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Abstract

Under a standard CFL condition, we prove the convergence of the explicit-in-
time Finite Volume method with monotone fluxes for the approximation of scalar
first-order conservation laws with multiplicative, compactly supported noise. In [9],
a framework for the analysis of the convergence of approximations to stochastic
scalar first-order conservation laws has been developed, on the basis of a kinetic
formulation. Here, we give a kinetic formulation of the numerical method, analyse
its properties, and explain how to cast the problem of convergence of the numerical
scheme into the framework of [9]. This uses standard estimates (like the so-called
“weak BV estimate”, for which we give a proof using specifically the kinetic formu-
lation) and an adequate interpolation procedure.
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1 Introduction

Stochastic first-order scalar conservation law. Let (Ω,F ,P, (Ft), (βk(t))) be a
stochastic basis and let T > 0. Consider the first-order scalar conservation law with
stochastic forcing

du(x, t) + div(A(u(x, t)))dt = Φ(x, u(x, t))dW (t), x ∈ TN , t ∈ (0, T ). (1.1)

Equation (1.1) is periodic in the space variable: x ∈ TN where TN is the N -dimensional
torus. The flux function A in (1.1) is supposed to be of class C2: A ∈ C2(R;RN ).
We assume that A and its derivatives have at most polynomial growth. Without loss
of generality, we will assume also that A(0) = 0. The right-hand side of (1.1) is a
stochastic increment in infinite dimension. It is defined as follows (see [7] for the general
theory): W is a cylindrical Wiener process, W =

∑
k≥1 βkek, where the coefficients

βk are independent Brownian processes and (ek)k≥1 is a complete orthonormal system
in a Hilbert space H. For each x ∈ TN , u ∈ R, Φ(x, u) ∈ L2(H,R) is defined by
Φ(x, u)ek = gk(x, u) where gk(·, u) is a regular function on TN . Here, L2(H,K) denotes
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the set of Hilbert-Schmidt operators from the Hilbert space H to an other Hilbert space
K . Since K = R in our case, this set is isomorphic to H, thus we may also define

Φ(x, u) =
∑
k≥1

gk(x, u)ek,

the action of Φ(x, u) on e ∈ H being given by 〈Φ(x, u), e〉H . We assume gk ∈ C(TN×R),
with the bounds

G2(x, u) = ‖Φ(x, u)‖2H =
∑
k≥1

|gk(x, u)|2 ≤ D0(1 + |u|2),

(1.2)

‖Φ(x, u)− Φ(y, v)‖2H =
∑
k≥1

|gk(x, u)− gk(y, v)|2 ≤ D1(|x− y|2 + |u− v|h(|u− v|)),

(1.3)

where x, y ∈ TN , u, v ∈ R, and h is a continuous non-decreasing function on R+ such
that h(0) = 0. We assume also 0 ≤ h(z) ≤ 1 for all z ∈ R+.

Notation: in what follows, we will use the convention of summation over repeated indices
k. For example, we write W = βkek.

Compactly supported multiplicative noise. In this paper, we study the numerical
approximation of (1.1): our aim is to prove the convergence of the Finite Volume method
with monotone fluxes, see our main result, Theorem 7.4. Our analysis will be restricted
to the case of multiplicative noise with compact support. Indeed, from Section 3 to
Section 7, we will work under the following hypothesis: there exists a, b ∈ R, a < b,
such that gk(x, u) = 0 for all u outside the compact [a, b], for all x ∈ TN , k ≥ 1. For
simplicity, we will take a = −1, b = 1. We will assume therefore that

for all u ∈ R, |u| ≥ 1⇒ gk(x, u) = 0, (1.4)

for all x ∈ TN , k ≥ 1, and consider initial data with values in [−1, 1]. The solution of the
continuous equation (1.1) then takes values in [−1, 1] almost surely (see [9, Theorem 22]).
There is no loss in generality in considering that A is globally Lipschitz continuous then:

Lip(A) := sup
ξ∈R
|A′(ξ)| < +∞. (1.5)

In that framework, we will build a stable and convergent approximation to (1.1) by an
explicit-in-time Finite Volume method. Under (1.4), it is also natural to assume

G2(x, u) = ‖Φ(x, u)‖2H =
∑
k≥1

|gk(x, u)|2 ≤ D0, (1.6)

which is of course stronger than (1.2). In what follows, we will assume that (1.6) is
satisfied.
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Let us do some comments about our hypotheses. Consider the general framework where
the flux A is only locally Lipschitz continuous and the noise is not compactly supported.
In that situation, the Courant-Friedrichs-Lewy (CFL) condition depends effectively on
the L∞-norm of the numerical approximation (see Remark 4.2). We do not know how
to control this L∞-norm (for the continuous problem, only Lp-norms, with an arbitrary
finite p are controlled). This is why we require the flux A to be globally Lipschitz
continuous. We may actually assume solely (1.5), without considering that the noise is
compactly supported. However, if (1.4) is a reasonable assumption in our opinion, (1.5)
without much specification seems to us too stringent. It rules out the case of the Burgers
equation for example.

Numerical approximation. Let us give a very brief summary of the theory for (1.1)
and of its approximation by numerical methods. Different approximation schemes to
stochastically forced first-order conservation laws have already been analysed: time-
discrete schemes, [17, 1, 18], space-discrete scheme [20], and space-time Finite Volume
discrete schemes. For this latter kind of numerical approximation (space-time discrete
schemes), there already exists some results of convergence of the method in the literature
in various frameworks:

• in space dimension 1, with strongly monotone fluxes, [21],

• in space dimension N ≥ 1, by a flux-splitting scheme, [2],

• in space dimension N ≥ 1, for general schemes with monotone fluxes, [3].

The Cauchy or the Cauchy-Dirichlet problem associated to the continuous problem (1.1)
have been studied in [10, 19, 12, 32, 8, 6, 4, 5, 18].

The approximation of scalar conservation laws with stochastic flux has also been con-
sidered in [15] (time-discrete scheme) and [28] (space discrete scheme). For the corre-
sponding Cauchy Problem, see [23, 22, 24, 14, 13, 16].

The reference [3] gives a result very close to the convergence statement in Theorem 7.4.
In [3] the flux A, which may also depend on (t, x), is supposed to be globally Lipschitz
continuous. The noise is restricted to one mode (gk = 0 if k ≥ 2). The convergence
of the Finite Volume method with monotone fluxes is obtained under a CFL condition
of the type: time step ∆t = o(h), where h is the space step. In the present paper, we
are able to establish the convergence of the Finite Volume Method under the standard
CFL condition ∆t = O(h), thus relaxing the o(h) to a O(h), see Theorem 7.4. In our
opinion, this is the essential difference between our result and the one obtained in [3].
The fact that the flux may depend on (t, x), or the number of modes affected by the
noise are not decisive here. Let us give some additional comments on those two different
CFL conditions. First note that they can hardly be distinguished numerically: h and
h/| ln(| ln(h)|)| are quasi similar for very small values of h. However, the fact is that our
approach, which uses the kinetic formulation of the Finite Volume scheme, contrary to
[3], where an approach based on entropy characterization is used, is able to yield the
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expected convergence result under the standard CFL condition ∆t = O(h). Eventually,
a last methodological difference between this present paper and the paper [3] has to be
emphasized: in [3], Young measures and weak convergence with respect to the whole set
of variables (ω, t, x) are used. In the paper [9], which we use to establish our convergence
result, the weak mode of convergence with respect to ω ∈ Ω that is used is the usual
weak probabilistic mode, that is convergence in law.

Kinetic formulation. To prove the convergence of the Finite Volume method with
monotone fluxes, we will use the companion paper [9] and a kinetic formulation of
the Finite Volume scheme. The subject of [9] is the convergence of approximations to
(1.1) in the context of the kinetic formulation of scalar conservation laws. Such kinetic
formulations have been developed in [25, 26, 27, 29, 30]. In [27], a kinetic formulation
of Finite Volume E-schemes is given (and applied in particular to obtain sharp CFL
criteria). For Finite Volume schemes with monotone fluxes, the kinetic formulation is
simpler, we give it explicitly in Proposition 4.1. Based on the kinetic formulation and an
energy estimate, we derive some a priori bounds on the numerical approximation (these
are “weak BV estimates” in the terminology of [11, Lemma 25.2]), see Section 5. These
estimates are used in the proof of consistency of the scheme when we show that it gives
rise to an approximate solution to (1.1) in the sense of Definition 2.6. There is a difference
between the approach of [3] and our approach that we would like to emphasize here. The
use of the kinetic formulation and of the theory in [9] gives some flexibility insofar as
the sequence of approximate generalized solutions (see Definition 2.6) generated by the
numerical scheme may not be at equilibrium (here, we refer to Definition 2.4). We take
profit of this observation in particular in (4.27), when we build the interpolation fδ.
Compare to the interpolation [3, Section 5.1]. Let us also highlight the fact that we give
a proof of the “weak BV estimate” slightly different from the one in [11, Lemma 25.2],
since it is based solely on the kinetic formulation of the scheme. See Section 5.2.

Plan of the paper. The plan of the paper is the following one. In the preliminary
section 2, we give a brief summary of the notion of solution and approximate solution to
(1.1) developed in [9]. In Section 3, we describe the kind of approximation to (1.1) by
the Finite Volume method that we consider here. In Section 4 we establish the kinetic
formulation of the scheme. This numerical kinetic formulation is analysed as follows:
energy estimates are derived in Section 5, then we show in Section 6 that this gives rise
to an approximate generalized solution in the sense of Definition 2.6. We show some
additional estimates and then conclude to the convergence of the scheme in Section 7.
This result is stated in Theorem 7.4.

2 Generalized solutions, approximate solutions

The object of this section is to recall several results concerning the solutions to the
Cauchy Problem associated to (1.1) and their approximations. We give the main state-
ments, without much explanations or comments; those latter can be found in [9]: we
give the precise references when needed.
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2.1 Solutions

Definition 2.1 (Random measure). Let M+
b

(
TN × [0, T ]× R

)
be the set of bounded

Borel non-negative measures. If m is a map from Ω toM+
b

(
TN × [0, T ]× R

)
such that,

for each continuous and bounded function φ on TN × [0, T ] × R, 〈m,φ〉 is a random
variable, then we say that m is a random measure on TN × [0, T ]× R.

A random measure m is said to have a finite first moment if

Em(TN × [0, T ]× R) < +∞. (2.1)

Definition 2.2 (Solution). Let u0 ∈ L∞(TN ). An L1(TN )-valued stochastic process
(u(t))t∈[0,T ] is said to be a solution to (1.1) with initial datum u0 if u and f := 1u>ξ
have the following properties:

1. u ∈ L1
P(TN × [0, T ]× Ω),

2. for all ϕ ∈ C∞c (TN × R), almost surely, t 7→ 〈f(t), ϕ〉 is càdlàg,

3. for all p ∈ [1,+∞), there exists Cp ≥ 0 such that

E

(
sup
t∈[0,T ]

‖u(t)‖p
Lp(TN )

)
≤ Cp, (2.2)

4. there exists a random measure m with finite first moment (2.1), such that for all
ϕ ∈ C∞c (TN × R), for all t ∈ [0, T ],

〈f(t), ϕ〉 = 〈f0, ϕ〉+

∫ t

0
〈f(s), a(ξ) · ∇ϕ〉ds

+
∑
k≥1

∫ t

0

∫
TN

gk(x, u(x, s))ϕ(x, u(x, s))dxdβk(s)

+
1

2

∫ t

0

∫
TN

∂ξϕ(x, u(x, s))G2(x, u(x, s))dxds−m(∂ξϕ)([0, t]), (2.3)

a.s., where f0(x, ξ) = 1u0(x)>ξ, G2 :=
∑∞

k=1 |gk|2 and a(ξ) := A′(ξ).

In item 1, the index P in u ∈ L1
P(TN × [0, T ]× Ω) means that u is predictable. See [9,

Section 2.1.1]. The function denoted f := 1u>ξ is given more precisely by

(x, t, ξ) 7→ 1u(x,t)>ξ.

This is the characteristic function of the subgraph of u. To study the stability of so-
lutions, or the convergence of approximate solutions (these are two similar problems),
we have to consider the stability of this property, the fact of being the “ characteris-
tic function of the subgraph of a function”. If (un) is a sequence of functions, say on
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a finite measure space X, p ∈ (1,∞) and (un) is bounded in Lp(X), then there is a
subsequence still denoted (un) which converges to a function u in Lp(X)-weak. Up to a
subsequence, the sequence of equilibrium functions fn := 1un>ξ is converging to a func-
tion f in L∞(X × R)-weak star. The limit f is equal to f := 1u>ξ if, and only if, (un)
is converging strongly, see [9, Lemma 2.6]. When strong convergence remains a priori
unknown, the limit f still keeps some structural properties. This is a kinetic function in
the sense of Definition 2.4 below, [9, Corollary 2.5]. Our notion of generalized solution
is based on this notion.

2.2 Generalized solutions

Definition 2.3 (Young measure). Let (X,A, λ) be a finite measure space. Let P1(R)
denote the set of probability measures on R. We say that a map ν : X → P1(R) is a
Young measure on X if, for all φ ∈ Cb(R), the map z 7→ νz(φ) from X to R is measurable.
We say that a Young measure ν vanishes at infinity if, for every p ≥ 1,∫

X

∫
R
|ξ|pdνz(ξ)dλ(z) < +∞. (2.4)

Definition 2.4 (Kinetic function). Let (X,A, λ) be a finite measure space. A measur-
able function f : X × R → [0, 1] is said to be a kinetic function if there exists a Young
measure ν on X that vanishes at infinity such that, for λ-a.e. z ∈ X, for all ξ ∈ R,

f(z, ξ) = νz(ξ,+∞).

We say that f is an equilibrium if there exists a measurable function u : X → R such
that f(z, ξ) = f(z, ξ) = 1u(z)>ξ a.e., or, equivalently, νz = δξ=u(z) for a.e. z ∈ X.

Definition 2.5 (Generalized solution). Let f0 : TN × R → [0, 1] be a kinetic function.
An L∞(TN × R; [0, 1])-valued process (f(t))t∈[0,T ] is said to be a generalized solution
to (1.1) with initial datum f0 if f(t) and νt := −∂ξf(t) have the following properties:

1. for all t ∈ [0, T ], almost surely, f(t) is a kinetic function, and, for all R > 0,
f ∈ L1

P(TN × (0, T )× (−R,R)× Ω),

2. for all ϕ ∈ C∞c (TN × R), almost surely, the map t 7→ 〈f(t), ϕ〉 is càdlàg,

3. for all p ∈ [1,+∞), there exists Cp ≥ 0 such that

E

(
sup
t∈[0,T ]

∫
TN

∫
R
|ξ|pdνx,t(ξ)dx

)
≤ Cp, (2.5)
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4. there exists a random measure m with first moment (2.1), such that for all ϕ ∈
C∞c (TN × R), for all t ∈ [0, T ], almost surely,

〈f(t), ϕ〉 =〈f0, ϕ〉+

∫ t

0
〈f(s), a(ξ) · ∇xϕ〉ds

+

∫ t

0

∫
TN

∫
R
gk(x, ξ)ϕ(x, ξ)dνx,s(ξ)dxdβk(s)

+
1

2

∫ t

0

∫
TN

∫
R

G2(x, ξ)∂ξϕ(x, ξ)dνx,s(ξ)dxds−m(∂ξϕ)([0, t]). (2.6)

The following statement is Theorem 3.2. in [9]. Note that we use the following termi-
nology, what we call solution is a stochastic process u as in Definition 2.2. What we call
generalized solution is a stochastic process f as in Definition 2.5.

Theorem 2.1 (Uniqueness, Reduction). Let u0 ∈ L∞(TN ). Assume (1.2)-(1.3). Then
we have the following results:

1. there is at most one solution u with initial datum u0 to (1.1).

2. If f is a generalized solution to (1.1) with initial datum f0 at equilibrium: f0 =
1u0>ξ, then there exists a solution u to (1.1) with initial datum u0 such that
f(x, t, ξ) = 1u(x,t)>ξ a.s., for a.e. (x, t, ξ).

3. if u1, u2 are two solutions to (1.1) associated to the initial data u1,0, u2,0 ∈ L∞(TN )
respectively, then

E‖(u1(t)− u2(t))+‖L1(TN ) ≤ E‖(u1,0 − u2,0)+‖L1(TN ). (2.7)

This implies the L1-contraction property, and comparison principle for solutions.

2.3 Approximate solutions

In [9], we give a general method and sufficient conditions for the convergence of se-
quences of approximations of (1.1). The solutions of these approximate problems give
rise to approximate solutions and, more precisely, to approximate generalized solutions,
according to the following definition (see Definition 4.1 and Section 5 in [9]).

Definition 2.6 (Approximate generalized solutions). For each n ∈ N, let fn0 : TN×R→
[0, 1] be a kinetic function. Let

(
(fn(t))t∈[0,T ]

)
n∈N be a sequence of L∞(TN × R; [0, 1])-

valued processes. Assume that the functions fn(t), and the associated Young measures
νnt = −∂ξfn(t) are satisfying item 1, 2, 3, in Definition 2.5 and Equation (2.6) up to
an error term, i.e.: for each ϕ ∈ C∞c (TN × R), n ∈ N, there exists an adapted process
εn(t, ϕ), with t 7→ εn(t, ϕ) almost surely continuous. Furthermore, assume that the
sequence (εn(t, ϕ))n∈N satisfies

lim
n→+∞

sup
t∈[0,T ]

|εn(t, ϕ)| = 0 in probability, (2.8)
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and that there exists some random measures mn with first moment (2.1), such that, for
all n, for all ϕ ∈ C∞c (TN × R), for all t ∈ [0, T ], almost surely,

〈fn(t), ϕ〉 =εn(t, ϕ) + 〈fn0 , ϕ〉+

∫ t

0
〈fn(s), a(ξ) · ∇xϕ〉ds

+

∫ t

0

∫
TN

∫
R
gk(x, ξ)ϕ(x, ξ)dνnx,s(ξ)dxdβk(s)

+
1

2

∫ t

0

∫
TN

∫
R

G2(x, ξ)∂ξϕ(x, ξ)dνnx,s(ξ)dxds−mn(∂ξϕ)([0, t]). (2.9)

Then we say that (fn) is a sequence of approximate generalized solutions to (1.1) with
initial datum fn0 .

Consider a sequence (fn) of approximate solutions to (1.1) satisfying the following (mi-
nimal) bounds.

1. There exists Cp ≥ 0 independent of n such that νn := −∂ξfn satisfies

E

[
sup
t∈[0,T ]

∫
TN

∫
R
|ξ|pdνnx,t(ξ)dx

]
≤ Cp, (2.10)

2. the measures Emn satisfy the bound

sup
n

Emn(TN × [0, T ]× R) < +∞, (2.11)

and the following tightness condition: if Bc
R = {ξ ∈ R, |ξ| ≥ R}, then

lim
R→+∞

sup
n

Emn(TN × [0, T ]×Bc
R) = 0. (2.12)

We give in [9] the proof of the following convergence result, see Theorem 40 in [9].

Theorem 2.2 (Convergence). Suppose that there exists a sequence of approximate ge-
neralized solutions (fn) to (1.1) with initial datum fn0 satisfying (2.10), (2.11) and
the tightness condition (2.12) and such that (fn0 ) converges to the equilibrium function
f0(ξ) = 1u0>ξ in L∞(TN × R)-weak-*, where u0 ∈ L∞(TN ). Then

1. there exists a unique solution u ∈ L1(TN × [0, T ] × Ω) to (1.1) with initial datum
u0;

2. let

un(x, t) =

∫
R
ξdνnx,t(ξ) =

∫
R

(fn(x, t, ξ)− 10>ξ) dξ.

Then, for all p ∈ [1,∞[, (un) is converging to u with the following two different
modes of convergence: un → u in Lp(TN × (0, T ) × Ω) and almost surely, for all
t ∈ [0, T ], un(t)→ u(t) in Lp(TN ).
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In the next section, we define the numerical approximation to (1.1) by the Finite Volume
method. To prove the convergence of the method, we will show that the hypotheses of
Theorem 2.2 are satisfied. The most difficult part in this programme is to prove that
the numerical approximations generate a sequence of approximate generalized solutions,
see Section 6.

3 The finite volume scheme

Mesh. A mesh of TN is a family T# of disjoint connected open subsets K ∈ (0, 1)N

which form a partition of (0, 1)N up to a negligible set. We denote by T the mesh

{K + l; l ∈ ZN ,K ∈ T#}

deduced on RN . For all distinct K,L ∈ T , we assume that K ∩ L is contained in
an hyperplane; the interface between K and L is denoted K|L := K ∩ L. The set of
neighbours of K is

N (K) = {L ∈ T ;L 6= K, K|L 6= ∅} .

We use also the notation
∂K =

⋃
L∈N (K)

K|L.

In general, there should be no confusion between ∂K and the topological boundary
K \K.

K L
M

N

K|L

We also denote by |K| the N -dimensional Lebesgue Measure of K and by |∂K| (re-
spectively |K|L|) the (N − 1)-dimensional Haussdorff measure of ∂K (respectively of
K|L) (the (N − 1)-dimensional Haussdorff measure is normalized to coincide with the
(N − 1)-dimensional Lebesgue measure on hyperplanes).

Scheme Let (AK→L)K∈T ,L∈N (K) be a family of monotone, Lipschitz continuous nu-
merical fluxes, consistent with A. We assume that each function AK→L : R2 → R
satisfies the following properties.

• Monotonicity: AK→L(v, w) ≤ AK→L(v′, w) for all v, v′, w ∈ R with v ≤ v′ and
AK→L(v, w) ≥ AK→L(v, w′) for all v, w, w′ ∈ R with w ≤ w′.
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• Lipschitz regularity: there exists LA ≥ 0 such that

|AK→L(v, w)−AK→L(v′, w′)| ≤ |K|L|LA(|v − v′|+ |w − w′|), (3.1)

for all v, v′, w, w′ ∈ R.

• Consistency:

AK→L(v, v) =

∫
K|L

A(v) · nK,LdHN−1 = |K|L|A(v) · nK,L, (3.2)

for all v ∈ R, where nK,L is the outward unit normal to K on K|L.

• Conservative symmetry :

AK→L(v, w) = −AL→K(w, v), (3.3)

for all K,L ∈ T , v, w ∈ R.

The conservative symmetry property ensures that the numerical flux QnK→L defined
below in (3.6) satisfies QnK→L = −QnL→K for all K,L.

Let 0 = t0 < ... < tn < tn+1 < ... < tNT = T be a partition of the time interval [0, T ],
with NT ∈ N∗. Given two discrete times tn and tn+1, we define ∆tn = tn+1− tn for each
n ∈ {0, ..., NT − 1}. Knowing vnK , an approximation of the value of the solution u to
(1.1) in the cell K at time tn, we compute vn+1

K , the approximation to the value of u in
K at the next time step tn+1, by the formula

|K|(vn+1
K − vnK) + ∆tn

∑
L∈N (K)

QnK→L = |K|(∆tn)1/2gk,K(vnK)Xn+1
k , (3.4)

where QnK→L, gk,K and Xn+1
k are defined below in (3.6), (3.8) and (3.7). The initializa-

tion is given by the formula

v0
K =

1

|K|

∫
K
u0(x)dx, K ∈ T . (3.5)

In (3.4), ∆tnQ
n
K→L is the numerical flux at the interface K|L on the range of time

[tn, tn+1], where QnK→L is given by

QnK→L = AK→L(vnK , v
n
L). (3.6)

We have also defined

Xn+1
k =

βk(tn+1)− βk(tn)

(∆tn)1/2
. (3.7)

Then, the (Xn+1
k )k≥1,n∈N are independent random variables, normally distributed with

mean 0 and variance 1. Besides, for each n ≥ 1, the sequence (Xn+1
k )k≥1 is independent
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of Fn, the sigma-algebra generated by {Xm+1
k ; k ≥ 1,m < n}. The numerical functions

gk,K are defined by the average

gk,K(v) =
1

|K|

∫
K
gk(x, v)dx. (3.8)

Then, in virtue of (1.6) we have

G2
K(v) :=

∑
k≥1

|gk,K(v)|2 ≤ D0, (3.9)

where v ∈ R, K ∈ T . We deduce (3.9) from (1.6) and Jensen’s Inequality. Similarly, we
deduce from (1.3) and Jensen’s Inequality that∑

k≥1

|gk,K(ξ)− gk(y, ξ)|2 ≤ D1
1

|K|

∫
K
|x− y|2dx,

for all y ∈ TN . In particular, assuming diam(K) ≤ h (this figures in the hypotheses
(4.22), which we will assume next), we have the following consistency estimate∑

k≥1

|gk,K(ξ)− gk(x, ξ)|2 ≤ D1h
2, (3.10)

for all x ∈ K, which will be used later (see (6.40) for example).

Remark 3.1 (Approximation in law). In effective computations, the random variables
Xn+1
k are drawn at each time step. They are i.i.d. random variables with normalized

centred normal law N (0, 1). In this situation, we will prove the convergence in law of
the Finite Volume scheme to the solution of (1.1), see Remark 7.2 after Theorem 7.4.

Remark 3.2 (Global Lipschitz Numerical Flux). We assume in (3.1) that the numerical
fluxes AK→L are globally Lipschitz continuous. This is consistent with (1.5). Both
(3.1) and (1.5) are strong assumptions, except if a priori L∞-bounds are known on the
solutions to (1.1), which is the case here, due to the hypothesis of compact support (1.4).
Without loss of generality, we will assume that Lip(A) ≤ LA.

4 The kinetic formulation of the finite volume scheme

4.1 Discussion on the kinetic formulation of the finite volume scheme

The kinetic formulation of the Finite Volume method has been introduced by Makridakis
and Perthame in [27]. The principle is the following one. For linear transport equations,
which corresponds to a linear flux function A(u) = au, a ∈ RN , the upwind numerical
flux AK→L in (3.6) is given by

AK→L(v, w) = [a∗K→L]+v − [a∗K→L]−w, (4.1)
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where

a∗K→L :=

∫
K|L

a · nK|LdHN−1 = |K|L|a · nK,L,

with the usual notation v+ = max(v, 0), w− = (−w)+. The discrete approximation of
the kinetic version of the transport equation

∂tf(x, t, ξ) + a(ξ) · ∇xf(x, t, ξ) = 0

by the Finite Volume method is therefore

|K|(fn+1
K (ξ)− fnK(ξ)) + ∆tn

∑
L∈N (K)

anK→L(ξ) = 0, (4.2)

where
anK→L(ξ) = [a∗K→L(ξ)]+fnK(ξ)− [a∗K→L(ξ)]−fnL(ξ)

and

a∗K→L(ξ) :=

∫
K|L

a(ξ) · nK|LdHN−1 = |K|L|a(ξ) · nK,L. (4.3)

Recall that GK is defined by (3.9). One may think that a kinetic formulation of (3.4)
consistent with (4.2) should be, for instance, the following identity

|K|(fn+1
K (ξ)− fnK(ξ)) + ∆tn

∑
L∈N (K)

anK→L(ξ)

= |K|(∆tn)1/2δvnK=ξ gk,K(ξ)Xn+1
k + |K|∆tn∂ξ

(
mn
K(ξ)− 1

2
G2
K(ξ)δvnK=ξ

)
, (4.4)

where
fnK(ξ) := 1vnK>ξ. (4.5)

However, we do not know how to find a formulation (4.4)-(4.5) satisfying both the
constraint mn

K(ξ) ≥ 0 for all K ∈ T , n ∈ N, ξ ∈ R, and some satisfactory consistency
conditions for anK→L(ξ). The fact is that such a kinetic formulation as (4.4)-(4.5) is
not necessary to our purpose. Indeed, the kinetic formulation authorizes general kinetic
functions (Definition 2.4). It is not mandatory to work with sole equilibrium functions
as in (4.5). We will exploit this flexibility of the approach by kinetic formulation and
follow a procedure into three steps:

• Split the Finite Volume scheme into a step of deterministic evolution and a step
of stochastic evolution (Section 4.2),

• Associate a discrete kinetic formulation to the deterministic evolution (Section 4.3),

• Gather the deterministic evolution (in its kinetic form) and the stochastic evolution
to build an adequate discrete kinetic function (Section 4.4).

Once this is done, we explain in Section 4.5 to what extent the discrete kinetic function
build at the end of Section 4.4 does satisfy a satisfactory discrete kinetic formulation.
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4.2 Splitting

For K ∈ T and n ∈ N, let us define v
n+1/2
K as the solution to

|K|(vn+1/2
K − vnK) + ∆tn

∑
L∈N (K)

AK→L(vnK , v
n
L) = 0. (4.6)

Then v
n+1/2
K is the state reached after a step of deterministic evolution, by the discrete

approximation of the equation ut + div(A(u)) = 0.

4.3 Kinetic formulation of the deterministic evolution

We claim that, to (4.6) corresponds the kinetic formulation

|K|
(
f
n+1/2
K (ξ)− fnK(ξ)

)
+ ∆tn

∑
L∈N (K)

anK→L(ξ) = |K|∆tn ∂ξmn
K(ξ), (4.7)

where fmK(ξ) = 1vmK>ξ, m ∈ {n, n+ 1/2} and

mn
K ≥ 0. (4.8)

In (4.7), anK→L(ξ) is a function

anK→L(ξ) = aK→L(ξ, vnK , v
n
L), (4.9)

where (ξ, v, w) 7→ aK→L(ξ, v, w) satisfies the following consistency conditions:∫
R

[aK→L(ξ, v, w)− a∗K→L(ξ)10>ξ] dξ = AK→L(v, w), (4.10)

aK→L(ξ, v, v) = a∗K→L(ξ)1v>ξ, (4.11)

for all ξ, v, w ∈ R, where a∗K→L is defined by (4.3). Let us state and prove the existence
of the kinetic formulation (4.7)-(4.8)-(4.10)-(4.11).

Proposition 4.1 (Kinetic formulation of the Finite Volume method). Set

aK→L(ξ, v, w) = a∗K→L(ξ)1ξ<v∧w + [∂2AK→L(v, ξ)1v≤ξ≤w + ∂1AK→L(ξ, w)1w≤ξ≤v]
(4.12)

and

mn
K(ξ) = − 1

∆tn

[
(v
n+1/2
K − ξ)+ − (vnK − ξ)+

]
− 1

|K|
∑

L∈N (K)

∫ +∞

ξ
anK→L(ζ)dζ. (4.13)

Let us also assume that

∆tn
|∂K|
|K|

LA ≤ 1, ∀K ∈ T , (4.14)

for all n ∈ N, K ∈ T . Then the equations (4.7)-(4.8)-(4.10)-(4.11) are satisfied. Addi-
tionally, we have

aK→L(ξ, v, w) = 0, when ξ ≥ v ∨ w, (4.15)

for all K,L ∈ T .
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Remark 4.1 (Support of mn
K). By (4.13), the definition (4.12) of aK→L and the equation

(4.6), ξ 7→ mn
K(ξ) is compactly supported in the convex envelope of the points v

n+1/2
K ,

vnK , {vnL;L ∈ N (K)}.
Proof of Proposition 4.1. We check at once (4.7) and (4.10), (4.11), (4.15). To show
that mn

K(ξ) ≥ 0, let us introduce

ΦK→L(ξ, v, w) =

∫ +∞

ξ
aK→L(ζ, v, w)dζ (4.16)

Φn
K→L(ξ) = ΦK→L(ξ, vnK , v

n
L) =

∫ +∞

ξ
anK→L(ζ)dζ. (4.17)

A simple computation gives the formula

Φn
K→L(ξ) = AK→L(vnK , v

n
L)−AK→L(vnK ∧ ξ, vnL ∧ ξ). (4.18)

By comparison with the identity (v − ξ)+ = v − v ∧ ξ, the quantities Φn
K→L(ξ) appears,

in virtue of (4.18), as the numerical entropy fluxes associated to the entropy η(v) :=
(v − ξ)+. Then mn

K(ξ) ≥ 0 is equivalent to the discrete entropy inequality

1

∆tn

[
η(v

n+1/2
K )− η(vnK)

]
+

1

|K|
∑

L∈N (K)

Φn
K→L(ξ) ≤ 0. (4.19)

It is a classical fact that, under the CFL condition (4.14), the deterministic Finite

Volume scheme (4.6) has the following monotonicity property: v
n+1/2
K in (4.6) is a non-

decreasing function of each of the entries vnK , vnL, L ∈ N (K). This implies (4.19) then.
See Lemma 25.1 and Lemma 27.1 in [11].

Remark 4.2. Consider the general framework where the flux A is only locally Lipschitz
and the noise is not compactly supported. Then the constant LA in the CFL condition
(4.14) has to be replaced (up to a factor |K|L|) by the Lipschitz constant of the numerical
fluxes AK→L over the compact [mn

K ,M
n
K ], where

mn
K = min

L∈N (K)∪{K}
vnL, Mn

K = max
L∈N (K)∪{K}

vnL.

This puts a restriction on the time-step ∆tn, which is governed by the L∞-norm of the
numerical solution at time tn. The issue then, is that, in the stochastic context of (3.4),
no control on this L∞-norm is known. This is why we assume that the flux A is globally
Lipschitz, which, to repeat ourselves, is relevant if an a priori bound on the L∞-norm
of the solution to the continuous equation (1.1) is known. The condition of compact
support (1.4) provides this a priori bound.

4.4 Construction of the discrete kinetic unknown

For a fixed final time T > 0, we denote by dT the set of admissible space-step and time-
steps, defined as follows: if h > 0 and (∆t) = (∆t0, . . . ,∆tNT−1), NT ∈ N∗, then we say

15



that δ := (h, (∆t)) ∈ dT if

1

h
∈ N∗, tNT :=

NT−1∑
n=0

∆tn = T, sup
0≤n<NT

∆tn ≤ 1. (4.20)

We say that δ → 0 if
|δ| := h+ sup

0≤n<NT
∆tn → 0. (4.21)

For a given mesh parameter δ = (h, (∆t)) ∈ dT , we assume that a mesh T is given, with
the following properties:

diam(K) ≤ h, αNh
N ≤ |K|, |∂K| ≤ 1

αN
hN−1, (4.22)

for all K ∈ T , where
diam(K) = max

x,y∈K
|x− y|

is the diameter of K and αN is a given positive absolute constant depending on the
dimension N only. Note the following consequence of (4.22):

h|∂K| ≤ α−2
N |K|, (4.23)

for all K ∈ T . We introduce then the discrete unknown vδ(t) defined a.e. by

vδ(x, t) = vnK , x ∈ K, tn ≤ t < tn+1. (4.24)

We will also need the intermediary discrete function

v[δ(x, tn+1) = v
n+1/2
K , x ∈ K, (4.25)

defined for n ∈ N, and then the linear interpolation v]δ(x, t), corresponding to the stochas-
tic evolution, given by

v]δ(x, t) = v
n+1/2
K + gk,K(vnK)(βk(t)− βk(tn)), tn ≤ t < tn+1, x ∈ K. (4.26)

Indeed, v]K(t) := v]δ(x, t), x ∈ K is, for t ∈ [tn, tn+1), an interpolation between v
n+1/2
K

and vn+1
K . Eventually, for t ∈ [tn, tn+1), we define the discrete kinetic unknown fδ(t) by

the interpolation formula

fδ(x, t, ξ) =
t− tn
∆tn

1
v]δ(x,t)>ξ

+
tn+1 − t

∆tn
1vδ(x,t)>ξ, ξ ∈ R, x ∈ TN . (4.27)
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4.5 Discrete kinetic formulation

We state two results in this section. In Lemma 4.2 below, we compare fδ to the piecewise
constant equilibrium function fδ defined by

fδ(x, t, ξ) = fnK = 1vδ(x,t)>ξ, x ∈ K, t ∈ [tn, tn+1). (4.28)

Then, in Proposition 4.3, we give the discrete kinetic formulation satisfied by fδ.

Lemma 4.2. Let u0 ∈ L∞(TN ), T > 0. Assume that (1.3), (1.4), (1.6), (3.1), and
(4.29) are satisfied. For δ ∈ dT , assume (4.22). Let (vδ(t)) be the numerical unknown
defined by (3.4)-(3.5)-(4.24) and let fδ, fδ be defined by (4.27)-(4.28). Assume that the
CFL condition

∆tn ≤ (1− θ)
α2
N

2LA
h, 0 ≤ n < NT , (4.29)

where θ ∈ (0, 1), is satisfied. We have then

E
∫ T

0

∫
TN

[∫
R
|fδ(x, t, ξ)− fδ(x, t, ξ)|dξ

]2

dxdt

≤
[
θ−1‖vδ(0)‖2L2(TN ) +D0T (1 + θ−1)

] [
sup

0≤n<NT
∆tn

]
. (4.30)

To fδ we will associate the Young measure

νδx,t(ξ) := −∂ξfδ(x, t, ξ) =
t− tn
∆tn

δ(ξ = v]δ(x, t)) +
tn+1 − t

∆tn
δ(ξ = vδ(x, t)), (4.31)

We also denote by mδ the discrete random measure given by

dmδ(x, t, ξ) =

NT−1∑
n=0

∑
K∈T

1K×[tn,tn+1)(x, t)m
n
K(ξ) dxdtdξ. (4.32)

Proposition 4.3 (Discrete kinetic equation). Let u0 ∈ L∞(TN ), T > 0. Assume that
(1.3), (1.4), (1.6), (3.1) and (4.29) are satisfied. For δ ∈ dT , assume (4.22). Let (vδ(t))
be the numerical unknown defined by (3.4)-(3.5)-(4.24) and let fδ, ν

δ, mδ be defined
by (4.27), (4.31), (4.32) respectively. Then fδ satisfies the following discrete kinetic
formulation: for all t ∈ [tn, tn+1], x ∈ K, for all ψ ∈ C∞c (R),

〈fδ(x, t), ψ〉 − 〈fδ(x, tn), ψ〉

=− 1

|K|

∫ t

tn

∫
R

∑
L∈N (K)

anK→L(ξ)ψ(ξ)dξds−
∫ t

tn

∫
R
∂ξψ(ξ)mn

K(ξ)dξds

+
t− tn
∆tn

∫ t

tn

gk,K(vnK)ψ(v]δ(x, s))dβk(s) +
1

2

t− tn
∆tn

∫ t

tn

G2
K(vnK)∂ξψ(v]δ(x, s))ds. (4.33)
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In (4.33), 〈fδ(x, t), ψ〉 stands for the product∫
R
fδ(x, t, ξ)ψ(ξ)dξ.

The proof of Lemma 4.2 and Proposition 4.3 is reported to Section 6. Indeed, it uses
some estimates that are established in the following Section 5.

5 Energy estimates

The Finite Volume scheme (3.4) may be compared to the stochastic parabolic equation

duε(x, t) + div(A(uε(x, t)))dt− ε∆uε(x, t)dt = Φ(x, uε(x, t))dW (t). (5.1)

For (5.1), we have the energy estimate

1

2

d

dt
E‖uε(t)‖2L2(TN ) + εE‖∇uε(t)‖2L2(TN ) =

1

2
E‖G(·, uε(·, t))‖2L2(TN ). (5.2)

(Recall that G is defined by (1.2)). In the following Proposition 5.1, we obtain an
analogous result for the Finite Volume scheme (3.4). To state Proposition 5.1, we need
first some notations.

5.1 Notations

Let us define the conjugate function f̄ = 1 − f . We introduce the following conjugate
quantities:

āK→L(ξ, v, w) = a∗K→L(ξ)− aK→L(ξ, v, w), ΦK→L(ξ, v, w) =

∫ ξ

−∞
āK→L(ζ, v, w)dζ.

(5.3)
We compute

ΦK→L(ξ, v, w) = AK→L(ξ, ξ)−AK→L(v ∧ ξ, w ∧ ξ). (5.4)

We recognize in (5.4) a numerical flux associated to the entropy

v 7→ (v − ξ)− = ξ − v ∧ ξ.

From the explicit formula (4.12), we obtain the identity

āK→L(ξ, v, w) = a∗K→L(ξ)1ξ>v∨w + (a∗K→L(ξ)− ∂2AK→L(v, ξ))1v≤ξ≤w

+ (a∗K→L(ξ)− ∂1AK→L(ξ, w))1w≤ξ≤v. (5.5)

Note that, for aK→L defined by (4.12), we have (using the fact that Lip(A) ≤ LA),

sup{|aK→L(ξ, v, w)|; ξ, v, w ∈ R} ≤ LA|K|L|. (5.6)
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Formula (5.5) gives the estimate

sup{|āK→L(ξ, v, w)|; ξ, v, w ∈ R} ≤ 2LA|K|L|, (5.7)

which is not optimal as (5.6) may be, since it has an additional factor 2. Consequently,
we will use a slightly different formulation for ΦK→L:

ΦK→L(ξ, v, w) =

∫ ξ

−∞
b̄K→L(ζ, ξ, v, w)dζ, (5.8)

where

b̄K→L(ζ, ξ, v, w) := a∗K→L(ξ)1ξ>v∨w + ∂1AK→L(ζ, ξ)1v≤ξ≤w + ∂2AK→L(ξ, ζ)1w≤ξ≤v.
(5.9)

We also introduce
b̄nK→L(ζ, ξ) = b̄K→L(ζ, ξ, vnK , v

n
L). (5.10)

Now for b̄K→L, we have an estimate similar to (5.6):

sup{|b̄K→L(ξ, v, w)|; ξ, ζ, v, w ∈ R} ≤ LA|K|L|. (5.11)

5.2 Energy estimate and controls by the dissipation

Proposition 5.1 (Energy estimate for the Finite Volume Scheme). Let u0 ∈ L∞(T),
T > 0 and δ ∈ dT . Let (vδ(t)) be the numerical unknown defined by (3.4)-(3.5)-(4.24).
Set

E(T ) =

NT−1∑
n=0

∆tn
∑
K∈T#

|K|
∫
R
mn
K(ξ)dξ. (5.12)

Then, under the CFL condition (4.14), we have the energy estimate

1

2
E‖vδ(T )‖2L2(TN ) + EE(T ) =

1

2
‖vδ(0)‖2L2(TN ) +

1

2
E
NT−1∑
n=0

∆tn
∑
K∈T#

|K|
∑
k≥1

|gk,K(vnK)|2.

(5.13)

In the following proposition we derive various estimates, where the right-hand side is
controlled by the dissipation term E(T ) introduced in (5.12).

Proposition 5.2 (Control by the dissipation). Let u0 ∈ L∞(TN ), T > 0 and δ ∈ dT .
Let (vδ(t)) be the numerical unknown defined by (3.4)-(3.5)-(4.24). Let v[δ be defined by
(4.25). Then, under the CFL condition

2∆tn
|∂K|
|K|

sup
ξ∈R

|anK→L(ξ)|
|K|L|

≤ (1− θ), 0 ≤ n < N, K,L ∈ T , (5.14)

19



where θ ∈ (0, 1), we have the following control:

NT−1∑
n=0

∆tn
∑
K∈T#

∑
L∈N (K)

∫
R

(f̄nL − f̄nK)Φn
K→L(ξ)dξ

≤2

θ

NT−1∑
n=0

∆tn
∑
K∈T#

|K|
∫
R
f̄nK(ξ)mn

K(ξ)dξ, (5.15)

and

NT−1∑
n=0

∥∥∥[v[δ(tn+1)− vδ(tn)
]
+

∥∥∥2

L2(TN )
≤ 2

θ

NT−1∑
n=0

∆tn
∑
K∈T#

|K|
∫
R
f̄nK(ξ)mn

K(ξ)dξ. (5.16)

Under the CFL condition

2∆tn
|∂K|
|K|

sup
ξ∈R

|b̄nK→L(ξ, ξ)|
|K|L|

≤ (1− θ), 0 ≤ n < N, K,L ∈ T , (5.17)

where θ ∈ (0, 1), (and where b̄nK→L is defined by (5.10)) we have the following control:

NT−1∑
n=0

∆tn
∑
K∈T#

∑
L∈N (K)

∫
R

(fnL − fnK)Φ
n
K→L(ξ)dξ

≤2

θ

NT−1∑
n=0

∆tn
∑
K∈T#

|K|
∫
R
fnK(ξ)mn

K(ξ)dξ, (5.18)

and

NT−1∑
n=0

∥∥∥[v[δ(tn+1)− vδ(tn)
]
−

∥∥∥2

L2(TN )
≤ 2

θ

NT−1∑
n=0

∆tn
∑
K∈T#

|K|
∫
R
fnK(ξ)mn

K(ξ)dξ. (5.19)

Eventually, as a corollary to Proposition 5.2, we obtain the following estimates.

Corollary 5.3 (Weak derivative estimates). Let u0 ∈ L∞(TN ), T > 0 and δ ∈ dT . As-
sume that (1.4), (1.6), (3.1), (4.22) and (4.29) are satisfied. Let (vδ(t)) be the numerical
unknown defined by (3.4)-(3.5)-(4.24). Let v[δ be defined by (4.25). Then we have the
spatial estimate

E
NT−1∑
n=0

∆tn
∑
K∈T#

∑
L∈N (K)

∫
R

[
(f̄nL − f̄nK)Φn

K→L(ξ) + (fnL − fnK)Φ
n
K→L(ξ)

]
dξ

≤ 1

θ
‖vδ(0)‖2L2(TN ) +

D0T

θ
, (5.20)
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and the two following temporal estimates:

E
NT−1∑
n=0

∥∥∥v[δ(tn+1)− vδ(tn)
∥∥∥2

L2(TN )
≤ 1

θ
‖vδ(0)‖2L2(TN ) +

D0T

θ
, (5.21)

and

E
NT−1∑
n=0

‖vδ(tn+1)− vδ(tn)‖2L2(TN ) ≤
1

θ
‖vδ(0)‖2L2(TN ) +

2D0T

θ
. (5.22)

5.3 Proof of Proposition 5.1, Proposition 5.2, Corollary 5.3

Proof of Proposition 5.1. We multiply first (4.7) by ξ and sum the result over K ∈ T#

and ξ ∈ R to get the following balance equation

1

2
‖v[δ(tn+1)‖2L2(TN ) + ∆tn

∑
K∈T#

|K|
∫
R
mn
K(ξ)dξ =

1

2
‖vδ(tn)‖2L2(TN ). (5.23)

We have used Remark 4.1 to justify the integration by parts in the term with the measure
mn
K . The term ∑

K∈T#

∑
L∈N (K)

anK→L(ξ) (5.24)

related to the flux term in (4.7) has vanished. Indeed, (5.24) is equal to

1

2

∑
K∈T#

∑
L∈N (K)

anK→L(ξ) + anL→K(ξ) (5.25)

by relabelling of the indexes of summation. All the arguments in (5.25) cancel individ-
ually in virtue of the conservative symmetry property (3.3) of AK→L(v, w). Indeed, one
can check that aK→L inherits this property, i.e.

aK→L(ξ, v, w) = −aL→K(ξ, w, v), K, L ∈ T , v, w ∈ R, (5.26)

owing to the explicit formula (4.12). To obtain the equation for the balance of energy
corresponding to the stochastic forcing, we use the equation

vn+1
K = v

n+1/2
K + (∆tn)1/2gk,K(vnK)Xn+1

k , (5.27)

which follows from the equation of the scheme (3.4) and the definition of v
n+1/2
K by

(4.6). Taking the square of both sides of (5.27) and using the independence of Xn+1
k

and v
n+1/2
K , we obtain the identity

1

2
E‖vδ(tn+1)‖2L2(TN ) =

1

2
E‖v[δ(tn+1)‖2L2(TN ) +

∆tn
2

E
∑
K∈T#

|K|
∑
k≥1

|gk,K(vnK)|2. (5.28)

Adding (5.23) to (5.28) gives (5.13).
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Remark 5.1. Note that (5.27) also gives

1

2
E‖vδ(tn+1)− v[δ(tn+1)‖2L2(TN ) =

∆tn
2

E
∑
K∈T#

|K|
∑
k≥1

|gk,K(vnK)|2, (5.29)

for all 0 ≤ n ≤ NT .

Proof of Proposition 5.2. We begin with the proof of the estimates (5.15) and (5.16).
Multiplying Equation (4.7) by f̄nK := 1− fnK , we obtain

|K|f̄nK(ξ)f
n+1/2
K (ξ) + ∆tnf̄

n
K(ξ)

∑
L∈N (K)

anK→L(ξ) = |K|∆tn f̄nK(ξ)∂ξm
n
K(ξ). (5.30)

Next, we multiply (5.30) by (ξ − vnK) and sum the result over ξ, K. We use the first
identity∫

R
(ξ − vnK)f̄nK(ξ)∂ξm

n
K(ξ)dξ =

∫
R

(ξ − vnK)+∂ξm
n
K(ξ)dξ = −

∫
R
f̄nK(ξ)mn

K(ξ)dξ, (5.31)

(once again, we use the fact that mn
K is compactly supported to do the integration by

parts in (5.31), cf. Remark 4.1) and the second identity∫
R

(ξ − vnK)f̄nK(ξ)f
n+1/2
K (ξ)dξ =

1

2
(v
n+1/2
K − vnK)2

+,

to obtain

1

2

∥∥∥[v[δ(tn+1)− vδ(tn)
]
+

∥∥∥2

L2(TN )
+ ∆tn

∑
K∈T#

|K|
∫
R
f̄nK(ξ)mn

K(ξ)dξ

= −∆tn
∑
K∈T#

∑
L∈N (K)

∫
R

(ξ − vnK)+a
n
K→L(ξ)dξ. (5.32)

We transform the right-hand side of (5.32) by integration by parts in ξ: this gives, by
(4.16)-(4.17), the term

−∆tn
∑
K∈T#

∑
L∈N (K)

∫
R
f̄nK(ξ)Φn

K→L(ξ)dξ. (5.33)

Then we can relabel the indices in (5.33) and use the conservative symmetry relation
(consequence of (5.26))

ΦK→L(ξ, v, w) = −ΦL→K(ξ, w, v), (5.34)

to see that

1

2

∥∥∥[v[δ(tn+1)− vδ(tn)
]
+

∥∥∥2

L2(TN )
+ ∆tn

∑
K∈T#

|K|
∫
R
f̄nK(ξ)mn

K(ξ)dξ

=
1

2
∆tn

∑
K∈T#

∑
L∈N (K)

∫
R

(f̄nL(ξ)− f̄nK(ξ))Φn
K→L(ξ)dξ. (5.35)
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Note that the integrand (f̄nL(ξ)− f̄nK(ξ))Φn
K→L(ξ) is non-negative, due to the monotoni-

city properties of AK→L and (4.18). At this stage, in order to deduce (5.15) from (5.35),
we have to prove that, under the CFL condition (5.14), a fraction of the right-hand side
of (5.35) controls the term

1

2

∥∥∥[v[δ(tn+1)− vδ(tn)
]
+

∥∥∥2

L2(T)
,

(see the estimate (5.40) below). To this end, we integrate Equation (5.30) over ξ ∈ R.
This gives

|K|
[
v
n+1/2
K − vnK

]
+

+ ∆tn
∑

L∈N (K)

∫
R
f̄nK(ξ)anK→L(ξ)dξ ≤ 0, (5.36)

which reads also

|K|
[
v
n+1/2
K − vnK

]
+
≤ −∆tn

∑
L∈N (K)

Φn
K→L(vnK)

by (4.17) (note that it is also the discrete entropy inequality (4.19) with ξ = vnK). Taking
the square, using the Cauchy-Schwarz Inequality and summing over K ∈ T#, we deduce
that∥∥∥[v[δ(tn+1)− vδ(tn)

]
+

∥∥∥2

L2(TN )
≤ ∆tn

∑
K∈T#

∆tn
|∂K|
|K|

∑
L∈N (K)

|Φn
K→L(vnK)|2

|K|L|
. (5.37)

Next, we note that |Φn
K→L(vnK)|2 is non-trivial only if vnK < vnL. In that case, it can be

decomposed as

|Φn
K→L(vnK)|2 = −2

∫ vnL

vnK

Φn
K→L(ξ)∂ξΦ

n
K→L(ξ)dξ = 2

∫ vnL

vnK

Φn
K→L(ξ)anK→L(ξ)dξ, (5.38)

which is bounded by

2 sup
ξ∈R
|anK→L(ξ)|

∫ vnL

vnK

|Φn
K→L(ξ)|dξ = 2 sup

ξ∈R
|anK→L(ξ)|

∫
R

(f̄nL − f̄nK)Φn
K→L(ξ)dξ. (5.39)

Under the CFL condition (5.14), the estimate (5.37) can be completed into

1

2

∥∥∥[v[δ(tn+1)− vδ(tn)
]
+

∥∥∥2

L2(TN )

≤ (1− θ)1

2
∆tn

∑
K∈T#

∑
L∈N (K)

∫
R

(f̄nL(ξ)− f̄nK(ξ))Φn
K→L(ξ)dξ. (5.40)

Using (5.35) then, we deduce the two estimates (5.15)-(5.16).
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To prove the estimates (5.18) and (5.19), we proceed similarly: we start from the fol-
lowing equation on f̄nK , which is equivalent to (4.7):

|K|(f̄n+1/2
K (ξ)− f̄nK(ξ)) + ∆tn

∑
L∈N (K)

ānK→L(ξ) = −|K|∆tn ∂ξmn
K(ξ). (5.41)

Then we multiply Eq. (5.41) by fnK , to obtain

|K|fnK f̄
n+1/2
K (ξ) + ∆tn

∑
L∈N (K)

fnK ā
n
K→L(ξ) = −|K|∆tn fnK∂ξmn

K(ξ), (5.42)

which is the analogue to (5.30). In a first step, we multiply (5.42) by (vnK − ξ) and sum
the result over ξ ∈ R, K ∈ T#. This gives (compare to (5.32)-(5.35))

1

2

∥∥∥[v[δ(tn+1)− vδ(tn)
]
−

∥∥∥2

L2(TN )
+ ∆tn

∑
K∈T#

|K|
∫
R
fnK(ξ)mn

K(ξ)dξ

=−∆tn
∑
K∈T#

∑
L∈N (K)

fnKΦ
n
K→L(ξ)

=
1

2
∆tn

∑
K∈T#

∑
L∈N (K)

(fnL − fnK)Φ
n
K→L(ξ). (5.43)

To conclude to (5.18)-(5.19) under the CFL condition (5.17), we proceed as in (5.36)-
(5.40) above, with the minor difference that, instead of the identity ∂ξΦ

n
K→L(ξ) =

ānK→L(ξ), we use the formula ∂ξΦ
n
K→L(ξ) = b̄nK→L(ξ, ξ) (see (5.10)) when we develop

|Φn
K→L(vnK)|2.

Remark 5.2. A slight modification of the lines (5.38)-(5.39) in the proof above shows
that

|Φn
K→L(ξ ∨ vnK)|2 ≤ 2 sup

ξ∈R
|anK→L(ξ)|

∫
R

(f̄nL − f̄nK)Φn
K→L(ξ)dξ, (5.44)

for all ξ ∈ R. This estimate will be used in the proof of Lemma 6.2 below.

Proof of Corollary 5.3. Assume that (4.29) is satisfied. It is clear, in virtue of the
estimate (4.23) and the bound (5.6) and (5.11) on anK→L and b̄nK→L, that (4.29) implies
the CFL conditions (5.14) and (5.17). Besides, due to (3.9), we have the bound∑

K∈T#

|K|
∑
k≥1

|gk,K(vnK)|2 ≤ D0. (5.45)

This gives
NT−1∑
n=0

∆tn
∑
K∈T#

|K|
∑
k≥1

|gk,K(vnK)|2 ≤ D0T,
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which, inserted in the energy estimate (5.13), shows that

EE(T ) ≤ 1

2
‖vδ(0)‖2L2(TN ) +

1

2
D0T.

By addition of the estimates (5.15)-(5.18) and (5.16)-(5.19) respectively, we obtain there-
fore (5.20) and (5.21). There remains to prove (5.22). For that purpose, we use (5.29)
and (5.45) to obtain

E‖vδ(tn+1)− v[δ(tn+1)‖2L2(TN ) = E‖vδ(tn+1)‖2L2(TN ) − E‖v[δ(tn+1)‖2L2(TN ) ≤ D0∆tn.

(5.46)
Summing (5.46) over 0 ≤ n < NT and using (5.21) yields (5.22).

6 Approximate kinetic equation

Recall that fδ is defined by (4.27). We will show in this section that fδ generates a
sequence of approximate solutions: see Proposition 6.1. First, we will use the results of
Section 5 to give the proofs of Lemma 4.2 and Proposition 4.3.

6.1 Proof of Lemma 4.2

Since

fδ(t)− fδ(t) =
t− tn
∆tn

(1
v]δ(t)>ξ

− 1vδ(t)>ξ),

for t ∈ [tn, tn+1) and since the factor t−tn
∆tn

is less than 1, the quantity we want to estimate

is bounded by the following L2-norm:

E
∫ T

0

∫
TN

∣∣∣∣∫
R
|fδ(x, t, ξ)− fδ(x, t, ξ)|dξ

∣∣∣∣2 dxdt ≤ E
∫ T

0
‖v]δ(t)− vδ(t)‖

2
L2(TN )dt. (6.1)

By definition of v]δ(t) and independence and (3.9), we obtain

E
∫ T

0

∫
TN

∣∣∣∣∫
R
|fδ(x, t, ξ)− fδ(x, t, ξ)|dξ

∣∣∣∣2 dxdt ≤ D0

NT−1∑
n=0

∫ tn+1

tn

|t− tn|dt

+ E
NT−1∑
n=0

∆tn

∥∥∥v[δ(tn+1)− vδ(tn)
∥∥∥2

L2(TN )
.

Using the temporal estimate (5.21), we deduce (4.30).

Remark 6.1. Note for a future use (cf. (6.38)) that we have just proved the estimate

E
∫ T

0
‖v]δ(t)− vδ(t)‖

2
L2(TN )dt ≤

[
θ−1‖vδ(0)‖2L2(TN ) +D0T (1 + θ−1)

] [
sup

0≤n<NT
∆tn

]
.

(6.2)
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6.2 Proof of Proposition 4.3

Let Ψ be a primitive function of the function ψ and let x ∈ K, t ∈ [tn, tn+1). By
definition of fδ, see Equation (4.27), we have

〈fδ(x, t), ψ〉 − 〈fδ(x, tn), ψ〉 =
t− tn
∆tn

[
Ψ(v](x, t))−Ψ(vδ(x, t))

]
,

which we decompose as the sum of two terms:

t− tn
∆tn

[
Ψ(v](x, t))−Ψ(v[(x, tn+1))

]
, (6.3)

and
t− tn
∆tn

[
Ψ(v[(x, tn+1))−Ψ(vδ(x, t))

]
. (6.4)

We use first the deterministic kinetic formulation (4.7), which we multiply by ψ(ξ). By
integration over ξ ∈ R, it gives

(6.4) = − 1

|K|

∫ t

tn

∫
R

∑
L∈N (K)

anK→L(ξ)ψ(ξ)dξds−
∫ t

tn

∫
R
∂ξψ(ξ)mn

K(ξ)dξds. (6.5)

By Itō’s Formula on the other hand (cf. (4.26)), the term (6.3) is equal to

t− tn
∆tn

∫ t

tn

gk,K(vnK)ψ(v]δ(x, s))dβk(s) +
1

2

t− tn
∆tn

∫ t

tn

G2
K(vnK)∂ξψ(v]δ(x, s))ds. (6.6)

Summing (6.5) and (6.6), we obtain (4.33).

6.3 Approximate kinetic equation

We will prove now that the Finite Volume scheme (3.4) is consistent with (1.1). Indeed,
we will show, using the estimates obtained in Section 5, that an approximate kinetic
equation for fδ in the sense of (2.9) can be deduced from the discrete kinetic formulation
(4.33).

Proposition 6.1 (Approximate kinetic equation). Let u0 ∈ L∞(TN ), T > 0. Assume
that (1.3), (1.4), (1.6), (3.1) and (4.29) are satisfied. For δ ∈ dT , assume (4.22). Let
(vδ(t)) be the numerical unknown defined by (3.4)-(3.5)-(4.24) and let fδ, ν

δ, mδ be
defined by (4.27), (4.31), (4.32) respectively. If (δm) is a sequence in dT which tends to
zero according to (4.21), then (fδm) is a sequence of approximate generalized solutions to
(1.1). Besides, (fδm(0)) converges to the equilibrium function f0 = 1u0>ξ in L∞(TN×R)-
weak-*.

Proof of Proposition 6.1. The last assertion is clear: (fδm(0)) converges to the
equilibrium function f0 = 1u0>ξ in L∞(TN ×R)-weak-* since, by (3.5), vδm(0)→ u0 a.e.
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on TN . We will show that, for all t ∈ [0, T ], for all ϕ ∈ C∞c (TN × R),

〈fδ(t), ϕ〉 =〈fδ(0), ϕ〉 −
∫∫∫

TN×[0,t]×R
∂ξϕ(x, ξ)dmδ(x, s, ξ) + εδ(t, ϕ)

+

∫ t

0
〈fδ(s), a(ξ)∇xϕ〉ds (6.7)

+

∫ t

0

∫
TN

∫
R
gk(x, ξ)ϕ(x, ξ)dνδx,s(ξ)dxdβk(s) (6.8)

+
1

2

∫ t

0

∫
TN

∫
R

G2(x, ξ)∂ξϕ(x, ξ)dνδx,s(ξ)dxds, (6.9)

where the error term εδ(t, ϕ) satisfies

lim
δ→0

E

[
sup
t∈[0,T ]

|εδ(t, ϕ)|2
]

= 0, (6.10)

for all ϕ ∈ C∞c (TN × R). Note that the convergence in probability (2.8) follows from
(6.10). Given ϕ ∈ C∞c (TN × R), we introduce the averages over the cells K ∈ T

ϕK(ξ) =
1

|K|

∫
|K|

ϕ(x, ξ)dx, ξ ∈ R. (6.11)

To prove (6.9), we apply the discrete kinetic equation (4.33) to ξ 7→ ϕ(x, ξ) for a fixed
x ∈ K. Then we sum the result over x ∈ TN . By the telescopic formula

〈fδ(x, t), ϕ〉 − 〈fδ(x, 0), ϕ〉 =

NT−1∑
n=0

〈fδ(x, t ∧ tn+1), ϕ〉 − 〈fδ(x, t ∧ tn), ϕ〉,

we obtain

〈fδ(t), ϕ〉 =〈fδ(x, 0), ϕ〉 −
∫∫∫

TN×[0,t]×R
∂ξϕ(ξ)dmδ(x, s, ξ)

−
NT−1∑
n=0

∑
K∈T#

∫ t∧tn+1

t∧tn

∫
R

∑
L∈N (K)

anK→L(ξ)ϕK(ξ)dsdξ (6.12)

+

∫ t

0

∫
TN

∫
R×R

gk,δ(x, ξ)ϕ(x, ζ)dµδx,s,t(ξ, ζ)dβk(s) (6.13)

+
1

2

∫ t

0

∫
TN

∫
R×R

G2
δ(x, ξ)∂ξϕ(x, ζ)dµδx,s,t(ξ, ζ)ds, (6.14)

where the measure µδx,s,t on R× R is defined by

〈µδx,s,t, ψ〉 =

NT−1∑
n=0

t ∧ tn+1 − t ∧ tn
∆tn

1[tn,tn+1)(s)ψ(vδ(x, s), v
]
δ(x, s)), ψ ∈ Cb(R2),

(6.15)
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and the discrete coefficient gk,δ(x, ξ) is equal to gk,K(ξ) (cf. (3.8)) when x ∈ K (si-
milarly, Gδ(x, ξ) := GK(ξ), x ∈ K). Note that µδx,s,t is simply the Dirac mass at

(vδ(x, s), v
]
δ(x, s)), except when tl ≤ s ≤ t (where l is the index such that tl ≤ t < tl+1),

in which case it is the same Dirac mass, with an additional multiplicative factor t−tl
∆tl

.

The term (6.12) is a discrete space derivative: we will show that it is an approximation of
the term (6.7). The two terms (6.13) and (6.14) are close to (6.8) and (6.9) respectively.
We analyse those terms separately (see Section 6.3.1, Section 6.3.2). The conclusion of
the proof of Proposition 6.1 is given in Section 6.3.3.

6.3.1 Space consistency

Lemma 6.2. Let u0 ∈ L∞(TN ), T > 0 and δ ∈ dT . Assume that (1.4), (1.6), (3.1),
(4.22) and (4.29) are satisfied. Then, for all ϕ ∈ C∞c (TN × R), we have∫

TN

∫ t

0

∫
R
a(ξ) · ∇xϕfδ(s)dxdsdξ

=−
NT−1∑
n=0

∑
K∈T#

∫ t∧tn+1

t∧tn

∫
R

∑
L∈N (K)

anK→L(ξ)ϕK(ξ)dξ + εδspace,0(t, ϕ) + εδspace,1(t, ϕ),

(6.16)

for all t ∈ [0, T ], with the estimates

E sup
t∈[0,T ]

|εδspace,0(t, ϕ)|2

≤ T |LA|2‖∇xϕ‖2L∞x,ξ

[
1

θ
‖vδ(0)‖2L2(TN ) +D0T

(
1 +

1

θ

)]
sup

0≤n<NT
∆tn, (6.17)

and, for all compact Λ ⊂ R, for all ϕ ∈ C∞c (TN × R) supported in TN × Λ,

E sup
t∈[0,T ]

|εδspace,1(t, ϕ)|2 ≤ 16LAT

α2
N

|Λ|2‖∂ξ∇xϕ‖2L∞x,ξ

[
1

θ
‖vδ(0)‖2L2(TN ) +

2D0T

θ

]
h. (6.18)

Proof of Lemma 6.2. To begin with, we replace fδ by fδ in the left-hand side of
(6.16). This accounts for the first error term

εδspace,0(t, ϕ) =

∫
TN

∫ t

0

∫
R
a(ξ) · ∇xϕ(fδ(s)− fδ(s))dxdsdξ.

By Lemma 4.2, we have the estimate (6.17) for εδspace,0(t, ϕ). Then, we use the following
development:∫

TN

∫ t

0

∫
R
a(ξ) · ∇xϕfδ(s))dxdsdξ

=

NT−1∑
n=0

∫ t∧tn+1

t∧tn

∫
R

∑
K∈N (K)

∫
K
a(ξ) · ∇xϕfδ(s)dxdsdξ, (6.19)
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Since fδ(s) has a constant value fnK in K×[tn, tn+1), we obtain, using the Stokes formula,∫
TN

∫ t

0

∫
R
a(ξ) · ∇xϕfδ(s)dxdsdξ

=

NT−1∑
n=0

∫ t∧tn+1

t∧tn

∫
R

∑
K∈N (K)

∑
L∈N (K)

a∗K→L(ξ)ϕK|Lf
n
Kdsdξ, (6.20)

where a∗K→L(ξ) is defined by (4.3) and ϕK|L is the mean-value of ϕ over K|L:

ϕK|L(ξ) =
1

|K|L|

∫
K|L

ϕ(x, ξ)dHN−1(x).

We add a corrective term to (6.20) to obtain∫
TN

∫ t

0

∫
R
a(ξ) · ∇xϕfδ(s)dxdsdξ

=

NT−1∑
n=0

∫ t∧tn+1

t∧tn

∫
R

∑
K∈N (K)

∑
L∈N (K)

a∗K→L(ξ)(ϕK|L − ϕK)fnKdsdξ. (6.21)

Equation (6.21) follows indeed from (6.20) by the anti-symmetry property (5.26) of
aK→L. Note that Equation (6.21) is more natural than Equation (6.20) (when one
has in mind the decomposition of a volume integral over each cell K), by use of the
correspondence

a(ξ) · ∇xϕ '
∑

L∈N (K)

a∗K→L(ξ)(ϕK|L − ϕK) in K.

By (5.26), the discrete convective term in (6.12) is

NT−1∑
n=0

∑
K∈T#

∫ t∧tn+1

t∧tn

∫
R

∑
L∈N (K)

anK→L(ξ)(ϕK|L − ϕK)dsdξ. (6.22)

To estimate how close is the right-hand side of (6.21) to (6.22), we have to compare
anK→L(ξ) and a∗K→L(ξ)fnK(ξ). Let γ ∈W 1,1(Rξ). If vnK ≤ vnL, then∫

R
γ(ξ) [a∗K→L(ξ)fnK(ξ)− anK→L(ξ)] dξ = −

∫
R
γ(ξ)f̄nK(ξ)anK→L(ξ)dξ (6.23)

by the consistency hypothesis (4.11) and the support condition (4.15). Using an inte-
gration by parts and (4.16), we obtain∫

R
γ(ξ) [a∗K→L(ξ)fnK(ξ)− anK→L(ξ)] dξ =

∫
R
γ′(ξ)Φn

K→L(ξ ∨ vnK)dξ. (6.24)
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Similarly, if vnL ≤ vnK , then∫
R
γ(ξ) [a∗K→L(ξ)fnK(ξ)− anK→L(ξ)] dξ = −

∫
R
γ′(ξ)Φ

n
K→L(ξ ∧ vnK)dξ. (6.25)

We deduce that (6.16) is satisfied with an error term

εδspace,1(t, ϕ) :=

∫
TN

∫ t

0

∫
R
a(ξ) · ∇xϕ fδ(s)dxdsdξ

+

NT−1∑
n=0

∑
K∈T#

∫ t∧tn+1

t∧tn

∫
R

∑
L∈N (K)

anK→L(ξ)ϕK(ξ)dξ, (6.26)

which is bounded as follows:

|εδspace,1(t, ϕ)| ≤
NT−1∑
n=0

∫ t∧tn+1

t∧tn

∑
K∈T#

∫
R

∑
L∈N (K)

|∂ξϕK|L − ∂ξϕK |

×
[
1vnK≤v

n
L
|Φn
K→L(ξ ∨ vnK)|+ 1vnL<v

n
K
|Φn
K→L(ξ ∧ vnK)|

]
dξ,

(6.27)

By (4.22), we have

|∂ξϕK|L(ξ)− ∂ξϕK(ξ)| ≤ ‖∂ξ∇xϕ(·, ξ)‖L∞x h,

for all ξ ∈ R. If ϕ is compactly supported in TN × Λ, we obtain thus the bound

|εδspace,1(t, ϕ)| ≤ ‖∂ξ∇xϕ‖L∞x,ξ |Λ|Bspace h, (6.28)

where Bspace is equal to

NT−1∑
n=0

∆tn
∑
K∈T#

∑
L∈N (K)

[
1vnK≤v

n
L

sup
ξ∈R
|Φn
K→L(ξ ∨ vnK)|+ 1vnL<v

n
K

sup
ξ∈R
|Φn
K→L(ξ ∧ vnK)|

]
.

We seek for a bound of order h−1/2 on Bspace. For notational convenience we will estimate
only the first part

B1
space :=

NT−1∑
n=0

∆tn
∑
K∈T#

∑
L∈N (K)

1vnK≤v
n
L

sup
ξ∈R
|Φn
K→L(ξ ∨ vnK)|,

since the bound on the second part in Bspace will be similar. By the Cauchy Schwarz
inequality, we have

E|B1
space|2 ≤

NT−1∑
n=0

∆tn
∑
K∈T#

|∂K|

× E
NT−1∑
n=0

∆tn
∑
K∈T#

∑
L∈N (K)

1vnK≤v
n
L

|K|L|
sup
ξ∈R
|Φn
K→L(ξ ∨ vnK)|2.
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We use the estimate (5.44), which gives

|Φn
K→L(ξ ∨ vnK)|2 ≤ 2LA|K|L|

∫
R

(f̄nL − f̄nK)Φn
K→L(ξ)dξ,

due to (5.6). We also use (4.23), and get

E|B1
space|2 ≤

2LAT

α2
Nh

E
NT−1∑
n=0

∆tn
∑
K∈T#

∑
L∈N (K)

∫
R

(f̄nL − f̄nK)Φn
K→L(ξ)dξ.

With (5.20) and (6.28), we conclude with (6.18).

6.3.2 Stochastic terms

Lemma 6.3. Let u0 ∈ L∞(TN ), T > 0 and δ ∈ dT . Assume that (1.4), (1.6), (3.1) and
(4.29) are satisfied. Then, for all ϕ ∈ C∞c (TN × R), we have∫ t

0

∫
TN

∫
R×R

gk,δ(x, ξ)ϕ(x, ζ)dµδx,s,t(ξ, ζ)dβk(s)

=

∫ t

0

∫
TN

∫
R
gk(x, ξ)ϕ(x, ξ)dνδx,s(ξ)dxdβk(s) + εδW,1(t, ϕ) + εδW,2(t, ϕ), (6.29)

and ∫ t

0

∫
TN

∫
R×R

G2
δ(x, ξ)∂ξϕ(x, ζ)dµδx,s,t(ξ, ζ)ds

=

∫ t

0

∫
TN

∫
R

G2(x, ξ)∂ξϕ(x, ξ)dνδx,s(ξ)dxds+ εδW,3(t, ϕ) + εδW,4(t, ϕ), (6.30)

where

E

[
sup
t∈[0,T ]

|εδW,1(t, ϕ)|2
]
≤4D1T‖ϕ‖2L∞x,ξh

2 + 2D0‖ϕ‖2L∞x,ξ

[
sup

0≤n<NT
∆tn

]
, (6.31)

E

[
sup
t∈[0,T ]

|εδW,3(t, ϕ)|2
]
≤4D1T‖∂ξϕ‖2L∞x,ξh

2 + 2D0‖∂ξϕ‖2L∞x,ξ

[
sup

0≤n<NT
∆tn

]
, (6.32)

and

E

[
sup
t∈[0,T ]

|εδW,2(t, ϕ)|2
]
≤2D0‖ϕ‖2L∞x,ξ

[
sup

0≤n<NT
∆tn

]
+ 8

{
D1‖ϕ‖2L∞x,v +D0‖∂ξϕ‖2L∞x,ξ

}
×
[

1

θ
‖vδ(0)‖2L2(T) +

3D0T

θ

][
sup

0≤n<NT
∆tn

]1/2

. (6.33)

Eventually, εδW,4(t, ϕ) satisfies the same estimate as εδW,2(t, ϕ) with ∂ξϕ instead of ϕ in
the right-hand side of (6.33).
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Proof of Lemma 6.3. Define

εδW,1(t, ϕ) =

∫ t

0

∫
TN

∫
R×R

[gk,δ(x, ξ)− gk(x, ξ)]ϕ(x, ζ)dµδx,s,t(ξ, ζ)dxdβk(s),

and let εδW,2(t, ϕ) be equal to∫ t

0

∫
TN

[∫
R×R

gk(x, ξ)ϕ(x, ζ)dµδx,s,t(ξ, ζ)−
∫
R
gk(x, ξ)ϕ(x, ξ)dνδx,s(ξ)

]
dxdβk(s).

Then (6.29) is satisfied. Note that n 7→ εδW,1(tn, ϕ) is a (Ftn)-martingale. By Doob’s

Inequality, Jensen’s Inequality (note that µδx,s,t(R× R) ≤ 1) and (3.10), we deduce

E

[
sup

0≤n<NT
|εδW,1(tn, ϕ)|2

]

≤4E
∫ tNT

0

∣∣∣∣∫
TN

∫
R×R

[gk,δ(x, ξ)− gk(x, ξ)]ϕ(x, ζ)dµδx,s,tNT
(ξ, ζ)

∣∣∣∣2 dxds
≤4E

∫ tNT

0

∫
TN

∫
R×R
|gk,δ(x, ξ)− gk(x, ξ)|2 dµδx,s,t(ξ, ζ)dxds‖ϕ‖2L∞x,ξ

≤4D1T‖ϕ‖2L∞x,ξh
2.

Besides, we see, using Itō’s Isometry, and (1.2), (3.9), that

E

[
sup

t∈[tn,tn+1)
|εδW,1(t, ϕ)− εδW,1(tn, ϕ)|2

]

≤E
∫ tn+1

tn

∣∣∣∣∫
TN

∫
R×R

[gk,δ(x, vδ(s, x))− gk(x, vδ(s, x))]ϕ(x, v]δ(s, x))

∣∣∣∣2 dxds
≤2D0‖ϕ‖2L∞x,ξ

[
sup

0≤n<NT
∆tn

]
.

Similarly, we have

E

[
sup
t∈[0,T ]

|εδW,2(t, ϕ)|2
]
≤ 2D0‖ϕ‖2L∞x,ξ

[
sup

0≤n<NT
∆tn

]
+ E

[
sup

0≤n<NT
|εδW,2(tn, ϕ)|2

]
.

Using Doob’s Inequality, we obtain

E

[
sup
t∈[0,T ]

|εδW,2(t, ϕ)|2
]
≤ 2D0‖ϕ‖2L∞x,ξ

[
sup

0≤n<NT
∆tn

]
+ 4E|εδW,2(tNT , ϕ)|2.

By Itō’s Formula, E|εδW,2(tNT , ϕ)|2 is bounded from above by

E
∫ tNT

0

∫
TN

∑
k≥1

∣∣∣∣∫
R×R

gk(x, ξ)ϕ(x, ζ)dµδx,s,tNT
(ξ, ζ)−

∫
R
gk(x, ξ)ϕ(x, ξ)dνδx,s(ξ)

∣∣∣∣2 dxds.
(6.34)
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We have, for t ∈ [0, T ), t ∈ [tn, tn+1), n < NT , and ψ ∈ Cb(R× R),

〈µδx,t,tNT , ψ〉 =〈νx,t ⊗ νx,t, ψ〉 −
t− tn
∆tn

[
ψ(v]δ(x, t), v

]
δ(x, t))− ψ(vδ(x, t), v

]
δ(x, t))

]
− tn+1 − t

∆tn

[
ψ(vδ(x, t), vδ(x, t))− ψ(vδ(x, t), v

]
δ(x, t))

]
.

We estimate therefore (6.34) by the two terms

2E
∑

0≤n<NT

∫ tn+1

tn

∫
TN

∑
k≥1

∣∣∣gk(x, v]δ(x, t))− gk(x, vδ(x, t))∣∣∣2 |ϕ(x, ξ)|2dxdt, (6.35)

and

2E
∑

0≤n<NT

∫ tn+1

tn

∫
TN

∑
k≥1

∣∣∣ϕ(x, v]δ(x, t))− ϕ(x, vδ(x, t))
∣∣∣2 |gk(x, vδ(x, t))|2dxdt. (6.36)

Note that (1.3) gives, for all η > 0, and v, v ∈ R,∑
k≥1

|gk(x, v)− gk(x, v)|2 ≤ D1|v − v| ≤ D1

(
η +

1

η
|v − v|2

)
. (6.37)

In virtue of (6.37), we can bound (6.35) by

2D1‖ϕ‖2L∞x,v

[
η +

1

η
E
∫ T

0
‖v]δ(t)− vδ(t)‖

2
L2(TN )2dt

]
.

Using (6.2) and taking η =
[
sup0≤n<NT ∆tn

]1/2
, we deduce that (6.35) is bounded by

2D1‖ϕ‖2L∞x,ξ

[
1

θ
‖vδ(0)‖2L2(TN ) +

3D0T

θ

][
sup

0≤n<NT
∆tn

]1/2

. (6.38)

An estimate on (6.36) is obtained as follows: (6.36) is bounded by

2D0‖∂ξϕ‖2L∞x,ξE
∫ T

0
‖v]δ(t)− vδ(t)‖

2
L2(TN )2dt.

Using (6.2) gives an estimate on (6.36) from above by

2D0‖∂ξϕ‖2L∞x,ξ

[
1

θ
‖vδ(0)‖2L2(TN ) +

3D0T

θ

][
sup

0≤n<NT
∆tn

]
. (6.39)

Next, we denote by εδW,3(t, ϕ) and εδW,4(t, ϕ) the error terms∫ t

0

∫
TN

∫
R×R

[
G2
k,δ(x, ξ)−G2

k(x, ξ)
]
∂ξϕ(x, ζ)dµδx,s,t(ξ, ζ)dxds,∫ t

0

∫
TN

[∫
R×R

G2
k(x, ξ)∂ξϕ(x, ζ)dµδx,s,t(ξ, ζ)−

∫
R

G2
k(x, ξ)∂ξϕ(x, ξ)dνδx,s(ξ)

]
dxds.
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We have, for x ∈ K, η > 0,

|G2
k,δ(x, ξ)−G2

k(x, ξ)| =

∣∣∣∣∣∣
∑
k≥1

(gk,K(ξ)− gk(x, ξ))(gk,K(ξ) + gk(x, ξ))

∣∣∣∣∣∣
≤ 1

2η

∑
k≥1

|gk,K(ξ)− gk(x, ξ)|2 + η
∑
k≥1

|gk,K(ξ)|2 + |gk(x, ξ)|2.

Using (3.10), (1.2) and (3.9) and taking η = h, we see that

|G2
k,δ(x, ξ)−G2

k(x, ξ)| ≤ (D0 +D1)h. (6.40)

This is sufficient to obtain (6.32) and the last statement of the lemma (estimate on
εδW,4(t, ϕ)).

6.3.3 Conclusion

To conclude, let us set

εδ(ϕ) =
4∑
j=1

εδW,j(t, ϕ)− εδspace,0(t, ϕ)− εδspace,1(t, ϕ).

Then the approximate kinetic equation (6.9) follows from the discrete kinetic equation
(6.14) and from the consistency estimates (6.16)-(6.29)-(6.30). Since ‖vδ(0)‖L2(TN ) ≤
‖u0‖L2(TN ) (the projection (3.5) onto piecewise-constant functions is an orthogonal pro-

jection in L2(TN )), it follows from the error estimates (6.17), (6.18), (6.31), (6.32), (6.33)
and from the CFL condition (4.29) that

E

[
sup
t∈[0,T ]

|εδ(t, ϕ)|2
]
≤ C(ϕ)|δ|1/2,

where C(ϕ) is a constant that depends on ‖u0‖L2(TN ), on D0, D1, LA, on the parameter θ

in (4.29), on T , on |Λ|, where Λ is the support of ϕ, and on the norms ‖∂jixi∂kξϕ‖L∞(TN×R)

with ji + k ≤ 2.

7 Convergence

To apply Theorem 2.2 on the basis of Proposition 6.1, we need to establish some ad-
ditional estimates on the numerical Young measure νδ and on the numerical random
measure mδ. This is done in Section 7.1. We conclude to the convergence of the Finite
Volume method in Section 7, Theorem 7.4.
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7.1 Additional estimates

7.1.1 Tightness of (νδ)

Lemma 7.1 (Tightness of (νδ)). Let u0 ∈ L∞(TN ), T > 0 and δ ∈ dT . Assume that
(1.4), (1.6), (3.1) and (4.29) are satisfied. Let (vδ(t)) be the numerical unknown defined
by (3.4)-(3.5)-(4.24) and let νδ be defined by (4.31). Let p ∈ [1,+∞). We have

E

(
sup
t∈[0,T ]

∫
TN

∫
R

(1 + |ξ|p)dνδx,t(ξ)dx

)
≤ Cp, (7.1)

where Cp is a constant depending on D0, p, T and ‖u0‖L∞(TN ) only.

Proof of Lemma 7.1. It is sufficient to do the proof for p ∈ 2N∗ since 1 + |ξ|p ≤
2(1 + |ξ|q) for all ξ ∈ R if q ≥ p. Note that∫

TN

∫
R
|ξ|pdνδx,t(ξ)dx =

t− tn
∆tn

‖v]δ(t)‖
p
Lp(TN )

+
tn+1 − t

∆tn
‖vδ(t)‖pLp(TN )

,

for t ∈ [tn, tn+1). Recall also that v]δ is defined by (4.26). Let

ϕp(ξ) = pξp−1 = ∂ξξ
p ξ ∈ R.

We multiply Equation (4.7) by ϕp(ξ) and sum the result over K, ξ. We obtain then,
using (5.26),

‖v[δ(tn+1)‖p
Lp(TN )

+ p(p− 1)∆tn
∑
K∈T#

|K|
∫
R
ξp−2mn

K(ξ)dξ = ‖vδ(tn)‖p
Lp(TN )

. (7.2)

In particular, we have the Lp estimate

‖v[δ(tn+1)‖p
Lp(TN )

≤ ‖vδ(tn)‖p
Lp(TN )

. (7.3)

Let us now estimate the increase of Lp-norm due to the stochastic evolution. By Itō’s
Formula and (4.26), we have

|vn+1
K |p

= |vn+1/2
K |p + p

∫ tn+1

tn

v]K(t)p−1gk,K(vnK)dβk(t) +
1

2
p(p− 1)

∫ tn+1

tn

v]K(t)p−2G2
K(vnK)dt,

and thus

‖vδ(tn+1)‖p
Lp(TN )

= ‖v[δ(tn+1)‖p
Lp(TN )

+ p

∫ tn+1

tn

〈v]δ(t)
p−1, γnk 〉L2(TN )dβk(t)

+
1

2
p(p− 1)

∫ tn+1

tn

〈v]δ(t)
p−2,Γn〉L2(TN )dt, (7.4)
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where
γnk (x) = gk,K(vnK), Γn(x) = G2

K(vnK), x ∈ K.

Using (7.3) and induction, we obtain

‖vδ(T )‖p
Lp(TN )

≤ ‖vδ(0)‖p
Lp(TN )

+MNT +BNT , (7.5)

where (MN ) is the martingale

MN = p
N−1∑
n=0

∫ tn+1

tn

〈v]δ(t)
p−1, γnk 〉L2(TN )dβk(t)

and

BN =
1

2
p(p− 1)

N−1∑
n=0

∫ tn+1

tn

〈v]δ(t)
p−2,Γn〉L2(TN )dt. (7.6)

Note that the argument 〈v]δ(t)
p−2,Γn〉L2(TN ) in BN is non-negative since Γn ≥ 0 and

p− 2 ∈ 2N. Consequently, E sup0≤n≤NT Bn = EBNT and we deduce the following bound

E sup
0≤n≤NT

Bn ≤
1

2
p(p− 1)D0

NT−1∑
n=0

∫ tn+1

tn

E‖v]δ(t)‖
p−2
Lp−2(TN )

dt. (7.7)

We have used (3.9) to obtain (7.7). If p = 2, then E‖v]δ(t)‖
p−2
Lp−2(TN )

= 1 and is therefore

bounded. To estimate E‖v]δ(t)‖
p−2
Lp−2(TN )

when p ≥ 4, note that v]δ(t) = v[δ(tn+1) + znδ (t)

for t ∈ (tn, tn+1), where znδ (x, t) := γnk (x)(βk(t) − βk(tn)) is, conditionally to Fn, a
Gaussian random variable with variance, for x ∈ K,

E
[
|znK(t)|2|Fn

]
= (t− tn)G2

K(vnK) ≤ D0∆tn

by (3.9). In particular, we have the bound

E‖znδ (t)‖p−2
Lp−2(TN )

=
∑
K∈T#

|K|E
(
E
[
|znK(t)|p−2|Fn

])
= C(p)

∑
K∈T#

|K|E
(
E
[
|znK(t)|2|Fn

])(p−2)/2 ≤ C(p)(D0∆tn)(p−2)/2,

where C(p) is a constant depending on p. It follows, using (7.3), that we have the
estimate

E‖v]δ(t)‖
p−2
Lp−2(TN )

≤ C(p,D0)
(

1 + E‖v[δ(tn+1)‖p−2
Lp−2(TN )

)
≤ C(p,D0)

(
1 + E‖vδ(tn)‖p−2

Lp−2(TN )

)
,

where C(p,D0) is a constant depending on p and D0. In particular, we have

sup
0≤n<NT

sup
t∈(tn,tn+1)

E‖v]δ(t)‖
p−2
Lp−2(TN )

≤ C(p,D0)

(
1 + sup

0≤n<NT
E‖vδ(tn)‖p−2

Lp−2(TN )

)
. (7.8)
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By (7.7), we conclude that

E sup
0≤n≤NT

Bn ≤ C(p,D0)T

(
1 + sup

0≤n<NT
E‖vδ(tn)‖p−2

Lp−2(TN )

)
, (7.9)

for possibly a different constant C(p,D0). Let us now turn to the estimate of the quantity
E sup0≤n≤NT |Mn|. The martingale (MN ) can be rewritten as a stochastic integral (with
an integrand which is a simple function). Consequently, the quadratic variation of MNT

is

〈MNT 〉 = p2
NT−1∑
n=0

∫ tn+1

tn

∑
k

|〈|v]δ(t)|
p−1, γnk 〉L2(TN )|2dt

≤ p2
NT−1∑
n=0

∫ tn+1

tn

∑
k

‖|v]δ(t)|
p−1‖2L2(TN )‖γ

n
k ‖2L2(TN )dt

= p2
NT−1∑
n=0

∫ tn+1

tn

‖v]δ(t)‖
2(p−1)

L2(p−1)(TN )
‖Γn‖L1(TN )dt

≤ p2D0

NT−1∑
n=0

∫ tn+1

tn

‖v]δ(t)‖
2(p−1)

L2(p−1)(TN )
dt,

by (3.9). Using (7.8) (with 2p instead of p) gives thus

E〈MNT 〉 ≤ p
2D0TC(2p,D0)

(
1 + sup

0≤n<NT
E‖vδ(tn)‖2p−2

L2p−2(TN )

)
. (7.10)

By Burkholder - Davis - Gundy’s Inequality, there exists a constant CBDG such that

E sup
0≤n≤NT

|Mn| ≤ CBDGE〈MNT 〉
1/2.

By Jensen’s Inequality and the estimate (7.10), we obtain

E sup
0≤n≤NT

|Mn| ≤ CBDG(E〈MNT 〉)
1/2

≤ CBDGp(D0TC(2p,D0))1/2

(
1 + sup

0≤n<NT
E‖vδ(tn)‖2p−2

L2p−2(TN )

)1/2

.

(7.11)

We can conclude now. Since EMNT = 0, taking expectation in (7.5) (where we replace
NT by n) gives

E‖vδ(tn)‖p
Lp(TN )

≤ ‖vδ(0)‖p
Lp(TN )

+ EBn.

Note (see Section 6.3.3) that

‖vδ(0)‖Lp(TN ) ≤ ‖u0‖Lp(TN ) ≤ ‖u0‖L∞(TN ).
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By (7.9), this gives

sup
0≤n<NT

E‖vδ(tn)‖p
Lp(TN )

≤ ‖u0‖pL∞(TN )
+ C(p,D0)T

(
1 + sup

0≤n<NT
E‖vδ(tn)‖p−2

Lp−2(TN )

)
.

By iteration on p ∈ 2N∗, we deduce, for every such p, that

sup
0≤n<NT

E‖vδ(tn)‖p
Lp(TN )

≤ Cp, (7.12)

where the constant Cp depends on p, D0, T and ‖u0‖L∞(TN ). Denote generally by Cp
any such constant, possibly different from line to line, depending only on p, D0, T and
‖u0‖L∞(TN ). By (7.12) with 2p− 2 instead of p, we have E sup0≤n≤NT |Mn| ≤ Cp. Then
we use (7.9) with p−2 instead of p to obtain E sup0≤n≤NT Bn ≤ Cp. By (7.5), we deduce

E sup
0≤n<NT

‖vδ(tn)‖p
Lp(TN )

≤ Cp, (7.13)

which concludes the proof of the lemma.

Remark 7.1. Summing over n and taking expectation in (7.4) gives the estimate

E
∑

0≤n<NT

‖vδ(tn+1)‖p
Lp(TN )

− ‖v[δ(tn+1)‖p
Lp(TN )

= EBNT .

A corollary of (7.9) and (7.12) is the bound

E
∑

0≤n<NT

‖vδ(tn+1)‖p
Lp(TN )

− ‖v[δ(tn+1)‖p
Lp(TN )

≤ Cp, (7.14)

where Cp is a constant depending on D0, p, T and ‖u0‖L∞(TN ) only

7.1.2 Tightness of (mδ)

Lemma 7.2 (Tightness of (mδ)). Let u0 ∈ L∞(TN ), T > 0 and δ ∈ dT . Assume that
(1.4), (1.6), (3.1) and (4.29) are satisfied. Let (vδ(t)) be the numerical unknown defined
by (3.4)-(3.5)-(4.24) and let mδ be defined by (4.32). Then, for all p ≥ 1, we have

E
∫∫∫

TN×[0,T )×R
(1 + |ξ|p)dmδ(x, t, ξ) ≤ Cp, (7.15)

where Cp is a constant depending on D0, p, T and ‖u0‖L∞(TN ) only.

Proof of Lemma 7.2. Let p ∈ 2N∗. By (7.2), we have

1

2
p(p− 1)E

∑
0≤n<NT

∆tn
∑
K∈T#

|K|
∫
R
ξp−2mn

K(ξ)dξ

= E
∑

0≤n<NT

‖vδ(tn)‖p
Lp(TN )

− ‖v[δ(tn+1)‖p
Lp(TN )

.
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This gives

1

2
p(p− 1)E

∫∫∫
TN×[0,T )×R

ξp−2dmδ(x, t, ξ) ≤ E‖vδ(0)‖p
Lp(TN )

+ E
∑

0≤n<NT−1

‖vδ(tn+1)‖p
Lp(TN )

− ‖v[δ(tn+1)‖p
Lp(TN )

.

The bound (7.14) gives the desired conclusion.

7.2 Convergence

We may now apply the theorem 2.2, to obtain the following results.

Theorem 7.3. Let u0 ∈ L∞(TN ), T > 0. Assume that the hypotheses (1.3), (1.4),
(1.6), are satisfied. Then there exists a unique solution u to (1.1) with initial datum
u0, in the sense of Definition 2.2. Besides, for all 1 ≤ p < +∞, almost surely, u ∈
C([0, T ];Lp(TN )).

Theorem 7.4. Let u0 ∈ L∞(TN ), T > 0. Assume that the hypotheses (1.3), (1.4),
(1.6), (3.1), (4.22) and (4.29) are satisfied. Let u be the solution to (1.1) with initial
datum u0 and let vδ be the solution to the Finite Volume scheme (3.4)-(3.5)-(3.6)-(3.7).
Then we have the convergence

lim
δ→0

E‖vδ − u‖pLp(TN×(0,T ))
= 0, (7.16)

for all p ∈ [1,∞).

Remark 7.2. If the Xn+1
k are merely i.i.d. random variables with normalized centred

normal law N (0, 1), then (vδ) is converging to u in Lp(TN × (0, T )) in law when δ → 0.
Indeed, the identity (3.7) is only satisfied in law now, hence vδ has the same law as
the function ṽδ defined by (3.4)-(3.5)-(3.6), with Xn+1

k replaced by the right-hand side
of (3.7). We apply the conclusion of Theorem 7.4 to ṽδ. As a corollary, we obtain
the convergence in law of (ṽδ) to u in Lp(TN × (0, T )). A slightly different manner of
expressing the same thing is to notice that, when the discrete increments (Xn+1

k ) are

some given normal law N (0, 1), then we can construct a set of Brownian motions β̃k(t)
such that

Xn+1
k =

β̃k(tn+1)− β̃k(tn)

(∆tn)1/2
. (7.17)

Indeed, without loss of generality, we can restrict ourselves to the case ∆tn = 1 in (7.17)
and use the Lévy-Ciesielski construction of the Brownian motion, [31, Section 3.2] on
[0, 1] as follows: we define (cf. [31, Formula (3.1)] )

G0 = Xn+1
k , G1 = Xn+1

1 , . . . , Gk−1 = Xn+1
k−1 , Gk = Xn+1

k+1 , Gk+1 = Xn+1
k+2 , . . .

and we set

β̃(t) =
∞∑
p=0

Gp〈1[0,t], Hp〉,
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where the Hp’s are the Haar basis of L2(0, 1). Then (7.17) follows from the fact that∫ 1

0
Hp(t)dt = 〈Hp, H0〉 = δp0.

Remark 7.3. Theorem 7.3 has already been proved in [8] (see also Section 5 in [9])
under less restrictive hypotheses (having a compactly supported noise is unnecessary).
We give the statement together with Theorem 7.4, however, to emphasize the fact that
the convergence of the Finite Volume method, in the framework which we use, give
both the existence-uniqueness of the solution to the limit continuous problem, and the
convergence of the numerical method to this solution. It is not necessary to provide the
existence of the solution u to (1.1) by an external means.

Proof of Theorem 7.3 and Theorem 7.4. Let us first prove the theorem 7.4. We take
the existence of u, solution to (1.1) with initial datum u0 for granted. By Proposition 6.1,
Lemma 7.1 and Lemma 7.2, we may apply Theorem 2.2 to fδ: we obtain (7.16) with zδ
instead of vδ, where

zδ(x, t) :=

∫
R
ξdνδx,t(ξ) =

t− tn
∆tn

v]δ(x, t) +
tn+1 − t

∆tn
vδ(x, t),

for t ∈ [tn, tn+1]. By (6.2), we have the estimate

E
∫ T

0
‖zδ − vδ‖2L2(TN )dt = O(|δ|)

on the difference between zδ and vδ. This gives (7.16) for p ≤ 2. If p > 2, we use the
inequality

E‖vδ − u‖pLp(TN×(0,T ))
≤ ‖vδ − u‖L2(Ω×TN×(0,T ))‖vδ − u‖

p−1

L2(p−1)(Ω×TN×(0,T ))

≤ 1

η
E‖vδ − u‖2L2(TN×(0,T )) + ηE‖vδ − u‖

2(p−1)

L2(p−1)(TN×(0,T ))
, (7.18)

where η is a positive parameter. Due to the uniform bounds (2.2)-(7.13), we can choose η
independent on δ to have the second term in (7.18) smaller than an arbitrary threshold.
By the convergence result for p = 2 the first term in (7.18) is then also small for δ close
to 0. This concludes the proof of theorem 7.4. To prove 7.3, we just need to construct
an approximation scheme satisfying (3.1), (4.22) and (4.29) and to compute vδ by (3.4)-
(3.5)-(3.6)-(3.7). We can use a cartesian grid for this purpose: let hm = 1

m , where
m ∈ N∗. Let T# be the set of open hypercubes of length hm obtained by translates of
the original hypercube (0, hm)N by vectors hmx, x having components in {0, l . . . ,m−1}.
Then (4.22) is satisfied with αN = 2−N since a hypercube has 2N sides. We can choose
the Godunov numerical fluxes, defined as follows:

AK→L(v, w) =

|K|L| min
v≤ξ≤w

A(ξ) · nK,L if v ≤ w,

|K|L| max
w≤ξ≤v

A(ξ) · nK,L if w ≤ v.
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These fluxes AK→L are monotone (non-increasing in the first variable, non-increasing
in the second variable). They satisfy the hypotheses of regularity, consistency (3.1) and
(3.2) respectively with LA = Lip(A). The conservative symmetry property (3.3) is also
satisfied. At last, to ensure (4.29), we just need to take a uniform time step ∆t like

∆t =
1

2

α2
N

2LA
hm.

We have then (4.29) with θ = 1
2 . At this stage, Proposition 6.1 provides a sequence

of approximate generalized solutions (fm). by the uniform bounds established in Sec-
tion 7.1, we can apply Theorem 2.2: this gives the existence of a unique solution u
to (1.1) with initial datum u0. By Corollary 3.3 in [9], we have u ∈ C([0, T ];Lp(TN ))
almost surely.
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