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THE DIRICHLET PROBLEM FOR SECOND ORDER
PARABOLIC OPERATORS IN DIVERGENCE FORM

PASCAL AUSCHER, MORITZ EGERT, AND KAJ NYSTROM

ABSTRACT. We study parabolic operators H = 0y — diva,z A(z,t)V, in the parabolic upper half
space Rﬁ” = {(\,z,t) : XA > 0}. We assume that the coefficients are real, bounded, measurable,
uniformly elliptic, but not necessarily symmetric. We prove that the associated parabolic measure is
absolutely continuous with respect to the surface measure on R"*! in the sense defined by Ao (dz dt).
Our argument also gives a simplified proof of the corresponding result for elliptic measure.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

A classical result due to Dahlberg [8] states in the context of Lipschitz domains that harmonic
measure is absolutely continuous with respect to surface measure, and that the Poisson kernel (its
Radon-Nykodim derivative) satisfies a scale-invariant reverse Holder inequality in L2. Equivalently,
the Dirichlet problem with L?-data can be solved with L2-control of a non-tangential maximal func-
tion. Ever since Dahlberg’s original work the study of elliptic measure has been a very active area of
research and a number of fine results have been established, see [1,14,19] for recent accounts of the
state of the art.

In contrast to the study of elliptic measure, the fine properties of parabolic measure are consid-
erably less understood. In [13] a parabolic version of Dahlberg’s result was established for the heat
equation in time-independent Lipschitz cylinders. A major contribution in the study of boundary
value problems and parabolic measure for the heat equation in time-dependent Lipschitz type do-
mains was achieved in [15,20,21]. In these papers the correct notion of time-dependent Lipschitz
type cylinders, correct from the perspective of parabolic measure and parabolic layer potentials, was
found. In particular, in [20,21] the mutual absolute continuity of parabolic measure and surface mea-
sure and the A, -property were established and in [15] the authors obtained a version of Dahlberg’s
result for parabolic measure associated to the heat equation in time-dependent Lipschitz-type do-
mains. In this context the properties of parabolic measures were further analyzed in the influential
work [16], parts of which have been simplified in [27].

Very recently, there have been advances in the theory of boundary value problems for second order
parabolic equations (and systems) of the form

(1.1) Hu = Opu — divy 5 Az, 1)V zu =0,

in the upper-half parabolic space Rfﬂ ={(\,z,t) e RxR"xR: A> 0}, n> 1, with boundary
determined by A = 0, assuming only bounded, measurable, uniformly elliptic and complex coeffi-
cients. In [6,25,26], the solvability for Dirichlet, regularity and Neumann problems with L2-data
were established for the class of parabolic equations (1.1) under the additional assumptions that the
elliptic part is also independent of the time variable ¢ and that it has either constant (complex) coef-
ficients, real symmetric coefficients, or small perturbations thereof. Focusing on parabolic measure,
a particular consequence of Theorem 1.3 in [6] is the generalization of [13] to equations of the form
(1.1) but with A real, symmetric and time-independent. This analysis was advanced further in [4],
where a first order strategy to study boundary value problems of parabolic systems with second order
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elliptic part in the upper half-space was developed. The outcome of [4] was the possibility to address
arbitrary parabolic equations (and systems) as in (1.1) with coefficients depending also on time and
on the transverse variable with additional transversal regularity.

In this paper we advance the study of parabolic boundary value problems and parabolic measure
even further. We consider parabolic equations as in (1.1), assuming that the coefficients are real,
bounded, measurable, uniformly elliptic, but not necessarily symmetric. We prove that the associated
parabolic measure is absolutely continuous with respect to the surface measure on R"*! (dz dt) in
the sense defined by the Muckenhoupt class Ay (dzdt). As consequences, the associated Poisson
kernel exists, satisfies a scale-invariant reverse Holder inequality in LP for some p € (1,00), and the
Dirichlet problem with L?-data, ¢ being the index dual to p, can be solved with appropriate control
of non-tangential maximal functions. In particular, our main result, which is new already in the
case when A is symmetric and time-dependent, gives a parabolic analogue of the main result in [14]
concerning elliptic measure. Our proof heavily relies on square function estimates and non-tangential
estimates for parabolic operators with time-dependent coefficients that were only recently obtained
by us in [4] as well as the reduction to a Carleson measure estimate proved in [9]. As we shall
avoid the change of variables utilized in [14], this also gives a simpler and more direct proof of the
Aso-property of elliptic measure.

L.1. The coefficients. We assume that A = A(z,t) = {4;;(2,1)}];_, is a real-valued (n + 1) x
(n + 1)-dimensional matrix, not necessarily symmetric, satisfying

n
(1.2) RIEP < Y Aij( )&, A, 1)E - ¢| < CIENIC],
i,j=0
for some x,C' € (0,00), which we refer to as the ellipticity constants of A, and for all &,¢ € R
(z,t) € R*1. Here, given u = (ug, ..., up), v = (vg, ..., v,) € R" we write u - v := ugug + ... + Unvp.

1.2. Weak solutions. If Q is an open subset of R™1, we let HY(Q) = WH2(Q) be the standard
Sobolev space of complex valued functions v defined on €2, such that v and Vv are in LQ(Q) and
L2(Q;C"), respectively. A subscripted ‘loc’ will indicate that these conditions hold locally. A function
u is called weak solution to the equation Hu = 0 on R x R if it satisfies u € LY (R; Wllo’i(RTrl))
and

/// AV gu -V ¢ dxdtd)\—/// w0 dedtdd =0
R JJRH R JJRH

for all ¢ € C3°(R'TH?).

1.3. Parabolic measure. Given (z,t) € R™"! and r > 0 we let Q = Q,(x) := B(x,r) C R" be the
standard Euclidean ball centered at = and of radius r, and we let I = I,.(t) := (t —r%,t +72). We let
A=A (z,t) = Qr(x) x I(t) and write £/(A) := r. We will use the convention that ¢@ and ¢I denote
the dilates of balls and intervals, respectively, keeping the center fixed and dilating the radius by ¢
and we let cA := cQ x 1.

Given A real, satisfying (1.2), and f continuous and compactly supported in R**!  there exists a
unique (weak) solution u to the continuous Dirichlet problem Hu = (9; — divy ; A(x,t)V) z)u =0 in
R%*2 u continuous in R’ and u(0,,t) = f(z,t) whenever (z,t) € R"*!. Indeed, assume f > 0
and let ug, k > 1, be the unique weak solution to Hu = 0 in Q := (0, k) x Ag(0,0), with boundary
values f(xz,t)y(||(z,t)||/k) on Ax(0,0t), and zero otherwise. Here, ||(z,t)|| := |z| + |t|//? and 4 is
a continuous decreasing function on [0,00) such that 0 < ¢ < 1, ¢(r) = 1 for 0 < r < 1/2, and
P(r) =0 for r > 3/4. Then 0 < ug < ugt1 < ||f]loo in 2% and one can deduce, by the maximum
principle and the Harnack inequality, see [24] for these estimates, that

sup [ug — uj| < clug —u;)(1,0,41%), ifk>j5>1

971
In particular, u can be constructed as the monotone and uniform limit of {u;} as k& — oo on the
closure of §; for each | > 1. Uniqueness follows from the maximum principle. Furthermore, by the
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maximum principle and the Riesz representation theorem we deduce
uvast) = [ fs) doQatiys), forall (Aot €RE
Rn+&

where {w(\,2,t,-) 1 (\,z,t) € RT?} is a family of regular Borel measures on R"*! and we refer to
w(A, z,t,) as H-parabolic measure, or simply parabolic measure (at (A, x,t)).
Given 7 > 0 and (zg,ty) € R we let

Al (o, to) := (4r, 20,0 + 161%).

Assume that A satisfies (1.2). Then parabolic measure is a doubling measure in the sense that there
exists a constant ¢, 1 < ¢ < oo, depending only on n and the ellipticity constants such that the
following is true. Let (zq,t0) € R™"! 0 < rg < 00, Ag := Ay (70,t9). Then

w(AL, (w0, t0),24) < cw(Af, (0,t0),A)

4rg

whenever A C 4A¢. We refer to [11], [12] and [24] for details. The doubling property of parabolic
measure serves as a starting point for further investigation. In this paper we are interested in scale
invariant quantitative version of absolute continuity of parabolic measure with respect to the measure
dxdt on R""!. Given a set E C R™"! we let |E| denote the Lebesgue measure of E.

Definition 1.1. Let (x9,t9) € R"*1, 0 < rg < 00, Ag := Ay, (70,t0). We say that parabolic measure
associated to H = 0y — divy , A(z, 1)V, at AI,,O (xo,t0) is in Ao (A, dzdt) if for every € > 0 there
exists § = d() > 0 such that if E C A for some A C Ay, then

w(Af,, (zo,t0), E) |E|
- <fd = - <e.
W(Aim(l“o,to),A) |A|

Parabolic measure w belongs to As(dx dt) if w(AJ, (z0,%0),) € Asc(Ag, dzdt) for all Ay as above
and with uniform constants.

If w belongs to A (dzdt), then w(Af, (2o,t0), ) and dzdt are mutually absolutely continuous
and hence one can write

dw(Aj{m (zo,t0), z,t) = K(AI,,O (zo,to), x,t) da dt.

We refer to K (AJ, (zo,t0),,t) as the associated Poisson kernel (at A}, (zo,t0)).

4rg 4ro

Definition 1.2. For p € (1,00) we say that w belongs to the reverse Hélder class By(dx dt) if there
exists a constant ¢, 1 < ¢ < oo, such that for all Ag := A, (xo,tp) the Poisson kernel K(Aj{m (zo,t0), ")
satisfies the reverse Holder inequality

1/p
<]§[ (K (A4, (z0,t0),x,1))P da dt) < c]§[ K (Af, (o, t0), x,t) dodt
A A
whenever A C Ag.

Note that as parabolic measure has the doubling property the statement that parabolic measure w
belongs to Ao (dz dt) has several equivalent formulations. Furthermore, Ao (dz dt) = U,~1 Bp(dz dt).
We refer to [7] for more on A.,. For (x,t) € R"! and a function F, we define the non-tangential
maximal function

(13) N F(z,t) =sup sup |F(u,y,s)],
A>0 AxQxI

where A = (A\/2,)), @ = B(z,\) and I = (t — A\2,t + A\?). Given (zg,t9) € R"™ 5 > 0, we also
introduce the parabolic cone

(1.4) T (z0,t0) := {(\,z,t) € R [|(x — zo,t — to)]| < nA}.
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Definition 1.3. Let ¢ € (1,00). We say that the Dirichlet problem for H in Rfﬂ with data in
LY(R™), D, for short, is uniquely solvable if the following holds. Given f € LI(R"*!) then there
exists a unique weak solution u such that

Hu=0 in R72,
lim u(A, -, -) = f(-,-) in LYR™) and n.t.,
A—0
[[N:ullq < oo.

Here, n.t. is short for non-tangentially and means u(\, x,t) — f(zo,to) for almost every (z,tg) €
R as (A, z,t) — (xg,tg) through the parabolic cone I'(xg, to) for some 7 > 0.

Assume that parabolic measure w belongs to A (dxdt) and, in particular, that w belong to
By(dx dt) for some p € (1,00). This is equivalent to the solvability of D, for H, ¢ being the dual
index to p, see for example Theorem 6.2 in [24]. The results in [24] are derived under the assumption
of symmetric coefficients. However, the lemmas underlying the proof of Theorem 6.2 in [24] do not
rely on this assumption.

1.4. Statement of the main result. The following theorem is our main result.

Theorem 1.4. Assume that A satisfies (1.2). Then parabolic measure w belongs to Aso(dx dt) with
constants depending only n and the ellipticity constants. In particular, there exists p € (1,00) such
that w belongs to the reverse Hélder class By(dx dt) with p and the constant in the reverse Holder
inequality depending only n and the ellipticity constants. Equivalently, D,, where q is the index dual
to p, is solvable.

Theorem 1.4 is new and gives the parabolic counterpart of the corresponding recent result for
elliptic measure obtained in [14], with a simplified argument compared to [14]. As mentioned before,
Theorem 1.4 is new even in the case when A is symmetric and time-dependent. Note that in [18]
the result of Dahlberg was proved for elliptic measure associated to the elliptic counterpart of (1.1)
with symmetric A, that is, in this case the associated Poisson kernel exists and belongs to By. In
contrast, in the parabolic case it is not clear if such a result holds true if we allow for time-dependent
coefficients (the case of time-independent coefficients was treated in [6] and does give Bs).

Theorem 1.4 generalizes immediately to the setting of time-independent Lipschitz domains in
the following sense. Consider the domain {(xg,z,t) : x9 > ¢(z)} above the graph of the time-
independent Lipschitz function ¢ and consider the equation

Oru — divg, o A(2, 1)V ou =0

in this domain. Using the simple change of variables (A, z,t) — (A 4+ ¢(x),x,t), this equation is
equivalent to an equation in the upper parabolic half space to which Theorem 1.4 applies. In contrast,
this argument does not apply to a time-dependent domain of the form {(xg,x,t) : xg > @(z,t)} as
the change of variables (A, x,t) — (A + ¢(x,t),z,t) with ¢ Lipschitz in both x and ¢ destroys the
structure of the equations studied here. If ¢ is only Lipschitz with respect to the parabolic metric,
that is, Lipschitz continuous in z and 1/2-Hélder continuous in ¢, then more elaborate changes of
variables have to be employed but this changes the nature of the assumption on the coeflicients,
see [16] for details.

1.5. Outline of the proof of Theorem 1.4. The proof consists of three parts: a reduction to
a Carleson measure estimate, the construction of a particular set F', and the proof of the Carleson
measure estimate by partial integration. These three parts have four sources of insights [4,9, 14, 19].
In general, ¢ will denote a generic constant, not necessarily the same at each instance, which, unless
otherwise stated, only depends on n and the ellipticity constants. We often write ¢; < ¢o when we
mean that ¢j/ce is bounded by a constant depending only n and the ellipticity constants.
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Reduction to a Carleson measure estimate. The key insight in [19] is that the A..-property of elliptic
measure follows once a certain Carleson measure condition is verified. More recently, this idea has
also been implemented in the parabolic context: On pp.19-22 in [9] it is shown that in order to
conclude w € A (dxdt) it suffices to prove the following result, which we state here as our second
main theorem.

Theorem 1.5. Let S C R™! be a bounded Borel set and let u(\,x,t) := w(\, x,t,S) be the corre-
sponding weak solution to (1.1) created by the H-parabolic measure w. Then u satisfies the following
Carleson measure estimate: for all parabolic cubes A C R,

oA)
(1.5) / // (Vazul? X dedtd) < |A

0 A
Remark 1.6. Theorem 1.5 is a priori equivalent to the statement that (1.5) holds for all parabolic
cubes whenever u is the unique solution to the continuous Dirichlet problem for Hu = 0 with

continuous compactly supported boundary data f satisfying |f| < 1, see Remark 5 in [9]. Note
that in this case |u| < 1 by the maximum principle. This reformulation has the advantage that it
allows one to assume that A is smooth as long as all bounds depend on A only through its ellipticity
constants, see p. 20 in [16] for this type of reduction.

Based on Remark 1.6 we can assume qualitatively that A is smooth and we are left with the task
of proving the Carleson measure estimate (1.5) if u is any weak solution to (1.1) bounded by |u| < 1.
The fact that u could be chosen continuous up to the boundary will not enter the argument.

Using that dyu is a solution to Hu = 0 (A is independent of \), integration by parts in the integral
in (1.5) and the standard Caccioppoli inequality on (parabolic) Whitney cubes, see Lemma 2.1 below,
it follows that to prove (1.5) it suffices to prove for all parabolic cubes A the inequality

()
(1.6) / // Ohul? A dedtd < |A.
0 A

Furthermore, as our equations have real and uniformly elliptic coefficients, the solution dyu satisfies
De Giorgi-Moser-Nash estimates, see for example Lemmas 3.4 and 3.5 in [16]. From a John-Nirenberg
Lemma for Carleson measures, Lemma 2.14 in [5], it follows that for (1.6) it is enough to prove that
the following holds: for each parabolic cube A C R™!, r := £(A), there is a Borel set F C A with
|A] < |F|, such that

(1.7) // Orul? Adadtd < |A.
0 F

This completes our reduction to a Carleson measure estimate. To avoid duplication with [9] and for
the sake of brevity, we will not give more details concerning these facts. Instead we will simply prove
Theorem 1.5 and Theorem 1.4 by verifying (1.7) for a properly constructed set F' and this is the
main contribution of the paper.

Construction of the set F'. In the context of elliptic measure the freedom of having a set F' C A at
one’s disposal in (1.7) was cleverly brought into play in [14] via an adapted Hodge decomposition.
Inspired by this, we look for a parabolic Hodge decomposition. To this end, we split the coefficient
matrix A as
A (z,t) A y(z,0)
1.8 Az, t) = | 7 A
(18) (@8) Az, t)  Ay(z,t)
Then A, is an n-dimensional row vector and A, is an n-dimensional column vector. We have a
similar decomposition of A*, which is the transpose of A since A has real coefficients.

Introduce the parabolic operator H)| := dy — div, AV, and its adjoint ’H,ﬁ = —0 — div, Aﬁ”Vm
on R™1. Let us recall that H|| and ’H,ﬁ admit the following hidden coercivity used systematically

in [4,6,25,26]. In fact, it appeared before in [17]. First, we define the homogeneous energy space
E(R"*1) by taking the closure of test functions v € C5°(R"*!) with respect to the norm

1/2
HUH?E(R"“) = //]Rn+1 |va|2 + |Dt/ U|2 dz dt
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and identifying functions that differ only by a constant. Here, the half-order t-derivative Dt1 /2
is defined via the Fourier symbol i|7|'/2. This closure can be realized in L*(R™*1) + L°(R"*1)
and modulo constants E(R™!) becomes a Hilbert space, see for example Section 3.2 in [4]. The
corresponding inhomogeneous energy space E(R"*1) = E(R™t1) N L2(R"*!) is equipped with the
obvious Hilbertian norm. Denoting by H; the Hilbert transform with respect to the t-variable, we
can factorize 0; = Dt1 / 2HtDt1 /? and this in turn allows us to define H| as a bounded operator from
E(R™1) into its (anti)-dual E(R"1)* via

1/2 1/2 =
(1.9) (Hyu)(v) = /Rn-H Dt/ u - HtDt/ v+ A Veu - Vo dodt.

The hidden coercivity of the sesquilinear form on the right-hand side now pays for this operator being
invertible with operator norm depending only on n and the ellipticity constants of A, see Section 7
of [17] or Lemma 5.9 in [6]. An analogous construction applies to 7—[|*| Considering a parabolic cube

A=A, C R we let xga = xsa(x,t) be a smooth cut off for 8A which is 1 on 8A, vanishes
outside of 16A and satisfies 7|V, xsa| + 7%|0¢xsa| < ¢. Then, there exist ¢, $ € E(R™™!) solving

(1.10) Hﬁ@ = divx(ALHXSA)7 H||¢3 = divx(AHLXSA)u

and satisfying the a priori estimates

// Vapl? + [H, DM 2p|? dxdtg// A, 2 dedt <A,
Rn+1 16A

I Vel 1D dede s ] JALP dedt S AL
Rn+1 16A

As we can undo the factorization of d; leading to (1.9) if v is a test function, (1.10) holds a fortiori
in the usual weak sense. More in the spirit of operator theory, Lemma 4 in [3] shows that the part
of H| in L2(R"*!) with maximal domain

D(H”) = {u S E(Rn+1) : ’H”u S LQ(RHJFI)}
is mazimal accretive, that is, for every p € C with Reu > 0 the operator p + H is invertible
and [|( + Hy) 22 < (Rep) ™! holds. The recent resolution of the Kato problem for parabolic

(1.11)

operators identifies the domain of its unique maximal accretive square root as D(?—lﬁ/ 2) = E(R"*))
with a homogeneous estimate

#1200l ~ [Vovlls + | HDYolls— for v € E@),
see Theorem 2.6 in [4]. Thus, writing
- —1/2 Z14,1/2

we can extend (u+4#)~! by density from E(R"*!) to a bounded and invertible operator on E(R™).
Again we also have the analogous results for Hﬁ In particular, for m a natural number and A > 0
we can introduce the higher order resolvents of ¢, @,

(1.12) Pio:=(1+NH) ™,  Pg:=(1+NH) ",

within the homogeneous energy space E(R”“). In the further course we will fix m large enough
(without trying to get optimal values) to have a number of estimates at our disposal.

Coming back to the actual construction of F', we also introduce the parabolic maximal differential
operator

(1.13) Dv(z,t) = supﬁ[A

0>0

’U(l’,t) — U(yv S)‘
o) (@ =yt —s)l

which maps boundedly into L?(R™*!) as we shall prove later on in Lemma 2.3. Here, || - || indicates
again the parabolic distance. In particular, (1.11) implies

dyds, v € ER"1),

~ 1
(1.14) Della + [Dpll2 < A
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The non-tangential maximal function operator NN, acting on measurable functions F' on ]RTLQ was

introduced in (1.3). For (x,t) € R"! we also introduce the integrated non-tangential maximal
function

- 1/2
(1.15) N,F(x,t) = sup (]%[ |F(p,y,5)* du dyds) ,
A>0 AxQxI

where A = (A\/2,)), Q = B(z,)\) and I = (t — A2t + A\?). If g : R""! — R and is locally integrable
we let M(g) be the (n + 1)-dimensional (parabolic) Hardy-Littlewood maximal function

M(g)w.t) =sup . gldyds
Ag(z)t)

0>0

)

and we let M, and M; denote the standard (euclidean) Hardy-Littlewood maximal operators in the
x and t variables only. Our construction of F' is then done through the following definition.

Definition 1.7. Let A be fixed and also fix m = n + 1. Given kg > 1, we let F' C 16A be the set
of all (z,t) € 16A such that the following requirements are met:
i) MVl t) + M(IVa@l?) (2, 8) < K3,
(i) Mo M(HD o) (@, 1) + Mo M| H D 3]) (@,1) < o,
(i) Dep(z,t) +Dp(z,t) < ko,
(iv)  Nu(OaFxo)(x,1) + No(OrPrp)(,1) < o,
(V) Nu(VaPXo)(@,1) + Nu(Va Pr@) (2, ) < ko.
Given A and kg > 1, let F' be defined as above. Then, using the weak type (1,1) of M, the strong

type (2,2) of M, M;, the estimates (1.11) and (1.14) and the L%-bounds for the non-tangential
maximal functions that will later be obtained in Lemma 4.2 and Lemma 4.5, it follows that

[16AN\ PI S (5™ + kg DIA]L
In particular, we can now choose kg, depending only on n and the ellipticity constants, so that
[16A\ F|
A

This completes our construction of the set F' and from now on kg is fixed as stated ensuring that
(1.16) holds.

(1.16) < 1/1000.

Proof of the Carleson measure estimate. Based on the previous steps, the proofs of Theorem 1.4 and
Theorem 1.5 are reduced to verifying (1.7). To do this we construct, given A = A, F C A a Borel
set and € > 0, a parabolic sawtooth region above F' using parabolic cones of aperture 0 < n < 1.
The parameter 7 is an important degree of freedom in the argument. In (5.4) we will construct a
(smooth) cut-off function ¥ = ¥, . such that W(\, z,t) = 1 on F' x (2¢,2r) and ¥(\,z,t) = 0 if
A € (0,€) U (4r,00), and we let

Jnei—_// AV pu - Vypu U2\ dz dt dA.
K Ri+2 b b
Then, by ellipticity of A,

(1.17) / / Oxul? A dzdt dA < Jie.
2e F

Since ¥ has compact support in the upper half space, we can ensure finiteness of J, . and hence
everything boils down to the following key lemma:

Lemma 1.8 (Key Lemma). Let o,n € (0,1) be given degrees of freedom. Then there exist a fi-
nite constant ¢ depending only on n and the ellipticity constants, and a finite constant ¢ depending
additionally on o and n, such that

Jye < (0 + n)dye + A
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Indeed, choosing ¢ and 7 small, both depending at most on n and the ellipticity constants, we
first derive

Jpe < 26A,

where now 7 is fixed but ¢ is still independent of e. On letting ¢ — 0, we see from (1.17) that the
estimate (1.7) holds. As discussed before, this completes the proofs of Theorem 1.5 and Theorem 1.4.

1.6. Organization of the paper. Section 2 is partly of preliminary nature and we here prove
(1.14). Section 3 is devoted to the important square function estimates underlying the proof of
Theorem 1.8. These estimates rely on recent results established in [4]. In Section 4 we prove the non-
tangential maximal function estimates underlying the statements in Definition 1.7 (iv)-(v). Based on
the material of Sections 2-4 the set F' introduced in Definition 1.7 is well-defined and we can ensure
(1.16). In particular, thereby the set F' C 16A is fixed as we proceed into Section 5 and Section 6.
In Section 5 we then introduce sawtooth domains above F', we define the cut-off function ¥ = ¥,
referred to above and we prove some auxiliary Carleson measure estimates. The proof of Lemma 1.8

is given in Section 6.

2. TECHNICAL TOOLS

In this section we collect three technical lemmas that shall prove useful in the further course. We
begin with standard Caccioppoli estimate which we here state without proof.

Lemma 2.1 (Caccioppoli estimate). Let v be a weak solution to Oyu — divy z AV zu+ ou =0 on
R%2 where a € L®(RT1?), a > 0, and let ¢ € CP(RTH?). Then

// |V,\7xu|2¢2dxd)\dt§c// [u?|Vz0|* dz dA dt

for some finite constant ¢ depending on n and the ellipticity constants of A.

Next, we record a Poincaré-type estimate for functions in the homogeneous energy space E(R"H).
We use the standard notation for parabolic cubes introduced in Section 1.3.

Lemma 2.2. Let v € E(R™™Y) and let A, = Ay(x,to) C R™ ! be a parabolic cube. Then

A
— v — v
0JJA, A,

Proof. We write A, = @, x I, and we let

dadt S M(|V,0]) (w0, to) + Ma My(|H,D}*0]) (0, to).

F#) = { olwt) da,

e

noting that this function is contained in the homogeneous fractional Sobolev space H'/ 2(R), see
Section 3.1 in [4]. Then

AQ AQ

by Poincaré’s inequality in the spatial variable x only. Furthermore, for f € H/? (R) we have at hand
the non-local Poincaré inequality

-

dzdt S o M(|Vav]) (20,

—]égf}dt

dt H,D? | dt
‘ _Qzl+\kl3/2]£9+1| t/¢ f| )
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see Lemma 8.3 in [4]. Rearranging the covering of the real line by translates of I, into a covering by
dyadic annuli, we obtain

][ f—][ f‘ dt < o> 2° m][ [H:D* f| do

I, Io m>0 "1,
< 2_m]§[ HDl/Qv dx dt
a szzjo QX‘””I@' P

1/2
< 20 M (My(|H Dy *v]) (w0, to),
where the second step can rigorously be justified using Fubini’s theorem, see Lemma 3.10 in [4]. O

As a consequence, we obtain an important estimate for the parabolic maximal differential operator

D defined in (1.13).
Lemma 2.3. The operator D maps E(R"*1) boundedly into L*(R™t1).
Proof. Let v € E(R™!). We first claim that

"U(.%',t)—’l}(y7 )’ oD\ (z /2v .
(2.1) T — gt s~ MUVl @ 1) + Mo M| H Do) 1)

+ M(|V,0])(y, ) + Mo Mi(|H: Do) (y, )

holds for almost every (z,t), (y,s) € R"*1. Indeed, let (z,t) be a Lebesgue point for v and for ¢ > 0
let v, denote the average of v over the parabolic cube A, := A,(x,t). Then, by a telescoping sum
and an application of Lemma 2.2,

[o(z,t) —v,| < Z [Vg—k-1, — Vg—k |
< X 2 o(MUTat ) + M MDY 1)

< 2Q(M<|vxv|><x,t>+MxMt<|HtD3/2v|><w,t>).

Furthermore, let also (y,s) be a Lebesgue point for v and assume that (y,s) € A,(z,t). Then
Ay(x,t) C Agy(y, s) and we obtain as above,
‘ﬁ[ v — v,
A2g(y75) AQQ Y, 5

‘U(yﬂg)_vg‘ < U(yas)
S o[ MUVao (o) + Mo Mi(HDY o) 3. 5)).

Now, for (z,t) # (y,s) as above we can specify ¢ := ||(x — y,t — s)|| and (2.1) follows by adding up
the previous two estimates. In particular, we obtain

1/2
Do(z,t) < M(Vool)(@.1) + Mo Mi(|H D ol (2, 0)
1/2
+ MM(V,0]) (@, 8) + M My M(|H Dy ) (0, 1)
for almost every (z,t) € R™! and since all occurring maximal operators are L2-bounded, we conclude
IDovlle < [|Vavll2 + ”HtDtl/ZUHQ as required. O
3. FUNCTIONAL CALCULUS AND SQUARE FUNCTION ESTIMATES

In this section we prove the important square function estimates for Hj and 7—[” underlying the

proof of Lemma 1.8. Most of this material is taken from [4].
Given p € (0,7/2) we let

pi={2€C:|argz| <por|argz — 7| < pu}
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denote the open double sector of angle p. We let
U(Sy) :={Ye H®(S,) : Fa >0, C >0, such that [¢(z)| < Cmin{|z|%, |2|"*}}

where H>(S,,) is the set of all bounded holomorphic functions on S,. Furthermore, recall that an
operator T' in a Hilbert space is bisectorial of angle w € (0,7/2) if its spectrum is contained in the
closure of S, and if, for each u € (w,7/2), the map z + z(z — T)~! is uniformly bounded on C\ S,,.
In this case a bounded operator 1(7') is defined by the functional calculus for bisectorial operators
and we refer to [23] or [10] for the few essentials of this theory used in this section. Turning to
concrete operators, we represent vectors h € C"t2? as

hy
h=1h,
hy

where the normal part h is scalar valued, the tangential part h is valued in C" and the time part
hg is again scalar valued and let

0 div, —D}/* 1 0 0
P=| -V, 0 0 |, M:=|0 Ay 0
—H,D/* 0 0 0 0 1

Here, M is considered as a bounded multiplication operator on LQ(R”“; C"*2) and the parabolic
Dirac operator P is an unbounded operator in LZ(R"H; C"*2) with maximal domain. The link with
the parabolic operator ) is that (PM)? and (M P)? are operator matrices in block form

Hy 0 0 H; 0 0
(3.1) (PM? =0 x x|, (MP?* =10 % x|,
0 * =x* 0 =* =

where the entries * do not play any role in the following but of course they could be computed
explicitly. Note that taking adjoints in (3.1), hence using (P*M*)? or (M* P*)?, allows to obtain H
The following theorem provides square function estimates.

Theorem 3.1. The operator PM is a bisectorial operator in LQ(R"H;C"H) with angle w of bi-
sectoriality depending only upon n and the ellipticity constants of A and the same range as P, that
is, R(IPM) = R(P). Let p € (w,m/2) and consider 1 € V(S,) non vanishing on each connected
component of S,,. Then

o0 dA . ==
| IOPMORIESE ~ kI3 i h e ROPAD)

and the implicit constants in this estimate depend only upon n, the ellipticity constants of A, u and
. The same holds true for MP on R(IMP) = MR(P) and with PM, MP, replaced by P*M*,
M*P*.

Proof. For PM, this is a mere consequence of Theorem 2.3 in [4]: Indeed, this theorem states all
assertions apart from that only the quadratic estimate

%0 d
/ [APM(1+X2PMPM)~'h|3 TA ~ a3 for h € R(PM)
0

is mentioned. But due to a general result on quadratic estimates for bisectorial operators on Hilbert
spaces, see [23] or Theorem 3.4.11 in [10], this quadratic estimate is in fact equivalent to the set of
quadratic estimates stated above. The statement for M P follows from the fact that this operator is
similar to PM on their respective ranges by M P = M(PM)M~!'. The statements for P*M*, M*P*
follow by duality, see again [10,23]. O

Below, we single out some particular instances of the theorem above and reformulate them in
terms of H) and ’H,ﬁ to have direct references later on. Throughout, we let ¢, ¢ be as in (1.10),
(1.11) and we recall that the resolvent operators Py, Py were defined in (1.12) for the moment with
m unspecified.
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Lemma 3.2. There exists ¢, 1 < ¢ < 00, depending only on n, the ellipticity constants and m > 1

such that
. . _, dedtdr
O[] onPRel? + a g S5 < A,
+

dz dt d

(ii) /// VLA Piol? + ZVaor P2 T2 A,
R 2 A
dz dt d
2 T2 <A,

@) ] PR+ I P
+
. " « _o dxdtdA
() [ OB + Do P S < A
+

Proof. In the following we will only prove the estimates for P\@, the estimates for P{¢ being proved
similarly with P* and M™* replacing P and M. Note that ¢ € E(R”“) and hence the following
calculations can be justified, for example, by approximating ¢ by smooth and compactly supported
functions in the semi-norm of E(R”“). Keeping this in mind, we may directly argue with ¢. We
begin with (iii). Let

0 %
h:=| —Vap | =P|0| €R(P)=R(PM),
—H,D}*3 0

and note, using (3.1) and elementary manipulations of resolvents of PM and M P, that

AH | Prg % @
0 = A(MP)*(1 4+ (AMP)*)~™ H = M(APM)(1+ (APM)*)™™P |0| = Myp(APM)h
0 0 0

where 1(z) := z(1 + 22)~™. Hence,
_o dxdtdA - 1/2 .
R e e T R A R e RN
+

by an application of Theorem 3.1 and (1.11). This proves (iii). Likewise, (i) and (iv) follow with
P(2) = —2m22(1 + 22)™™ 1 and ¥(2) = —2m2z3(1 + 22)"™ 1, respectively. Finally, to prove (ii) we
write analogously

0 AO\P\@ 1
AV PG | =P| 0 = —2mP(AMP)* (1 + (AMP)*)"™ "1 0| = (APM)h
—\H,D;*0\P\p 0 0

with ¢(z) = —2m2z2(1+22)"""! and the claim follows by yet another application of Theorem 3.1. [

Lemma 3.3. There exists ¢, 1 < ¢ < oo, depending only on n, the ellipticity constants and m > 1
such that

X _o dzdtdA
///RTQ (= PP +1(1 — PP LU < gja
Proof. We have

A
(1= Py = [ 0P do.
0

Applying Hardy’s inequality and Lemma 3.2 (i) we see that

_o dxdtd) o dzdtd)
///RTQ (T = P)gl” T3 S ///Ri+2 |OAPAB[? N < c|Al.

The proof of the estimate for (I — P5 )¢ is similar. O
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4. NON-TANGENTIAL MAXIMAL FUNCTION ESTIMATES

The pointwise non-tangential maximal operator N, was introduced in (1.3) and its integrated

version N, was defined in (1.15). In this section we use the previously obtained square function
estimates to derive bounds for these maximal functions.

Theorem 4.1. Let h € R(PM) and let F(\, z,t) = (e MPMp)(z,t), with [PM] := \/(PM)2. Then
INE 2 ~ [[hll2,

where the implicit constants depend only on dimension and the ellipticity constants of A. The con-
clusion remains true also with PM replaced by P*M*.

Proof. For PM, this is Theorem 2.12 in [4]. The same statement can be proved for P*M*. O

In the following Py, P\¢ are again as defined in (1.12).

Lemma 4.2. There exists ¢, 1 < ¢ < oo, depending only on n, the ellipticity constants and m > 1
such that

INAVPE )3 + IN:(Va PA@) 3 < clA.

Proof. We only give the proof of the estimate of N*(VIP)\@). To start the proof we first note as in
the proof of Lemma 3.2 (ii) that

0 0 @
—VePg | =9(APM)h, h=| —Vap | =P|0| €eR(PM)
—H,D!*P\p ~H,D}*3 0

where now 9(z) = (1422)~™. Thus, =V, Py@ = (J(APM)h) and we have to estimate | N, (9(APM)D)||z.
To this end, we first note

~ - 1/2 -
(4.1) N (e M) 3 < [1RIIE = Vo 2l13 + | HeDy 3113 < A,
using Theorem 4.1, the construction of A and (1.11). Now let ¥(2) := ¥(2) — eV, Tonelli’s theorem
yields
, )
2 )\ )
see for example Lemma 8.9 in [4] for an explicit proof. Since 1) € ¥(S,) for every u € (0,7/2), we
deduce from Theorem 3.1 that

IN.GOPMIE S [ lwPannl

IN(APM)R)II3 < [IRI3 < A,
which in combination with (4.1) yields the claim. O

For the A-derivatives of Py and P\¢ we could get L2-bounds for the integrated non-tangential
maximal function immediately from the square function estimate in Lemma 3.2 (i). However, this
would not be enough for our purpose. To derive the required bounds for the pointwise non-tangential
maximal function, we need the following lemma.

Lemma 4.3. For A\ > 0 and m > 1, the resolvent Py = (1 +)\27-l||)_m, defined as a bounded operator
on L2 (R™1) | is represented by an integral kernel K A,m With pointwise bounds

t=s _ le=ul?
2 - —
A4 e t—s s

C1 t—
(42) ‘K)\,m(.%'7t’y’3)‘ < M "

< o ( _ s)fn/2+mfle—

where C,c > 0 depend only on n, the ellipticity constants and m. An analogous representation holds
for (1 + )\Z'Hﬁ)_m with adjoint kernel K3 ..
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Proof. Tt suffices to do it when m = 1 as iterated convolution in (x,t) of the estimate on the right
hand side of (4.2) with m = 1 yields the result.

Let f € CPR"!). Let u = (14 A*H|)~'f given by the functional calculus of H. Then
u € LQ(R”“) and, in particular, u is a weak solution to A\20,u — \?div, AViu +u = f. On
the other hand, by Aronson’s result [2], the operator ) has a fundamental solution, denoted by
K(z,t,y,s), having bounds

lz—y|?

|K(z,t,y,8)] < Clgoeo)(t—s5)-(t— §) M2 s for z,y e R", t,s € R

with constants C, ¢ depending only on dimension and the ellipticity constants, and satisfying

(4.3) / K(x,t,y,s) dy =1 forz e R" t,s e R, > s.

Set Ky 1(z,t,y,s) = A2K(z,t,y, S)eJA_25 and v(z,t) = [Jgn+1 Kx1(z,t,y,5)f(y,s)dyds. Aronson’s
estimate implies v € L?(R™*1) and a calculation shows that v is a weak solution to the same equation
as u. Thus, w := u — v is a weak solution of dw — div, Ay V,w + A2w = 0 and we may use the
Caccioppoli estimate of Lemma 2.1 in R®*!. Choosing test functions 1) that converge to 1 reveals
V,w =0 as w € L2(R™"1). Hence w depends only on t. Again, as w € L%(R"*!), w must be 0. This
shows that Py f has the desired representation for all f € C5°(R"*!) and we conclude by density. [J

Remark 4.4. The kernel representation from Lemma 4.3 can be extended from LQ(R"Jrl) to E(R”“)
since the latter embeds continuously into L2(R**1) + L>°(R™!) modulo constants, see for example
Lemma 3.11 in [4]. In this sense (14 A*H)))~"1 = 1 holds due to (4.3).

Lemma 4.5. Fiz m =n + 1 in the definitions of P\ and Py. There exists c, 1 < c < oo, depending
only on n and the ellipticity constants such that

[N« (AP @)1 + [N (A Pr@)I[3 < clAl.

Proof. By symmetry of definitions, we only have to prove one of the estimate and we do the one of
N, (0x\P5 ) for a change.

To start the proof, fix (u,y,s) € W(A z,t), where W(\, z,t) := Ay x Qx(z) x Ix(t) = and
Ay = (A/2,)), Qx(z) = B(z,\) and Iy(t) = (t — A2, + \?) is one of the Whitney regions used in the
definition of N, and recall that Ay(x,t) = Qx(x) X I\(t). Let o € Ay be arbitrary for the moment.
We note that within the functional calculus for 7—[|*|,

29 %\—m~—1
Oy = =2mpH (1 + M) ™™,
and we introduce ]5: =1+ ,uQ';'-[ﬁ)_1 to write

. 2m \—m, £y — * * T*
OuPlp = == E(L+ i) (1L + W) N L+ P HoH P

It is convenient to expand this identity as

* 2m,u 2 — 02 0-2 2 —1 * 7%
(44) (%Pﬂgo:—T(l—i—,u Hﬁ) m (E"‘ <1—?>(1+,U, Hﬁ) O'H”PJQD
since this reveals (%Pﬁgp = T(U’Hﬁpj ), where the operator T is given by a linear combination of
the resolvent kernels K;,, and K}, .., provided by Lemma 4.3. Setting Go(z,t) := Agx(z,t) and
Gj(x,t) := Agjrry(x,t) \ Agin(z,t), j > 1, since (u,y,s) € Ay x Ax(z,t), we can infer pointwise
estimates

C .
|KZ7m+k(y,s,z,T)| < )\n+2efc4j if (2,7) € Gj(x,t), 720, m+k>n/2+1,

where C, ¢ > 0 depend only on n, the ellipticity constants and m + k. Note that the bound for j =0
only holds since m +k > m = n+1 > n/2 + 1 guarantees that K, i 18 bounded. As we have
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A/2 < o < A, the kernel K* of the operator acting on U’H,” P*y on the right-hand side of (4.4) has
analogous bounds and we can eventually record

e = | [l K s mn)oH Peter) dzdr

< YOt #

- \a?—[ﬁpjap(z,T)] dzdr
j=0 i@

with C, ¢ > 0 depending only on n and the ellipticity constants. As (u,y,s) € W(A, z,t) was arbitrary
in this argument, we have in fact

@s) s Py sy e ff loH] Plip(z, )2 dz dr,
(1,y,8)EW (A\z,t) : Z 29H1Q\ (m) x 4T +2 15 (1) I

where we have also used Cauchy-Schwarz to switch to L2-averages and exploited the exponential
decay. Since only the right-hand side depends on ¢ € Ay, we can average in ¢ and take the supremum

in A to find

> dzdrdo
NP5 p)(x,t)* i / # oHPro(z, )2 ———.
N, (OzPxo)( Z sup w2 W10, @20 |oH] Pyo(z,7)] .

By a direct application of Tonelli’s theorem, see Lemma 8.9 in [4] for an explicit proof, this implies

X N _otd . dzdrdo
[P draes et [I]L o Prpte )t ST
1= +

and hence the claim follows from Lemma 3.2 (i) applied with m = 1. g

5. PARABOLIC SAWTOOTH DOMAINS ASSOCIATED WITH F'

Throughout this section, let A and kg > 1 be given and let F' C 16A be the set introduced
in Definition 1.7 with Py = (1 4+ AH)™ ! P; = (1 + )\27-[”) "=1 from now on. Let us recall

that the non-tangential maximal operators IV, and N, at (wo,t0) € R*! are defined with reference
to the Whitney regions Ay x Qx(xg) X Ix(zg), where Ay = (A\/2,A), Qa(zo) = B(xo, A), In(to) =
(to — A2, tg + A2), and that I'(xg, o) denotes the parabolic cone with vertex (zg,to) and aperture one,
see (1.4). In particular, we have

T(z0,t0) € | Ax X Qa(x0) x Ix(to).
A>0
Next, we introduce a sawtooth domain associated with F,
Q= U I'(zo, to),
(zo,to)EFNA
and establish pointwise estimates for the differences
Or =9 = Plp, Ox:= ¢~ Prp.
Lemma 5.1. We have
(i) 0x(z,t)| + |0x (2, )| < koA if (A x,t) € (0,00) X F,
(i) [930x(z )] + |0n0x (2, )] = [OnProp(a, )] + [ Prg(x, 1) < o if (A, 2,8) € 9,
(i) [Nu(Valr) (2, )| + |[Nu(Vely) (2, t)| < 260 if (x,t) € F.
Proof. If (z,t) € F, then by the fundamental theorem of calculus and the construction of the set F,
see Definition 1.7 (iv),

o, + 0220 = [ 100 Bt ] + 105 Pop(a, )] do < o
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This proves (i). Similarly, consider (A, z,t) € Q. Then (A, z,t) € I'(xo, to) for some (zg,tp) € F and
since ¢ and ¢ are functions of (x,t) only, we obtain

|Ox0A (2, 8)] = |03 PXop(x, )| < Nu(95F; ) (20, t0)

together with an analogous estimate for 90y (z,t). Hence, (i) is again a consequence of Defini-
tion 1.7 (iv). As ¢ and ¢ do not depend on A, we also have

NVt (@, )] + IN(Vab) (@ )] < M(Vapl?) @, )2 + M| Vap*) (@, )"/
showing that (iii) is a consequence of parts (i) and (v) in Definition 1.7. O
Our next lemma extends the bound in part (ii) above to the whole sawtooth region.

Lemma 5.2.
|9>\($,t)| + |9~>\('Iat)| 5 KOA fOT ()"x’t) € .

Proof. By symmetry of the definitions it suffices to prove the bound for 6. As a preliminary ob-
servation note that if (A, z,t) € Q, then (A, z,t) € I'(xo,to) for some (z9,%p) € F and in particular
(x,t) € Ax(zg,to). Since ¢ is a weak solution to the equation Hijp = div, (A, xsa) on R""! we can
then use the classical local estimates for weak solutions with real coefficients, see e.g. Theorem 6.17
n [22], to the effect that

sup lo(x,t) — (x0,t0)] S A+ ]§[ lo(x,t) — @(x0,t0)| dadt.
(z,t)€A N (zo,t0) Ao (zo,to)

Hence, using the construction of the set F', see Definition 1.7 (iii), we deduce

(5.1) sup lo(x,t) — @(x0,t0)] S A+ ADg(zo, to) < A+ Ko
(:L',t)GA)\(IL'Q,tQ)

To start with the actual proof of the estimate stated in the lemma, we let (A, z,t) and (zo,ty) be
fixed as above and we denote by 2y the average of ¢ over the set Asy(xg,t0). Thinking of Py as given
by kernel representation from Lemma 4.3, see also Remark 4.4, we have Py1 = 1 and consequently,

Ox(z, )] = 1T = PX)e(@,t)] < (2, t) = @@, to)| + |(I = PY)e(x0, t0)]
+IPX (e = p2x) (o, o) | + [PX (¢ — p2x) (@, 1)].

Hence, using (5.1) and Lemma 5.1 (i), we deduce

(5.2) 0x(2, )| S koA + | PX (¢ — w2ax) (o, to)| + | Px (@ — @an)(,1)].

To estimate the remaining two terms on the right, we bring in the kernel of P§ explicitly. Indeed,
Lemma 4.3 yields

P (¢ — war) (o, to) = /]Rn+1 KX pni1(®o,t0, 2, 7)(p(2, 7) — p2n) dzdr

with a kernel enjoying the bound

Clto—7 —n/24n+1-1 v _ leg-z?
K5 1 (20, t0, 2, T)| < L(0,00) (T — t0) | AIMn s =

C _lto-rl _ lwg==?
Sl(O,oo)(T_tO)We NI

for some constants C,c > 0 depending only on dimension and ellipticity. So, splitting R"*? into
Aoy (xo,tp) and annuli Agj+1y(zo,t0) \ Agix(zo,t0), j > 1, we can infer that

e e}

(5.3) |PX (¢ — @ax) (0, to)| S 22 n+2)j 7C4J]§[ lp(z, T) — por| dzdr.

=0 Ayj+1y(zosto)
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Next, by a telescopic sum and Lemma 2.2 we deduce that

j+1
# [o(z7) = pnal dzdr
Agjt1y(zosto)

S e ] dzds
k=1 2k 5 (T0,t0

IN

IN

2j+2)\<M(|V:vSD|)($0, t0) + My My (| H DY | (o, m))

and parts (i) and (ii) of Definition 1.7 guarantee that the last term is no larger than 2/73\kg. In
particular, summing up in (5.3), we can conclude |Py(¢ — ¢ax)(x0,t0)] < koA. The estimate of
|PX (¢ — @ar)(z,t)| can be done similarly, taking into account Ay (zg,t9) C Agx(z,t) when writing
out the telescopic sum of averages. Now, the claim follows from (5.2). O

5.1. An adapted cut-off and associated Carleson measures. Here, we bring into play the
degree of freedom 0 < 1 < 1 and the parameter 0 < € < r that already appeared in the outline of
Section 1.5.

Writing I (g, tg) for the parabolic cone with vertex (zg,ty) and aperture 1, we define the thinner
sawtooth domains

QU = U Fn/s(xo,to).
({L’Q,tQ)GFﬂA
Then €2, C 2. We are now going to define a smooth cut off adapted to €2,,.

Let ® € C°(R) be such that ®(g0) =1 if o < 1/16 and ®(g) = 0 if o > 1/8 and let T € CF(R"*2)
be supported in B(0,1/2048) C R™"*2 and satisfy 0 < Y < 1 and [pus2 T(,y, s) dudyds = 1. We
then set

V(A x,t) =W, (N 2,t)

(5.4) ()\)( ()\))/ ()\—,u r—y s—t) dpdyds
=0 — (1 —-P — T .
32r 32¢ Qo AT T (An)2) A(Anp)nt?
By construction, we have ¥ € C(R’7"?), 0 < ¥ < 1, ¥ = 1 on the open set Q,/4 N ((2¢,2r) x R™*1)

and in particular on (F'NA) x (2¢,2r) and the support of ¥ is a subset of ,,N((e,4r) x 2A). Making
the link with the sawtooth domain €2 from the previous section, we note

(A, z,t) €supp¥ = (nA\,z,t) € Q.
Now, let 6(z,t) denote the parabolic distance from the point (z,t) € R"*! to F ¢ R™*! and let
Ey:={(\xz,t) € (0,4r) x 2A : nA/32 < d(x,t) < nA/8},
(5.5) Ey:={(\x,t) € (2r,4r) x 2A : §(x,t) < nA\/8},
Es:={(\x,t) € (¢,2¢) x 2A : d(x,t) < nA\/8}.
Let (o, 8,7) = (, B1, ..., Bn,7y) € N*2\ {0} be a multiindex. Again by construction of ¥ there exists

a constant ¢ depending only on «, 3, v, n and n such that

80!"1"5'4’7 C

(56) ‘m@()\,l’,t)’ < WlEluE2uE3(A,$,t).

The following Carleson lemma is also important in the next section.

/// dAde dt 0 (8)2m 2.
FE1UFEUES )\

In particular, let n, € and ¥ = W, . be as above, let (a, B,7) = (, B1, ey Bn,7y) € N2\ {0} be a
multiindex and let p € (0,00). Then there exists ¢ = ¢(a, 8,7, p,n,n) < 00, such that

HatIBl+
I

ONOxP Oty v

Lemma 5.3. It holds

p
(A, 2, t)| APEHBIF=1 404t < ¢ A
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Proof. By definition of the sets Fy, Es and Ej3, integration in (z,t) takes place only on the cube 2A
and for (z,t) € 2A fixed, integration in A is at most over the intervals (&;’t), %), (2r,4r) and

(€,2¢), yielding a total contribution of log(8). Hence, the first claim follows from Tonelli’s theorem
and then the second one is a consequence of (5.6) O

6. PROOF oF THE KEY LEMMA

We are now ready to prove the Key Lemma, hence completing the proof of Theorem 1.4. As
discussed in Section 1.5, throughout the proof we can qualitatively assume that A is smooth. In that
case, one can see that qualitatively ¢, @, Px¢ and P§¢ as well as u are smooth by interior parabolic
regularity. Furthermore, we will simply write J for J, . and we note — and this is a consequence of
the introduction of ¢ — that no boundary terms will survive when we perform partial integration.
Similarly, we will write ¥ for ¥, . defined in Section 5.1. Throughout, o will denote a positive degree
of freedom and ¢ will denote a generic constant (not necessarily the same at each instance), which
depends only on the dimension n and the ellipticity constants. In contrast, ¢ will denote a generic
constant that may additionally depend on o and 7. The fact that |u| < 1 will be used repeatedly in
the proof.

To start the estimate of J we first note that uW?\ is a test function for the weak formulation of
the equation for u. Hence,

(6.1) 0= // , AV ot - Vi (uP2N) + dpu(uP?)) dodtdA.
RY

As
Vaz(w¥2N) = (Vo) U2\ + udV), 02 + ul?V, ),

we have

/// AV ot - Vo (b)) dodtd) — /// (AV ot - Vo U2)urdz dt dX
Ri+2 Ri+2

—/// (AV ot - Vi Nu®? dedtdA.
R72 ' ’

Combining this with (6.1), we see that J = J; + Jo + J3, where

Ji o= —/// +2(Avmu-vA,xW)uAdmdtdA,
RY

T = —/// (AV .t - Vo N ul? dz dt d,
Rn+2 ’ ’

J3 = /// Opu(uW?\) dz dtd.

The estimates of J; and J3 turn out to be stralghtforward: Indeed, by the Cauchy-Schwarz inequality

1/2 1/2
PARS c(/// \vx,mu\qu?AdxdtdA) (/// ]V,\,x\IJ\Q)\dxdtd)\)
Ri+2 Ri+2

and hence, using the elementary Young’s inequality, ellipticity of A and the Carleson measure esti-
mates in Lemma 5.3,

71| < od +E|A.

:——/// au \I’ Adaxdtdh= = /// U at )\dxdtd)\

Thus, by the Carleson measure estimates in Lemma 5.3 and as |u|, |¥| < 1,

Js] < c/// L 1000Ix dedtd < Al
R}

Furthermore,
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As for Jo, we first use the decomposition (1.8) of the coefficients and split Jy = Ja1 + Joo, where

Jo1 = _///R"“ (A -Vmu)ullf2 dx dt d,
+
Toy = — ///]R (AL 0yu)u? dzdid),
+
Since A does not depend on A, integration by parts yields
1 23,2 1 2 2
2 Ri+2 2 errﬁ

and hence |Jo2| < ¢|A] follows again by Lemma 5.3. To estimate Jo; we use that

w22

and we write Jo; = Jo11 + Jo12, where

2\1,2
Jo11 = —///HQAL” -Vx<u2 ) dz dt dA,
R+

Jor2 = /// (A, - VoU)u? W dadtdA.
R7H2

Once again, |J212| < ¢|A| follows by Lemma 5.3. In order to handle Ja11, we introduce ¢ as in (1.10),
that is, as the energy solution on R"*! to the problem

dive (A, xsa) = —Op — dive (4] Vap) = Hjje.

The weak formulation with ¢ = u2W2(),-,-)/2 as test function for A > 0 fixed, which by construction
of ¥ is supported in 8A, yields

2\:[;2 2\112
Jo11 :/ // gp@t<u ) d:cdtdA+/ // Aﬁ”Vmgp-V;D(u—) dz dt d.
Ry JJRnH1 2 R, JJRn+1 2

Recall that we write 0\ = ¢ — P ¢. Then, splitting ¢ = 0,5 + P, ¢ in both integrals, we may write

(6.2) Jo11 = Jo111 + Ja112 + Jo113 + Jo114,

where

u?W?
Jorn = ///Ri+2(9n)\)at< 5 )dxdtd)\,
" u?W?
o112 = ///MH(PM@)@( 5 )dxdtd)\,
" u? W2
Jor1g = ///RiHA””VmHn/\'Vx< 5 >d:cdtd>\,

u? W2
J2114 = ///]R”‘m A|||IV$P77)\Q0 . Vx( 5 ) dz dtd.
+
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For the time being, let us concentrate on the second and fourth term in (6.2). Integrating by parts
with respect to A leads us to

Y22
Tz + S = /// +2 (9)\ ( ) Adz dtdA
. 2\112
_///RnH(PnASD)atax< 5 ))\dxdtd)\
2\1,2
///ﬂw () VaOrEpe) -V ( 5 )Adxdtd)\
2\1,2
- ///RMQ(A””V:BPW\SD) : anx( 5 ) Adz dt d,
"

where we have again used the A-independence of the coefficients. We stress that throughout (and
with a slight abuse of notation) (9>\P \¢ denotes the derivative in A of the function A — P7y¢, so
that there is a factor 1 showing up in front by the chain rule. A similar notational conventlon will
apply to 9x0,,. Taking into account the definition of the parabolic operator ’Hﬁ, we can regroup

these terms as

Jori2 + Jo11a = 11 + Iz + I3,

2 2
I o= /// . (0P, ( ))\dmdtd)\,
u2\112
o= -l n+2(AT‘|”Vx6AP;Agp)-Vm< 3 ) Adaded
2 2
_[3 = ///n+2 H” 8)\< >)\d$dtd)\

By the Cauchy-Schwarz inequality and the square function estimates stated in parts (ii) and (iii) of
Lemma 3.2 we first deduce that
2\1,2
Az

1/2
i < a2 (L
1/2
< amylﬂ(/// » ]V,\,qu\I/—i—!V,\,x\I/\Q)\dmdtd)\)
Rn

and then, by Lemma 5.3 and Young’s inequality, we can conclude |I3]|+|I3] < oJ +¢|A|. To estimate
Iy, we write I1 = I11 + I12, where

Iy = _///M(aAP;;A u8t< )AdxdtdA

Iy = /// 03Py @)uduw? Ndr dt d,

where

1/2
)\ dx dt d)\)

By a familiar argument relying on Cauchy-Schwarz, Lemma 3.2 and Lemma 5.3 we deduce |I11]| <
¢|A|. The estimate of I;2 is more involved. Here, we first use the equation dyu = divy , AV zu,
which thanks to our smoothness assumption may be interpreted in the classical (pointwise) sense, in
order to split I1o = I191 + I122, where

Iy = ///n+2 (O\P, )\go udlvm(AVMCu)”\I’ AdxdtdA,

N == — /// (P @)u(AV 5 2 03u) . W2 A dzrdEdA.
R
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Then,
Lo = // 2 Vi (OaPprp)u - (AV,\ﬂ;u)”\If2 Adz dt d

+/// Ph@)Vau - (AV)\,;EU)”\I/Q)\dx dtdA

+/// Ju(AV \ zu)) - VU2 Ada de dA.

For the first term on the right-hand 81de we can infer control by oJ + ¢|A| using Cauchy-Schwarz,
Lemma 3.2 and Young’s inequality in a by now familiar manner. For the other two terms we shall use
for the first time the definition of the set F'. More precisely, in virtue of Lemma 5.1 we can replace
the resolvent by its pointwise upper bound |(9>\Pn)\g0(x,t)| < ¢n < ¢ noting that (A, z,t) € supp(¥)
implies (nA, x,t) € Q by construction, see Section 5.1. Having done this, the second integral on the
right-hand side is bounded by nJ thanks to ellipticity of A and for the third one we obtain a bound

EJ1/2\A]1/2 by applying Cauchy-Schwarz and Lemma 5.3. Put together, we have
[Ti21| < (0 +en)d + A

Also, using Lemma 3.2 we immediately have

(6.3) |T122] < oli221 + ¢|A|,

where
L9y := /// |V xz00u[2 T2 N2 dz dt d.
R7 2

This term can be estimated using a Whitney type covering argument, the fact that d\u is a solution
and Caccioppoli’s inequality: Indeed, let YW = {W;} denote a partitioning of RTLQ into (parabolic)
Whitney cubes, that is, each W; has dyadic (parabolic) sidelength ¢(W;) and is located at distance
40(W;) to the boundary. Let ¢; € C§°(2W;) be a standard cut-off for W; such that 0 < ¢; < 1,
Vet +10:i| /2 < c/€(W;) and 3; 62(A, 2, t) = 1 for all (\,z,t) € R2. Then

( +
2> ///Rn+2 [Orul*[Vxa(¢19)[* X* da dt d,
i +

by an application of Lemma 2.1 and hence, taking into account the finite overlap of the Whitney
cubes,

IN

Iio91 < c/// \awy?\p?mmdtdwrc/// |OAu)? |V a T2 A3 dz dt d.
R+ R7T2 '

Crudely employing ellipticity, the first integral on the right-hand side is under control by c¢J. Since
Aoyu| < ¢ in a pointwise fashion, as follows easily from DeGiorgi-Moser-Nash interior estimates,
Caccioppoli’s inequality and |u| < 1, we can apply Lemma 5.3 to bound the second one by ¢|A|. So,
as to (6.3), we have

|1122| < O'J—{—5|A|

Put together we can conclude that the second and fourth term all the way back in (6.2) can be
estimated by

| Ja112 + Jo11a| < o + E[A].

At this stage of the proof it only remains to focus on Js111 + Jo113 and we note that by definition

2\1}2 2\112
o + Jonis = —/// emat(“—) du dtd)\+/// A5 Vb vx(“—) dz dt dA
R1+2 2 Ri+2 2

= I + 11+ I3,
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where
I = /// Au(Bppul?) dxdtdA+// L Vb - Ay Vou(ul?) dzdtd),
— 2 2
I = /ﬂR o OO i
1
II3 = 5//R"+2 Vxﬂn)\A””Vx\IIQ(uQ) dzdtdA.
+

Using Lemma 5.2, we have |0 (x,t)| < enh < e for (A, z,t) in the support of ¥ and hence we can
conclude, using Lemma 5.3, that |II3| < ¢/A| holds. Similarly, for 13 we would like to bring into
play the (integrated) non-tangential control for V.0, provided by Lemma 5.2 (iii). To this end, we
use an “averaging trick” justified by Tonelli’s theorem in order to write

II3 < 5/// <]%[ Valnx - A Vo W2 (u?)] dAdxdt) do dy ds,
R1+2 Wn/64(07y7s)

where W, /64(0, y, s) denotes the Whitney region (0/2,0) X Q5 /64(y) X Iys/64(). Now, letting

E, = {(o,y,8) € (0,4r) x 2A: no/64 < (y,s) < no/4},
Ey = {(o,y,s) € (2r,8r) x 4A : 6(y,s) < no /4},
Es = {(0,y,s) € (e,4¢) x 4A : 6(y, s) < no/4},

where again §(z,t) denotes the parabolic distance from (z,t) to the set F, we deduce from (5.5) and
(5.6) that the integrand on the right-hand side vanishes outside of E; U Ey U E3 and that we have a

bound
dodyd
II; < e///~ o (]%[ \Vxemld)\dmdt)w
FE1UEUE3 W,]/64(0',y78) o

1/2
< 5//[ o (]%[ V.05 dAdxdt) dodyds
E1UE>UES Wy /6a(noy,s) g

the second step following from Cauchy-Schwarz and a simple change of variables. The definition of
FEyUEy U Es entails that for (o,%, s) in this union, the Whitney region W, n/64(N0, Y, 8) is contained in
a cone T'V/2(xq, to) with vertex (zg,t9) € F. In particular, W, n/64(N0,y, ) can be covered by a finite
number (depending only on n) of Whitney regions A x Q x I showing up in the definition of the
integrated maximal function N, on the set F. Consequently, Lemma 5.2 yields

- dodyds
115 < c///Ri+2 1E1UEQUE3(J’?/’ s) —

Up to a change of parameters, the sets Ey, Eo, E3 are similar to Ey, Fy, F3 defined Subsection
and so we can rely on Lemma 5.3 to conclude I13 < ¢|A|. To estimate 117, we start out with the
identity

5.1

V(0 u®?) = (V02 )u¥? + 0,3 (Viu) U2 + 0,,uV . (T?)
to see that I[y = 111 + I115, where

Ly = /// OOy u?) dxdtdA+// Vo (Opau?) - Ay Vyu da dt d,
I, := _//RTQ V- A””Vmu(ﬂn)\\lf ) dedtdX — //RTQ VvV, 02 Ay Vaeu(ubdyy) dzdtdA.

Using again the fact that |6,)| < cnA holds on the support of ¥ along with Cauchy-Schwarz and
Lemma 5.3, we deduce the estimate

11| < end + & AM2TY2 < (0 +en)J + & A
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To estimate 1171, we capitalize again that the smoothness of our coefficients allows us to plug in the
equation Oyu = divy 5 AV yu in the pointwise sense. Then, splitting A according to (1.8), we can
write I[111 = I1111 + I1119 + 11113, where

Iy = - ///R AL V(0O dadid,
+

IIHQ = _//R"+2 ALH -Vmua,\(ﬂn)\u\IIQ) d:cdtd)\,

[Ty = /// AL O (Byu¥?)Dyu dadt d).

Unwinding the derivative in A and using once more the bound |6,\| < ¢nA on the support of W,
T+ sl < [[] L mVau(@) P2 + AV wudy 0] + |V | dide
R’VL
v

Here, the first term gives a contribution ¢n|A|, the second one can be treated by the familiar combina-
tion of Young’s inequality and Lemma 5.3, whereas for the third term we make use of Lemma 3.2 (i)
instead, noting that 9x0)\ = O\ P\ ¢ holds since ¢ does not depend on A. By these means, we find

[I1112 + T1113] < (0 +cn)J +¢[A.

Similarly, we obtain
[[T111 — T | < end +éA|,
where

1111 = // A”l . vmen)\u\lﬂ(?)\u dx dtdA.
R7H?
To estimate 111111 we first integrate by parts in A and regroup derivatives to find

1
I = 2 //R"+2 Ay, Vmﬂn)\\lﬂa)\zﬁ dz dtdA
+

1
- _5 ///Rn+2 A||L ’ vﬂﬁanAa)\\Iﬂ(uQ) dz dtdA
+

1 *
+

1
3 ///Rw A - O3 PhoVe(PPu?) dzdtd.
+

Note that the first term on the right-hand side has the same structure as I3 with the only exception
that we have a A-derivative on ¥ instead of an z-derivative. Hence, we can derive a bound ¢é|A| by
the very same methods. Also the third term on the right-hand side is of the same kind as a term we
encountered earlier in the proof — I in this case — which we already know how to bound by o.J+¢|A].

All in all, we have reached a stage of the proof, where the only term that remains to be estimated
is

I —// LA Va(PPP0yPryp) dardt dA

and we remark that this final term resembles Jo11 except that we have an additional factor BAP;;)\LP
acting to our favor. We now introduce ¢ as in (1.10), that is, as the energy solution to the problem

divy (A xsa) = O — dive (A V) = H) ¢

on Rt We remark that \I/2u23>\P;A<p is qualitatively smooth and compactly supported, therefore
it can be used as test function for the equation above in order to rewrite I11;. More precisely, we
also recall 0,\ = ¢ — P)\¢ and write

(6.4) 1L =111 + 111+ I11h3,
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where
I, = — ///R L AP0, Poyg) daded),
+
IIhLy = _//Ri“ A Valyy - Vo (TPu?0\Pry) da dtd),
I = — // s H Ppag(PPu?0rPlyp) dodtdA.

The estimate |I1113] < ¢|A| is a consequence of the square function estimate in Lemma 3.2 (i) and
(iii). To estimate 11119, we write 1119 = I11y91 + I11193 + I11193, where

Mha = - // i ANV - Vo (w?) (P*0\Pyp) dardt ),
"

Iy = - ///RM AVl - Vo (U2) (u®0rPyyp) dx dtd,
v

111123 = _//R"+2 A””Vxém . vma)\P;;AgD(UQ\I’Q) dx dt d)\
+

Once having applied the pointwise bound \BAP;A@] < ¢en < con the support of ¥, see Lemma 5.2 (iii),

the estimate of 111195 reduces to that of I3 with énA in lieu of 0,\. As the latter two functions share
identical estimates, we can record |[I1I193] < ¢|Al. To estimate 111157 we first note, using Cauchy-
Schwarz’ and Young’s inequality, that

|[I11191| < cIlli911 + o,

where
~ dzdtdA
L 2 * |12 2
111917 := ///Ri+2 v |8)\Pn>\30| |V19n)\| N\ .

Now, by the averaging trick already used in the estimate of 13,

. dydsd
[Ty < e/// (]%[ (xI/?\aAP;WPyvggemy?) dmdtdA)M
Ri+2 W?]/64(va78) o

2
i . dy ds do
(s eppenl)
R+ (>‘7x7t)€Wn/G4(oyyvs) o

where the second step follows again by Lemma 5.2 (iii) and elementary geometric considerations as
in the estimate for I13. As before, we write W}, /64(0, 9, 8) := Ay X Quo/64(Y) X Iyo/6a(s). From (4.5)
we obtain

2 o) )
( sup \BAP;Ago(x,t)]) < EZ 67641]6[
(Az,t) j=1 2

GWn/64(0,y75)

IN

\aﬂﬁpjap(x, t)? da dt,
)

I Qo (y) x4 o (s

where P¥ = (1 + JQHﬁ)*l. Hence, using an averaging trick in the (x,t)-variables only,

0 .
111 < E/// 67041]§[ oM} Pro(x,t)|? dedt
e Ri“jzl SV s Ml
o

2 dzdtdo

—c4d * Pk c
E oH P o(x,t <A
j 16 ///]Ri+2| I~e (2,1) o <Al

dydsdo
o

Il
Y
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where the final estimate follows from Lemma 3.2. So, we can conclude [[1]191] < oJ + ¢A|. To
estimate 111153 we use that wu is scalar-valued and write

IT1 93 ///Rm (OpuT?) - A V20\ Py da dt dA

+ ///Rn+2 HnAvm(u2\I]2) : Aﬁnvma)\P;)\QD dz dtdA.
T

Note that so far we have neglected I111; appearing in (6.4). Now, we come back to this term and
combine it with the first integral on the right-hand side above to obtain

Iy +IThes = = ///n+2 énAuz‘I’Q(Hﬁa)\P;)\go) dz dtd\
+
T ///Rn+2 énAvﬂﬁ(uQ\Iﬂ) : Aﬁuvxa)\P;)\(P dz dtdA

—|—/// n)\at (U2u2)0) e dzdtdA.

The first term on the right can be bounded by

_ o dadtdia Y2 dz dt da\ /2
2 2 /% * 2
L RS = v/ s NPl S5 )

which in itself is bounded by ¢|A| by square function estimates, see Lemma 3.2 (iv) and Lemma 3.3.
As for the second term on the right, having applied the pointwise bound |9~n)\| < enA < ¢ on the
support of ¥, we are left with the task of estimating I5, which we have done before.

Altogether,

10— /// B0 (W22)0) Py dar dt )

is now the only term that remains to be estimated. It is instructive to observe that — upon replacing
|é77>\| by its pointwise upper bound ¢A on the support of ¥ — this is the same term as 21;. Hence, we
can follow the treatment of the latter almost wverbatim, using the pointwise bound whenever feasible
in order to reduce matters to estimates that have already been completed. So, we shall only outline

the differences in this argument: To start the estimate we write I7 6 — o 9 + I¥,, where

Ilél = ///n+2 énA(?t(\Iﬂ)uQa)\P;)\gp dzdtdA,

1, 2 /// Boudrul20y Py da dt .

The estimate for 1 11 follows from that of I1;. To estimate I 152 we use the equation for w and write
18y = Ify, + Iy, where

Ilém = /// n)\u div, (AV xu)”\I’ O\P, )\QD dz dtdA,

Iléz2 = 2/// Opu(AV \ z0xu) L W25 Py da dtdA.
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Again, the estimate of I 1522 follows from the bound for its counterpart I195. Furthermore,

Ilé21 = 2/// én)\u(Av)\ $U)||\I’2 . an)\P;;)\gD dz dtdA
Rn+2 ’
+2/// )\V u - (AV)HIU)”\IﬂB)\ ;A(P dxdtd)\
+2/// T])\u Av)\ xu)” . VI\IIQ(%\ ;;AQD dz dt dA

+2 //R"+2 Vxén)\U(AV)\,xu)H\Ian)\ ;AQD dz dt d)\,
+

where the estimate for the first three terms follows from the bound for I19; as before. Eventually,
the fourth term, which shows up since unlike A the functions 67,7)\ does also depend on z, can be
bounded by J1/2\Iﬂ'1211\1/2 < 0J 4 ¢A| using Cauchy-Schwarz and the previously obtained bound
for I111211. Put together, this completes the proof of Theorem 1.8.
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