtue of Lemma 5.1 we can replace
the resolvent by its pointwise upper bound |∂λP

∗
ηλϕ(x, t)| ≤ cη ≤ c noting that (λ, x, t) ∈ supp(Ψ)

implies (ηλ, x, t) ∈ Ω by construction, see Section 5.1. Having done this, the second integral on the
right-hand side is bounded by ηJ thanks to ellipticity of A and for the third one we obtain a bound
c̃J1/2|∆|1/2 by applying Cauchy-Schwarz and Lemma 5.3. Put together, we have

|I121| ≤ (σ + cη)J + c̃|∆|.

Also, using Lemma 3.2 we immediately have

|I122| ≤ σI1221 + c̃|∆|,(6.3)

where

I1221 :=

∫∫∫

R
n+2

+

|∇λ,x∂λu|2Ψ2 λ3 dxdt dλ.

This term can be estimated using a Whitney type covering argument, the fact that ∂λu is a solution
and Caccioppoli’s inequality: Indeed, let W = {Wi} denote a partitioning of Rn+2

+ into (parabolic)
Whitney cubes, that is, each Wi has dyadic (parabolic) sidelength ℓ(Wi) and is located at distance
4ℓ(Wi) to the boundary. Let φi ∈ C∞

0 (2Wi) be a standard cut-off for Wi such that 0 ≤ φi ≤ 1,

|∇λ,xφi| + |∂tφi|
1/2 ≤ c/ℓ(Wi) and

∑
i φ

2
i (λ, x, t) = 1 for all (λ, x, t) ∈ R

n+2
+ . Then

I1221 =
∑

i

∫∫∫

R
n+2

+

|∇λ,x∂λu|2φ2
i Ψ2 λ3 dxdt dλ

≤ c
∑

i

∫∫∫

R
n+2

+

|∂λu|2|∇λ,x(φiΨ)|2 λ3 dxdt dλ,

by an application of Lemma 2.1 and hence, taking into account the finite overlap of the Whitney
cubes,

I1221 ≤ c

∫∫∫

R
n+2

+

|∂λu|2Ψ2 λdxdt dλ+ c

∫∫∫

R
n+2

+

|∂λu|2|∇λ,xΨ|2 λ3 dxdt dλ.

Crudely employing ellipticity, the first integral on the right-hand side is under control by cJ . Since
λ|∂λu| ≤ c in a pointwise fashion, as follows easily from DeGiorgi-Moser-Nash interior estimates,
Caccioppoli’s inequality and |u| ≤ 1, we can apply Lemma 5.3 to bound the second one by c̃|∆|. So,
as to (6.3), we have

|I122| ≤ σJ + c̃|∆|.

Put together we can conclude that the second and fourth term all the way back in (6.2) can be
estimated by

|J2112 + J2114| ≤ σJ + c̃|∆|.

At this stage of the proof it only remains to focus on J2111 + J2113 and we note that by definition

J2111 + J2113 = −

∫∫∫

R
n+2

+

θηλ∂t

(
u2Ψ2

2

)
dxdt dλ+

∫∫∫

R
n+2

+

A∗
‖‖∇xθηλ · ∇x

(
u2Ψ2

2

)
dxdt dλ

= II1 + II2 + II3,
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where

II1 :=

∫∫∫

R
n+2

+

∂tu(θηλuΨ2) dxdt dλ+

∫∫∫

R
n+2

+

∇xθηλ ·A‖‖∇xu(uΨ2) dxdt dλ,

II2 :=
1

2

∫∫∫

R
n+2

+

θηλu
2∂tΨ

2 dxdt dλ,

II3 :=
1

2

∫∫∫

R
n+2

+

∇xθηλ ·A‖‖∇xΨ2(u2) dxdt dλ.

Using Lemma 5.2, we have |θηλ(x, t)| ≤ cηλ ≤ cλ for (λ, x, t) in the support of Ψ and hence we can
conclude, using Lemma 5.3, that |II2| ≤ c̃|∆| holds. Similarly, for II3 we would like to bring into
play the (integrated) non-tangential control for ∇xθλ provided by Lemma 5.2 (iii). To this end, we
use an “averaging trick” justified by Tonelli’s theorem in order to write

II3 ≤ c̃

∫∫∫

R
n+2

+

(
−

∫
−

∫
−

∫

Wη/64(σ,y,s)
|∇xθηλ ·A‖‖∇xΨ2(u2)| dλdxdt

)
dσ dy ds,

where Wη/64(σ, y, s) denotes the Whitney region (σ/2, σ) ×Qησ/64(y) × Iησ/64(s). Now, letting

Ẽ1 := {(σ, y, s) ∈ (0, 4r) × 2∆ : ησ/64 ≤ δ(y, s) ≤ ησ/4},

Ẽ2 := {(σ, y, s) ∈ (2r, 8r) × 4∆ : δ(y, s) ≤ ησ/4},

Ẽ3 := {(σ, y, s) ∈ (ǫ, 4ǫ) × 4∆ : δ(y, s) ≤ ησ/4},

where again δ(x, t) denotes the parabolic distance from (x, t) to the set F , we deduce from (5.5) and
(5.6) that the integrand on the right-hand side vanishes outside of Ẽ1 ∪ Ẽ2 ∪ Ẽ3 and that we have a
bound

II3 ≤ c̃

∫∫∫

Ẽ1∪Ẽ2∪Ẽ3

(
−

∫
−

∫
−

∫

Wη/64(σ,y,s)
|∇xθηλ| dλdxdt

)
dσ dy ds

σ

≤ c̃

∫∫∫

Ẽ1∪Ẽ2∪Ẽ3

(
−

∫
−

∫
−

∫

Wη/64(ησ,y,s)
|∇xθλ|2 dλdxdt

)1/2 dσ dy ds

σ
,

the second step following from Cauchy-Schwarz and a simple change of variables. The definition of
Ẽ1 ∪ Ẽ2 ∪ Ẽ3 entails that for (σ, y, s) in this union, the Whitney region Wη/64(ησ, y, s) is contained in

a cone Γ1/2(x0, t0) with vertex (x0, t0) ∈ F . In particular, Wη/64(ησ, y, s) can be covered by a finite
number (depending only on n) of Whitney regions Λ × Q × I showing up in the definition of the

integrated maximal function Ñ∗ on the set F . Consequently, Lemma 5.2 yields

II3 ≤ c̃

∫∫∫

R
n+2

+

1Ẽ1∪Ẽ2∪Ẽ3
(σ, y, s)

dσ dy ds

σ
.

Up to a change of parameters, the sets Ẽ1, Ẽ2, Ẽ3 are similar to E1, E2, E3 defined Subsection 5.1
and so we can rely on Lemma 5.3 to conclude II3 ≤ c̃|∆|. To estimate II1, we start out with the
identity

∇x(θηλuΨ2) = (∇xθηλ)uΨ2 + θηλ(∇xu)Ψ2 + θηλu∇x(Ψ2)

to see that II1 = II11 + II12, where

II11 :=

∫∫∫

R
n+2

+

∂tu(θηλuΨ2) dxdt dλ+

∫∫∫

R
n+2

+

∇x(θηλuΨ2) ·A‖‖∇xu dxdt dλ,

II12 := −

∫∫∫

R
n+2

+

∇xu ·A‖‖∇xu(θηλΨ2) dxdt dλ−

∫∫∫

R
n+2

+

∇xΨ2 · A‖‖∇xu(uθηλ) dxdt dλ.

Using again the fact that |θηλ| ≤ cηλ holds on the support of Ψ along with Cauchy-Schwarz and
Lemma 5.3, we deduce the estimate

|II12| ≤ cηJ + c̃|∆|1/2J1/2 ≤ (σ + cη)J + c̃|∆|.



22 PASCAL AUSCHER, MORITZ EGERT, AND KAJ NYSTRÖM

To estimate II11, we capitalize again that the smoothness of our coefficients allows us to plug in the
equation ∂tu = divλ,xA∇λ,xu in the pointwise sense. Then, splitting A according to (1.8), we can
write II11 = II111 + II112 + II113, where

II111 := −

∫∫∫

R
n+2

+

A‖⊥ · ∇x(θηλuΨ2)∂λu dxdt dλ,

II112 := −

∫∫∫

R
n+2

+

A⊥‖ · ∇xu∂λ(θηλuΨ2) dxdt dλ,

II113 := −

∫∫∫

R
n+2

+

A⊥⊥∂λ(θηλuΨ2)∂λu dxdt dλ.

Unwinding the derivative in λ and using once more the bound |θηλ| ≤ cηλ on the support of Ψ,

|II112 + II113| ≤ c

∫∫∫

R
n+2

+

ηλ|∇λ,xu(∂λu)Ψ2| + λ|∇λ,xu∂λΨ2| + |∇λ,xu∂λθηλ| dxdt dλ.

Here, the first term gives a contribution cη|∆|, the second one can be treated by the familiar combina-
tion of Young’s inequality and Lemma 5.3, whereas for the third term we make use of Lemma 3.2 (i)
instead, noting that ∂λθηλ = ∂λP

∗
ηλϕ holds since ϕ does not depend on λ. By these means, we find

|II112 + II113| ≤ (σ + cη)J + c̃|∆|.

Similarly, we obtain

|II111 − II1111| ≤ cηJ + c̃|∆|,

where

II1111 :=

∫∫∫

R
n+2

+

A‖⊥ · ∇xθηλuΨ2∂λu dxdt dλ.

To estimate II1111 we first integrate by parts in λ and regroup derivatives to find

II1111 =
1

2

∫∫∫

R
n+2

+

A‖⊥ · ∇xθηλΨ2∂λu
2 dxdt dλ

= −
1

2

∫∫∫

R
n+2

+

A‖⊥ · ∇xθηλ∂λΨ2(u2) dxdt dλ

−
1

2

∫∫∫

R
n+2

+

A‖⊥ · ∇x(∂λP
∗
ηλϕΨ2u2) dxdt dλ

+
1

2

∫∫∫

R
n+2

+

A‖⊥ · ∂λP
∗
ηλϕ∇x(Ψ2u2) dxdt dλ.

Note that the first term on the right-hand side has the same structure as II3 with the only exception
that we have a λ-derivative on Ψ instead of an x-derivative. Hence, we can derive a bound c̃|∆| by
the very same methods. Also the third term on the right-hand side is of the same kind as a term we
encountered earlier in the proof – I2 in this case – which we already know how to bound by σJ+ c̃|∆|.

All in all, we have reached a stage of the proof, where the only term that remains to be estimated
is

III1 :=

∫∫∫

R
n+2

+

A‖⊥ · ∇x(Ψ2u2∂λP
∗
ηλϕ) dxdt dλ

and we remark that this final term resembles J211 except that we have an additional factor ∂λP
∗
ηλϕ

acting to our favor. We now introduce ϕ̃ as in (1.10), that is, as the energy solution to the problem

divx(A‖⊥χ8∆) = ∂tϕ̃− divx(A‖‖∇xϕ̃) = H‖ϕ̃

on R
n+1. We remark that Ψ2u2∂λP

∗
ηλϕ is qualitatively smooth and compactly supported, therefore

it can be used as test function for the equation above in order to rewrite III1. More precisely, we
also recall θ̃ηλ = ϕ̃− Pηλϕ̃ and write

III1 = III11 + III12 + III13,(6.4)
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where

III11 := −

∫∫∫

R
n+2

+

∂tθ̃ηλ(Ψ2u2∂λP
∗
ηλϕ) dxdt dλ,

III12 := −

∫∫∫

R
n+2

+

A‖‖∇xθ̃ηλ · ∇x(Ψ2u2∂λP
∗
ηλϕ) dxdt dλ,

III13 := −

∫∫∫

R
n+2

+

H‖Pηλϕ̃(Ψ2u2∂λP
∗
ηλϕ) dxdt dλ.

The estimate |III13| ≤ c̃|∆| is a consequence of the square function estimate in Lemma 3.2 (i) and
(iii). To estimate III12, we write III12 = III121 + III122 + III123, where

III121 := −

∫∫∫

R
n+2

+

A‖‖∇xθ̃ηλ · ∇x(u2)(Ψ2∂λP
∗
ηλϕ) dxdt dλ,

III122 := −

∫∫∫

R
n+2

+

A‖‖∇xθ̃ηλ · ∇x(Ψ2)(u2∂λP
∗
ηλϕ) dxdt dλ,

III123 := −

∫∫∫

R
n+2

+

A‖‖∇xθ̃ηλ · ∇x∂λP
∗
ηλϕ(u2Ψ2) dxdt dλ.

Once having applied the pointwise bound |∂λP
∗
ηλϕ| ≤ cη ≤ c on the support of Ψ, see Lemma 5.2 (iii),

the estimate of III122 reduces to that of II3 with θ̃ηλ in lieu of θηλ. As the latter two functions share
identical estimates, we can record |III122| ≤ c̃|∆|. To estimate III121 we first note, using Cauchy-
Schwarz’ and Young’s inequality, that

|III121| ≤ cIII1211 + σJ,

where

III1211 :=

∫∫∫

R
n+2

+

Ψ2|∂λP
∗
ηλϕ|2|∇xθ̃ηλ|2

dxdt dλ

λ
.

Now, by the averaging trick already used in the estimate of II3,

III1211 ≤ c̃

∫∫∫

R
n+2

+

(
−

∫
−

∫
−

∫

Wη/64(σ,y,s)

(
Ψ2|∂λP

∗
ηλϕ|2|∇xθ̃ηλ|2

)
dxdt dλ

)
dy ds dσ

σ

≤ c̃

∫∫∫

R
n+2

+

(
sup

(λ,x,t)∈Wη/64(σ,y,s)
|∂λP

∗
ηλϕ(x, t)|

)2 dy ds dσ

σ
,

where the second step follows again by Lemma 5.2 (iii) and elementary geometric considerations as
in the estimate for II3. As before, we write Wη/64(σ, y, s) := Λσ ×Qησ/64(y) × Iησ/64(s). From (4.5)
we obtain

(
sup

(λ,x,t)∈Wη/64(σ,y,s)
|∂λP

∗
ηλϕ(x, t)|

)2

≤ c̃
∞∑

j=1

e−c4j
−

∫
−

∫

2j+1Qσ(y)×4j+1Iσ(s)
|σH∗

‖P̃
∗
σϕ(x, t)|2 dxdt,

where P̃ ∗
σ = (1 + σ2H∗

‖)−1. Hence, using an averaging trick in the (x, t)-variables only,

III1211 ≤ c̃

∫∫∫

R
n+2

+

∞∑

j=1

e−c4j
−

∫
−

∫

2j+1Qσ(y)×4j+1Iσ(s)
|σH∗

‖P̃
∗
σϕ(x, t)|2 dxdt

dy ds dσ

σ

= c̃
∞∑

j=1

e−c4j
∫∫∫

R
n+2

+

|σH∗
‖P̃

∗
σϕ(x, t)|2

dxdt dσ

σ
≤ c̃|∆|,
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where the final estimate follows from Lemma 3.2. So, we can conclude |III121| ≤ σJ + c̃|∆|. To
estimate III123 we use that u is scalar-valued and write

III123 =

∫∫∫

R
n+2

+

∇x(θ̃ηλu
2Ψ2) · A∗

‖‖∇x∂λP
∗
ηλϕ dxdt dλ

+

∫∫∫

R
n+2

+

θ̃ηλ∇x(u2Ψ2) ·A∗
‖‖∇x∂λP

∗
ηλϕ dxdt dλ.

Note that so far we have neglected III11 appearing in (6.4). Now, we come back to this term and
combine it with the first integral on the right-hand side above to obtain

III11 + III123 = −

∫∫∫

R
n+2

+

θ̃ηλu
2Ψ2(H∗

‖∂λP
∗
ηλϕ) dxdt dλ

+

∫∫∫

R
n+2

+

θ̃ηλ∇x(u2Ψ2) ·A∗
‖‖∇x∂λP

∗
ηλϕ dxdt dλ

+

∫∫∫

R
n+2

+

θ̃ηλ∂t(Ψ
2u2)∂λP

∗
ηλϕ dxdt dλ.

The first term on the right can be bounded by

(∫∫∫

R
n+2

+

|θ̃ηλ|2
dxdt dλ

λ3

)1/2(∫∫∫

R
n+2

+

|λ2H∗
‖∂λP

∗
ηλϕ|2

dxdt dλ

λ

)1/2

,

which in itself is bounded by c̃|∆| by square function estimates, see Lemma 3.2 (iv) and Lemma 3.3.
As for the second term on the right, having applied the pointwise bound |θ̃ηλ| ≤ cηλ ≤ cλ on the
support of Ψ, we are left with the task of estimating I2, which we have done before.

Altogether,

I θ̃
1 :=

∫∫∫

R
n+2

+

θ̃ηλ∂t(Ψ
2u2)∂λP

∗
ηλϕ dxdt dλ

is now the only term that remains to be estimated. It is instructive to observe that – upon replacing
|θ̃ηλ| by its pointwise upper bound cλ on the support of Ψ – this is the same term as 2I1. Hence, we
can follow the treatment of the latter almost verbatim, using the pointwise bound whenever feasible
in order to reduce matters to estimates that have already been completed. So, we shall only outline

the differences in this argument: To start the estimate we write I θ̃
1 = I θ̃

11 + I θ̃
12, where

I θ̃
11 :=

∫∫∫

R
n+2

+

θ̃ηλ∂t(Ψ
2)u2∂λP

∗
ηλϕ dxdt dλ,

I θ̃
12 := 2

∫∫∫

R
n+2

+

θ̃ηλu∂tuΨ2∂λP
∗
ηλϕ dxdt dλ.

The estimate for I θ̃
11 follows from that of I11. To estimate I θ̃

12 we use the equation for u and write

I θ̃
12 = I θ̃

121 + I θ̃
122, where

I θ̃
121 := 2

∫∫∫

R
n+2

+

θ̃ηλudivx(A∇λ,xu)‖Ψ2∂λP
∗
ηλϕ dxdt dλ,

I θ̃
122 := 2

∫∫∫

R
n+2

+

θ̃ηλu(A∇λ,x∂λu)⊥Ψ2∂λP
∗
ηλϕ dxdt dλ.
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Again, the estimate of I θ̃
122 follows from the bound for its counterpart I122. Furthermore,

I θ̃
121 = 2

∫∫∫

R
n+2

+

θ̃ηλu(A∇λ,xu)‖Ψ2 · ∇x∂λP
∗
ηλϕ dxdt dλ

+2

∫∫∫

R
n+2

+

θ̃ηλ∇xu · (A∇λ,xu)‖Ψ2∂λP
∗
ηλϕ dxdt dλ

+2

∫∫∫

R
n+2

+

θ̃ηλu(A∇λ,xu)‖ · ∇xΨ2∂λP
∗
ηλϕ dxdt dλ

+2

∫∫∫

R
n+2

+

∇xθ̃ηλu(A∇λ,xu)‖Ψ2∂λP
∗
ηλϕ dxdt dλ,

where the estimate for the first three terms follows from the bound for I121 as before. Eventually,
the fourth term, which shows up since unlike λ the functions θ̃ηλ does also depend on x, can be

bounded by J1/2|III1211|1/2 ≤ σJ + c̃|∆| using Cauchy-Schwarz and the previously obtained bound
for III1211. Put together, this completes the proof of Theorem 1.8.
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