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1 INTRODUCTION 

Rubberlike materials exhibit a very complex behav-
ior with an ability to endure very large deformations. 
They present a time dependent behavior (hysteresis, 
relaxation) and others phenomenons like a large 
stress-softening after a first loading cycle. This last 
phenomenon is known as Mullins effect (Mullins, 
1969). 

This paper only focuses on the Mullins effect, all 
the others phenomenons present in rubber materials 
will not be taken into account. The behavior is then 
considered time-independent. It is assumed to be 
represented by the Figure 1 for a tensile cyclic test.  

Figure 1. Static behavior of a hyperelastic elastomer enduring 
only stress-softening. 

The virgin undamaged material is first stretched 
as the extension ratio reaches I and the stress fol-
lows the path I. Then the unloading from I to 0 fol-
lows the path I'. The second loading from 0 to II >I 
first follows the path I' until =I then it follows the 
path II. The second unloading from stretch ratio II 
to 0 follows the path II' which is different than path 
I'. At a given stretch, the stress on II' is lower than 
the stress on I'. Repeating this process, the loading 
path corresponding to the increase of stretch from 0 
to II is the path that joins II' and the part III of the 
virgin curve. Finally, the corresponding unloading 
follows the path III'. 

The aim of the paper is to propose a Mullins ef-
fect modeling based on physical consideration and 
easily implementable in a finite element code. In a 
first part, a brief bibliography of Mullins effect mod-
eling is proposed, the choice of the Marckmann et al. 
(2002) model is realized. In a second part, the model 
is studied and the finite element implementation 
problems are highlighted. An adaptation of the mod-
eling is proposed thanks to relations between hypere-
lastic energy density parameters.  

2 MODELS FOR THE MULLINS EFFECT 

Since the stress softening phenomenon has been ob-
served, many models have been proposed; for a 
complete bibliography of the first models the reader 
can refer to Harwood et al. (1967) and Mullins 
(1969). The first approaches were physically moti-
vated, on the one hand, the structure of the material 
was studied, i.e. the links between the macromolecu-
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lar chains and fillers. For example, Bueche (1960, 
1961) developed a one-dimensional model by as-
suming that the Mullins effect is due to the break-
down of links between filler particles and chains, 
and that it only depends on the maximum stretch his-
tory. For Dannenberg & Brennan (1966) and Dan-
nenberg (1966), the macromolecular chains can slip 
or dissociate of the fillers. These approaches have 
been generalized to a three-dimensional formulation 
by Govindgee & Simo (1991). The problem of these 
approaches is that the Mullins effect occurs in un-
filled materials, too. Later, Marckmann et al. (2002) 
proposed a global approach. The global evolution of 
the links in the material is studied without distin-
guishing links breakage between chains, or between 
fillers and chains or chains rupture. This permits to 
propose a global three dimensional approach. Re-
cently, Qi & Boyce (2004) distinguish the rubber 
matrix and fillers, considering that stress softening 
appears only in the rubber matrix. Based on the in-
fluence of fillers on mechanical behavior, they pro-
posed a new evolution law. 

On the other hand, the material has been consid-
ered composed of two parts, one soft and one hard. 
Then the stress softening is due to the transformation 
of the hard phase into soft phase after solicitation 
(Mullins & Tobin, 1957). This approach is used by 
Johnson & Beatty (1993) to propose an uniaxial 
modeling. Next, Beatty & Krishnaswamy (2000) and 
Zuñiga & Beatty (2002) proposed three-dimensional 
evolution laws of the stress softening. 

An other kind of approaches exists based on the 
continuum damage mechanics. It was first intro-
duced by Gurtin & Francis (1981) and generalized 
by DeSouza Neto et al. (1994); they proposed a 
damaged master curve that they adapt to the maxi-
mum deformation of each second loading curve. Dif-
ferent forms of damage evolution laws have been 
proposed (Simo, 1987; Miehe, 1995). Recently 
Chagnon et al. (2004) have synthesized the continu-
um damage mechanics approach and proposed a 
damage evolution law. 

Each model has its advantages and inconvenienc-
es. The key point depends on what the model is used 
for; a discussion is proposed by Chagnon (2003). We 
focus on physical modeling, and choose to keep the 
most recent model proposed, i.e. the one proposed 
by Marckmann et al. (2002). 

3 ALTERATION MODELS  

3.1 Marckmann model formulation 

Marckmann et al. (2002) have studied the evolu-
tion of the rubber network. When the material is 
stretched some links are broken, links between 
chains as well as links between chains and fillers as 
illustrated by Figure 2.   
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Figure 2. Evolution of the macromolecular network when sub-
mitted to a deformation. 
 

The evolution of the rubber network can be de-
scribed thanks to the evolution of the characteristics 
of the macromolecular chains. In fact, after link rup-
ture, chains become longer but their number de-
creases. As a consequence, two working hypotheses 
are made; first, the number of chains by volume-unit 
is a decreasing function of the maximum defor-
mation, second, the number of monomers by chains 
is an increasing function of the maximum defor-
mation. 

The constitutive law is built thanks to the use of 
the eight-chain model of Arruda & Boyce (1993) be-
cause this hyperelastic energy density has only two 
material parameters which are the number of mono-
mers by chains N and the density of chains by vol-
ume-unit Cr. The energy is written: 
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1  chain  (2) 

where L is the Langevin function. Marckmann et al. 
make the eight-chain parameters dependant of the 
maximum deformation, to simulate material configu-
ration evolution. They described the evolution laws 
thanks to exponential functions; a decreasing one for 
the number of chains per volume-unit and an in-
creasing one for the number of monomers per 
chains: 

 10 exp rrr CCC   (3) 

 10 exp NNN   (4) 

where  is the deformation measure. In the rest of 
the paper, the first invariant I1 is chosen as it repre-
sents a global three-dimensional deformation meas-
ure. It is important to verify that the number of ac-
tive monomers in the material i.e. the product of the 
number of monomer by chains by the number of 
chains by volume-unit CrN is a decreasing function 
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of the deformation. Actually, the number of active 
monomers is decreasing as during the deformation 
process, hanging chains appear. An identification of 
the material parameters is realized on the carbon-
black filled rubber studied by Chagnon et al. (2004), 
the stresses are normalized. The parameter values 
are given by Table 1. 
 
Table 1. Values of the Marckmann model parameters for a car-
bon black filled rubber.  

Cr
0 Cr

1 N0 N1 

0.0575 0.0282 4.85 0.0278 

 
A simulation of the tensile test is realized and 

compared to experimental data on Figure 3.  
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Figure 3. Simulation of the Marckmann model on tensile test 
()  model (…) experimental data. 

 
The model is very efficient to simulate the stress-

softening phenomenon, as the first and second load-
ing curves are well described. The slight stress de-
crease at the end of the first loading curve is due to 
the limiting fit region. As a consequence, the model 
is only usable for deformations weaker that the one 
of the critical point. 

The product CrN is easily expressed thanks to the 
evolution laws: 

  1100 exp rrr CNNCNC   (5) 

As N1< Cr
1 the number of active monomers in the 

material is a decreasing function of the deformation. 

3.2 Marckmann model limitations 

Many hyperelastic energy densities have been used 
for many years, but few of them are really used for 
finite element simulations. For example in the Finite 
Element Code Abaqus©, few hyperelastic energy 
densities are implemented, we can quote: Rivlin se-
ries, van der Waals model, Ogden model and the Ar-
ruda-Boyce model. The last one is not implemented 
in its analytical form but in its invariant form i.e. 
fifth order series development: 

      ...333 33

13

22

1211  ICICICnkW   (6) 

Actually, the analytical form is not easily usable in 
finite element codes because of its principal direc-
tions formulation and of the Langevin function.  

The differences between the two formulations are 
not important for small and medium deformation but 
are more penalizing for large deformation. Figure 4 
presents the differences between the two formula-
tions for a tensile test (with 1rC  and 10N ). It 
appears that the strain hardening phenomenon is 
quite different as in the first case it is represented by 
an asymptote and in the second case by a polynomial 
form. Moreover, one formulation limits the maxi-
mum deformation while the other permits to reach 
any deformation. 
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Figure 4. Difference between the analytical form () and the 
fifth order series development (--) of the Arruda and Boyce 
model for uniaxial tensile test. 

 
The difference is not so important for hyperelastic 

calculus but for Mullins effect simulation, the key 
point is different. The Marckmann model is built on 
the position of the strain-hardening. The parameter 
evolution is directly relied to the asymptote position. 
As an example, a simulation of the stress-softening 
model is realized with the fifth and tenth series de-
velopment and presented on Figure 5. The coeffi-
cients of the I1-series development are presented on 
Table 2.  

 
Table 2. Coefficients of the I1-series development of the Arru-
da-Boyce model.  

C1 1/2 
C2 1/20N 
C3 11/1150N2 

C4 19/7000N3 
C5 519/673750N4 
C6 59991/262762500N5 
C7 105771/1532781250N6 
C8 3123763/148898750000N7 
C9 54543778207/8577405555468750N8 
C10 74301767/38899798437500N9 
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Figure 5. Simulations of the Marckmann model () analytical 
form, (…) fifth order development (--) tenth order develop-
ment. 

 
It appears that I1-series developments of the mod-

el are not able to correctly describe the stress soften-
ing phenomenon. The exact formulation is the only 
one that permits a good correlation between the phe-
nomenon and the modeling but is not easily imple-
mentable in finite element codes. An other formula-
tion is indispensable.  

3.3 A new modeling 

3.3.1 Formulation 
To avoid this problem, a key is to use an other hy-
perelastic energy density. The Mullins effect model-
ing being based on physical hypothesis, it needs a 
hyperelastic energy density dependant on the density 
of chain by volume-unit and the average chain 
length. The key is to use the equivalence proposed 
by Boyce (1996) and extended by Chagnon et al. 
(2004) between the different hyperelastic energy 
densities, here the eight chain model (Arruda & 
Boyce, 1993) and the Gent (1996) model: 
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It has been proved that the Gent model parameters 
can be related to the eight chains model parameters: 

rCE 3  (8) 

 13  NJm  (9) 

That means that the Gent model parameters which 
are at first phenomenological have a physical mean-
ing. E can be related to the density of chain by vol-
ume-unit and Jm can be related to the chain length. 
As a consequence, the Mullins effect can physically 
be described by the Gent model. The evolutions of 
the density of chain by volume-unit and of chain 
length are respectively described by the evolution of 
the parameters E and Jm. They have the same kind of 
evolution as Cr and N: 

 10 exp3 rr CCE   (10) 

  1exp3 10  NNJm  (11) 

The evolution functions are deduced from the 
Marckmann model parameters (Table 2). Figure 6 
presents a comparison between the Marckmann and 
Gent altered models for the same parameter values. 
It appears that the Gent stress softening model is 
slightly stiffer at large deformations but has an iden-
tical shape.  
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Figure 6. Comparison of the Marckmann model () and the 
Gent altered model (--) for the same parameter values. 

 
The differences between the two simulations are 

due to the fact that the equivalence between the two 
hyperelastic energy densities is based on the initial 
slope and the asymptote position. As an example, the 
Arruda-Boyce model (with Cr=1 and N=10) and 
Gent model (with E=3 and Jm=27) are plotted for a 
tensile test in Figure 7. It appears that the curves are 
confounded at small deformations and are closed to 
near the asymptote. But in the medium strain region, 
there is a weak difference; the Gent model is slightly 
stiffer. This explains why the curve of the Gent 
stress softening formulation is above the curve of the 
Marckmann model in Figure 6. 
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Figure 7. Comparison of the Gent (--) and the Arruda-Boyce  
() models for a tensile test simulation. 

 
To correct this problem, it is possible to fit the 

Gent stress softening parameters on experimental da-
ta. In this way the evolution of the Gent parameters 
are written as new exponential functions: 
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 10 exp EEE   (12) 

 10 exp mmm JJJ   (13) 

Table 3 presents the Gent stress softening model pa-
rameter values fitted on experimental data. It is no-
ticeable that the parameter values are different from 
the values of the Marckmann model parameters pre-
sented in Table 1. 

 
Table 3. Values of the Gent stress softening model parameters 
fitted on experimental data.  

E0 E1 Jm
0 Jm

1 

0.196 0.0384 12.3 0.0304 

 
A simulation of the tensile test is presented on 

Figure 8. The forms of the model are in good corre-
lation with experimental data. It can be noted that 
the form of the model simulations are similar to the 
Marckmann model simulations (of Figure 3). The 
two models have the same characteristics and pre-
sent the same simulations.  
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Figure 8. Simulation of the Gent stress softening model on ten-
sile test. ()  model (…) experimental data. 

 
Finally, it is important to study the evolution of 

the number of active monomers in the material. Thus 
the function E/3(Jm/3+1) (which corresponds to the 
product CrN) is plotted according to the maximum 
deformation on Figure 9. It permits to verify that this 
function is a decreasing function of the maximum 
deformation. This validates parameter values.  
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Figure 9. Evolution of the number of active monomers in the 
material according to the maximum deformation.  

As a conclusion, a new Mullins effect modeling 
based on physical considerations expressed thanks to 
the first strain invariant and with a simple mathemat-
ical form is proposed.  

3.3.2 Finite element simulations 
The new stress softening modeling is implement-

ed in Abaqus. As an example, a biaxial test is real-
ized, the structure of the Figure 10 is considered. 
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Figure 10. Biaxial test specimen 

 
A quarter of the specimen is modeled and meshed 

(cf. Figure 11). Two simulations are realized, the 
first consists in stretching the specimen in the two 
directions consecutively (one first the other later). 
The second simulation consists in stretching the 
specimen in the two directions at the same time. The 
deformation criterion (i.e. the maximum of the first 
strain invariant in the history) is presented on Figure 
12. 

 
Figure 11. Mesh of a quarter of the biaxial test specimen. 

 
 

(a) (b)(a) (b)  
Figure 12. Evaluation of the maximum of the first strain invari-
ant for the biaxial sample specimen (a) stretch in one direction 
and later in the other (b) stretch in the two directions at the 
same time. 

 
It appears that the deformation criterion is differ-

ent in the two simulations, i.e. the stress softening. 
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That emphasizes the importance of the Mullins ef-
fect in structure design. Moreover, the new stress-
softening modeling proves its finite element calculus 
efficiency (others calculus has been realized but are 
not presented in the paper). 

4 CONCLUSION 

This study uses the equivalence between hyperelastic 
energy densities to build a stress softening modeling 
that can describe correctly the Mullins effect (i.e. the 
difference between the first loading curve and the 
second loading curves) with an analytical form easily 
implementable in finite element codes.  

A key point of this modeling is that it is physical-
ly motivated but written thanks to a phenomenologi-
cal model. Nevertheless, it is better to identify di-
rectly the parameters model instead of using the 
Marckmann et al. parameter values because of the 
slight difference between the Arruda-Boyce and 
Gent models for medium deformations. 

Finally the new model permits to have a good 
correlation with experimental data, and is easy to use 
in a finite element code. 
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