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1. Introduction. Non destructive testing and evaluation have known a considerable development during the last decade, for safety reasons (nuclear and transport industries) but also for economical aspects. For instance, the early detection of defects can enable one to repair safely, quickly and cheaply. The new trend in smart structure technology, is to equip those mechanical systems with health monitoring devices in order to follow in real time the development of defects. An important challenge is to minimize the number of sensors required for an acceptable efficiency of the method. Clearly, this goal requires to introduce methods which have the property to explore wide ranges of the structure using only measures performed on a part of the boundary of the structure. As far as ultrasonic methods are used, it is necessary to upgrade the signal processing software which is connected to the actuators and the sensors (piezoelectric devices). First of all, they should be coupled with wave focusing methods (in order to prescribe the orientation of the waves) and with harvesters for the sensors which collect the informations, in order to improve the extraction of hidden informations. A Harvester is an auxiliary system of excitation which drive as most as possible the echo of waves to the sensors. But even with these additional items, the use of an energy model is necessary in order to rely on stable and rich enough signals.

One strategy, which has already been used in several applications connected to fracture mechanics, is to exhibit energy release rates at different orders. They are domain derivatives of the global energy (kinetic and potential energies) with respect to geometrical and material characteristics of defects. It can be, for instance, the orientation, the position and the length of a crack, or the size and the position of a micro void, etc. The goal of this paper is to make explicit from the theoretical and numerical point of view the basic ideas of these new challenges in health monitoring for elastic structures. Because of the complexity of the problems we are dealing with, but also for sake of clarity in our explanations, we focus our presentation on a stationary anti-plane model (SH waves). But, the extension to two and even three dimensional elasticity would be easy from the theoretical point of view. Obviously this claim would be a completely different as far as numerical simulations and worse, experimental investigations, would be concerned. Therefore, this paper is limited to a numerical discussion on the feasibility of the energy method in order to detect several kinds of defects in an anti-plane structure. It is organized as follows.

The section 2 contains a presentation of the mathematical model and precise the notations. We start with an homogeneous material containing a defect in order to recall few useful mathematical tools. Then we extend the results to more general materials and geometries using the Holmgren's theorem ( [START_REF] Holmgren | Uber Systeme von linearen partiellen Differentialgleichungen, Ofversigt af Kongl[END_REF], [START_REF] Hormander | Linear partial differential operators[END_REF]), which is a true milestone for such inverse problems. The basic model used is the one of Helmholtz but with boundary conditions which can be different from one part to the other. The existence and uniqueness of a solution to this model is discussed and compared to classical results already published by I. Babuska and F. Ihlenburg [START_REF] Babuska | Finite Element Solution of the Helmholtz Equation with High Wave Number, Part I: The h-Version of the FEM[END_REF], [START_REF] Babuska | A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution[END_REF], [START_REF] Ihlenburg | Finite element analysis of acoustic scattering[END_REF]. As said above, the extension to inhomogeneous materials is also considered but in a second step.

The section 3 is concerned with the characterization of the energy invariants which are suggested for the signal improvement. We begin with homogeneous materials and then we extend the analysis to multimaterials.

The numerical scheme used is briefly presented in section 4 and the results are discussed in section 5. Three kind of situations are discussed. The first one deals with an homogeneous material with a small cavity. The two other cases are for piecewise homogeneous materials but also with a defect. The first one is a slit at the interface between two different materials. The second one is a small cavity inside the material which has the smallest wave velocity. This last test aims at proving that even if the softest part acts a trap for ultrasonic waves, it is still possible to detect the defect from the outside and furthermore, quite far from it.

2. The model used and the notations. Let us consider a two dimensional structure occupying in the plane the open set Ω with the boundary ∂Ω. Two boundary conditions are taken into account. One -on Γ 0 -corresponds to a free or loaded edge and on the second one -on Γ 1 -we apply a transparent boundary condition in order to avoid wave reflexions. This is the classical Sommerfeld's condition written on a part of the boundary. Details concerning this transparent boundary conditions can be found for instance in [START_REF] Sommerfeld | Die Greensche Funktionen der Schwingungsgleichung[END_REF] and [START_REF] Engquist | Absorbing boundary conditions for numerical simulation of waves[END_REF]. The Let us consider f ∈ L 2 (Ω; C), g ∈ L 2 (Γ 0 ; C). Let c > 0 be the wave velocity which can be constant or piecewise constant in Ω. The function u is solution of the following stationary model for any value ω of the pulsation (2π × frequency):

                 -ω 2 u -div(c 2 ∇u) = f in Ω, iωu + c ∂u ∂ν = 0 on Γ 1 , c 2 ∂u ∂ν = g on Γ 0 . (1) 
The existence and uniqueness of a solution are ensured as soon as ω = 0. This is an almost classical result for homogeneous material with Sommerfeld's boundary condition on all the boundary. One can find a proof for a one dimensional problem in Babuska-Ihlenburg [START_REF] Babuska | Finite Element Solution of the Helmholtz Equation with High Wave Number, Part I: The h-Version of the FEM[END_REF], [START_REF] Babuska | A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution[END_REF]. In higher dimensions some results are given in the book by Ihlenburg [START_REF] Ihlenburg | Finite element analysis of acoustic scattering[END_REF] but for sake of clarity we suggest hereafter a general proof which is different from those mentioned in these references and which works for more arbitrary cases. Hence, let us state the following Theorem.

Theorem 2.1. Let (f, g) ∈ L 2 (Ω; C) × L 2 (Γ 0 ; C) and ω = 0. The system (1) has a unique solution u = u R + iu I with (u R , u I ) ∈ [H 1 (Ω)] 2 and one has the a priori upper bound:

||u R || 1,2,Ω + ||u I || 1,2,Ω ≤ c(||f R || 0,2,Ω + ||f I || 0,2,Ω + ||g R || 0,2,Γ0 + ||g I || 0,2,Γ0 ).
Proof First of all, we can explicit the equations satisfied respectively by the real and imaginary parts of the function u = u R + iu I :

                         -ω 2 u R -div(c 2 ∇u R ) = f R in Ω, -ωu I + c ∂u R ∂ν = 0 on Γ 1 , c 2 ∂u R ∂ν = g R on Γ 0 , -ω 2 u I -div(c 2 ∇u I ) = f I in Ω, ωu R + c ∂u I ∂ν = 0 on Γ 1 , c 2 ∂u I ∂ν = g I on Γ 0 . (2) 
a) Existence Let us denote by

(λ i , w i ) ∈ R + × H 1 (Ω), i ∈ N the set of eigenmodes solutions of (λ 0 < λ 1 ≤ ... ≤ λ i ≤ λ i+1 ≤ ... with λ 0 = 0 and w 0 = 1 |Ω| where |Ω| is the surface of Ω):        λ i w i = -div(c 2 ∇w i ) in Ω, c 2 ∂w i ∂ν = 0 on ∂Ω, Ω w 2 i = 1. (3) 
It is classical [START_REF] Raviart | Approximation des équations aux dérivées partielles[END_REF], that the family {w i } is a Hilbert basis of the space L 2 (Ω). Let us define the bilinear form a(., .) on the space [H 1 (Ω; C)] 2 and the linear form L(.) on the space H 1 (Ω; C) by:

a(v, q) = Ω c 2 ∇v R .∇q R + ∇v I .∇q I -ω 2 Ω v R q R + v I q I + Γ1 ωc(v R q I -v I q R ), and 
L(q) = Ω f R q R + f I q I + Γ0 g R q R + g I q I . (4) 
Thus, the system (1) is formally equivalent to the variational model:

   Find (u R , u I ) ∈ [H 1 (Ω)] 2 , such that: ∀q ∈ [H 1 (Ω)] 2 , a(u, q) = L(q). (5) 
It is possible to split this variational formulation into its real and imaginary parts. One obtains:

                           ∀q R ∈ H 1 (Ω) : Ω c 2 ∇u R .∇q R -ω 2 Ω u R q R -ω Γ1 c u I q R = Ω f R q R + Γ0 g R q R , ∀q I ∈ H 1 (Ω) : Ω c 2 ∇u I .∇q I -ω 2 Ω u I q I + ω Γ1 c u R q I = Ω f I q I + Γ0 g I q I . (6) 
Step1 Let us introduce the finite dimensional space V N span by the N + 1 first eigenvectors defined at (3) and classified by increasing values of λ i :

V N = v = i=0,N α i w i (x), α i ∈ R . (7) 
We introduce the approximate model at the order N by:

   find u N ∈ [V N ] 2 such that: ∀v ∈ [V N ] 2 , a(u N , v) = L(v). (8) 
This a linear system with 2(N + 1) unknowns and 2(N + 1) equations. In order to prove that it has a unique solution it is necessary and sufficient to prove that the kernel of the corresponding system is reduced to {0}. Hence let us consider the homogeneous linear system where the element of the kernel z = (z R , z

I ) ∈ [V N ] 2 is solution of : v = (v R , v I ) ∈ [V N ] 2 , a(z, v) = 0. (9) 
Let us set v R = -z I , v I = z R . From [START_REF] Destuynder | Local Waves in heterogenous media and their control[END_REF] this leads to:

           - Ω c 2 ∇z R .∇z I + ω 2 Ω z R z I + Γ1 c ω|z I | 2 = 0, Ω c 2 ∇z I .∇z R -ω 2 Ω z I z R + Γ1 c ω|z R | 2 = 0. (10) 
By adding this two relations, one gets:

Γ1 cω(|z R | 2 + |z I | 2 = 0,
or else, assuming that ω = 0:

z R = z I = 0 on Γ 1 .
Introducing this information into (9), one obtains (for instance for z R and the same for z I ):

∀v R ∈ V N -ω 2 Ω z R v R + Ω c 2 ∇z R .∇v R = 0.
From the classical spectral theory [START_REF] Raviart | Approximation des équations aux dérivées partielles[END_REF] (we deal with matrices), this implies that either z R = 0 and the result is obtained, or there exists i ∈ {1, N } (ω = 0) such that ω 2 = λ i and z R is an eigenvector of the Laplace operator with Neumann's boundary conditions. Because it satisfies a double homogeneous boundary condition Holmgren's theorem enables to state that z R = 0 at least on each homogeneous component of Ω which has a part (not reduced to a point) of its boundary in common with Γ 1 . Then one can propagate the result to the rest of Ω as far as the wave velocity c is piecewise constant. In the case where c is constant (homogeneous material) it is interesting to give another proof (the previous one works) which is based on the so-called multiplier method of K. Morrawetz [START_REF] Morawetz | Variations on conservation laws for the wave equation[END_REF]. In this simplified case, let us set v R = ∂ 1 z R x 1 into the variational equation which characterizes the eigenmodes (λ i , w i ). The following identity follows (after several but classical integrations by parts):

[ Ω c 2 ∇z R ∂ 1 (∇z R )x 1 + Ω c 2 |∂ 1 z R | 2 - λ i 2 Γ1 |z R | 2 x 1 ν 1 + λ i 2 Ω |z R | 2 ] = 0,
or else making use of the property that z R = ∂z R ∂ν = 0 on Γ 1 because z R , x 1 and c 2 ∂z R ∂ν are continuous inside Ω; (in fact this property would also be true even along lines of discontinuity of c 2 if there are)

[- Γ1 c 2 2 |∇z R | 2 x 1 ν 1 + λ i 2 Ω |z R | 2 + Ω c 2 |∂ 1 z R | 2 ] = Ω c 2 |∂ 1 z R | 2 = 0.
But, if one would have ∂ 1 z R = 0 on Ω and because z R = 0 at x 1 = 0 and x 1 = L this would implies that z R = 0 on whole Ω which is impossible because it is an eigenvector. Therefore, this implies that z R = 0 (and the same is true for z I ). This completes the proof of the existence and uniqueness of u N .

Step2 Let us now derive an a priori estimate on u N in the space [H 1 (Ω)] 2 . Let us define an eigenvalue λ i0 such that: λ i0-1 < ω 2 < λ i0 . One has i 0 ≥ 1 because it has been assumed that ω = 0 and λ 0 = 0. The case ω 2 = λ i0 will be treated separately in the following. The solution u N is split into its two components:

u N -= k=0,i0-1 α N k w k and u N + = k=i0,N α N k w k ,
which belong respectively to the spaces (N is assumed to be larger than i 0 in order to fix the finite dimensional space V N -):

V N -= v = k=0,i0-1 α k w k and V N + = v = i0≤k≤N β k w k . (11) 
One has by setting v R = (u N ) I and v I = -(u N ) R into (8):

                                 Ω [c 2 ∇(u N ) R .∇(u N ) I -ω 2 (u N ) R (u N ) I ] + Γ1 cω|(u N ) I | 2 = Ω f R (u N ) I + Γ0 g R (u N ) I , - Ω [c 2 ∇(u N ) R .∇(u N ) I -ω 2 (u N ) R (u N ) I ] + Γ1 c ω|(u N ) R | 2 = - Ω f I (u N ) R - Γ0 g I (u N ) R .
By adding these two relations, we obtain:

Γ1 cω (|(u N ) R | 2 + |(u N ) I | 2 ≤ ||f R || 0,Ω ||(u N ) I || 0,Ω + ||f I || 0,Ω ||(u N ) R || 0,Ω +||g R || 0,Γ1 ||(u N ) I || 0,Γ1 + ||g I || 0,Γ1 ||(u N ) R || 0,Γ1 .
Therefore, using Cauchy-Schwarz's inequality and the continuity of the trace operator from H 1 (Ω) into L 2 (Γ 1 ), we deduce that there exists a constant c 0 independent on N but only on the data, and such that:

||(u N ) R || 2 0,Γ1 + ||(u N ) I || 2 0,Γ1 ≤ c 0 (||(u N ) R || 1,Ω + ||(u N ) I || 1,Ω ). (12) 
Let us point out that this estimate was not obvious because one has a square on the left hand side and a power one on the right hand side.

Coming back to the equation verified by u N , and from the orthogonality of the eigenmodes with respect to the two bilinear forms:

(u, v) → Ω c 2 ∇u.∇v and Ω uv,
but not with respect to the third one:

u, v → Γ1 cωuv,
by setting q R = ±(u N ± ) I and q I = ±(u N ± ) I in ( 5), one deduces the two relations:

                                 0≤k≤i0-1 (ω 2 -λ k )|α N k | 2 = - Ω c 2 [|∇(u N -) R | 2 + |∇(u N -) I | 2 ] + ω 2 Ω |(u N -) R | 2 + |(u N -) I | 2 = - Γ1 c ω[(u N ) I (u N -) R -(u N ) R (u N -) I ] - Ω f R (u N -) R - Ω f I (u N -) I - Γ0 g R (u N -) R - Γ0 g I (u N -) I ,
and

                                 k≥i0 (-ω 2 + λ k )|α N k | 2 = Ω c 2 [|∇(u N + ) R | 2 + |∇(u N + ) I | 2 ] -ω 2 Ω |u N + ) R | 2 + |(u N + ) I | 2 = Γ1 c ω[(u N ) I (u N + ) R -(u N ) R (u N + ) I ] + Ω f R (u N + ) R + Ω f I (u N + ) I + Γ0 g R (u N + ) R + Γ0 g I (u N + ) I .
One can write (considering for instance one term occuring in the second equation ):

∀α > 0, Γ1 cω(u N ) I (u N + ) R ≤ α 2 ||(u N ) I || 2 0,Γ1 + 1 2α ||(u N + ) R || 2 0,Γ1 .
And from [START_REF] Ern | Discontinuous Galerkin methods for Friedrichs' systems. II. Second-order elliptic PDE's[END_REF] there exists a constant c 2 > 0 such that (|u

N | |(u N ) R | + |(u N ) I |): ∀α > 0, Γ1 cω(u N ) I (u N + ) R ≤ c 2 α||u N || 1,Ω + 1 2α ||(u N + ) R || 2 0,Γ1 .
A similar estimate can be derived for the terms:

Γ1 cω(u N ) R (u N + ) I , Γ1 cω[(u N ) I (u N -) R and Γ1 (u N ) R (u N -) I .
Hence choosing for each term α large enough, but independently of N , and making use of the continuity of the trace operator from H 1 (Ω) into L 2 (Γ 1 ), one obtains the following estimate with two new constants c 3 , c 4 which are independent on N :

||u N || 2 1,Ω ||(u N ) R || 2 1,Ω + ||(u N ) I || 2 1,Ω ≤ c 3 + c 4 ||u N || 1,Ω .
These relations coupled with [START_REF] Ern | Discontinuous Galerkin methods for Friedrichs' systems. II. Second-order elliptic PDE's[END_REF], enable one to derive an upper bound in H 1 (Ω)-norm for (u N -) R and (u N + ) R (and also on (u N ) I ). In fact the estimate for

(u N + ) R ∈ V N + is direct in H 1 (Ω)-norm and for (u N -) R ∈ V N -it is in the space L 2 (Ω).
But the space V N -is a finite dimensional (with dimension i 0 ) one and therefore all the norms are equivalent on this space. Finally, one can deduce that u N is bounded independently of N , in the space

H 1 (Ω)] 2 .
One can extract a subsequence from u N = (u N ) R + i(u N ) I (with respect to N ) which converges weakly in H 1 (Ω)

2 (and strongly in L 2 (Ω)

2 ), to a couple of elements denoted (u * ) R and (u * ) I . One can finally from ( 8) and for any test function in V N and for any

N (V N1 ⊂ V N2 if N 1 ≤ N 2 ), deduce that ((u * ) R , (u * ) I
) is a solution to the variational model [START_REF] Ph | Few remarks on the use of Love waves in non destructive testing, in Discrete and continuous dynamical systems[END_REF].

In a first part, let us now turn to the case where ω 2 is a single eigenvalue denoted λ i0 > 0. The a priori estimate on the components (α N i0 ) I w i0 is derived as follows from ( 5) for the first equation for instance:

- Γ1 c ω(u N ) I w i0 = Ω f R w i0 + Γ2 g R w i0 . or else, setting (ũ N ) I = (u N ) I -(α N i0
) I w i0 (for which the a priori estimate has been obtained previously):

(α N i0 ) I Γ1 c ω|w i0 | 2 = Ω f R w i0 + Γ2 g R w i0 - γ1 c ω(ũ N ) R w i0 .
This leads directly to the a priori estimate on the coeficients |(α N i0 ) I | because one can claim that Γ1 |w i0 | 2 = 0 from Holmgren's theorem for instance. A similar estimate can be derived for (α N i0 ) R using the second equation of [START_REF] Ph | Few remarks on the use of Love waves in non destructive testing, in Discrete and continuous dynamical systems[END_REF]. The rest of the proof is analogous to what has been done for ω 2 different from an eigenvalue .

Let us consider, in a second part, that ω 2 = λ i0 but with a multiplicity of order p ≥ 1. The question is to obtain an a priori estimate on the components of (u N ) R (for instance). Let us set:

q R = k=0,p-1 (α N k ) I w i0+k
where {w i0+k } span the eigenspace associated to λ i0 .

Let us introduce the p × p matrix K with coefficients:

K k 1 k 2 = Γ1 cω w i0+k 1 w i0+k 2 .
The matrix K is positive because it is the matrix of a scalar product. Let us prove that it is also definite. If F = {f i0+k } ∈ R p is a vector of the kernel one has ((., .) p is the scalar product in R p ):

(KF, F ) p = Γ1 cω k=0,p-1 f i0+k w i0+k 2 ,
hence:

KF = 0 implies that k=0,p-1 f i0+k w i0+k = 0 on Γ 1 .
The function z = k=0,p-1 f i0+k w i0+k is also an eigenvector associated to the eigenvalue λ i0 . It satisfies:

λ i0 z -div(c 2 ∇z) = 0 in Ω, ∂z ∂ν = 0 on ∂Ω.
It should also satisfies the condition z = 0 on Γ 1 . Following the method described in the proof of the existence of u N above, this implies that z = 0 in Ω. But this is in contradiction with the property that the vectors w i0+k , k ∈ {0, p -1} are linearly independent. Hence F = 0 and K is definite. Following the method used in the previous case, the a priori estimates on the coefficients α N k the estimate on the coefficients α N i0+k , k = 0, p -1 is easily deduced. The existence is now proved.

b) Uniqueness

Let us consider the homogeneous system which characterizes the difference u between two solutions of the linear system [START_REF] Babuska | A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution[END_REF]. By multiplying the two partial derivative equations above, respectively by u I and u R , one deduces the two following relations (making use of the boundary conditions satisfied by u):

           -ω 2 Ω u R u I + Ω c 2 ∇u R .∇u I - Γ1 c ω u I u I = 0, -ω 2 Ω u I u R + Ω c 2 ∇u I .∇u R + Γ1 c ω u R u R = 0. ( 13 
)
By substracting these two equalities, this implies that for ω = 0:

u R = u I = 0 on Γ 1 .
Let us consider for instance the term u R . Since u I = 0 on Γ 1 , satisfies the double boundary condition on Γ 1 :

u R = ∂u R ∂ν = 0.
Therefore, u R satifies:

     -ω 2 u R -div(c 2 ∇u R ) = 0 in Ω, c 2 ∂u R ∂ν = 0 on ∂Ω (14) 
Consequently u R = 0, or ω 2 is an eigenvalue solution of:

-div(c 2 ∇v) = λv in Ω, c 2 ∂v ∂ν = 0 on ∂Ω.
Hence from Holmgren's theorem one can claim that u R = 0 in Ω. And one can prove the same result for (u) I . The a priori estimates are derived similarly to what has been done for u N above.

Remark 1. In the particular case where c is constant (homogeneous material) one can also derive a simple proof of the result as follows. Because u R = w (an eigenvector associated to λ) one has also (using the multiplier ∂ 1 wx 1 ):

-λ Ω w∂ 1 w x 1 - Ω div(c 2 ∇w)∂ 1 w x 1 = 0
and from few integrations by parts:

λ 2 Ω w 2 + Ω c 2 ∂ 1 ( |∇w| 2 2 )x 1 + Ω c 2 |∂ 1 w| 2 = λ 2 Ω w 2 - Ω c 2 ( |∇w| 2 2 )+ Ω c 2 |∂ 1 w| 2 = 0,
or else, because w is an eigenvector:

λ 2 Ω w 2 - Ω c 2 ( |∇w| 2 2 ) + Ω c 2 |∂ 1 w| 2 = Ω c 2 |∂ 1 w| 2 = 0.
Hence one has:

∂ 1 w = 0 on Ω.
But w = 0 on Γ 1 (x 1 = 0 and x 1 = L). Therefore w = 0 which implies that for any ω = 0, one has u R = 0. The same result can be obtained for u I using the same type of justifications. Nevertheless, in this particular proof with c constant, we used explicitely the particular shape of the domain for proving the uniqueness and the existence of a solution to the approximate model (see remark 2).

Remark 2. Theorem 2.1 can be extended to more general shapes of domains. For instance the boundary where a Neumann's condition is applied, is not necessarily parallel to the coordinate axis x 1 (see Figure 2). But the uniqueness and the existence of a solution to the approximate model should be derived in a slightly different way. Once it has been proved that (u R , u I ) = 0 on the portion of boundary where the transparent boundary conditions are applied, the extension to the full domain is proved using Holmgren's theorem [START_REF] Holmgren | Uber Systeme von linearen partiellen Differentialgleichungen, Ofversigt af Kongl[END_REF] as we did. But the multiplier method can't be applied so easily. Furthermore it would be impossible for heterogeneous materials. The dynamical energy release rates and their mechanical meanings. For sake of clarity, we separate the case with a defect from the one without defect.

3.1. The invariants without defect for homogeneous materials. In this subsection, it is assumed that the wave velocity c is constant. Considering the model set in the previous section and explicited at formula [START_REF] Ph | Few remarks on the use of Love waves in non destructive testing, in Discrete and continuous dynamical systems[END_REF], one can give a property called a stationary invariant property by choosing v R = ∂ 1 u R and v I = ∂ 1 u I . This leads to:

         - Ω div(c 2 ∇u R )∂ 1 u R -ω 2 Ω u R ∂ 1 u R = Ω f R ∂ 1 u R in Ω, ∂u R ∂ν = g R on Γ 0 , c ∂u R ∂ν -ωu I = 0 on Γ 1 ,
and therefore one obtains the following sequence of equalities with several integrations by parts:

-ω 2 Ω u R ∂ 1 u R - Ω c 2 div(c 2 ∇u R )∂ 1 u R = Ω f R ∂ 1 u R , or:
-

ω 2 2 Γ1 |u R | 2 ν 1 - ∂Ω c 2 ∂u R ∂ν ∂ 1 u R + Ω c 2 ∇u R .∂ 1 ∇u R = Ω f R ∂ 1 u R .
One introduces the quantity:

G R ndt = - ω 2 2 Γ1 [|u R | 2 +|u I | 2 ]ν 1 + Γ1 c 2 2 |∂ 2 u R | 2 ν 1 - Ω f R ∂ 1 u R - Γ0 g R ∂ 1 u R , (15) 
and because of the boundary conditions satisfied on ∂Ω, the previous relations imply that when there is no defect inside Ω, one has:

G R ndt = 0. ( 16 
)
Using the second relation [START_REF] Destuynder | Can we hear the echos of cracks?[END_REF], one obtains a similar expression:

G I ndt = - ω 2 2 Γ1 [|u I | 2 +|u R | 2 ]ν 1 + Γ1 c 2 2 |∂ 2 u I | 2 ν 1 - Ω f I ∂ 1 u I - Γ0 g I ∂ 1 u I , (17) 
which leads to:

G I ndt = 0 ( 18 
)
when there is no defect. These two expressions ( 15)-( 17), are precisely the ones used in the following for detecting a defect in the structure. In order to explain how, let us consider in the next subsection 3.2, a domain with a defect. For sake of simplicity, we shall begin with a circular hole as shown on Figure 3.

Remark 3. The previous results obtained in the two sections 2 and 3 can be derived exactly in the same manner for a more complex elasticity model (even in three dimension). But our goal in this paper is only to give the driving ideas on a simple but nevertheless, realistic model.

3.2.

Modification of equation ( 15) and ( 17) when there is a defect. Here again, it is assumed that the wave velocity c is constant. Let us denote by ∂T the boundary of a hole (or a slit as shown on Figure 7). The unit normal toward the inside of the defect is denoted by ν. In each case, we consider that the boundary of the defect is a free edge (the normal derivative is zero). A simple modification of the calculus leads to an additional term which is an integral along the boundary ∂T of the hole T where s is the curvilinear abscissa.

Making use of the condition ∂ ν u = 0 on ∂T , one obtains:

- ω 2 2 Γ1 [|u R | 2 +|u I | 2 ]ν 1 + Γ1 c 2 2 |∂ 2 u R | 2 ν 1 - ω 2 2 ∂T |u R | 2 ν 1 + ∂T c 2 2 |∂ s u R | 2 ν 1 = Ω f R ∂ 1 u R + Γ0 g R ∂ 1 u R , and 
- ω 2 2 Γ1 [|u I | 2 +|u R | 2 ]ν 1 + Γ1 c 2 2 |∂ 2 u I | 2 ν 1 - ω 2 2 ∂T |u I | 2 ν 1 + ∂T c 2 2 |∂ s u I | 2 ν 1 = Ω f I ∂ 1 u I + Γ0 g I ∂ 1 u I . ( 19 
)
Let us recall that, one has G R ndt = G I ndt = 0 if there is no defect. And one can claim that there is a defect if one of the two previous quantities is different from zero. Therefore our study will consist in analyzing numerically the sensitivity of these two indicators versus a defect in the structure.

3.3.

A discussion on the detection criterion. Let us assume that there is a defect (a circular cavity) and that for a given value of ω, one has:

G R ndt = G I ndt = 0, one has: (for instance for the first quantity concerning G R ndt ):

∀ω, ∂T ω 2 |u R | 2 -c 2 |∂ s u R | 2 ν 1 = 0.
Let us discuss the non existence of a defect in this case.

FIGURE 3. A circular cavity in the structure

Let us now assume for sake of brevity that the defect is a disc of radius r 0 (but a similar result would also be true for a more general shape of the hole). Let us consider the eigenvalues and the eigenvectors (|∂T | is the perimeter of the hole):

(ξ i , z i ), i ≥ 0 solution of the following system :

• i = 0, ξ 0 = 0 and z 0 = constant = 1 |∂T | , • i ≥ 1, z i ∈ H 1 (∂T ), ∂T |z i | 2 = 1, ∀v ∈ H 1 (∂T ), ξ i ∂T z i v = ∂T c 2 ∂ s z i ∂ s v. (20) 
The family {z i } is a Hilbert basis of the space L 2 (∂T ). In the case of circle of radius r 0 , one has:

ξ i = c 2 i 2 r 2 0
and the eigenvectors are cosine and sinus functions. Each eigenvalue is double. Hence, one can write on ∂T (the radius of the circle is r 0 and u R is smooth inside Ω):

u R = α 0 + i≥1 α i z i , with a convergence in H p (∂T ), for any ≥ 2,
and from the orthogonality in L 2 (∂T ) of the functions z i , one obtains using polar coordinates from the center of the circle:

ũ(r) = ∂T u(s, r)ds = α 0 |∂T |.
Writing the equation satisfied by ũ, one gets:

α 0 = ũ(r) |∂T | = 2π 0 r 0 u(r, θ)dθ |∂T | = 2π 0 u(r, θ)dθ 2π ,
one obtains for a given r 1 small enough:

     - 1 r ∂ r (c 2 r∂ r ũ) -ω 2 ũ = 0, r 0 < r < r 1 , ∂ r ũ(r 0 ) = 0. (21) 
Furthermore, on the first value of r corresponding to a point where the polar radius crosses the boundary Γ 0 (without being tangential and considering that g = 0 on this part of Γ 0 ) -say r = r 1 -one has:

∂ r ũ = 0. (22) 
Equation ( 21) and [START_REF] Lowe | Characteristics of the reflection of Lamb waves from defects in plates and pipes, Review of Progress in Quantitative NDE[END_REF] proves that ũ = 0, unless ω 2 would be an eigenvalue of the following operator:

v ∈ {q ∈ H 2 (]r 0 , r 1 [), ∂ r v(r 0 ) = ∂ r v(r 1 ) = 0} → - 1 r ∂ r (c 2 r∂ r v) ∈ L 2 (]r 0 , r 1 [).
(23) But the spectrum is discrete and as far as ω ∈ [ω 0 , ω 1 ] with ω 0 < ω 1 one can ensure that there is always a value of ω for which the criterion G R ndt = 0. Hence, one has α 0 = 0 on ∂T and therefore the condition G R ndt = 0 becomes:

i,j≥1 α i α j ω 2 ∂T z i z j ν 1 - ∂T c 2 ∂z i ∂s ∂z j ∂s ν 1 ds = 0. (24) 
But from the equation ( 20) setting v = z j ν 1 , and v = z i ν 1 , we derive the following identity:

         ξ i ∂T z i z j ν 1 = ∂T c 2 ∂z i ∂s ∂z j ∂s ν 1 + z j ∂ν 1 ∂s ξ j ∂T z j z i ν 1 = ∂T c 2 ∂z j ∂s ∂z i ∂s ν 1 + z i ∂ν 1 ∂s . (25) 
By adding the two relations and from an integration by parts on ∂T , it comes:

(ξ i + ξ j ) ∂T z i z j ν 1 = ∂T 2c 2 ∂z i ∂s ∂z j ∂s ν 1 - ∂T c 2 ∂ 2 ν 1 ∂s 2 z i z j . (26) 
Finally we proved that:

∂T (ξ i + ξ j )ν 1 + c 2 ∂ 2 ν 1 ∂s 2 z i z j = 2 ∂T c 2 ∂z i ∂s ∂z j ∂s ν 1 . (27) 
But on a circle of radius r 0 , one has:

∂ 2 ν 1 ∂s 2 = - ν 1 r 2 0 .
Hence the relation ( 24) becomes:

i,j≥1

α i α j ξ i + ξ j 2 - c 2 2r 2 0 -ω 2 ∂T z i z j ν 1 = 0. (28) 
Let us recall that ξ i = i 2 c 2 r 2 0 and for the circle ν 1 = cos(θ) where θ is the polar angle as shown on Figure 3. Let us define the coefficients in the basis {z i } of a quadratic form C by:

c ij = ξ i + ξ j 2 - c 2 2r 2 0 -ω 2 ∂T z i z j ν 1 .
They can be computed exactly from the expressions of ξ i and z i . A simple computation leads to:

       c i i+1 = c i+1 i = r 0 2 c 2 r 2 0 i(i + 1) -ω 2 ,
and

c ij = 0 if |i -j| = 1. Let us define C(α, β) = i,j≥1
c ij α i β j . The question is to analyze the relation ( 28) for a given value of ω and to decide if it implies or not that α i = 0. This is equivalent to compute the isotropic vector of the quadratic form C.

From c ii = 0, one can conclude that if u is equal to one of the eigenvectors z i on ∂T , then the criterion is vanishing and this solution doesn't enable to detect the hole. But this is not the only case. Let us set ζ = ωr 0 c . If ζ = i(i + 1) a decoupling appears in the expression of the quadratic form C. Let us consider for instance the case i = 3. which implies that ζ 2 = 12 or else ω = ζc/r 0 = 312. One can write the coefficients c ij restricted to the

z i = 1 √ πr 0 cos(iθ) (subspace of H 1 (∂T ))
, one obtains the following matrix (restriction of the quadratic form {c ij } to the five first eigenmodes) as far as we already proved that the coefficient α 0 is zero as far as G R ndt and G I ndt are zero:

C = c 2 2r 0               0 2 -ζ 2 0 0 0 2 -ζ 2 0 6 -ζ 2 0 0 0 6 -ζ 2 0 12 -ξ 2 0 0 0 12 -ξ 2 0 20 -ζ 2 0 0 0 20 -ζ 2 0               ,
One can observe a decoupling of C into two submatrices since 12 -ξ 2 = 0 as follows:

C = c 2 2r 0   A 0 0 B   with: A =       0 2 -ζ 2 0 2 -ζ 2 0 6 -ζ 2 0 6 -ζ 2 0       , B =   0 20 -ζ 2 20 -ζ 2 0   .
The matrix A has a kernel spanned by the vector of R 3 :

Z =         1 0 ζ 2 -2 6 -ζ 2         =        1 0 - 5 3       
, and if we complete by 0 the two last components in R 5 we obtain an isotropic vector of the quadratic form C for this value of ζ. We set: s = z 1 -5z 3 /3. Hence, because C is a symmetrical form, the spaces defined for any k by:

Q k = {z k , s}
are isotropic spaces for C with this value of ζ and therefore of ω. As a consequence, if more generally, ω = c k(k + 1), and if the solution u restricted to ∂T is in one of these two dimensional spaces spanned by s i and any z k the hole will be hidden in the criterion suggested. Therefore we found many situations for which the solution u isn't able to detect the defect. But, they certainly remain exceptional and for ω varying one can hope that any defect can be detected by the criterion suggested. Numerical tests will confirm this point in section 5.

Remark 4.

If the defect is a crack (see Figure 4 for the notations) with extremities A and B, and denoting by K R A (respectively K R B ) the stress intensity factors, a classical computation leads to the following expression for G R ndt where . is the jump of a quantity across the crack line AB (ν 1 = (ν, e 1 ), ν 2 = (ν, e 2 ) and a similar expression for G I ndt ) (see for instance [START_REF] Ph | Few remarks on the use of Love waves in non destructive testing, in Discrete and continuous dynamical systems[END_REF]) :

G R ndt = πc 2 4 (K 2 B -K 2 A )ν 1 (AB) + B A {ω 2 |u R | 2 ] -[c 2 |∂ s u R | 2 }ν 2 (AB). ( 29 
)
If the crack is parallel to axis x 1 , then: ν 1 = 0 and only the first term with the stress FIGURE 4. A structure with a crack intensity factors remains (see [START_REF] Destuynder | Can we hear the echos of cracks?[END_REF] for a discussion). If the crack is parallel to the axis x 2 , the second term remains. The discussion is similar to the one developed in 3.3. But concerning the possibility to have G R ndt = G I ndt = 0 is more tricky in this case. A partial discussion has been suggested in [START_REF] Destuynder | Can we hear the echos of cracks?[END_REF].

Case of an heterogeneous media.

Let us now assume that the wave velocity is piecewise constant, equal to c + in Ω + and to c -in Ω -as shown on Figure 1. In this case, the expressions of G R ndt and G I ndt are modified, because an additional term appears on the line separating the two media. In fact, the solutions u R and u I are continuous across this line. Furthermore, the normal stresses c 2 ∂u R ∂ν and c 2 ∂u I ∂ν are also continuous. But neither: ∂u R ∂ν nor ∂u I ∂ν , is continuous. It means that the energy density is discontinuous. These aspects has been already discussed in [START_REF] Destuynder | Ondes locales dans les milieux hétérogènes -Aspects numériques -8[END_REF] and [START_REF] Destuynder | Local Waves in heterogenous media and their control[END_REF]. Therefore, if we denote by Γ 3 the separation line between the two media, the new expressions of G R ndt and G I ndt become (without defect and ν is the component of the unit normal along Γ 3 from Ω + towards Ω -and s is the abscissa along the boundary Γ 3 ):

                                                           G Rh ndt = - ω 2 2 Γ1 [|u R | 2 +|u I | 2 ]ν 1 + Γ1 c 2 2 |∂ 2 u R | 2 ν 1 - Ω f R ∂ 1 u R - Γ0 g R ∂ 1 u R - 1 2 Γ3 ( 1 c 2 + - 1 c 2 - )|c 2 ∂u R ∂ν | 2 ν 1 + 1 2 Γ3 (c 2 + -c 2 -)( ∂u R ∂s ) 2 ν 1 , G Ih ndt = - ω 2 2 Γ1 [|u I | 2 +|u R | 2 ]ν 1 + Γ1 c 2 2 |∂ 2 u I | 2 ν 1 - Ω f I ∂ 1 u I - Γ0 g I ∂ 1 u I - 1 2 Γ3 ( 1 c 2 + - 1 c 2 - )|c 2 ∂u I ∂ν | 2 ν 1 + 1 2 Γ3 (c 2 + -c 2 -)( ∂u I ∂s ) 2 ν 1 . (30) 
Let us underline that if ν 1 = 0 (case of a bimaterial with an interface parallel to the axis x 1 ), then the additional terms disappear.

In the following we set:

G Rh ndt = G R ndt + G Ra ndt and G Ih ndt = G I ndt + G Ia ndt .
Unfortunately, these additional terms can't be measured using only boundary terms and measurement where the excitation is prescribed. But, if c + and c -are close, one can set (ε is assumed to be small as far as c + c -)):

ε = |c 2 + -c 2 -| c 2 + . ( 31 
)
Furthermore, from classical regularity result for the Helmholtz equation, there exists a constant -say µwhich only depends on the geometry of the structure and on the forces applied, such that (let us recall that Ω + (respectively Ω -), corresponds to the velocity c + (respectively c -):

||u R || 2,Ω+ + ||u R || 2,Ω-+ ||u I || 2,Ω+ + ||u I || 2,Ω- ≤ µ ||f R || 0,Ω + ||g R || 1/2,Γ1 + ||f I || 0,Ω + ||g I || 1/2,Γ1 . (32) 
Hence, using trace theorem, if there is no defect in the structure, there is a constant c 0 independent on the solution u such that: 

|G Ra ndt | + |G Ia ndt | ≤ c 0 ε ||f R || 0,Ω + ||g R || 0,Γ1 + ||f I || 0,Ω + ||g I || 0,Γ1 . (33) 

4.

The numerical formulation adopted. The method briefly described here, has been tested numerically in a more complex case, at imperial college [START_REF] Huthwaite | Accelerated finite element simulations using the GPU[END_REF]. Our computations are restricted to a two dimensional case. The geometry of the structure is a rectangle with a welded area represented by a triangle as shown on Figure 5. Several subdomains can be used and correspond to different phases of solidification in the welding process. We traduced these steps by using different values of the wave velocity. For sake of clarity, we just consider here two wave velocities: c + in the austenitic and c -in the welding.

About 425000 linear elements have been used (triangles) in each numerical test. The solver is a direct method (Gauss) for the global complex problem (u R and u I ). The expressions of G R omega have been computed exactly as far as the derivatives of u R and u I are piecewise constant and the terms |u R | 2 and |u I | 2 are piecewise second degree polynomials which can be integrated exactly using Simpson's formula. One can have an idea of the mesh size used on Figure 6. Two types of flaws have been considered. One is a slit starting from the bottom of the structure, at the junction between the welded area and the austenic media. One can see it on Figure 6. The second one is a small cavity inside the welded area (see again Figure 6). In each case we have plotted the defect indicator G R ndt and G I ndt . We have also analyzed the influence of the portion of boundary taken into account in the computation of the integral along Γ 1 . The first step is to analyze the influence of the size of the defect on G R ndt and G I ndt has also been discussed in a structure without welding area in order to separate the influence of the various parameters. In such a case, the NDT indicators G R ndt and G I ndt are zero if there is no defect. It enables to focus on the threshold of the size of a defect in order to be able to detect it.

5. The discussion on the numerical results. Three different tests are presented. The first one concerns a homogeneous structure with a small cavity in order to check the possibility to detect such a defect in a very simple case. The second one corresponds to the welded structure with a small crack at the interface between the welded area and the rest of the structure. The difficulty is that there is a lot of reflections due to the wave discontinuity at the interface between the two media and the defect is precisely along this interface. The third one deals with a small cavity inside the welded area where the wave velocity is smaller. Therefore the welded area acts as a trap and it was not clear that the informations carried by the waves could get out from this trap. In each numerical test, a scaling is used choosing the wave velocity equal to 1 (for the homogeneous case) or 0.9 in the welded area if there is one. Therefore the pulsations which vary in our tests from 0 to 600, correspond to frequencies between 0 Hz and 153 K Hz. In most cases we only consider the results between 100 K Hz and 150 K Hz. It would be necessary to go up with the frequency for smaller defect. But we also think that it would be interesting to modify the finite element scheme in order to improve the accuracy of the results, for instance by using PUFEM strategy (setting for the wave equation (time and space): u = e ±iωt u puf em (x, t)) [START_REF] Babuska | Finite Element Solution of the Helmholtz Equation with High Wave Number, Part I: The h-Version of the FEM[END_REF], [START_REF] Babuska | A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution[END_REF], [START_REF] Perez-Lopez | A computational and numerical analysis of PUFEM methods[END_REF]. The use of Friedrichs' system is also a possibility which is promising but not yet operationnal presently for 2D or 3D models [START_REF] Ern | Discontinuous Galerkin methods for Friedrichs" systems. I. General theory[END_REF], [START_REF] Ern | Discontinuous Galerkin methods for Friedrichs' systems. II. Second-order elliptic PDE's[END_REF], [START_REF] Laurens | Approximation de haute précision des problèmes de diffraction[END_REF]. The case of a hidden defect, has been discussed in the third test. In fact high frequencies can be trapped by a defect as it has been detailed in section 3.2. In this case, there is a double restriction on the frequencies to be used in ultrasonic testing: a lower bound in order to be able to see the defect, and an upper bound in order to avoid that the wave are trapped by the defect. But this second restriction is not so drastic as far as a continuous range od values for ω is used. Happily, this phenomenon occurs for precise frequencies corresponding to the eigenvalues of boundary problem set on the edge of the defect. Let us underline that the smaller is the defect the larger is this upper bound which is always larger than the lower bound, discussed in section 3.2.

The local mesh used for the slit

The local mesh used for the cavity FIGURE 6. The meshes used in the case studied for the tests: on the top figure the case of the slit, on the bottom figure, the case of a small circular cavity. FIGURE 7. A structure with a slit at the interface between welded areas 5.1. Case of a homogeneous media with a small cavity. The open set is the rectangle shown on Figure 8. The excitation is localized on a small disc at the bottom left and the cavity is also a small disc, but at the middle right. The criterion G R ndt (respectively G I ndt ) has been plotted versus the pulsations on the Figure 9. Furthermore, the evolutions of: versus the size of the cavity has been plotted on Figure 12 and on Figure 13. One can observe the increase of the effect of the defect on these quantities. The computations have been performed in this case with wave velocity equal to 1. Therefore the pulsations on the abscissa of Figures 12 and13, should be multiplied by a coefficient equal to 3300 (wave velocity for SH (Shear Horizontal) waves). The use of quite low frequencies is not restrictive in our analysis as it will be shown in the two other examples, but it was just interesting to check if low ultrasonic waves for which the damping is smaller can carry enough information for the cavity detection. One can see a true sensitivity of the solution versus the cavity. Nevertheless on Figure 9, one can observe that the invariant G R ndt (ω) is approximately multiplied by factor 10 5 when there is a cavity compared to the result obtained without defect and when the frequencies are not too close to an eigenpulsation of the system (obtained without transparent boundary conditions). But because of the scatterring performed by the damping on the boundary Γ 1 , the solution remains finite for any pulsation. We can also observe that the invariant G R ndt (ω) (for instance) is increasing with respect to the size of the cavity for all the frequencies. The sum of the two quantities G R ndt + G I ndt is more reliable (see Figure 10). In order to smooth the curves we have also used an average process based on 11 points centered on the nominal value of ω (average filtering) which gives more stable results (see Figure 11). For each computation 800 values for ω have considered. This process is the one used in the following tests.

By integrating G R ndt (ω) versus ω one can construct an indicator which is quite precise on the size of the cavity as shown on Figures 12 for L 1 norm and 13 for L 2 norm. The most meaningful integration from the mechanical point of view is the L 1 norm (integration of an energetical term). One can see that the results are very close for G R ndt and G I ndt in this framework. Introducing the L 2 norm is certainly artificial but it enables to exhibit a meaningful difference between G R ndt and G I ndt . In fact it is not necessary to integrate for all the values of ω in order to derive a criterion for characterizing the size of the cavity. A bandwidth of 100Hz would be sufficient in this simple case. 

5.2.

Case of a welded structure with a slit. In this subsection we discuss a more complicated situation which has been suggested in a three dimensional analysis by Peter Huthwaite in [START_REF] Huthwaite | Accelerated finite element simulations using the GPU[END_REF]. Our computations are restricted to a two dimensional case for SH waves. The structure is a rectangle made of two pieces which are welded together by a welding cone in which the wave velocity is 10% smaller than in the rest of the structure. Furthermore a mini crack is set at the bottom of the original material and the welded area as shown on the Figure 6. On Figure 14 we have plotted two curves representing G ndt = G R ndt + G I ndt : one for the structure without defect and the other one with the slit. One can observe the influence of the slit. This is a difficult test as far as the discontinuity between the two areas with different wave velocities implies also wave reflections on the interface. The goal of this test was mainly to check if the invariant G R ndt + G I ndt was able to detect the influence of two different kinds of reflections close from one another. In a second step we have studied the can see that even if a small portion of Γ 1 is considered, the influence of the defect can be observed.

On Figure 17 we have plotted a summary of these results (for various length of computation of only G R ndt . One can see, by comparing with the previous results, that the sum G R ndt +G I ndt is much more interesting on these numerical tests as far it smoothes the curves (like a filter). Finally, on Figure 18 we just took into account the term:

G ndt - Ω f R ∂ 1 u R
for several lengths of the segment on Γ 1 which is considered in the computation of the integrals on Γ 1 . One can also observe that it is sufficiently meaningful for the detection of the defect. 

5.3.

Case of a welded structure with a small cavity in the welded area. The third test concerns the welded structure with as defect, a small circular cavity with different radius. The analysis is similar to the one performed for the slit and the results are similar. On Figure 19, we have plotted the evolution of G ndt versus the pulsation ω compared to the safe structure for several radius of the cavity (see the second Figure 6). Here again, one can see on Figure 20 that if we restrict the estimation of G ndt to the boundary term on Γ 1 the influence of the defect is still meaningful (the integration is performed here on all Γ 1 ). In this case the term -Ω f R ∂ 1 u R has been omitted. The difference between the two graphs respectively on Figures 19 and20, represents the contribution of the term:

Ω f R ∂ 1 u R
and it appears to be quite small in this test. This result shows that for a complex case (welded structures with defects), it is more efficient to measure the boundary terms, than only the one connected to the excitation which could also be considered as an indicator. Furthermore, let us recall that we choose a body excitation -say f R -but from the numerical point of view, similar results would have been obtained with a boundary excitation. But considering both terms is clearly a better strategy. Let us discuss the results of this third test from Figure 19. First of all, let us recall that the true frequencies are connected to the normalized values of ω used in this paper by the scaling factor 3300 because the wave velocity in Ω + is 1 in our numerical tests. Hence the critical value derived in subsection 3.2 is obtained as follows:

• the true SH-wave velocity is 3300m/s; • f req = ω × 3300 2π ;

• for ω = 580, the corresponding frequency is: For larger values of ω, there is a trap for each values corresponding to ω = c i(i + 1) r 0 and the sensitivity of the criterion G R ndt (or G I ndt ) is decreasing as one can see on Figure 21 where we have drawn the vertical line for ω = 580 corresponding to i = 6.

f max = 580 × 3300 2π 303 K Hz.
Hence, the test 3 is clearly in the right range of frequencies which enable the cavity detection as it is confirmed by the curves on Figure 20. More precisely, for ω = 300 on can detect surely circular cavities with radius r 0 ≤ r max = 0.018. For larger values of r 0 it is also possible to detect defects, but there exist specific values of ω corresponding to eigenvalues for which the eigenvectors can be trapped on the boundary of the defect and for which it can be hidden in the criterion used. In practice, it means that the sensitivity of G ndt is weaker because part of the waves can fall in the trap of the defect. In fact, this phenomenon occuring for precise frequencies (and therefore for given scaled pulsations ω), can give precise informations on the size of the cavity and even on its shape, if we consider other frequencies for which the gap appears.

Conclusion.

In this paper, a theoretical investigation concerning the possibility to detect a defect using ultrasonic waves has been carried out. The use of an energy invariant is underlined and verified on few numerical simulations for a two dimensional structure (SH model). The method works for quite complex situations as welded structures and the defect can be a slit or a small cavity. Few restrictions appear, not for the feasability, but FIGURE 21. Evolution of G ndt versus ω here one can see the trapping effect for ω = 583 (or a frequency of 307 K Hz for the physical value) and for r 0 = .01 which gives a good correlation between the numerical test and the theoretical explanation given at subsection 3.2. Furthermore, the first hidden frequency (i = 1 in the analysis of subsection 3.2) corresponding to ω = 127 and a real frequency equal to 66 KHz is also clearly observed in our test.

for the efficiency, such as the possibility to have trapped waves. Obviously, this strategy should be tested on more complex structures and in particular for three dimensional ones. The harvesting method based on an optimal control strategy coupled with the excitation, is also worth to be numerically tested in this framework, in order to avoid a loss of information through the boundaries which aren't equipped with sensors and not parallel to the axis x 1 . It also appears that an improvement of the numerical approximation of the Helmholtz's equation could be a very positive forward step for higher frequencies or more complex structures. The discussions on the shape of the defect should also be extended to more general cases than a disc or a linear crack.
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 1 FIGURE 1. The domain Ω (the velocity is c + in Ω + and c -in Ω -)

FIGURE 2 .

 2 FIGURE 2. A more general domain Ω

  But, if there is a defect the additional terms can be different from zero and the values of |G R ndt | and |G I ndt | are changed. The detection of the defect rests on this change. Nevertheless, the reference values of |G R ndt | and |G I ndt | are no more zero, even if the proximity of the two wave velocities c + and c -are very close but different. These aspects are discussed in the numerical tests of subsections 5.2 and 5.3.

FIGURE 5 .

 5 FIGURE 5. The dimensions used in the numerical tests and the different expressions of the wave velocity depending on the area in the structure. c + = 3300m/s in the austenitic, c -= 0.9 × c + in the welded joint. The computation have been done with the scaling by the factor 1/3300: c + = 1 and c -= 0.9. Hence for ω varying between 0 and 200 on the Figures, corresponds the physical values between 0 and 660, 000.K Hz. The internal lines of Ω -are only used by the mesh generator.

FIGURE 8 .

 8 FIGURE 8. The solution obtained with an excitation on the bottom left of the structure and the position of the small cavity on the middle right.

FIGURE 9 .

 9 FIGURE 9. Evolution of |G R ndt | and |G I ndt | versus ω, depending of the size of the cavity. The values have been normalized by G f =

FIGURE 10 .

 10 FIGURE 10. Evolution of |G R ndt +G I ndt | versus ω (800 values for ω from 0 to 200), depending of the size of the cavity.

FIGURE 11 .

 11 FIGURE 11. Evolution of |G R ndt + G I ndt | with a smoothing based on a symmetrical filtering versus ω, depending on the size of the cavity.

FIGURE 12 .

 12 FIGURE 12. Evolution of ω2 ω1 |G R ndt | and ω2 ω1 |G I ndt | versus the size of the cavity (the domain is .5 × 2, Figure 8).

FIGURE 13 .

 13 FIGURE 13. Evolution of the

FIGURE 14 .

 14 FIGURE 14. Evolution of G ndt = G R ndt + G I ndt versus the pulsation for the safe and damage structure (with a slit as shown on the first Figure 6). The integration is performed on all Γ 1 . influence of the portion of boundary Γ 1 used in the computation of G ndt = G R ndt + G I ndt (let us point out that G I ndt is not the imaginary part of G ndt but the term obtained from the equation satisfied by u I ). The length of the segment (centered on the middle of Γ 1 and symmetrical) taken into account is 0.3 on Figure 15, and 0.5 on Figure 16. The Figure 14 corresponds to the full lenght of Γ 1 for the computation of the boundary term on Γ 1 . One

FIGURE 15 .

 15 FIGURE 15. Evolution of G ndt computed on a reduced part (.3) of Γ 1 versus the pulsation for the safe and damage structure (with a slit as shown on the first Figure6) and compared to the perfect structure (without slit).

FIGURE 16 .

 16 FIGURE 16. Evolution of G ndt computed on a reduced part (.4) of Γ 1 versus the pulsation for the safe and damage structure (with a slit as shown on the first Figure6) and compared to the perfect structure (without slit).
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 17118 FIGURE 17. Evolution of only G R ndt versus the pulsation ω for different lengths of the segment of integration on Γ 1

FIGURE 19 .

 19 FIGURE 19. Evolution of G ndt (ω) for three sizes of the radius of the circular cavity: {.0, .005, .01}

FIGURE 20 .

 20 FIGURE 20. Evolution of G ndt (ω) when only the boundary term on Γ 1 is considered for three sizes of the radius of the circular cavity: {.0, .005, .01}.