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Abstract

Wedevelop a general framework for the analysis of approximations to stochastic
scalar conservation laws. Our aim is to prove, under minimal consistency properties
and bounds, that such approximations are converging to the solution to a stochastic
scalar conservation law. The weak probabilistic convergence mode is convergence
in law, the most natural in this context. We use also a kinetic formulation and
martingale methods. Our result is applied to the convergence of the finite volume
method in the companion paper (Dotti and Vovelle in Convergence of the finite
volume method for scalar conservation laws with multiplicative noise: an approach
by kinetic formulation, 2016).
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1. Introduction

Let (�,F ,P, (Ft ), (βk(t))) be a stochastic basis and let T > 0. Consider the
first-order scalar conservation law with stochastic forcing

du(x, t) + div(A(u(x, t))) dt = �(x, u(x, t)) dW (t), x ∈ T
N , t ∈ (0, T ).

(1.1)

Equation (1.1) is periodic in the space variable: x ∈ T
N where T

N is the N -
dimensional torus. The flux function A in (1.1) is supposed to be of class C2:
A ∈ C2(R;RN ). We assume that A and its derivatives have at most polynomial
growth. The right-hand side of (1.1) is a stochastic increment in infinite dimension,
and defined as follows (see [12] for the general theory): W is a cylindrical Wiener
process, W = ∑

k�1 βkek , where the coefficients βk are independent Brownian
processes and (ek)k�1 is a complete orthonormal system in a Hilbert space H . For

each x ∈ T
N , u ∈ R, �(x, u) ∈ L2(H,R) is defined by �(x, u)ek = gk(x, u)

where gk(·, u) is a regular function on T
N . Here, L2(H, K ) denotes the set of

Hilbert–Schmidt operators from the Hilbert space H to another Hilbert space K .
Since K = R in our case, this set is isomorphic to H , thus we may also define

�(x, u) =
∑

k�1

gk(x, u)ek, (1.2)

the action of �(x, u) on e ∈ H being given by 〈�(x, u), e〉H . We assume gk ∈
C(TN × R), with the bounds

G2(x, u) = ‖�(x, u)‖2H =
∑

k�1

|gk(x, u)|2 � D0(1 + |u|2), (1.3)

‖�(x, u) − �(y, v)‖2H =
∑

k�1

|gk(x, u) − gk(y, v)|2

� D1(|x − y|2 + |u − v|h(|u − v|)), (1.4)

where x, y ∈ T
N , u, v ∈ R, and h is a continuous non-decreasing function on R+

such that h(0) = 0. We assume also 0 � h(z) � 1 for all z ∈ R+.
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Notation in what follows, we will use the convention of summation over repeated
indices k. For example, we write W = βkek for the cylindrical Wiener process in
(1.1).

This paper is a preliminary work to the analysis of convergence of the numerical
approximation to (1.1) by the finite volume method with monotone fluxes, which
is done in [16]. We give a general notion of a family of approximate solutions,
see Definition 4.1, and explain what kind of convergence of such a family can be
expected. Our main results in this regard are the theorem 4.6, about convergence to
martingale solutions, and the theorem 4.15, which gives criteria for convergence to
pathwise solutions.

Problem (1.1) has already been studied in a series of papers. As in the determin-
istic case, the approach to the existence of solutions has been the vanishing viscosity
method, see [4,5,9,14,18,20,31,32,44] in particular. Approximation by the BGK
method has been considered by Hofmanová [27]. Some results of convergence of
numerical approximations to (1.1) (by the finite volume method in particular) have
also been obtained in [1–3,33,34,43].

The main difference between this present paper and all the works cited above is
in theway to answer to the following question:when considering the convergence of
approximations to (3.1), which mode of convergence regarding the sample variable
ω is used? Here, we develop an approach based on convergence in law, while in the
works referred to, weak convergence (in Lebesgue spaces, or in the sense of Young
measures, cf. Section 2.2) is considered.1 Convergence in law is the natural mode
of convergence for the random variables which manifest in the approximation to
(1.1). Our approach based on convergence in law is successful because we work in
the context of càdlàg processes. Another difference between this present paper and
the references already quoted is that our formulation of a solution is weak in the
space variable, but not weak in the time variable, see (2.6), (2.23) for example. This
allows us to obtain convergence of approximations for each time t (this is the last
statement in Theorem 4.15) without making any regularity hypothesis on the initial
datum at any moment. This paper is also a further development of the approach by
kinetic formulation initiated in [14]. We need this in the companion paper [16] to
obtain the convergence of the finite volume method with a standard CFL condition
(cf. our comment on the Kinetic formulation in the introduction section of [16]).

To complete this introduction, let us mention that the approximation of scalar
conservation laws with stochastic flux (and not stochastic force) has also been
considered in [21] (time-discrete scheme) and [39] (space discrete scheme). For
the corresponding Cauchy problem, see [22,23,28,35–37].

The plan of the paper is as follows. Section 2 to Section 4 is devoted to the
analysis of the Cauchy problem for (1.1); we introduce the kinetic formulation of
the problem in Section 2, and prove a uniqueness result in Section 3. In Section 4,we
develop a general approach to the analysis of convergence of approximate solutions
to (1.1) based on martingale methods. In Section 5, we give some applications of
our results of convergence of approximations.

1 With the exception of [20], where quite a strong notion of solution is used however.
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Note that Sections 2 and 3 are in large part similar to Sections 2 and 3 in [14].
We must explain these similarities, and why we sometimes transfer, identically,
some parts of [14], instead of simply making reference to it, and why, and in which
places, we need to give new statements and new proofs as compared to [14]. This
comparative analysis is given in Remark 3.3 at the end of Section 3.

2. Kinetic Solution

2.1. Definition

2.1.1. Predictable Sets and Functions For T > 0, we denote by B([0, T ]) the
Borel σ -algebra on [0, T ] and we denote by PT ⊂ B([0, T ]) ⊗ F the predictable
σ -algebra, [11, Section 2.2]. If E is a Banach space, a process ( f (t))with values in
E is said to be weakly-predictable if the process (〈 f (t), ϕ〉E,E ′) is predictable for
every ϕ in the topological dual E ′. This is equivalent to saying that f is weaklyPT -
measurable, in the sense of [45, Definition 1, p. 130]. Similarly, we can define the
notion of strong predictability: the process ( f (t)) is said to be strongly predictable
if there exists a sequence of E-valued, PT -measurable simple functions which
converges to f at every point (t, ω) in a set of full measure in [0, T ]×�. By Pettis’
Theorem, [45, Theorem p. 131], the two notions of measurability coincide if E is
separable; in this case we say simply that they are “predictable”.

Let us assume that E is separable in order to introduce the following notations:
let p ∈ [1,+∞). The set L p([0, T ]×�; E) is the set of E-valued, B([0, T ])⊗F-
measurable, Bochner integrable functions f which satisfy

∫∫

[0,T ]×�

‖ f (t, ω)‖p
Ed(L × P)(t, ω) < +∞,

where L is the Lebesgue measure on [0, T ]. Equivalently, by definition of the
product measure L × P,

E

∫ T

0
‖ f (t)‖p

E dt < +∞.

We denote by L p
P ([0, T ]×�; E) the set of functions g in L p([0, T ]×�; E)which

are equal L × P-almost everywhere to a predictable function f . This is the case
if, and only if, 〈g, ϕ〉 is equal L × P-almost everywhere to 〈 f, ϕ〉 for all ϕ ∈ E ′
(we use the following fact: E being separable, there is a countable subset of E ′ that
separates points in E , see [45, Lemma (1) p. 131]), so let us briefly consider the
case E = R. The class of processes in L p

P ([0, T ]×�;R) is analysed in [11, p. 66]
or [42, p. 172]. In particular, if X (t) is an adapted process with

E

∫ T

0
|X (t)|p dt < +∞,

then X ∈ L p
P ([0, T ]×�;R). A progressivelymeasurable process X in L p([0, T ]×

�;R) is also in L p
P ([0, T ] × �;R).
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Letm ∈ N
∗. In the case where E is itself a Lebesgue space E = L p(D), where

D is an open subset ofRm , we have L p([0, T ]×�; L p(D)) = L p(D×[0, T ]×�),
where D × [0, T ] × � is endowed with the product measure Lm+1 × P (Lm being
the m-dimensional Lebesgue measure), see [17, Section 1.8.1]. Similarly, we have

L p
P ([0, T ] × �; L p(D)) = L p

P (D × [0, T ] × �),

where L p
P (D×[0, T ]×�) is the set of functions in L p(D×[0, T ]×�)which are

equal Lm ×L× P-almost everywhere to a B(D) ×PT -measurable function (here
B(D) is the Borel σ -algebra on D). We will apply these results with D = (0, 1)N ,
in which case, by periodic extension, we obtain

L p([0, T ] × �; L p(TN )) = L p(TN × [0, T ] × �), (2.1)

and it is similar for spaces L p
P .

2.1.2. Random Measure, Solution Let Mb(T
N × [0, T ] × R) be the set of

bounded Borel signed measures on T
N × [0, T ] × R. We denote by M+

b (TN ×
[0, T ] × R) the subset of non-negative measures.

Definition 2.1. (Random measure). A map m from � to Mb(T
N × [0, T ] × R)

is said to be a random signed measure (on T
N × [0, T ] × R) if, for each φ ∈

Cb(T
N × [0, T ] × R), 〈m, φ〉 : � → R is a random variable. If, almost surely,

m ∈ M+
b (TN × [0, T ] × R), we simply speak of random measure.

Let m be a random measure with finite first-order moment

E‖m‖TV = Em(TN × [0, T ] × R) < +∞. (2.2)

Then Em is well defined and this is a bounded measure on T
N × [0, T ] × R. In

particular, it satisfies the following tightness condition:

lim
R→+∞Em(TN × [0, T ] × Bc

R) = 0, (2.3)

where Bc
R = {ξ ∈ R, |ξ | � R}. We note this fact here, since uniform versions of

(2.3) will be required when considering sequences of randommeasures, see (4.15).
We will also need the following result:

Lemma 2.1. (Atomic points). Let m be a random measure with first moment (2.2).
Let π : TN × [0, T ] × R → [0, T ] denote the projection (x, t, ξ) �→ t . Let π#m
denote the push-forward of m by π . Let Bat denote the set of times t such that the
event “t is an atom of π#m” has positive probability:

Bat = {t ∈ [0, T ];P (π#m({t}) > 0) > 0} . (2.4)

Then Bat is at most countable.

Proof of Lemma 2.1. We also have

Bat = {t ∈ [0, T ];Eπ#m({t}) > 0} .

The set Bat is the set of atomic points of the measure Eπ#m. It is therefore, at most,
countable. 
�
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The notion of a solution which we introduce below is based on the kinetic for-
mulation of conservation laws introduced in [38]. In particular, for a given function
u of the variables (x, t), we will need to consider the function

f(x, t, ξ) := 1u(x,t)>ξ ,

which is the characteristic function of the subgraph of u. We often write f := 1u>ξ

for short.
To be flexible enough, we have to impose a càdlàg property on solutions to (1.1)

(see Item 2 in the following Definition 2.2). We will show however in Corollary 3.3
that solutions to (1.1) have continuous trajectories.

Definition 2.2. (Solution). Let u0 ∈ L∞(TN ). An L1(TN )-valued stochastic pro-
cess (u(t))t∈[0,T ] is said to be a solution to (1.1) with initial datum u0 if u and
f := 1u>ξ have the following properties:

1. u ∈ L1
P (TN × [0, T ] × �),

2. for all ϕ ∈ C1
c (T

N × R), almost surely, t �→ 〈f(t), ϕ〉 is càdlàg,
3. for all p ∈ [1,+∞), there exists Cp � 0 such that

E

(

sup
t∈[0,T ]

‖u(t)‖p
L p(TN )

)

� Cp, (2.5)

4. there exists a random measure m with first moment (2.2), such that for all ϕ ∈
C1
c (T

N × R), for all t ∈ [0, T ],

〈f(t), ϕ〉 = 〈f0, ϕ〉 +
∫ t

0
〈f(s), a(ξ) · ∇ϕ〉 ds

+
∑

k�1

∫ t

0

∫

TN
gk(x, u(x, s))ϕ(x, u(x, s)) dx dβk(s)

+ 1

2

∫ t

0

∫

TN
∂ξϕ(x, u(x, s))G2(x, u(x, s)) dx ds − m(∂ξϕ)([0, t]),

(2.6)

a.s., where f0(x, ξ) = 1u0(x)>ξ , G2 := ∑∞
k=1 |gk |2 and a(ξ) := A′(ξ).

In (2.6), we have used the brackets 〈·, ·〉 to denote the duality betweenC∞
c (TN ×

R) and the space of distributions over TN × R. In what follows, we will denote
similarly the integral

〈F,G〉 =
∫

TN

∫

R

F(x, ξ)G(x, ξ) dx dξ, F ∈ L p(TN × R),G ∈ Lq(TN × R),

where 1 � p � +∞ and q is the conjugate exponent of p. In (2.6) also, we have
used (with φ = ∂ξϕ) the shorthand m(φ) to denote the Borel measure on [0, T ]
defined by

m(φ) : A �→
∫

TN×A×R

φ(x, ξ) dm(x, t, ξ), φ ∈ Cb(T
N × R)
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for all A Borel subset of [0, T ].
There is a last point to comment on in Definition 2.2, which is the measurability

of the function supt∈[0,T ] ‖u(t)‖L p(TN ) in (2.5). Let us denote by f̄ = 1−f = 1u�ξ

the conjugate function of f. By the identity

|u|p =
∫

R

[
f1ξ>0 + f̄1ξ<0

]
p|ξ |p−1 dξ, (2.7)

we have, for p ∈ [1,+∞),

‖u(t)‖p
L p(TN )

= sup
ψ+∈F+,ψ−∈F−

〈f(t), ψ+〉 + 〈f̄(t), ψ−〉, (2.8)

where the sup is taken over some countable sets F+ and F− of functions ψ chosen
as follows: F± = {ψn; n � 1}, where (ψn) is a sequence of non-negative functions
in C∞

c (R) which converges point-wise monotonically to ξ �→ p|ξ±|p−1 if p > 1
and to ξ �→ sgn±(ξ) if p = 1. By (2.8), we have

sup
t∈[0,T ]

‖u(t)‖p
L p(TN )

= sup
ψ±∈F±

sup
t∈[0,T ]

〈f(t), ψ+〉 + 〈f̄(t), ψ−〉. (2.9)

By Item 2 in Definition 2.2, we know that the function

sup
t∈[0,T ]

〈f(t), ψ+〉 + 〈f̄(t), ψ−〉

is F-measurable for all ψ± ∈ F±. Indeed, the sup over [0, T ] of a càdlàg function
is the sup of the function on any dense countable subset of [0, T ] containing the
terminal point T . By (2.9), the function supt∈[0,T ] ‖u(t)‖L p(TN ) is measurable.

Remark 2.1. (Initial condition). A limiting argument based on (2.6) leads to the
following initial condition for f(t):

f(0) = f0 + ∂ξm0, a.s.,

where m0 is the restriction of m to T
N × {0} × R. It is thus not obvious that (2.6)

entails the expected initial condition f(0) = f0. This is the case however (and,
therefore, m0 ≡ 0 a.s.), due to Proposition 2.11 and Corollary 2.12; see also the
discussion on the same topic in Section 5 of [10].

Proposition 2.2. (Mass of the randommeasure).Let u0 ∈ L∞(TN ). Let (u(t))t∈[0,T ]
be a solution to (1.1) with initial datum u0. Then the total mass of the measure m
in (2.6) is

m(TN × [0, T ] × R = 1

2
‖u0‖2L2(TN )

− 1

2
‖u(T )‖2L2(TN )

+
∑

k�1

∫ T

0

∫

TN
gk(x, u(x, t))u(x, t) dx dβk(t)

+ 1

2

∫ T

0

∫

TN
G2(x, u(x, t)) dx dt, (2.10)

almost surely.
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Proof of Proposition 2.2. We start from (2.6), whichwe applywith a test-function
ϕ independent on x . By substracting 〈10>ξ , ϕ〉 from both sides of the equation, we
obtain

〈χ(t), ϕ〉 = 〈χ0, ϕ〉 +
∑

k�1

∫ t

0

∫

TN
gk(x, u(x, s))ϕ(x, u(x, s)) dx dβk(s)

+ 1

2

∫ t

0

∫

TN
∂ξϕ(x, u(x, s))G2(x, u(x, s)) dx ds − m(∂ξϕ)([0, t]),

(2.11)

whereχ(x, t, ξ) = f(x, t, ξ)−10>ξ ,χ0(x, ξ) = f0(x, ξ)−10>ξ are the traditional
kinetic functions used in [41] for example. We use then an approximation argument
to apply (2.11) with ϕ(x, ξ) = ξ . This gives (2.10). 
�

2.2. Generalized Solutions

With the purpose of preparing the proof of existence of a solution, we introduce
the following definitions:

Definition 2.3. (Young measure). Let (X,A, λ) be a finite measure space. Let
P1(R) denote the set of probability measures on R. We say that a map ν : X →
P1(R) is a Young measure on X if, for all φ ∈ Cb(R), the map z �→ 〈νz, φ〉 from
X to R is measurable. We say that a Young measure ν vanishes at infinity if, for
every p � 1,

∫

X

∫

R

|ξ |p dνz(ξ) dλ(z) < +∞. (2.12)

Proposition 2.3. (An alternative definition of Young measures). Let (X,A, λ) be
a measure space with λ(X) = 1. Let L be the Lebesgue measure on R and let Y1

be the set of probability measures ν on (X × R,A × B(R)) such that π#ν = λ,
where π#ν is the push forward of ν by the projection π : X × R → X. Then Y1 is
the set of Young measures as defined in Definition 2.3.

For the proof of this result, which uses the disintegration theorem, we refer to
the discussion in [8, p. 19–20] on the spacesY1 andY1

dis (“dis” for “disintegration”:
this corresponds to the Definition 2.3). Note that there is no loss of generality in
assuming λ(X) = 1.

Definition 2.4. (Kinetic function). Let (X,A, λ) be a finite measure space. A mea-
surable function f : X ×R → [0, 1] is said to be a kinetic function if there exists a
Young measure ν on X that vanishes at infinity such that, for λ-almost everywhere
z ∈ X , for all ξ ∈ R,

f (z, ξ) = νz(ξ,+∞).

Wesay that f is an equilibrium if there exists ameasurable function u : X → R such
that f (z, ξ) = f(z, ξ) = 1u(z)>ξ almost everywhere, or, equivalently, νz = δξ=u(z)

for almost every z ∈ X .
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Definition 2.5. (Conjugate function). If f : X × R → [0, 1] is a kinetic function,
we denote by f̄ the conjugate function f̄ := 1 − f .

We also denote by χ f the function defined by χ f (z, ξ) = f (z, ξ) − 10>ξ .
This correction to f is integrable on R. Actually, it is decreasing faster than any
power of |ξ | at infinity. Indeed, we have χ f (z, ξ) = −νz(−∞, ξ) when ξ < 0 and
χ f (z, ξ) = νz(ξ,+∞) when ξ > 0. Therefore

|ξ |p
∫

X
|χ f (z, ξ)| dλ(z) ≤

∫

X

∫

R

|ζ |p dνz(ζ ) dλ(z) < ∞ (2.13)

for all ξ ∈ R, 1 � p < +∞.
The so-called kinetic functions appear naturallywhen one examines the stability

of a sequence of solutions to (1.1). We discuss this topic in details in Section 4, but
let us already mention the following compactness result:

Theorem 2.4. (Compactness ofYoungmeasures).Let (X,A, λ) be a finitemeasure
space such thatA is countably generated. Let (νn) be a sequence of Youngmeasures
on X satisfying (2.12) uniformly for some p ≥ 1:

sup
n

∫

X

∫

R

|ξ |p dνnz (ξ) dλ(z) < +∞. (2.14)

Then there exists a Young measure ν on X and a subsequence still denoted (νn)

such that, for all h ∈ L1(X), for all φ ∈ Cb(R),

lim
n→+∞

∫

X
h(z)

∫

R

φ(ξ) dνnz (ξ) dλ(z) =
∫

X
h(z)

∫

R

φ(ξ) dνz(ξ) dλ(z).

(2.15)

The convergence (2.15) is the convergence for the τW
Y1 topology defined in [8,

p. 21]. By [8, Corollary 4.3.7], (2.14) implies that the set {νn; n ∈ N} is τW
Y1 -

relatively compact, and for this result, it is not necessary to assume that A is
countably generated. This latter hypothesis is used as a criteria of metrizability
of τW

Y1 , [8, Proposition 2.3.1]. A consequence of Theorem 2.4 is the following
proposition:

Corollary 2.5. (Compactness of kinetic functions). Let (X,A, λ) be a finite mea-
sure space such that A is countably generated. Let ( fn) be a sequence of kinetic
functions on X × R: fn(z, ξ) = νnz (ξ,+∞) where νn are Young measures on X
satisfying (2.14). Then there exists a kinetic function f on X × R (related to the
Young measure ν in Theorem 2.4 by the formula f (z, ξ) = νz(ξ,+∞)) such that,
up to a subsequence, fn ⇀ f in L∞(X × R) weak-*.

We will also need

Lemma 2.6. (Convergence to an equilibrium). Let (X,A, λ) be a finite measure
space. Let p > 1. Let ( fn) be a sequence of kinetic functions on X ×R: fn(z, ξ) =
νnz (ξ,+∞) where νn are Young measures on X satisfying (2.14). Let f be a kinetic
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function on X × R such that fn ⇀ f in L∞(X × R) weak-*. Assuming that f is
an equilibrium, f (z, ξ) = f(z, ξ) = 1u(z)>ξ , and letting

un(z) =
∫

R

ξ dνnz (ξ),

then, for all 1 � q < p, un → u in Lq(X) strong.

Proof of Corollary 2.5. Weapply the theorem2.4.The convergenceof (νn),which
means that

(
z �→ 〈νnz , φ〉) → (

z �→ 〈νz, φ〉) in L∞(X) weak − ∗ (2.16)

for all φ ∈ Cb(R), has the consequence that
∫

X

∫

R

α(z, ξ) dνnz (ξ) dλ(z) →
∫

X

∫

R

α(z, ξ) dνz(ξ) dλ(z) (2.17)

for every bounded Carathéodory integrand α. This is a consequence of the iden-
tity τM

Y1 = τW
Y1 in the portmanteau theorem [8, Theorem 2.1.3] (see also [8,

Lemma 1.2.3] about Carathéodory integrands). We apply (2.17) to

α(z, ξ) =
∫ ξ

−∞
ϕ(z, ζ ) dζ,

where ϕ ∈ L1 ∩ L∞(X × R), and apply also the Fubini theorem to obtain
∫∫

X×R

fn(z, ξ)ϕ(z, ξ) dλ(z) dξ →
∫∫

X×R

f (z, ξ)ϕ(z, ξ) dλ(z) dξ. (2.18)

Using the bound by 1 on the L∞ norm of fn and f , we deduce by an argument of
density that (2.18) holds true when ϕ ∈ L1(X × R). 
�
Proof of Lemma 2.6. Let r ∈ [1,+∞]. By choosing θ = φ and γ as a test
function in z in (2.16), and by use of a standard approximation procedure, we have

∫

X

∫

R

θ(ξ) dνnz (ξ)γ (z) dλ(z) →
∫

X
θ(u(z))γ (z) dλ(z) (2.19)

for all θ ∈ C(R) and γ ∈ Lr (X) such that

sup
n

∥
∥
∥
∥

∫

R

θ(ξ) dνnz (ξ)

∥
∥
∥
∥
Lr ′ (X)

< +∞,

where r ′ is the conjugate exponent to r . Let us assume first that p > 2 and let us
prove the convergence of (un) to u in L2(X). By (2.19), taking r = 2, θ(ξ) = ξ and
γ ∈ L2(X), we obtain the weak convergence of (un) to u in L2(X). By developing
the scalar product

‖u − un‖2L2(X)
= ‖u‖2L2(X)

+ ‖un‖2L2(X)
− 2〈u, un〉L2(X),
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we see that it is sufficient, in order to establish the strong convergence, to prove
that

lim sup
n→+∞

‖un‖2L2(X)
� ‖u‖2L2(X)

. (2.20)

We obtain (2.20) by the Jensen inequality, which gives

‖un‖2L2(X)
=

∫

X

∣
∣
∣
∣

∫

R

ξ dνnz (ξ)

∣
∣
∣
∣

2

dλ(z) �
∫

X

∫

R

|ξ |2 dνnx (ξ) dλ(z). (2.21)

Indeed the right-hand side of (2.21) is converging to ‖u‖2
L2(X)

(here, we apply

(2.19) with θ(ξ) = ξ2 and γ (z) = 1). Still assuming p > 2, the remaining cases
1 � q < p are deduced from the result for p = 2 by interpolation and by the
uniform bound on ‖un‖L p(X). Let us consider the case p � 2 now. Let us introduce
the truncate functions and truncate sequence (uR

n ) as follows:

TR(ξ) := min(R,max(−R, ξ)), uR
n (z) =

∫

R

TR(ξ) dνnz (ξ).

One checks that the study done for p > 2 can be applied to established the con-
vergence uR

n → TR(u) in Lr (X) strong for every r < +∞. Then we use the
estimate

|uR
n (z) − un(z)| �

∫

|ξ |>R
|R − ξ | dνnz (ξ) � 2

∫

|ξ |>R
|ξ | dνnz (ξ),

from which follows, for 1 � q < p, by the Jensen inequality

‖uR
n − un‖qLq (X) � 2q

∫

X

∫

|ξ |>R
|ξ |qdνnz (ξ) dλ(z) � 2q

R p−q

∫

X

∫

R

|ξ |pdνnz dλ(z),

and, thanks to (2.14), the uniform bound

‖uR
n − un‖Lq (X) � 2

Rp/q−1 supn

∫

X

∫

R

|ξ |pdνnz dλ(z).

Wehave also TR(u) → u in Lq(X)when R → +∞. Gathering the different results
of convergence, we obtain un → u in Lq(X). 
�

In the deterministic setting, if (un(t)) is a sequence of solutions to (1.1), then,
due to natural bounds and to Theorem 2.4, the sequence of Young measures δun(x,t)
on X := T

N (consider that t is fixed here) has, up to a subsequence, a limit νt . Then
every non-linear expression φ(un(t)) for φ ∈ Cb(R) will converge to 〈νt , φ〉 in the
sense of (2.15). This is why it is natural (cf. [15]), for such non-linear problems as
(1.1), to introduce the following generalization to Definition 2.2:

Definition 2.6. (Generalized solution). Let f0 : TN ×R → [0, 1] be a kinetic func-
tion. An L∞(TN ×R; [0, 1])-valued process ( f (t))t∈[0,T ] is said to be a generalized
solution to (1.1) with initial datum f0 if f (t) and νt := −∂ξ f (t) have the following
properties:
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1. for all t ∈ [0, T ], almost surely, f (t) is a kinetic function, and, for all R > 0,
f ∈ L1

P (TN × (0, T ) × (−R, R) × �),
2. for all ϕ ∈ C1

c (T
N × R), almost surely, the map t �→ 〈 f (t), ϕ〉 is càdlàg,

3. for all p ∈ [1,+∞), there exists Cp � 0 such that

E

(

sup
t∈[0,T ]

∫

TN

∫

R

|ξ |p dνx,t (ξ) dx

)

� Cp, (2.22)

4. there exists a random measure m with first moment (2.2), such that for all ϕ ∈
C1
c (T

N × R), for all t ∈ [0, T ], almost surely,

〈 f (t), ϕ〉 = 〈 f0, ϕ〉 +
∫ t

0
〈 f (s), a(ξ) · ∇xϕ〉 ds

+
∫ t

0

∫

TN

∫

R

gk(x, ξ)ϕ(x, ξ) dνx,s(ξ) dx dβk(s)

+ 1

2

∫ t

0

∫

TN

∫

R

G2(x, ξ)∂ξϕ(x, ξ) dνx,s(ξ) dx ds − m(∂ξϕ)([0, t]).
(2.23)

Let us make a comment about notations: for each t ∈ [0, T ], we have a Young
measure νt on T

N . This gives us a set of probability measures (νx,t )x∈TN , as they
appear in the second line of (2.23). There is something misleading in the use of the
notation νx,t , which conveys the idea that we are considering a Young measure ν

with index spaceTN ×(0, T ). Such amodification of the point of view is admissible
however, and we will use it fully in Section 4.3.1 to obtain the convergence of
sequences of Young measures. Indeed, due to item 1 and to the fact that, for all
t ∈ (0, T ), for almost every x ∈ T

N , a.s.,

∫

R

φ(ξ) dνx,t (ξ) =
∫

R

f (x, t, ξ)φ′(ξ) dξ,

if φ ∈ C1
c (R), the map (ω, x, t) �→ 〈νx,t , φ〉 is measurable (and in L1

P (TN ×
(0, T ) × �) actually). By the Fubini theorem, we deduce that, almost surely,
(x, t) �→ 〈νx,t , φ〉 is measurable when φ ∈ C1

c (R). By an argument of density,
this holds true when φ ∈ Cb(R).

This point about the status of νx,t being clear, we have now also to justify that
the stochastic integral in (2.23) is well-defined. The bound (2.22) implies

E

(∫ T

0

∫

TN

∫

R

|ξ |p dνx,t (ξ) dx

)

� CpT . (2.24)
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Using successively, Jensen’s Inequality, the growth hypothesis (1.3), and (2.24)
with p = 2, we obtain, for ϕ ∈ C1

c (T
N × R),

E

∫ T

0

∑

k�1

∣
∣
∣
∣

∫

TN

∫

R

gk(x, ξ)ϕ(x, ξ) dνx,t (ξ) dx

∣
∣
∣
∣

2

� E

∫ T

0

∑

k�1

∫

TN

∫

R

|gk(x, ξ)ϕ(x, ξ)|2 dνx,t (ξ) dx

= E

∫ T

0

∫

TN

∫

R

G2(x, ξ) |ϕ(x, ξ)|2 dνx,t (ξ) dx

� ‖ϕ‖2L∞
x,ξ

D0(1 + C2T ). (2.25)

The fact that

t �→
∫

TN

∫

R

gk(x, ξ)ϕ(x, ξ) dνx,t (ξ) dx

is predictable is a consequence of item 1. To sum up, we have proved the following
result:

Lemma 2.7. (Admissible integrand). Let f0 : TN × R → [0, 1] be a kinetic func-
tion. Let ( f (t))t∈[0,T ] be a generalized solution to (1.1)with initial datum f0. Then,
for all ϕ ∈ C1

c (T
N × R) the l2(N∗)-valued process

t �→
(∫

TN

∫

R

gk(x, ξ)ϕ(x, ξ) dνx,t (ξ) dx

)

k�1

is in L2
P ([0, T ] × �; l2(N∗)).

Let us now state a simple result of reduction from a generalized solution to a mere
solution.

Proposition 2.8. Let u0 ∈ L∞(TN ). Let ( f (t))t∈[0,T ] be a generalized solution
to (1.1) with initial datum 1u0>ξ . If for all t ∈ [0, T ], f (t) is an equilibrium, then

f (x, t, ξ, ω) = f(x, t, ξ, ω) = 1u(x,t,ω)>ξ (2.26)

for almost every (x, ξ, ω) ∈ T
N × R × �, then (u(t))t∈[0,T ] is a solution to (1.1)

with initial datum u0.

Proof of Proposition 2.8. Under (2.26), we have νt = δu(t) a.s. From (2.24) with
p = 1, we deduce that u ∈ L1(TN × (0, T ) × �). Since

u(x, t) =
∫

R

ξ dνx,t (ξ),

we obtain u ∈ L1
P (TN × (0, T )×�) as a consequence of Item 1 in Definition 2.6.

We also have

〈f(t), ϕ〉 =
∫

TN

∫

R

ψ(x, ξ) dνx,t (ξ) dx, ψ(x, ξ) :=
∫ ξ

−∞
ϕ(x, ζ ) dζ
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for all ϕ ∈ C∞
c (TN × R). Therefore Item 2 in Definition 2.2 follows from Item 2

in Definition 2.6. Using the identity
∫

TN
|u(t, x)|p dx =

∫

TN

∫

R

|ξ |p dνx,t (ξ) dx

we obtain Item 3 in Definition 2.2. Item 4 in Definition 2.2 follows from Item 4 in
Definition 2.6. 
�

We will show in Theorem 3.2 that (2.26), which we give as an hypothesis in
Proposition 2.8, is automatically satisfied by any generalized solution starting from
an equilibrium f0 = f0 = 1u0>ξ .

We conclude this section with the following result, used in the proof of Corol-
lary 3.3:

Lemma 2.9. (Distance to equilibrium). Let (X, λ) be a finite measure space. Let
f : X × R → [0, 1] be a kinetic function. Then

m(ξ) :=
∫ ξ

−∞
(1u>ζ − f (ζ )) dζ, where u :=

∫

R

χ f (ζ ) dζ

is well defined and non-negative.

Note in particular that the difference f (ξ) − 1u>ξ writes ∂ξm where m � 0.

Proof of Lemma 2.9. Let νz = −∂ξ f (z, ·), z ∈ X . By Jensen’s Inequality, we
have

H

(∫

R

ζ dνz(ζ )

)

�
∫

R

H(ζ ) dνz(ζ ) (2.27)

for all convex sub-linear function H : R → R. Note that

u(z) =
∫

R

f (z, ζ ) − 10>ζ dζ =
∫

R

ζ dνz(ζ )

by integration by parts. By integration by parts, we also have, for all sub-linear
function H ∈ C1(R),

∫

R

H(ζ ) dνz(ζ ) = H(0) +
∫

R

H ′(ζ )( f (z, ζ ) − 10>ζ ) dζ

and

H(u(z)) =
∫

R

H(ζ ) dδu(z)(ζ ) = H(0) +
∫

R

H ′(ζ )(1u(z)>ζ − 10>ζ ) dζ.

By (2.27), it follows that
∫

R

H ′(ζ )( f (z, ζ ) − 1u(z)>ζ ) dζ � 0

for all convex and sub-linear H ∈ C1(R). Approximating ζ �→ (ζ − ξ)− by such
functions H , we obtain m(ξ) � 0. 
�
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2.3. Left Limits of Generalized Solutions

If ( f (t))t∈[0,T ] is a generalized solution to (1.1) andϕ ∈ C∞
c (TN×R), then, a.s.,

t �→ 〈 f (t), ϕ〉 is càdlàg. In the next proposition, we show that the a.s.-property to
be càdlàg is independent on ϕ and that the limit from the left at any point t∗ ∈ (0, T ]
is represented by a kinetic function.

Proposition 2.10. Let f0 be a kinetic initial datum. Let ( f (t))t∈[0,T ] be a general-
ized solution to (1.1) with initial datum f0. Then

1. there exists a measurable subset �̂ ⊂ � of probability 1 such that, for all
ω ∈ �̂, for all ϕ ∈ Cc(T

N × R), t �→ 〈 f (ω, t), ϕ〉 is càdlàg,
2. there exists an L∞(TN × R; [0, 1])-valued process ( f −(t))t∈(0,T ] such that:

for all t ∈ (0, T ], for all ω ∈ �̂, for all ϕ ∈ Cc(T
N × R), f −(t) is a kinetic

function on T
N which represents the left limit of s �→ 〈 f (s), ϕ〉 at t:

〈 f −(t), ϕ〉 = lim
s→t−〈 f (s), ϕ〉. (2.28)

Proof of Proposition 2.10. The set of test functions C1
c (T

N × R) (endowed with
the topology of the uniform convergence of the functions and their first derivatives)
is separable and we fix a dense countable subset D1 (see the argument about � in
Section 4.5.1 for a proof of the existence ofD1). For all ϕ ∈ C1

c (T
N ×R), a.s., the

map

Jϕ : t �→
∫ t

0
〈 f (s), a(ξ) · ∇ϕ〉 ds

+
∑

k�1

∫ t

0

∫

TN

∫

R

gk(x, ξ)ϕ(x, ξ) dνx,s(ξ) dx dβk(s)

+ 1

2

∫ t

0

∫

TN

∫

R

∂ξϕ(x, ξ)G2(x, ξ) dνx,s(ξ) dx ds (2.29)

is continuous on [0, T ]. Consequently, a.s., say for ω ∈ �1 where �1 is of full
measure, for all ϕ ∈ D1, Jϕ is continuous on [0, T ]. If ϕ ∈ D1, (2.23) gives
〈 f (t), ϕ〉 as a sum (up to the constant 〈 f0, ϕ〉) of Jϕ(t) with m(∂ξϕ)([0, t]). This
latter expression defines a function càdlàg in t for all ω ∈ �2, hence t �→ 〈 f (t), ϕ〉
is càdlàg if ω ∈ �1 ∩ �2. Here, �2 ⊂ � is of full measure. Next, we use the
estimate (2.22): there exists a set of full measure �3 in � such that, for every
ω ∈ �3,

sup
t∈[0,T ]

∫

TN

∫

R

|ξ |p dνx,t (ξ) dx � Cp(ω) < +∞. (2.30)

Let ω ∈ �̂ := �1 ∩ �2 ∩ �3 be fixed. If ϕ ∈ Cc(T
N × R), then

〈 f (t), ϕ〉 =
∫

TN×R

ψ(x, ξ) dνx,t (ξ) dx, ψ(x, ξ) :=
∫ ξ

−∞
ϕ(x, ζ ) dζ.

(2.31)
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Let Rϕ > 0be such thatϕ is supported in [−Rϕ, Rϕ]. Since |ψ(x, ξ)| � ‖ϕ‖L∞(Rϕ+
|ξ |), we obtain the bound supt∈[0,T ] |〈 f (t), ϕ〉| � ‖ϕ‖L∞(Rϕ +C1(ω)). This gives
the continuity of 〈 f (t), ϕ〉 with respect to ϕ. Since the space of càdlàg func-
tions is closed under uniform convergence, an argument of density shows that
t �→ 〈 f (t), ϕ〉 is càdlàg for all ϕ ∈ Cc(T

N × R). To prove the second assertion
of the proposition, let us fix ω ∈ �̂ and consider an increasing sequence (tn) in
[0, T ] converging to a point t∗ ∈ (0, T ]. Then, by means of (2.30) and since the
Borel σ -algebra of TN is countably generated (TN being separable), we can apply
Corollary 2.5: there exist a kinetic function f ∗,− on T

N × R and a subsequence
(nk) such that f (tnk ) ⇀ f ∗,− weakly-∗ in L∞(TN × R) as k → +∞. If an other
subsequence (ñk) provides an other weak limit f̃ ∗,−, then we have

〈 f ∗,−, ϕ〉 = lim
t→t∗−〈 f (t), ϕ〉 = 〈 f̃ ∗,−, ϕ〉

for all ϕ ∈ Cc(T
N × R). Therefore f ∗,− = f̃ ∗,−: there is only one possible limit.

It follows that the whole sequence ( f (tn)) is converging to f ∗,− in L∞(TN × R)

weak-∗. We establish this fact to ensure that the subsequence (nk) is independent
onω. Indeed, this shows that, viewed as a function of (ω, x, ξ), f ∗,− is measurable.
We set f −(t∗) = f ∗,− to conclude. 
�
Remark 2.2. (Left and right limits). Note that we prove a little bit more than what
is stated in Proposition 2.10. Indeed, for ω ∈ �̂, we have f (s) → f −(t) in
L∞(TN × R) for the weak-∗ topology, when s ↑ t , which implies (2.28). By
similar arguments, we can show that f (s) → f (t) in L∞(TN × R) weak-∗ when
s ↓ t .

Remark 2.3. (Uniform bound). Note that, by construction, ν− = −∂ξ f − satisfies
the following bounds: for all ω ∈ �̂,

sup
t∈[0,T ]

∫

TN

∫

R

|ξ |p dν−
x,t (ξ) dx � Cp(ω), E

(

sup
t∈[0,T ]

∫

TN

∫

R

|ξ |p dν−
x,t (ξ) dx

)

� Cp .

(2.32)

We obtain (2.32) using (2.22)–(2.30) and Fatou’s Lemma.

Remark 2.4. (Equation for f −). Passing to the limit in (2.23) for an increasing
sequence of times t , we obtain the following equation on f −:

〈 f −(t), ϕ〉 = 〈 f (0), ϕ〉 +
∫ t

0
〈 f (s), a(ξ) · ∇xϕ〉 ds

+
∫ t

0

∫

TN

∫

R

gk(x, ξ)ϕ(x, ξ) dνx,s(ξ) dx dβk(s)

+ 1

2

∫ t

0

∫

TN

∫

R

G2(x, ξ)∂ξϕ(x, ξ) dνx,s(ξ) dx ds − m(∂ξϕ)([0, t)).
(2.33)
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In particular, we have

〈 f (t) − f −(t), ϕ〉 = −m(∂ξϕ)({t}). (2.34)

Outside the set of atomic points of A �→ m(∂ξϕ)(A), which is at most countable,
we have 〈 f (t), ϕ〉 = 〈 f −(t), ϕ〉. It follows that f = f − almost everywhere. In
particular, (2.33) gives us the following equation on f −:

〈 f −(t), ϕ〉 = 〈 f (0), ϕ〉 +
∫ t

0
〈 f −(s), a(ξ) · ∇xϕ〉 ds

+
∫ t

0

∫

TN

∫

R

gk(x, ξ)ϕ(x, ξ) dν−
x,s(ξ) dx dβk(s)

+ 1

2

∫ t

0

∫

TN

∫

R

G2(x, ξ)∂ξϕ(x, ξ) dν−
x,s(ξ) dx ds − m(∂ξϕ)([0, t)),

(2.35)

an equation which is also valid for t = 0 if we set f −(0) = f0.

In the next proposition, we give a criterion for the continuity of t �→ 〈 f (t), ϕ〉
at a given point.

Proposition 2.11. (The case of equilibrium). Let f0 be a kinetic initial datum. Let
( f (t))t∈[0,T ] be a generalized solution to (1.1)with initial datum f0. Let t ∈ (0, T ].
Assume that f −(t) is at equilibrium: there exists a random variable v ∈ L1(TN )

such that f −(t, ξ) = 1v>ξ a.s. Then f −(t) = f (t).

Proof of Proposition 2.11. Let m∗ denote the restriction of m to T
N × {t} × R.

Let us also set f + = f (t). By (2.34), we thus have

f + − 1v>ξ = ∂ξm
∗. (2.36)

There exists a subset �4 of � of probability 1 such that, for all ω ∈ �4, m, and
thus m∗, are finite measures on T

N × [0, T ] × R and T
N × R respectively. Let ψ

be a smooth non-negative function such that 0 � ψ � 1, ψ ≡ 1 on [−1, 1], ψ

being supported in [−2, 2]. Define the cut-off function ψε(ξ) = ψ(εξ). Let also
ϕ ∈ C(TN ). By (2.36), we have

∫∫

TN×R

( f +(x, ξ) − 1v(x)>ξ )ϕ(x)ψε(ξ) dx dξ

= −ε

∫∫

TN×R

ϕ(x)ψ ′(εξ)dm∗

� ε‖ϕ‖L∞(TN )‖ψ ′‖L∞(R)m
∗(TN × R).

Taking the limit ε → 0, and taking into consideration the fact that ϕ is arbitrary,
we deduce that, for all ω ∈ �̂ ∩ �4, for almost every x ∈ T

N ,
∫

R

( f +(x, ξ) − 10>ξ ) dξ =
∫

R

(1v(x)>ξ − 10>ξ ) dξ = v(x).
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Now introduce

p∗ : ξ �→
∫ ξ

−∞
(1v>ζ − f +(ζ )) dζ.

By Lemma 2.9, p∗ is non-negative. In addition, ∂ξ (m∗ + p∗) = 0, due to (2.36)
and the definition of p∗. Therefore m∗ + p∗ is constant, and actually vanishes by
the condition at infinity (2.3) and the obvious fact that p∗(TN × Bc

R) also vanishes
when R → +∞. Since m∗, p∗ � 0, we finally obtain m∗ = 0 and conclude with
the identity f −(t) = f (t). 
�

Let us consider also the special case t = 0. By letting t → 0+ in (2.23),
we have f (0) − f0 = ∂ξm0, where m0 is the restriction of m to T

N × {0} × R.
Consequently, we have the following corollary to Proposition 2.11.

Corollary 2.12. Let f0 be a kinetic initial datum. Let ( f (t))t∈[0,T ] be a generalized
solution to (1.1) with initial datum f0. Assume that f0 is at equilibrium. Then
f (0) = f0 and m does not charge the line {t = 0}: m(TN × {0} × R) = 0 a.s..

Our final result in this section is about trajectories of solutions to (1.1). It is an
intermediate statement, before the full continuity result given in Corollary 3.3.

Proposition 2.13. Let u0 ∈ L∞(TN ). Let (u(t))t∈[0,T ] be a solution to (1.1) with
initial datum u0. Then, for all p ∈ [1,+∞), for all ω ∈ �̂ (given in Proposi-
tion 2.10), the map t �→ u(t) from [0, T ] to L p(TN ) is continuous from the right.

Proof of Proposition 2.13. We apply Proposition 2.10 to f (t) = f(t) = 1u(t)>ξ .
For ω ∈ �̂, ϕ ∈ Cc(T

N × R), the map t �→ 〈f(t), ϕ〉 is càdlàg. Let t∗ ∈ [0, T )

and let (tn) be a decreasing sequence of [0, T ] converging to t∗. The sequence
f n of elements f n := f(tn) takes values in [0, 1]. For ω ∈ �̂ fixed, it has a
convergent subsequence in L∞(TN × R) weak-*. Since 〈 f n, ϕ〉 → 〈f(t∗), ϕ〉 for
all continuous, compactly supported function ϕ on T

N × R, the whole sequence
( f n) is converging to its unique adherence value, f(t∗). By (2.5), the bound (2.14)
is satisfied for all p ∈ [1,+∞); we can apply Lemma 2.6 to conclude with the
convergence u(tn) → u(t∗) in L p(TN ). 
�

3. Comparison, Uniqueness and Reduction of Generalized Solutions

3.1. Doubling of Variables

In this paragraph, we prove a technical proposition relating two generalized
solutions fi , i = 1, 2 of the equation

dui (x, t) + div(A(ui (x, t))) dt = �i (x, ui (x, t)) dW (t). (3.1)

We use the following convention of notations: if ( f (t))t∈[0,T ] is a generalized
solution to (1.1), we denote by f − the left limit defined in Proposition 2.10, and
we denote by f + the right limit, which is simply f : f +(t) := f (t). This gives
more homogeneity to the different statements in this part. Recall also the notation
f̄ = 1 − f for the conjugate to f , introduced in Definition 2.5.
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Proposition 3.1. Let fi , i = 1, 2, be generalized solution to (3.1). Then, for 0 �
t � T , and non-negative test functions ρ ∈ C∞(TN ), ψ ∈ C∞

c (R), we have

E

∫

(TN )2

∫

R2
ρ(x − y)ψ(ξ − ζ ) f ±

1 (x, t, ξ) f̄ ±
2 (y, t, ζ ) dξ dζ dx dy

�
∫

(TN )2

∫

R2
ρ(x − y)ψ(ξ − ζ ) f1,0(x, ξ) f̄2,0(y, ζ ) dξ dζ dx dy + Iρ + Iψ,

(3.2)

where

Iρ = E

∫ t

0

∫

(TN )2

∫

R2
f1(x, s, ξ) f̄2(y, s, ζ )(a(ξ)

− a(ζ ))ψ(ξ − ζ ) dξ dζ · ∇xρ(x − y) dx dy ds

and

Iψ = 1

2

∫

(TN )2
ρ(x − y)E

∫ t

0

∫

R2
ψ(ξ − ζ )

∑

k�1

|gk,1(x, ξ)

− gk,2(y, ζ )|2 dν1x,s ⊗ ν2y,s(ξ, ζ ) dx dy ds.

Remark 3.1. Each term in (3.2) is finite. Let us consider the left-hand side of (3.2).
Introduce the auxiliary functions

ψ1(ξ) =
∫ ξ

−∞
ψ(s) ds, ψ2(ζ ) =

∫ ζ

−∞
ψ1(ξ) dξ.

Since ψ is compactly supported, both ψ1 and ψ2 vanish at −∞. When ξ → +∞,
ψ1 remains bounded while ψ2 has linear growth. More precisely, if ψ is supported
in [−R, R], then

|ψ2(ζ )| � (|ζ | + R)‖ψ‖L1(R). (3.3)

Since

f ±
1 (x, t, ξ) =

∫

(ξ,+∞)

dν1,±x,t (ξ), f̄ ±
2 (y, t, ζ ) =

∫

(−∞,ζ )

dν2,±y,t (ζ ),

for almost every ξ , ζ ∈ R, x, y ∈ T
N , t ∈ [0, T ], the Fubini Theorem gives us the

formula
∫

R2
ψ(ξ − ζ ) f ±

1 (x, t, ξ) f̄ ±
2 (y, t, ζ ) dξ dζ =

∫

R2
ψ2(u − v) dν1,±x,t (u) dν2,±y,t (v).

(3.4)

By (3.3), we deduce that
∣
∣
∣
∣

∫

R2
ψ(ξ − ζ ) f ±

1 (x, t, ξ) f̄ ±
2 (y, t, ζ ) dξ dζ

∣
∣
∣
∣

� ‖ψ‖L1(R)

[

R +
∫

R

|ξ | dν1,±x,t (ξ) +
∫

R

|ξ | dν2,±y,t (ξ)

]
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for almost every x, y ∈ T
N , for all t ∈ [0, T ]. Using the Young inequality for

convolution with indices 1, 1, 1, we obtain
∣
∣
∣
∣

∫

(TN )2

∫

R2
ρ(x − y)ψ(ξ − ζ ) f ±

1 (x, t, ξ) f̄ ±
2 (y, t, ζ ) dξ dζ dx dy

∣
∣
∣
∣

� ‖ψ‖L1(R)‖ρ‖L1(TN )(R + C1,1(ω) + C1,2(ω)), (3.5)

where

C1,i (ω) := sup
t∈[0,T ]

∫

TN

∫

R

|ξ | dνi,±x,t (ξ) dx

is in L1(�) thanks to (2.22)–(2.32).

Proof of Proposition 3.1. Set

G2
i (x, ξ) =

∞∑

k=1

|gk,i (x, ξ)|2, i ∈ {1, 2}.

Let ϕ1 ∈ C∞
c (TN

x × Rξ ) and ϕ2 ∈ C∞
c (TN

y × Rζ ) be some given test functions.

Equation (2.23) for f1 = f +
1 reads 〈 f +

1 (t), ϕ1〉 = μ1([0, t]) + F1(t), where F1 is
the stochastic integral

F1(t) =
∑

k�1

∫ t

0

∫

TN

∫

R

gk,1ϕ1 dν
1
x,s(ξ) dx dβk(s)

and t �→ μ1([0, t]) is the function of finite variation on [0, T ] (cf. [42, p. 5]) defined
by

μ1([0, t]) = 〈 f1,0, ϕ1〉δ0([0, t]) +
∫ t

0
〈 f1, a · ∇ϕ1〉 ds

+ 1

2

∫ t

0

∫

TN

∫

R

∂ξϕ1G2
1 dν

1
x,s(ξ) dx ds − m1(∂ξϕ1)([0, t]).

Note that, by Corollary 2.12, m1(∂ξϕ1)({0}) = 0 and thus the value of μ1({0}) is
〈 f1,0, ϕ1〉. Similarly, we write 〈 f̄ +

2 (t), ϕ2〉 as continuous semimartingale, sum of
the stochastic integral

F̄2(t) = −
∑

k�1

∫ t

0

∫

TN

∫

R

gk,2ϕ2 dν
2
y,s(ζ ) dy dβk(s)

with the function with finite variation given by

μ2([0, t]) = 〈 f̄2,0, ϕ2〉δ0([0, t]) +
∫ t

0
〈 f̄2, a · ∇ϕ2〉 ds

− 1

2

∫ t

0

∫

TN

∫

R

∂ξϕ2G2
2 dν

2
y,s(ζ ) dy ds + m2(∂ζ ϕ2)([0, t]).
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Again, we note that μ2({0}) = 〈 f̄2,0, ϕ2〉. Let us define the test-function

α(x, ξ, y, ζ ) = ϕ1(x, ξ)ϕ2(y, ζ ).

We want to compute

〈〈 f +
1 (t) f̄ +

2 (t), α〉〉 = 〈 f +
1 (t), ϕ1〉〈 f̄ +

2 (t), ϕ2〉, (3.6)

where 〈〈·, ·〉〉 denotes the duality product over TN
x × Rξ × T

N
y × Rζ . By the Itō

formula for continuous semimartingales, [42, p. 146], taking expectation, we obtain
the following identity:

E〈〈 f +
1 (t) f̄ +

2 (t), α〉〉 = 〈〈 f1,0 f̄2,0, α〉〉
+E

∫ t

0

∫

(TN )2

∫

R2
f1 f̄2(a(ξ) · ∇x

+ a(ζ ) · ∇y)α dξ dζ dx dy ds

+ 1

2
E

∫ t

0

∫

(TN )2

∫

R2
∂ξα f̄2(s)G2

1 dν
1
x,s(ξ) dζ dx dy ds

− 1

2
E

∫ t

0

∫

(TN )2

∫

R2
∂ζ α f1(s)G2

2 dν
2
y,s(ζ ) dξ dy dx ds

−E

∫ t

0

∫

(TN )2

∫

R2
G1,2α dν1x,s(ξ) dν2y,s(ζ ) dx dy ds

−E

∫

(0,t]

∫

(TN )2

∫

R2
f̄ +
2 (s)∂ξα dm1(x, s, ξ) dζ dy

+E

∫

(0,t]

∫

(TN )2

∫

R2
f −
1 (s)∂ζ α dm2(y, s, ζ ) dξ dx,

(3.7)

where G1,2(x, y; ξ, ζ ) := ∑
k�1 gk,1(x, ξ)gk,2(y, ζ ). Equation (3.7) is identical

to Equation (24) in [14]. We refer to the proof of Proposition 9 in [14] for the last
arguments that establish (3.2) on the basis of (3.7). 
�

3.2. Uniqueness, Reduction of Generalized Solution

In this section we use Proposition 3.1 above to deduce the uniqueness of solu-
tions and the reduction of generalized solutions to solutions.

Theorem 3.2. (Uniqueness, reduction). Let u0 ∈ L∞(TN ). Assume (1.3)–(1.4).
Then we have the following results:

1. there is at most one solution with initial datum u0 to (1.1);
2. If f is a generalized solution to (1.1) with initial datum f0 at equilibrium: f0 =

1u0>ξ , then there exists a solution u to (1.1) with initial datum u0 such that
f (x, t, ξ) = 1u(x,t)>ξ a.s., for almost every (x, t, ξ);
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3. if u1, u2 are two solutions to (1.1) associated with the initial data u1,0, u2,0 ∈
L∞(TN ) respectively, then

E‖(u1(t) − u2(t))
+‖L1(TN ) � ‖(u1,0 − u2,0)

+‖L1(TN ), (3.8)

for all t ∈ [0, T ]. This implies the L1-contraction property, and the comparison
principle for solutions.

Corollary 3.3. (Continuity in time). Let u0 ∈ L∞(TN ). Assume (1.3)–(1.4). Then,
for every p ∈ [1,+∞), the solution u to (1.1) with initial datum u0 has a repre-
sentative in L p(�; L∞(0, T ; L p(TN ))) with almost sure continuous trajectories
in L p(TN ).

Remark 3.2. (Uniqueness of the kinetic measure). Let f and f̌ be two generalized
solution to (1.1) with initial datum f0 at equilibrium, f0 = 1u0>ξ . By Theorem 3.2,
we have f = f̌ . It follows from (2.23) that the associated random measures m and
m̌ satisfy, for all ϕ ∈ C1

c (T
N × R), and for all t ∈ [0, T ], almost surely,

m(∂ξϕ)([0, t]) = m̌(∂ξϕ)([0, t]). (3.9)

At fixed ϕ, the two functions of t in (3.9) are càdlàg. Therefore (3.9) is satisfied
for all ϕ ∈ C1

c (T
N × R), almost surely, for all t ∈ [0, T ]. By an argument of

density (as in the proof of Proposition 2.10), we obtain (3.9) almost surely, for all
ϕ ∈ C1

c (T
N × R), for all t ∈ [0, T ]. This implies: almost surely, ∂ξm = ∂ξ m̌. By

(2.10), the two measures have the same total mass almost surely. Consequently,
almost surely, m = m̌.

Proof of Theorem 3.2. Consider first the additive case: �(x, u(x)) independent
on u(x). Let fi , i = 1, 2 be two generalized solutions to (1.1). Then, we use (3.2)
with gk independent on ξ and ζ . By (1.4), the last term Iψ is bounded by

t D1

2
‖ψ‖L∞

∫

(TN )2
|x − y|2ρ(x − y) dx dy.

We then take ψ := ψδ and ρ = ρε where (ψδ) and (ρε) are approximations of the
identity on R and T

N , respectively, that is,

ψδ(ξ) = 1

δ
ψ

(
ξ

δ

)

, ρε(x) = 1

εN
ρ
( x

ε

)
,

where ψ and ρ are some given smooth probability densities on R and TN , respec-
tively, to obtain

Iψ � t D1

2
ε2δ−1. (3.10)

Denote by ν
i,±
x,t the Young measures associated to f ±

i , i ∈ {1, 2}. By a compu-
tation similar to (3.4), we have, almost surely, for almost all x, y ∈ T

N ,
∫

R

f ±
1 (x, t, ξ) f̄ ±

2 (y, t, ξ) dξ =
∫

R2
(u − v)+ dν1,±x,t (u) dν2,±y,t (v). (3.11)
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By (3.4), we also have

∫

R2
ψδ(ξ−ζ ) f ±

1 (x, t, ξ) f̄ ±
2 (y, t, ζ ) dξ dζ =

∫

R2
ψ2,δ(u−v) dν1,±x,t (u) dν2,±y,t (v),

(3.12)

where

ψ2,δ(ξ) =
∫ ξ

−∞
ψ1,δ(ζ ) dζ, ψ1,δ(ξ) =

∫ ξ

−∞
ψδ(ζ ) dζ.

Assume that ψ is supported in (0, 1). Then ψ2,δ(ξ) = 0 if ξ � 0 and, for ξ > 0,

ξ+ − ψ2,δ(ξ) =
∫ ξ+

0

∫ +∞

ζ/δ

ψ(u) du dζ =
∫ +∞

0
ξ+ ∧ (δu)ψ(u) du. (3.13)

Using (3.13) in (3.11), (3.12) gives

0 �
∫

R

f ±
1 (x, t, ξ) f̄ ±

2 (y, t, ξ) dξ −
∫

R2
ψδ(ξ − ζ ) f ±

1 (x, t, ξ) f̄ ±
2 (y, t, ζ ) dξ dζ

�
∫

R2

∫ +∞

0
(u − v)+ ∧ (δζ )ψ(ζ ) dζ dν1,±x,t (u) dν2,±y,t (v).

Since (u − v)+ ∧ (δζ ) � |u| ∧ (δζ ) + |v| ∧ (δζ ), we have

0 �
∫

R

f ±
1 (x, t, ξ) f̄ ±

2 (y, t, ξ) dξ −
∫

R2
ψδ(ξ − ζ ) f ±

1 (x, t, ξ) f̄ ±
2 (y, t, ζ ) dξ dζ

�
∫ +∞

0

(∫

R

|ξ | dν1,±x,t (ξ) +
∫

R

|ξ | dν2,±y,t (ξ)

)

∧ (δζ )ψ(ζ ) dζ.

It follows that

∣
∣
∣
∣

∫

(TN )2

∫

R

ρε(x − y) f ±
1 (x, t, ξ) f̄ ±

2 (y, t, ξ) dξ dx dy

−
∫

(TN )2

∫

R2
ρε(x − y)ψδ(ξ − ζ ) f ±

1 (x, t, ξ) f̄ ±
2 (y, t, ζ ) dξ dζ dx dy

∣
∣
∣
∣

�
∫ +∞

0

(∫

TN

∫

R

|ξ |( dν1,±x,t (ξ) + dν2,±x,t (ξ)) dx

)

∧ (2δζ )ψ(ζ ) dζ

�
∫ +∞

0

(
C±
1,1(ω) + C±

1,2(ω)
)

∧ (2δζ )ψ(ζ ) dζ. (3.14)
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We have used (2.22)–(2.32) (with a constant C±
1,i for νi,±) to obtain (3.14). When

ε → 0, we have
∣
∣
∣
∣

∫

(TN )2

∫

R

ρε(x − y) f ±
1 (x, t, ξ) f̄ ±

2 (y, t, ξ) dξ dx dy

−
∫

TN

∫

R

f ±
1 (x, t, ξ) f̄ ±

2 (x, t, ξ) dξ dx

∣
∣
∣
∣

� sup
|z|<ε

∫

TN

∫

R

f ±
1 (x, t, ξ)

∣
∣ f̄ ±

2 (x − z, t, ξ) − f̄ ±
2 (x, t, ξ)

∣
∣ dξ dx

� sup
|z|<ε

∫

TN

∫

R

∣
∣
∣χ f ±

2
(x − z, t, ξ) − χ f ±

2
(x, t, ξ)

∣
∣
∣ dξ dx . (3.15)

Consequently [see (3.14), (3.15)],

lim
ε,δ→0

∫

(TN )2

∫

R2
ρε(x − y)ψδ(ξ − ζ ) f ±

1 (x, t, ξ) f̄ ±
2 (y, t, ζ ) dξ dζ dx dy

=
∫

TN

∫

R

f ±
1 (x, t, ξ) f̄ ±

2 (x, t, ξ) dξ dx,

for all ω ∈ �̂. We apply the estimate (3.5). We have the uniform bounds

‖ρε‖L1(TN ) = 1, ‖ψδ‖L1(R) = 1, R = δ � 1.

Consequently, we may apply the Lebesgue dominated convergence theorem to
obtain

E

∫

TN

∫

R

f ±
1 (x, t, ξ) f̄ ±

2 (x, t, ξ) dx dξ

� E

∫

(TN )2

∫

R2
ρε(x − y)ψδ(ξ − ζ ) f ±

1 (x, t, ξ) f̄ ±
2 (y, t, ζ ) dξ dζ dx dy + ηt (ε, δ),

(3.16)

where limε,δ→0 ηt (ε, δ) = 0. Once (3.16) has been established, we may follow the
lines of the proof of Theorem 11 in [14] to obtain (see Equation (31) in [14])

E

∫

TN

∫

R

f ±
1 (t) f̄ ±

2 (t) dx dξ �
∫

TN

∫

R

f1,0 f̄2,0 dx dξ. (3.17)

Assume that f is a generalized solution to (1.1) with initial datum 1u0>ξ . Since f0
is the (translated) Heavyside function 1u0>ξ , we have the identity f0 f̄0 = 0. Taking
f1 = f2 = f in (3.17), we deduce f +(1 − f +) = 0 almost everywhere, that is
f + ∈ {0, 1} almost everywhere. The fact that −∂ξ f + is a Young measure then
gives the conclusion; indeed, by Fubini’s Theorem, for any t ∈ [0, T ], there is a set
Et of full measure in T

N × � such that, for (x, ω) ∈ Et , f +(x, t, ξ, ω) ∈ {0, 1}
for almost every ξ ∈ R. Let

Ẽt = Et ∩ (TN × �̂).
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The set Ẽt is of full measure in T
N × �. For (x, ω) ∈ Ẽt , −∂ξ f +(x, t, ·, ω) is a

probability measure on R. Therefore f +(t, x, ξ, ω) = 1u(x,t,ω)>ξ for almost every
ξ ∈ R, where u(x, t, ω) = ∫

R
( f +(x, t, ξ, ω) − 10>ξ ) dξ . We have a similar result

for f − (this will be used in the proof of Corollary 3.3). Proposition 2.8 implies that
u is a solution in the sense of Definition 2.2. Since f = f + (recall the convention
of notation introduced at the beginning of Section 3.1), this shows the reduction of
generalized solutions to solutions. If u1 and u2 are now two solutions to (1.1), we
deduce from (3.17) with fi = 1ui>ξ and from the identity

∫

R

1u1>ξ1u2>ξ dξ = (u1 − u2)
+

the contraction property (3.8).
In the multiplicative case (� depending on u), the reasoning is similar, see [14].


�
Proof of Corollary 3.3. We use the notations and the results of Proposition 2.10.
We fix p ∈ [1,+∞). Both ( f (t))t∈[0,T ] and ( f −(t))t∈[0,T ] are generalized so-
lutions to (1.1) associated with the initial datum 1u0>ξ (we use (2.35) here). By
Theorem 3.2, they are at equilibrium: f (t) = 1u(t)>ξ , f −(t) = 1u−(t)>ξ . By
Proposition 2.13, for all ω ∈ �̂, the map t �→ u(t) from [0, T ] to L p(TN ) is
continuous from the right. Similarly, t �→ u−(t) is continuous from the left. By
Proposition 2.11, the fact that f − is at equilibrium has the following consequence:
at every t ∈ (0, T ], f (t) = f −(t). In particular, we have u = u− and thus, almost
surely, u is continuous from [0, T ] to L p(TN ). 
�

We apply (3.8) to infer an L∞ bound on solutions to (1.1) in the particular case
of a multiplicative noise with compact support.

Theorem 3.4. (L∞ bounds). Assume (1.3)–(1.4) and

gk(x, u) = 0, ∀|u| � 1, (3.18)

for all x ∈ T
N , k � 1. Let u0 ∈ L∞(TN ) satisfy −1 � u0 � 1 almost everywhere.

Then, for all t � 0, the solution u to (1.1) with initial datum u0 satisfies, almost
surely,

−1 � u(x, t) � 1 (3.19)

almost everywhere in TN .

Proof of Theorem 3.4. We use (3.8) to compare u to the two particular constant
solutions (x, t) �→ −1 and (x, t) �→ 1. 
�
Remark 3.3. (Comparative analysis between Sections 2 and 3 and Sections 2 and 3
of [14]). In Section 2, we introduce in Definition 2.2 a notion of solution that dif-
fers from the one given in [14, Definition 2]. The notions of generalized solution
(Def. 2.6 here, Definition 7 in [14]) are different therefore. The elements on Young
measure theory are common in both papers, though (compare for example Defini-
tion 2.3 with [14, Definition 3]). However this repetition seems necessary to obtain,
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to a certain extent, a self-consistent paper. Furthermore, the hypothesis “countably
generated” on the σ -algebraA in [14, Theorem 5] was missing out (compare to the
statement of Theorem 2.4). The analysis of left limits of solutions in Section 2.3,
although similar, is different from the study in Section 2.3 in [14]. Indeed, right lim-
its are known to exist in our present paper by essence (the càdlàg property is one of
the criteria for being a (generalized) solution). More importantly, Proposition 2.10
is more specific than Proposition 8 of [14] about the almost certain character of the
results. Note also that Proposition 2.11, its corollary 2.12, and Proposition 2.10,
absent in [14], are necessary to prove the a.s. continuity of solutions (a point that
was treated too quickly in [14, Proof of Corollary 12]). The method used here to
prove uniqueness (and the reduction result for generalized solutions) is very similar
to what was done in [14, Section 3], however, it is more complete [cf. Remark 3.1,
Formula (3.4) in particular, that is used to justify (3.11)]. The initial part of the
proof of Proposition 3.1 differs from the proof of Proposition 9 in [14]. For the
final arguments, we have referred to [14]. Eventually, although Theorem 3.2 and
Corollary 3.3 are similar to Theorem 11 and Corollary 12 in [14], we have given
their proofs with many details. It was required in the case of Corollary 3.3, as
already mentioned. In the proof of Theorem 3.2, we explain with more precision
than in [14] how to obtain (3.16). Then we essentially refer to the proof of [14,
Theorem 11] since the arguments we used are the same.

4. Convergence of Approximate Solutions

In this section, we develop the tools required for the proof of convergence of a
certain type of approximate solutions to (1.1). The basic principle is to generalize the
notion of solution introduced in Definition 2.2. Indeed, this facilitates the proof of
existence/convergence. In a second step a result of reduction (or “rigidity result”),
which asserts that a generalized solution is a solution is used. This principle is
of much use in the deterministic theory of conservation laws (cf. [15] with the
use of “measure-valued entropy solutions”, [19] with the use of “entropy process
solutions”, [41] with the use of kinetic solutions as defined here). We have already
introduced a generalization of the notion of solution in Definition 2.6, and have
proved a result of reduction in Theorem 3.2. Here we will work mainly on the
probabilistic aspects of the questions. We will have to consider “solutions in law”,
or “martingale solutions” (see the comment afterTheorem4.6 formore explanations
about the terminology). The plan of this section is the following: in Section 4.1,
we define the notion of approximate generalized solution. In Section 4.2, we give a
martingale characterization of the stochastic integral. In Section 4.3, we give some
tightness results on sequences of approximate generalized solutions. The main
result, Theorem 4.6, which shows the convergence of a sequence of approximate
generalized solutions to a martingale generalized solution, is proved in Section 4.5.
Eventually, we obtain a result of pathwise convergence in Section 4.6.

4.1. Approximate Generalized Solutions

Let d be an integer fixed once and for all.
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Definition 4.1. (Approximate generalized solutions). Let f n0 : TN ×R → [0, 1] be
some kinetic functions. Let ( f n(t))t∈[0,T ] be a sequence of L∞(TN × R; [0, 1])-
valued processes. Assume that the functions f n(t), and the associated Young mea-
sures νnt = −∂ξϕ f n(t) are satisfying Items 1, 2, 3, in Definition 2.6 and Equa-
tion (2.23) up to an error term, that is: for all ϕ ∈ Cd

c (T
N × R), there exists an

adapted process εn(t, ϕ), with t �→ εn(t, ϕ) almost surely continuous such that

lim
n→+∞ sup

t∈[0,T ]
∣
∣εn(t, ϕ)

∣
∣ = 0 in probability, (4.1)

and there exists some random measures mn with first moment (2.2), such that, for
all n, for all ϕ ∈ Cd

c (T
N × R), for all t ∈ [0, T ], almost surely,

〈 f n(t), ϕ〉 = 〈 f n0 , ϕ〉 +
∫ t

0
〈 f n(s), a(ξ) · ∇xϕ〉 ds

+
∫ t

0

∫

TN

∫

R

gk(x, ξ)ϕ(x, ξ) dνnx,s(ξ) dx dβk(s) + εn(t, ϕ)

+ 1

2

∫ t

0

∫

TN

∫

R

G2(x, ξ)∂ξϕ(x, ξ) dνnx,s(ξ) dx ds − mn(∂ξϕ)([0, t]).
(4.2)

Assume also f n(0) = f n0 . Then we say that ( f n) is a sequence of approximate
generalized solutions to (1.1) with initial datum f n0 .

4.2. Martingale Characterization of the Stochastic Integral

In order to pass to the limit in an equation such as (4.2), wewill first characterize
(4.2) in terms of a martingale problem, and then we will use martingale methods
to pass to the limit. In the present section, we give the characterization of (4.2)
in terms of a martingale problem, see Proposition 4.1 and Proposition 4.2 below.
We refer to [30, Example 1.4, p. 143] for characterization of the standard Wiener
Process in terms of a martingale problem. In the context of SDEs and SPDEs, such
kind of characterizations have been applied in [7,13,26,29,40] in particular.

Let us define the stochastic integrands

hnϕ,k(t) =
∫

TN

∫

R

gk(x, ξ)ϕ(x, ξ) dνnx,t (ξ) dx, hnϕ(t) =
(
hnϕ,k(t)

)

k�1
, (4.3)

and the stochastic integrals

Mn
ϕ(t) =

∑

k�1

∫ t

0

∫

TN

∫

R

gk(x, ξ)ϕ(x, ξ) dνnx,s(ξ) dx dβk(s). (4.4)

By Lemma 2.7, we have hnϕ ∈ L2
P ([0, T ] × �; l2(N∗)) for all n, ϕ. Using Itō’s

Formula, we deduce from (4.4) the following statement:
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Proposition 4.1. Let ( f n) be a sequence of approximate generalized solutions
to (1.1) with initial datum f n0 . Let ϕ ∈ Cd

c (T
N × R). Let Mn

ϕ(t) be defined by
(4.4) and hnϕ,k(t) by (4.3). Then the processes

Mn
ϕ(t), Mn

ϕ(t)βk(t) −
∫ t

0
hnϕ,k(s) ds, |Mn

ϕ(t)|2 −
∫ t

0
‖hnϕ(s)‖l2(N∗) ds,

(4.5)

are (Ft )-martingales.

What will interest us is the reciprocal statement.

Proposition 4.2. Let h ∈ L2
P ([0, T ]×�; l2(N∗)). Let X (t) be a stochastic process

starting from 0 such that the processes

X (t), X (t)βk(t) −
∫ t

0
hk(s) ds, |X (t)|2 −

∫ t

0
‖h(s)‖2l2(N∗) ds (4.6)

are (Ft )-martingales. Then

X (t) =
∑

k�1

∫ t

0
hk(s) dβk(s) (4.7)

for all t ∈ [0, T ].
Proof of Proposition 4.2. The proof can be found in [26, Proposition A.1]. Let us
give some details about it. We first claim that the following identity is satisfied:

E

[

(X (t) − X (s))
∫ t

s
θ(σ ) dβk(σ ) dσ −

∫ t

s
hk(σ )θ(σ ) dσ

∣
∣
∣Fs

]

= 0 (4.8)

for all 0 � s � t � T , all k � 1 and all θ ∈ L2
P ([0, T ]×�). The proof consists in

approximating θ on the interval [s, t] by predictable simple functions. It is similar
to a computation of quadratic variation. Note that (4.8) uses only the fact that

X (t), X (t)βk(t) −
∫ t

0
hk(s) ds

are (Ft )-martingales. We apply (4.8) with s = 0 and θ = hk and sum over k to
obtain

E[X (t)X̄(t)] = E

∫ t

0
‖h(s)‖2l2(N∗) ds, X̄(t) :=

∑

k�1

∫ t

0
hk(s) dβk(s). (4.9)

This gives the expression of the cross-product when we expand the term E|X (t) −
X̄(t)|2. Using the fact that

|X (t)|2 −
∫ t

0
‖h(s)‖2l2(N∗) ds
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is a (Ft )-martingale and applying Itō’s Isometry to E|X̄(t)|2 shows that the square
terms are also given by

E|X (t)|2 = E|X̄(t)|2 =
∫ t

0
‖h(s)‖2l2(N∗) ds.

It follows that X (t) = X̄(t). 
�

4.3. Tightness

Let ( f n) be a sequence of approximate generalized solutions, in the sense
of Definition 4.1. Recall that Y1 is the notation for the set of Young measures on
T
N×[0, T ]×R (cf.Proposition2.3) and thatMb(T

N×[0, T ]×R) is the notation for
the set of bounded Borel measures onTN ×[0, T ]×RwhileM+

b (TN ×[0, T ]×R)

is the subset of non-negative measures. Let νn be the Young measure associated to
f n (νn = −∂ξ f n). The law of νn is a probability measure on the space Y1. We will
see in Section 4.3.1 that, under a natural a priori bound, see (4.10), the sequence
(Law(νn)) is tight in Y1. In Section 4.3.2, this is the sequence (Law(mn)) that we
will analyse.We showunder (4.14) and (4.15) that it is tight inM+

b (TN×[0, T ]×R)

(see, more specifically, Proposition 4.4).
We also need to analyse the tightness of (〈 fn(t), ϕ〉) in the Skorokhod space

D([0, T ]): this is done in Section 4.3.3.

4.3.1. Compactness of the Young Measures In this section, we will use the
following notions: we say that a sequence (νn) of Y1 converges to ν in Y1 if
(2.15) is satisfied. A randomYoung measure is by definition a Y1-valued random
variable.

Proposition 4.3. Let ( f n) be a sequence of approximate generalized solutions
to (1.1) with initial datum f n0 . Assume that the following bound is satisfied: for
all p ∈ [1,+∞), there exists Cp � 0 independent on n such that νn := −∂ξ f n

satisfies

E

[

sup
t∈[0,T ]

∫

TN

∫

R

|ξ |p dνnx,t (ξ) dx

]

� Cp. (4.10)

Then, there exists a probability space (�̃, F̃ , P̃) and some random Young measures
ν̃n, ν̃, such that

1. ν̃n has the same law as νn,
2. ν̃ satisfies

Ẽ

(

sup
J⊂[0,T ]

1

|J |
∫

J

∫

TN

∫

R

|ξ |p dν̃x,t (ξ) dx dt

)

� Cp, (4.11)

where the supremum in (4.11) is a countable supremum over all open intervals
J ⊂ [0, T ] with rational extremities,
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3. up to a subsequence still denoted (ν̃n), there is P̃-almost sure convergence of
(ν̃n) to ν̃ in Y1.

Furthermore, if f̃ n, f̃ : TN × [0, T ] × R × �̃ → [0, 1] are defined by

f̃ n(x, t, ξ) = ν̃nx,t (ξ,+∞), f̃ (x, t, ξ) = ν̃x,t (ξ,+∞),

then f̃ n → f̃ in L∞(TN × [0, T ] ×R)-weak-* P̃-almost surely, f̃ being a kinetic
function.

Proof of Proposition 4.3. Note first that (4.10) yields

E

(∫ T

0

∫

TN

∫

R

|ξ |p dνnx,t (ξ) dx dt

)

� CpT . (4.12)

For R > 0, p � 1, let us denote by KR,p the set of Young measures ν ∈ Y1 such
that

∫ T

0

∫

TN

∫

R

|ξ |p dνx,t (ξ) dx dt � R.

By [8, Theorems 4.3.2, 4.3.8, 2.1.3], the set KR,p is compact in Y1 for the τW
Y1 -

topology, which is metrizable, [8, Theorem 2.3.1] and corresponds to the conver-
gence (2.15). By (4.12), we have

P(νn /∈ KR,p) � CpT

R
,

which shows that the sequence (νn) of Y1-valued random variables is tight. The set
Y1 endowed with the τW

Y1 -topology is Polish, [8, Theorem 2.3.3]: we can use the
Prokhorov’s metric, [6, p. 72]. By Prokhorov’s Theorem, [6, Theorem 5.1], there
exists a Y1-valued random variable ν and a subsequence still denoted (νn) such
that (νn) converges in probability to ν. Since the map

ψp : Y1 → [0,+∞], ν �→ sup
J⊂[0,T ]

1

|J |
∫

J

∫

TN

∫

R

|ξ |p dνx,t (ξ) dx dt

is lower semi-continuous, we have

Eψp(ν) � lim inf
n→+∞ Eψp(ν

n) � Cp

by (4.10) and, consequently, that ν satisfies the condition

E

(

sup
J⊂[0,T ]

1

|J |
∫

J

∫

TN

∫

R

|ξ |p dνx,t (ξ) dx dt

)

� Cp. (4.13)

Let us now apply the Skorokhod Theorem [6, p. 70]. There exists a probability
space (�̃, F̃ , P̃) and some random variables ν̃n , ν̃, such that

1. ν̃n and ν̃ have the same laws as νn and ν respectively,
2. up to a subsequence still denoted (ν̃n), there is P̃-almost sure convergence of

(ν̃n) to ν̃ in Y1.

Since ν̃ and ν have same laws, ν̃ satisfies the bound (4.11). Ifwe applyCorollary 2.5,
we obtain that f̃ n → f̃ in L∞(TN ×[0, T ]×R)-weak-* P̃-almost surely, f̃ being
a kinetic function. 
�
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4.3.2. Compactness of the Random Measures

Proposition 4.4. Let ( f n) be a sequence of approximate generalized solutions
to (1.1) with initial datum f n0 . Assume that

Emn(TN × [0, T ] × R) is uniformly bounded, (4.14)

and that mn vanishes for large ξ uniformly in n: if Bc
R = {ξ ∈ R, |ξ | � R}, then

lim
R→+∞Emn(TN × [0, T ] × Bc

R) = 0 (4.15)

uniformly in n. Then, there exists a probability space (�̃, F̃ , P̃) and some random
measures m̃n, m̃ : �̃ → Mb(T

N × [0, T ] × R) such that

1. m̃n has the same law as mn,
2. up to a subsequence still denoted (m̃n), there is P̃-almost sure convergence of

(m̃n) to m̃ inMb(T
N × [0, T ] × R)-weak-*.

Proof of Proposition 4.4. Let η : R+ → R+ be defined by

η(R) = sup
n∈N

Emn(TN × [0, T ] × Bc
R).

Let h be a fixed function on T
N × [0, T ] × R, h continuous, positive, integrable.

Proving the statement for the sequence of measures

B �→ mn(B) +
∫

B
h(x, t, ξ) dx dt dξ

is equivalent to proving the statement for the original sequence (mn). We will
assume therefore that η(R) > 0 for all R � 0 and that

‖mn‖ := mn(TN × [0, T ] × R) � δ > 0,

where δ is independent on n. Let μn := mn

‖mn‖ . We consider the random variables

Xn = (μn, ‖mn‖), taking values in P1(TN × [0, T ] ×R) ×R+, where P1(TN ×
[0, T ] × R) is the set of probability measures on TN × [0, T ] × R. For A > 0, let
KA be the set of probability measures μ ∈ P1(TN × [0, T ] × R) such that

sup
R>1

μ(TN × [0, T ] × Bc
R)

η(R)
� A.

Then KA is compact in P1(TN × [0, T ] × R)-weak-* by Prokhorov’s Theorem
and (4.15). Using the Markov Inequality, and the definition of η(R), we obtain

P(μn /∈ KA) � C

A
,

where C is independent on n; this shows that (μn) is tight in P1(TN × [0, T ] ×
R) endowed with the topology of the weak convergence of probability measures.
Similarly, using (4.14) and the Markov Inequality, we have

P(‖mn‖ > A) � C

A
,
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where C is independent on n:, therefore (‖mn‖) is tight in R. It follows that (Xn)

is tight in P1(TN × [0, T ] × R) × R+ endowed with the product topology. This
topology is separable, metrizable and there exists a compatible metric which turns
the space into a complete space (we can take the sum of the Prokhorov’s metric and
of the usual metric onR+). Therefore we can apply the Skorokhod Theorem. There
exists a probability space (�̃, F̃ , P̃) and some random variables X̃n = (μ̃n, α̃n),
X̃ = (μ̃, α̃) such that X̃n has same law as Xn and, P̃-almost surely, X̃n → X̃ in
P1(TN×[0, T ]×R)×R+. Set m̃n = α̃nμ̃n and m̃ = α̃μ̃. Then m̃n has the same law
asmn and there is P̃-almost sure convergence of (m̃n) to m̃ inMb(T

N ×[0, T ]×R)-
weak-*. 
�

4.3.3. Tightness in the Skorokhod Space Let D([0, T ]) denote the space of
càdlàg functions on [0, T ]. See [30, VI.1] and [6, Chapter 3] for the definition of
D([0, T ]). Let ( f n) be a sequence of approximate generalized solutions to (1.1)
with initial datum f n0 . In Section 4.4 below, where we analyse the convergence
of ( fn); it would be desirable to have a result of tightness of the processes t �→
〈 f n(t), ϕ〉 since they are random variables in D([0, T ]) (here, ϕ is a given test-
function). It seems difficult to obtain such a result. The only fact which we can infer
naturally from (4.10), (4.14), (4.15), is that the sequence of processes

t �→ 〈 f n(t), ϕ〉 + An
ϕ(t), An

ϕ(t) := 〈mn, ∂ξϕ〉([0, t])
is tight in D([0, T ]), see Proposition 4.5 below. Showing additionally that (An

ϕ) is
tight in D([0, T ]) seems impossible, however, if no additional properties of (mn)

are known. Indeed, the weak convergence of μn := 〈mn, ∂ξϕ〉 to a measure μ on
[0, T ] is not a sufficient condition for the convergence of An

ϕ to A(t) = μ([0, t])
in D([0, T ]). Consider for example the case

μn = δt∗−sn + δt∗−σn ,

where t∗ ∈ (0, T ) and (sn) ↓ 0, (σn) ↓ 0 with sn < σn for all n. Then (μn)

converges weakly to μ = 2δt∗ , we have

αn(t) := μn([0, t]) → α(t) := μ([0, t])
for every t ∈ [0, T ], but (αn), or any subsequence of (αn), does not converge to α

in D([0, T ]). This example should be compared to [30, Example 1.20, p. 329]. See
also Theorem 2.15, p. 342 in [30].

As asserted above, we will show that the sequence of processes

t �→ 〈 f n(t), ϕ〉 + An
ϕ(t), An

ϕ(t) := 〈mn, ∂ξϕ〉([0, t]),
where

〈mn, ∂ξϕ〉([0, t]) :=
∫∫∫

TN×[0,t]×R

∂ξϕ(x, s, ξ) dmn(x, s, ξ),

is tight in D([0, T ]). It is sufficient to show that

t �→ 〈 f n(t), ϕ〉 + Bn
ϕ(t), Bn

ϕ(t) := 〈mn, ∂ξϕ〉([0, t]) − εn(t, ϕ) (4.16)
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is tight in D([0, T ]) since each function t �→ εn(t, ϕ) converges in probability to
0 in C([0, T ]) by (4.1). Since f n(0) = f n0 , we have

〈 f n(t), ϕ〉 + Bn
ϕ(t) = 〈 f n0 , ϕ〉 + Jnϕ (t), (4.17)

P-almost surely, where

Jnϕ : t �→
∫ t

0
〈 f n(s), a(ξ) · ∇ϕ〉 ds

+
∑

k�1

∫ t

0

∫

TN

∫

R

gk(x, ξ)ϕ(x, ξ) dνnx,s(ξ) dx dβk(s)

+1

2

∫ t

0

∫

TN

∫

R

∂ξϕ(x, ξ)G2(x, ξ) dνnx,s(ξ) dx ds. (4.18)

We will show that (Jnϕ (t)) is tight in C([0, T ]).
Proposition 4.5. Let ( f n) be a sequence of approximate generalized solutions
to (1.1) with initial datum f n0 . For ϕ ∈ Cd

c (T
N × R), set

Dn
ϕ(t) =

∫ t

0
〈 f n(s), a(ξ) · ∇ϕ〉 ds,

Mn
ϕ(t) =

∑

k�1

∫ t

0

∫

TN

∫

R

gk(x, ξ)ϕ(x, ξ) dνnx,s(ξ) dx dβk(s),

I nϕ (t) = 1

2

∫ t

0

∫

TN

∫

R

∂ξϕ(x, ξ)G2(x, ξ) dνnx,s(ξ) dx ds.

Assume that (4.10) is satisfied. Then each sequence (Dn
ϕ), (Mn

ϕ), (I nϕ ) is tight in
C([0, T ]). In particular, the sequence (Jnϕ ) defined by (4.18) is tight in C([0, T ]).
Proof of Proposition 4.5. Note first the trivial uniform bounds

E|Dn
ϕ(t)|, E|Mn

ϕ(t)|, E|I nϕ (t)| = O(1),

which are obtained for t = 0, since all three terms vanish. We then use Kol-
mogorov’s criterion to obtain some bounds in some Hölder space Cα([0, T ]). We
have the following estimate on the square of the increments of Dn

ϕ :

E|Dn
ϕ(t) − Dn

ϕ(σ )|2 � ‖a · ∇ϕ‖2L1(TN×R)
|t − σ |2, (4.19)

since | fn| � 1 almost surely. Similarly, using (1.3) and (4.10), we have

E|I nϕ (t) − I nϕ (σ )|2 � D2
0T (1 + C4)‖∂ξϕ‖2L∞(TN×R)

|t − σ |2. (4.20)

The estimates (4.19) and (4.20) give some bounds on E‖Dn
ϕ‖Cα([0,T ]) and

E‖I nϕ ‖Cα([0,T ]) respectively, for α < 1
2 . Furthermore, the Burkholder - Davis -
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Gundy Inequality gives, for p > 2,

E|Mn
ϕ(t) − Mn

ϕ(σ )|p

� E

[

sup
σ�r�t

|Mn
ϕ(r) − Mn

ϕ(σ )|
]p

� CBDG(p)E

⎡

⎣
∑

k�1

∫ t

σ

∣
∣
∣
∣

∫

TN

∫

R

gk(x, ξ)ϕ(x, ξ) dνnx,s(ξ) dx

∣
∣
∣
∣

2

ds

⎤

⎦

p/2

.

By Jensen’s Inequality, and a bound analogous to (2.25), we obtain

E|Mn
ϕ(t) − Mn

ϕ(σ )|p � CBDG(p) [D0(1 + C2)]
p/2 ‖ϕ‖p

L∞(TN×R)
|t − σ |p/2,

(4.21)

and (4.21) gives a bound on E‖Mn
ϕ‖Cα([0,T ]) for α < 1

2 − 1
p . We obtain in this way

some tightness conditions on the laws of Dn , Mn , I n respectively on C([0, T ]).

�

4.4. Convergence of Approximate Generalized Solutions

We conclude here this section about the stability of generalized solutions by
the following statement:

Theorem 4.6. (Convergence to martingale solutions). Let ( f n) be a sequence of
approximate generalized solutions to (1.1) with initial datum f n0 , satisfying (4.10),
(4.14) and (4.15). We suppose that there exists a kinetic function f0 on T

N ×
R such that f n0 → f0 in L∞(TN × R)-weak-*. Then there exists a probability
space (�̃, F̃ , P̃), a filtration F̃t , some F̃t -adapted independent Brownian motions
(β̃k)k�1, some random Young measures ν̃n, ν̃, some random measures m̃n, m̃ on

T
N × [0, T ] × R such that

1. ν̃n has the same law as νn,
2. up to a subsequence still denoted (ν̃n), there is P̃-almost sure convergence of

(ν̃n) to ν̃ in Y1,
3. for all ψ ∈ Cb(R), the random map (x, t) �→ 〈ψ, ν̃x,t 〉 belongs to L2

P̃ (TN ×
[0, T ] × �̃),

4. m̃n has the same law as mn,
5. up to a subsequence still denoted (m̃n), there is P̃-almost sure convergence of

(m̃n) to m̃ inMb(T
N × [0, T ] × R)-weak-*.

Let f̃ be defined by f̃ (x, t, ξ) = ν̃x,t (ξ,+∞), then, P̃-almost surely, f̃ is a kinetic
function and

6. up to a subsequence, and P̃-almost surely, f̃ n converges in L∞(TN × [0, T ] ×
R)-weak-* to f̃ ,

7. P̃-almost surely, for all ϕ in Cc(T
N × R), t �→ 〈 f̃ (t), ϕ〉 is càdlàg,
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8. ν̃ satisfies

Ẽ

(

sup
t∈[0,T ]

∫

TN

∫

R

|ξ |p dν̃x,t (ξ) dx

)

� Cp, (4.22)

for all 1 � p < +∞, where Cp is a finite constant,
9. for all ϕ ∈ C1

c (T
N × R), for all t ∈ [0, T ], P̃-almost surely, f̃ satisfies

〈 f̃ (t), ϕ〉 = 〈 f0, ϕ〉 +
∫ t

0
〈 f̃ (s), a(ξ) · ∇xϕ〉 ds

+
∫ t

0

∫

TN

∫

R

gk(x, ξ)ϕ(x, ξ) dν̃x,s(ξ) dxdβ̃k(s)

+ 1

2

∫ t

0

∫

TN

∫

R

G2(x, ξ)∂ξϕ(x, ξ) dν̃x,s(ξ) dx ds − m̃(∂ξϕ)([0, t]).
(4.23)

After one does the substitution

(�,F ,P,Ft , βk(t)) ← (�̃, F̃ , P̃, F̃t , β̃k(t)),

which is a substitution of the probabilistic data in the Cauchy Problem for Equa-
tion (1.1), the points 3, 7, 8, 9 in Theorem 4.6 show that f̃ is a generalized solution
associated with the initial datum f0. Such a function f̃ , which turns out to be a
generalized solution to (1.1) after a substitution of the probabilistic data, is called
a martingale generalized solution. The term martingale refers to the martingale
characterization of (4.23), cf. Proposition 4.1 and Proposition 4.2, which we will
use to prove Theorem 4.6.

4.5. Proof of Theorem 4.6

In this section, we will give the proof of Theorem 4.6. We will use the results
(and the proofs) of Proposition 4.3, Proposition 4.4, see Sections 4.3.1 and 4.3.2,
respectively.

4.5.1. State Space and Skorokhod’s Theorem Recall that

W (t) =
∑

k�1

βk(t)ek,

where (ek)k�1 is the orthonormal basis of the Hilbert space H . Let U be an other
separable Hilbert space such that H ↪→ U with Hilbert–Schmidt injection. Then
the trajectories of W are P-a.s. in the path-space XW = C([0, T ];U) (see [12,
Theorem 4.3]). We consider the Cd-norm

‖ϕ‖Cd = sup{‖Dmϕ‖L∞(TN×R);m ∈ {0, . . . , d}N+1}
on Cd

c (T
N × R). Let

� = {ϕ1, ϕ2, . . .}
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be a dense countable subset of Cd
c (T

N × R) for this norm. We can construct � as
follows: let

ρε(x, ξ) := 1

εN+1 ρ(ε−N x, ε−1ξ)

be a compactly supported approximation of the unit on T
N × R. Let {θp; p ∈ N}

be a dense subset of L1(TN × R). We can assume that all the functions θp are
compactly supported (otherwise, we use a process of truncation). Then any function
in Cd

c (T
N × R) can be approximated by functions in

� := {ρk−1 ∗ θp; p ∈ N, k ∈ N
∗} ⊂ Cd

c (T
N × R)

for the convergence measured by the Cd-norm. Indeed, given ϕ ∈ Cd
c (T

N × R),
a > 0, and m ∈ {0, . . . , d}N+1, we have, by the triangular inequality,

‖Dmϕ − Dmρε ∗ θp‖L∞ � ‖Dmϕ − Dmρε ∗ ϕ‖L∞ + ‖Dmρε ∗ (ϕ − θp)‖L∞

� ωDmϕ(ε) + ‖ρ‖L∞

εN+1+|m| ‖ϕ − θp‖L1 , (4.24)

since the norm of Dmρε in L∞ is bounded by ‖ρ‖L∞
εN+1+|m| . In (4.24), ωDmϕ denotes

the modulus of continuity of Dmϕ. We choose ε = k−1 with k large enough to
ensure ωDmϕ(ε) < a for all m ∈ {0, . . . , d}N+1. Then taking p ∈ N such that
‖ϕ − θp‖L1 < aε(d+1)(N+1), we obtain ‖ϕ − ρk−1 ∗ θp‖Cd < 2a.

Also, let R∞ denote the product space
∏

ϕ∈� R endowed with the topology of
point-wise convergence. As such,R∞ is separable, complete and admits a compat-
ible metric. Define the Polish space

E := C([0, T ];R∞) × C([0, T ];R∞) × C([0, T ];R∞) × R
∞,

and

εnϕ(t) = εn(t, ϕ), Jnϕ (t) = 〈 f n(t), ϕ〉 − 〈 f n0 , ϕ〉 + 〈mn, ∂ξϕ〉([0, t]) − εnϕ(t),

(4.25)

for all ϕ ∈ Cd
c (T

N × R). Note that, as a consequence of Equation (4.17) and
Proposition 4.5, we know that, for all ϕ ∈ Cd

c (T
N × R),

(Jnϕ ) is tight in C([0, T ]). (4.26)

By (4.1), we also have εnϕ → 0 inC([0, T ]) in probability, for all ϕ ∈ Cd
c (T

N ×R).
We introduce the four following sequences:

{Jn(t)} := (Jnϕ (t))ϕ∈�, {Mn(t)} := (Mn
ϕ(t))ϕ∈�, {εn(t)} := (εnϕ(t))ϕ∈�,

and { f nin} := (〈 f n0 , ϕ〉)ϕ∈� , where Mn
ϕ is defined by (4.4). We will consider the

multiplet

Zn = (νn, {Jn}, {Mn}, {εn}, { f nin}, μn, ‖mn‖,W ) ∈ X ,
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where the state space X is

X := Y1 × E × P1(TN × [0, T ] × R) × R+ × XW .

Let ε > 0. By (4.26), there exists for each j ∈ N a compact K j in C([0, T ])
such that

inf
n∈NP

(
Jnϕ j

∈ K j

)
� 1 − ε

2 j
.

Let K = ∏
j∈N K j . Then K is compact in C([0, T ];R∞) and

P({Jn} ∈ Kc) �
∑

j∈N
P

(
Jnϕ j

∈ Kc
j

)
�

∑

j∈N

ε

2 j
= 2ε

for all n ∈ N.2 This shows that ({Jn}) is tight in C([0, T ];R∞). We have similar
results about ({Mn}) and ({εn})byProposition 4.5.OnXW weconsider the topology
induced by the norm

‖v‖ = sup
t∈[0,T ]

‖v(t)‖U.

Then XW is separable and complete. A first consequence of this is the fact that
the law of the single random variable W is tight in XW . A second consequence
is the fact that X is a separable completely-metrizable space. By Sections 4.3.1
and 4.3.2, we conclude that (Zn) is tight in the Polish space X . We may thus
apply Skorokhod’s Theorem to (Zn): there exists a probability space (�̃, F̃ , P̃)

and some random variable Z̃ n , Z̃ such that Z̃ n has the same law as Zn and, up to a
subsequence, P̃-almost surely, Z̃ n converges to Z̃ in X .

4.5.2. Identification of the Limit: Càdlàg version Let us denote the component
of Z̃ as follows:

Z̃ = (ν̃, { J̃ }, {M̃}, {ε̃}, { f̃in}, μ̃, α̃, W̃ ).

Note first that ε̃ = 0 by (4.1). We also have

{ f̃in} = (〈 f0, ϕ〉)ϕ∈�,

since f n0 → f0 in L∞(TN ×R)-weak-* by hypothesis. Recall (see Proposition 4.3
and Proposition 4.4) that f̃ (x, t, ξ) = ν̃x,t (ξ,+∞) and m̃ = α̃μ̃. It was shown in
the proof of Proposition 4.3 that item 1, 2, 6 of Theorem 4.6 are satisfied and that
the moments of ν̃ are bounded as in (4.11). By the proof of Proposition 4.4, we
have also 4, 5 of Theorem 4.6. We will first establish the following result:

2 K is compact since C([0, T ];R∞) is homeomorphic to the countable product, over �,
of copies of C([0, T ];R).
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Lemma 4.7. We have the following identities: P̃-almost surely

for all t ∈ [0, T ], for all ϕ ∈ �, 〈 f̃ n(t), ϕ〉 = 〈 f0, ϕ〉 + J̃ nϕ (t)

−〈m̃n, ∂ξϕ〉([0, t]) − ε̃nϕ(t),

(4.27)

and for P̃-almost surely there exists a negligible set N0 ⊂ [0, T ] such that

for all t ∈ [0, T ]\N0, for all ϕ ∈ �, 〈 f̃ (t), ϕ〉 = 〈 f0, ϕ〉 + J̃ϕ(t)

−〈m̃, ∂ξϕ〉([0, t]).
(4.28)

Wewill use (4.28) to prove Proposition 4.8, where we obtain a càdlàg version of
f̃ (càdlàg in the sense that P̃-almost surely, for all ϕ ∈ Cc(T

N ×R), t �→ 〈 f̃ (t), ϕ〉
is càdlàg).

Proof of Lemma 4.7. Let θ ∈ C([0, T ]). Let us integrate the identity (4.25)
against θ . Using the Fubini theorem, we obtain: P-almost surely,

∫ T

0
(Jnϕ (t) + 〈 f n0 , ϕ〉 + εnϕ(t))θ(t) dt − 〈νn,�〉 − 〈mn, �〉 = 0, (4.29)

where

�(x, t, ξ) = ∂ξϕ(x, ξ)

∫ T

t
θ(s) ds, �(x, t, ξ) =

∫ ξ

−∞
ϕ(x, ζ ) dζθ(t).

Note that � and � are continuous and bounded functions. Taking the square, then
expectancy in (4.29) gives EF(Zn) = 0, where F : X → R defined by

F(Zn) =
∣
∣
∣
∣

∫ T

0
(Jnϕ (t) + 〈 f n0 , ϕ〉 + εnϕ(t))θ(t) dt − 〈νn,�〉 − ‖mn‖〈μn, �〉

∣
∣
∣
∣

2

is a continuous function. By identity of the laws of Zn and Z̃ n , we have ẼF(Z̃ n) = 0
for all n. Since F is non-negative, this means F(Z̃ n) = 0, P̃-almost surely. Since θ

is arbitrary and � is countable, we deduce (4.27), a priori for t ∈ [0, T ]\Nn , where
Nn is a measurable negligible set. We can take Nn = ∅ because both sides of (4.27)
are càdlàg functions. By almost sure convergence, that F(Z̃ n) = 0, P̃-almost surely
implies F(Z̃) = 0, P̃-almost surely. Hence, similarly, we obtain (4.28). 
�
Proposition 4.8. There exists a measurable subset �̃+ of �̃ of probability one, a
random Young measure ν̃+ on T

N × (0, T ) such that

1. for all ω̃ ∈ �̃+, for almost every (x, t) ∈ T
N ×(0, T ), the probability measures

ν̃+
x,t and ν̃x,t coincide,

2. the kinetic function f̃ +(x, t, ξ) := ν̃+
x,t (ξ,+∞) satisfies: for all ω̃ ∈ �̃+, for

all ϕ ∈ Cc(T
N × (0, T )), t �→ 〈 f̃ +(t), ϕ〉 is càdlàg,

3. the random Young measure ν̃+ satisfies (4.22).
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Proof of Proposition 4.8. Theproof is quite similar to theproof ofProposition2.10.
For ϕ ∈ �, let Fϕ(t) denote the right-hand side of (4.28):

Fϕ(t) = 〈 f0, ϕ〉 + J̃ϕ(t) − 〈m̃, ∂ξϕ〉([0, t]). (4.30)

We define �̃+ as the intersection of the three following events: first (4.28), second:
“for all ϕ ∈ �, Fϕ is càdlàg”, third the event

sup
J⊂[0,T ]

1

|J |
∫

J

∫

TN

∫

R

|ξ |p dν̃x,t (ξ) dx dt < +∞,

where the supremum over intervals J is as in (4.11) (a countable supremum over
all open intervals J ⊂ [0, T ]with rational extremities). Assume that �̃+ is realized
(say we draw a particular ω̃ ∈ �̃+). Assume in particular that

1

|J |
∫

J

∫

TN

∫

R

|ξ |p dν̃x,t (ξ) dx dt � Cp(ω̃) (4.31)

for all open intervals J ⊂ [0, T ] with rational extremities. Then the map

t �→
∫

TN

∫

R

|ξ |p dν̃x,t (ξ) dx

is integrable on (0, T ). A simple approximation procedure shows then that (4.31)
holds true when J is any interval in [0, T ].

Let t∗ ∈ [0, T ). Let (εl) be a sequence of positive numbers decreasing to 0 such
that t∗ + ε1 < T . Let Jl = (t∗, t∗ + εl). Consider the sequence of Young measures,
and corresponding kinetic functions

ν̃(l)
x = 1

|Jl |
∫

Jl
ν̃x,t dt, f̃ (l)(x, ξ) = ν̃(l)

x (ξ,+∞) = 1

|Jl |
∫

Jl
f̃ (x, t, ξ) dt.

Since the Borel σ -algebra of TN is countably generated (TN being separable), we
can apply Theorem 2.4 and Corollary 2.5. There exists a subsequence (lm) and a
Young measure ν̃∗ such that ν̃(lm ) → ν̃∗ in the sense of (2.15) and f̃ (lm ) → f̃ ∗
in L∞(TN × R) weak-*, where f̃ ∗(x, ξ) = ν̃∗

x (ξ,+∞). The limit f̃ ∗ is unique.
Indeed, if ϕ ∈ �, then, due to (4.28) and to the Fubini theorem, and due to the
right-continuity of Fϕ , we have

〈 f̃ (l), ϕ〉 = 1

|Jl |
∫

Jl
Fϕ(t) dt → Fϕ(t∗).

This implies

〈 f̃ ∗, ϕ〉 = Fϕ(t∗). (4.32)

Since � is dense, f̃ ∗ and ν̃∗ = −∂ξ f̃ ∗ are unique. We deduce that the convergence
holds along the whole sequence l = 1, 2. . . ., independently on ω̃ ∈ �̃+ and on
t∗ ∈ [0, T ). Consequently, setting

ν̃+
x,t∗ = ν̃∗

x , f̃ +(x, t∗, ξ) = ν̃+
x,t∗(ξ,+∞),
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we have, for all ω̃ ∈ �̃+, for all t ∈ [0, T ), and for all φ ∈ Cb(T
N × R),

1

ε

∫ t+ε

t

∫∫

TN×R

φ(x, ξ) dν̃x,s(ξ) dx ds →
∫∫

TN×R

φ(x, ξ) dν̃+
x,t (ξ) dx .

(4.33)

Since T is arbitrary, we can as well work on [0, T + 1], instead of [0, T ]. In that
way, we can give a meaning to ν̃+

x,t for t = T also. By (4.28) and (4.32), we have
f̃ +(x, t, ξ) = f̃ (x, t, ξ) and ν̃+

x,t = ν̃x,t for all ω̃ ∈ �̃+, for all t ∈ (0, T )\N0, for
almost every (x, ξ) ∈ T

N ×R. If φ ∈ Cb(R) and ω̃ ∈ �̃+, then (x, t) �→ 〈ν̃x,t , φ〉
is measurable and (x, t) �→ 〈ν̃+

x,t , φ〉 differs from the latter function on a negligible
subset ofTN ×(0, T ). Therefore (x, t) �→ 〈ν̃+

x,t , φ〉 itself is measurable.We deduce
that ν̃+ and f̃ + satisfy the measurability properties of a random Young measure
and a random kinetic function respectively, and point 1 of the proposition is proved.
The point 2 of the proposition follows from (4.32), which gives 〈 f̃ (t), ϕ〉 = Fϕ(t)
for all t . We have established item 7 of the proposition for ϕ ∈ � only. By density
the results remain true for all ϕ ∈ Cc(T

N × R). To obtain the last point of the
proposition, we note first that ν̃+, like ν̃, satisfies (4.11). If

sup
J⊂[0,T ]

1

|J |
∫

J

∫

TN

∫

R

|ξ |p dν̃+
x,t (ξ) dx dt < +∞,

which happens P̃-almost surely, then

sup
J⊂[0,T ]

1

|J |
∫

J

∫

TN

∫

R

|ξ |p dν̃+
x,t (ξ) dx dt = sup

t∈[0,T ]

∫

TN

∫

R

|ξ |p dν̃+
x,t (ξ) dx

by right-continuity of t �→ ν̃+
t . This gives the desired result. 
�

We will now consider only the càdlàg versions. We replace ν̃ by ν̃+ and f̃ by
f̃ +. This amounts to a modification on a negligible set. Therefore, this does not
affect the results 1, 2, 4, 5, 6 in Theorem 4.6. We have now also items 7 and 8 of
the theorem. It remains to define the filtration (F̃t ), the Wiener processes β̃k and
to prove the points 3 and 9 of the theorem. We define (F̃t ), β̃k and show item 3 in
the proof of convergence of the stochastic integral in the next section 4.5.3. The
equation (4.23) is established in Section 4.5.4. To finish the current section, let us
first record the fact that (4.28) is now true for all t , due to our re-definition of f̃
and to (4.32), for P̃-almost surely,

for all t ∈ [0, T ), for all ϕ ∈ �, 〈 f̃ (t), ϕ〉 = 〈 f0, ϕ〉 + J̃ϕ(t) − 〈m̃, ∂ξϕ〉([0, t]).
(4.34)

We deduce from (4.34) the following lemma:

Proposition 4.9. There exists a countable subset B̃ ⊂ [0, T ] such that, P̃-almost
surely, for all t ∈ [0, T ]\B̃, for all ϕ ∈ Cc(T

N × R), 〈 f̃ n(t), ϕ〉 → 〈 f̃ (t), ϕ〉.
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Proof of Proposition 4.9. It is sufficient to obtain the convergence for ϕ ∈ �. We
apply Lemma 2.1. Let

B̃ =
{
t ∈ [0, T ]; P̃ (π#m̃({t}) > 0) > 0

}
. (4.35)

Then B̃ is countable. Since |〈m̃, ∂ξϕ〉({t})| � ‖∂ξϕ‖L∞π#m̃({t}), P̃-almost surely,
we have 〈m̃, ∂ξϕ〉({t}) = 0 for all t ∈ [0, T ]\B̃. For t ∈ [0, T ]\B̃ then, the right-
hand side of (4.27) is converging to the right-hand side of (4.34). We deduce the
convergence of the left-hand sides, that is 〈 f̃ n(t), ϕ〉 → 〈 f̃ (t), ϕ〉. 
�
4.5.3. Identification of the Limit: Convergence of the Stochastic Integral Let
us set

M∗
ϕ(t) =

∑

k�1

∫ t

0

∫

TN

∫

R

gk(x, ξ)ϕ(x, ξ)d ν̃x,s(ξ) dxdβ̃k(s), (4.36)

(β̃k is defined in Lemma 4.11 below). Our aim is to prove the identification {M̃} =
{M∗}. To obtain this result, we will use the martingale characterization developed
in Section 4. The proof is decomposed into several steps.

Step 1. Filtration The approximation procedures to (1.1) (vanishing viscosity me-
thod, Finite Volume method as here) construct approximate solutions on arbitrary
time intervals [0, T ]. We will therefore consider the functions as defined on the
whole time interval R+. This is simply to avoid the special case of the final time in
the definition of the Skorokhod space D([0, T ]), cf. [6], [30, Remark 1.10, p. 326].
Let E be a Polish space. Let us introduce the following notations (see [30, Def-
inition 1.1 p. 325] in the case E = R

m): on the space D(R+; E), D0
t (E) is the

σ -algebra generated by the maps α �→ α(s), s � t and

Dt (E) =
⋂

t<s

D0
s (E), Dt−(E) =

∨

s<t

Ds(E).

Note thatDt (E) �= D0
t (E). Indeed, the time of entrance in an open subsetU of E ,

τU (α) = inf
{
t � 0;α(t) ∈ U

}
,

is a stopping time with respect to (Dt (E)), but not with respect to (D0
t (E)) [42,

Proposition I.4.6].

Proposition 4.10. Let t > 0. Given a continuous bounded function θ : E → R,
s ∈ [0, t) and ε > 0, let θ#s denote the evaluation map α �→ θ(α(s)) on D(R+; E),
and let θε

#s denote the regularization

θε
#s : α → 1

ε

∫ t∧(s+ε)

s
θ(α(σ )) dσ (4.37)

of θ#s . Then θε
#s is a Dt−(E)-measurable bounded function, continuous for the

Skorokhod topology. Let H denote the set of functions

H = θ
1,ε1
#s1

· · · θk,εk#sk
, (4.38)
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where k � 1, 0 � s1 < · · · < sk < t , 0 < ε1, . . . , εk , θ1, . . . , θk ∈ Cb(E). Then
every characteristic function 1A of a cylindrical set A ∈ Dt−(E) of the form

A = {α ∈ D(R+; E);α(τ1) ∈ B1, . . . , α(τk) ∈ Bk} , (4.39)

for B1, . . . , Bk closed subsets of E and 0 � τ1 < · · · < τk < t , is the bounded
pointwise limit of a sequence of functions inH.

Proof of Proposition 4.10. This is essentially theproof of [30,Lemma1.45p. 335].
Let α ∈ D(R+; E) and let (αn) be a sequence in D(R+; E) such that αn → α

almost everywhere on [0, t]; this is the case if αn → α in D(R+; E) since
αn(σ ) → α(σ) for every σ not in the (countable) jump set of α. Then, by the
dominated convergence theorem, θε

#s(αn) → θε
#s(α). Therefore θε

#s is a bounded
function, continuous for the Skorokhod topology. It isDt−(E)-measurable since it
is the bounded pointwise limit when η → 0 of the sequence ofDt−(E)-measurable
functions

α → 1

ε

∫ (t−η)∧(s+ε)

s
θ(α(σ )) dσ.

Let us prove the last point. We can choose some sequences of continuous bounded
functions θn1 , . . . , θnk : E → R converging pointwise to the characteristic functions
1B1 , . . . , 1Bk (by considering, for example, the function distance to Bj , which is
continuous). Since θε

#s is approaching θ#s for the bounded pointwise convergence,
the result follows. 
�
Remark 4.1. Note that the function H defined by (4.38) is more than merely con-
tinuous for the Skorokhod topology. Indeed, what we have seen in the proof of
Proposition 4.10 is that, for anyα ∈ D(R+; E) and any sequence (αn) in D(R+; E)

such that αn → α almost everywhere on [0, t], we have H(αn) → H(α).

Let us set

{ f̃ } = (〈 f̃ , ϕ j 〉) j∈N, E = R
∞ × R

∞ × U.

Recall that R∞ is the product space
∏

ϕ∈� R endowed with the topology of point-
wise convergence. Since E is a product of Polish spaces, it is a Polish space. Since
the product of D(R+;R∞) with C(R+;R∞ × U) is, topologically, a subset of
D(R+; E), the triplet ({ f̃ }, {M̃}, W̃ ) is an element of D(R+; E).

Definition 4.2. The filtration (F̃t ) is the completion of the filtration generated by
the triplet ({ f̃ }, {M̃}, W̃ ) as follows:

F̃t = σ
(
({ f̃ }, {M̃}, W̃ )−1 (Dt (E)) ∪ {

N ∈ F̃; P̃(N ) = 0
})

, t ∈ [0, T ].
(4.40)

Note that (F̃t ) is right-continuous since (Dt (E)) is, and complete by definition.
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Step 2. Wiener process Let j : H → U denote the injection of H into U. Note
that j ◦ j∗ is a Trace-class operator on U. The Brownian motions β̃k(t) are the
components of W̃ (t) on the orthonormal basis (ek).

Lemma 4.11. The process W̃ has a modification which is a (F̃t )-adapted j ◦ j∗-
Wiener process, and there exists a collection of mutually independent real-valued
(F̃t )-Brownian motions {β̃k}k�1 such that

W̃ =
∑

k�1

β̃kek (4.41)

in C([0, T ];U).

Note: see [12, Paragraph 4.1] for the definition of a Q-Wiener process.

Proof of Lemma 4.11. It is clear that W̃ is a j ◦ j∗-cylindrical Wiener process
(this notion is stable by convergence in law; actually it can be characterized in
terms of the law of W̃ uniquely if we drop the usual hypothesis of a.s. continuity of
the trajectories. This latter property of continuity can be recovered, after a possible
modification of the process, by using Kolmogorov’s Theorem). Also W̃ is (F̃t )-
adapted by definition of the filtration (F̃t ). By [12, Proposition 4.1], we obtain the
decomposition (4.41). The P̃-a.s. convergence of the sum in (4.41) in the space
C([0, T ];U) is proved as in [12, Theorem 4.3]. 
�

Note that the last component W̃ n of Z̃ n depends a priori on n. Without loss of
generality, we will replace W̃ n by W̃ . Of course, this does not affect the almost sure
convergence of Z̃ n to Z̃ , and Lemma 4.11 asserts that this does not modify the law
of Z̃ n . This operation is not mandatory for the validity of what follows, and quite
natural since the original sequence (Zn) is stationary (as a sequence) with respect
to its last argument.

Step 3. Martingales

Proposition 4.12. Let ϕ j ∈ �. Let h̃ j,k(t) be defined by

h̃ j,k(t) =
∫

TN

∫

R

gk(x, ξ)ϕ j (x, ξ) dν̃x,t (ξ) dx .

Then, for j ∈ N, k � 1, the processes

M̃ j (t), M̃ j (t)β̃k(t) −
∫ t

0
h̃ j,k(s) ds, |M̃ j (t)|2 −

∫ t

0
‖h̃ j (s)‖2l2(N∗) ds,

(4.42)

and (W̃ (t)) are (F̃t )-martingales.

Proof of Proposition 4.12. The proof is similar to the proof of [30, Proposition 1.1
p. 522], except that we do not use any hypothesis of boundedness here since we use
the P̃-almost sure convergence and the Vitali Theorem to pass to the limit in the
expectation of the quantities of interest (an other minor difference with the proof
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of [30, Proposition 1.1 p. 522] is that M̃ is known to be continuous P̃-a.s., not only
càdlàg).

Let t1, t2 ∈ R+, t1 < t2 and let H be a Dt1−(E)-measurable bounded function
as in (4.38). By identities of the laws of Mn

ϕ and M̃n
ϕ , we have

Ẽ|M̃n
ϕ j

(t2) − M̃n
ϕ j

(t1)|2 = E|Mn
ϕ j

(t2) − Mn
ϕ j

(t1)|2.
Using (4.21), it follows that

sup
n

Ẽ

∣
∣
∣H

(
{ f̃ n}, {M̃n}, W̃

) [
M̃n

ϕ j
(t2) − M̃n

ϕ j
(t1)

]∣
∣
∣
2

< +∞,

since H is bounded. We have, in addition,
(
{ f̃ n}, {M̃n}, W̃

)
→

(
{ f̃ }, {M̃}, W̃

)
(4.43)

almost everywhere, P̃-almost surely by Proposition 4.9, and thus,

H
(
{ f̃ n, }, {M̃n}, W̃

)
→ H

(
{ f̃ }, {M̃}, W̃

)
,

P̃-almost surely. There is also convergence

M̃n
ϕ j

(t2) − M̃n
ϕ j

(t1) → M̃ j (t2) − M̃ j (t1)

P̃-almost surely. By Vitali’s Theorem, we obtain

Ẽ

[
H

(
{ f̃ n, }, {M̃n}, W̃

) (
M̃n

ϕ j
(t2) − M̃n

ϕ j
(t1)

)]

→ Ẽ

[
H

(
{ f̃ }, {M̃}, W̃

) (
M̃ j (t2) − M̃ j (t1)

)]
. (4.44)

By identities of the laws, the left-hand side of (4.44) is

E

[
H

({ f n, }, {Mn},W ) (
Mn

ϕ j
(t2) − Mn

ϕ j
(t1)

)]
= 0,

since Mn
ϕ is a (Ft )-martingale. We deduce from (4.44) thus that

Ẽ

[
H

(
{ f̃ }, {M̃}, W̃

) (
M̃ j (t2) − M̃ j (t1)

)]
= 0. (4.45)

Due to Proposition 4.10, we deduce from (4.45) that

Ẽ

[
1A

(
{ f̃ }, {M̃}, W̃

) (
M̃ j (t2) − M̃ j (t1)

)]
= 0 (4.46)

for all cylindrical sets A as in (4.39). The left-hand side of (4.46) defines a finite
measure (due to (4.21)) which coincides with the trivial measure A �→ 0 for sets
A as in (4.39). Since such sets form a π -system which generates Dt1−(E), hence
a separating class, we deduce that (4.46) holds true for all A ∈ Dt1−(E). It also
follows then that (4.45) is satisfied for all Dt1−(E)-measurable bounded function
H . Now let s, t ∈ [0, T )with s < t . Let (sn) and (tn) be some decreasing sequences
in R+, converging to s and t respectively. Let H be a Ds(E)-measurable bounded
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function. Then H is a Dsn−(R2+m)-measurable bounded function since s < sn .
By passing to the limit in (4.45) written with t1 = sn , t2 = tn (we use the right-
continuity of the processes her e), we obtain

Ẽ

[
H

(
{ f̃ }, {M̃}, W̃

) (
M̃ j (t) − M̃ j (s)

)]
= 0. (4.47)

This shows that (M̃ j (t)) is a F̃t -martingale. Theproof that (W̃ (t)) is a F̃t -martingale
is similar, we do not give the details of that point. To go on, let us now define the
processes

H̃n
j,k(t) =

∫ t

0
h̃nj,k(s) ds, H̃ j,k(t) =

∫ t

0
h̃ j,k(s) ds,

and

H̃n
j (t) =

∫ t

0
‖h̃nj (s)‖2l2(N∗) ds, H̃ j (t) =

∫ t

0
‖h̃ j (s)‖2l2(N∗) ds,

and the processes
⎧
⎪⎨

⎪⎩

Ỹ n
j,k(t) = M̃n

j (t)β̃k(t) − H̃n
j,k(t), Ỹ j,k(t) = M̃ j (t)β̃k(t) − H̃ j,k(t),

Ṽ n
j (t) = |M̃n

j (t)|2 − H̃n
j (t), Ṽ j (t) = |M̃ j (t)|2 − H̃ j (t).

To complete the proof of Proposition 4.12, we have to show that (Ỹk(t)) and
(Ṽ j (t)) are F̃t -martingale. We will use the following result:

Lemma 4.13. Let T > 0. Then, up to a subsequence, for all j ∈ N, k ∈ N
∗, P̃-

almost surely, h̃nj,k → h̃ j,k and ‖h̃nj (·)‖2l2(N∗) → ‖h̃ j (·)‖2l2(N∗) in L1(0, T ), when
n → +∞.

Lemma 4.13 implies that, P̃-almost surely, for every t ∈ [0, T ], H̃n
j,k(t) and

H̃n
j (t) are converging to H̃ j,k(t) and H̃ j (t) respectively.We have also M̃n

j → M̃ j in

C(R+), fromwhich follows the convergences M̃n
j β̃k → M̃ j β̃k and |M̃n

j |2 → |M̃ j |2
in C(R+), P̃-almost surely. We deduce that, P̃-almost surely,

Ỹ n
j,k(t) → Ỹ j,k(t), Ṽ n

j (t) → Ṽ j (t), (4.48)

for all t � 0. With the estimate (4.21), it is easy to obtain the bounds

Ẽ|Ỹ n
j,k(t) − Ỹ n

j,k(s)|2 � C, Ẽ|Ṽ n
j (t) − Ṽ n

j (s)|2 � C, (4.49)

where the constant C depend on s, t ∈ [0, T ], k, but not on n. By (4.48) and
(4.49) (this last condition shows the equi-integrability of (Ỹ n

j,k(t) − Ỹ n
j,k(s)) and

(Ṽ n
j (t)− Ṽ n

j (s)) respectively), we can use the arguments applied to the martingale

M̃n
ϕ(t) in the first part of the proof; this it will establish that Ỹ j,k(t) and Ṽ j (t) are

(F̃t )-martingales. 
�
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Let us now give the

Proof of Lemma 4.13. Let us first show that, for all j, k, we have the following
convergence:

h̃nj,k → h̃ j,k in L2((0, T ) × �̃). (4.50)

Define, for every ψ ∈ Cb(T
N × R),

h̃nψ(t) =
∫

TN

∫

R

ψ(x, ξ) dν̃nx,t (ξ) dx, h̃ψ(t) =
∫

TN

∫

R

ψ(x, ξ) dν̃x,t (ξ) dx .

(4.51)

If ψ ∈ C1
c (T

N × R), then h̃nψ(t) = 〈 f̃ n(t), ∂ξψ〉. By Proposition 4.9, we have,

P̃-almost surely,

for all t ∈ [0, T ]\B̃, h̃nψ(t) → h̃ψ(t). (4.52)

Using the Jensen inequality, we have

‖h̃nψ − h̃ψ‖2
L2((0,T )×�̃)

� 4T ‖ψ‖2Cb(T
N×R)

. (4.53)

By the Vitali Theorem, we obtain the convergence h̃nψ → h̃ψ in L1((0, T ) × �̃).
Using (4.53) as well, we see that this convergence can be extended to the case of
a general integrand ψ ∈ Cb(T

N × R). Let us then take ψ = gkϕ j . We obtain first
h̃nj,k → h̃ j,k in L2((0, T )×�̃). It follows that, up to a subsequnce, P̃-almost surely,

h̃nj,k → h̃ j,k in L2(0, T ), hence in L1(0, T ). The subsequence and the P̃-almost
sure property can be made independent on j, k, since � × N

∗ is countable. The
growth hypothesis (1.3) also shows that

∑

k

‖h̃nj,k − h̃ j,k‖2L2((0,T )×�̃)
� 4D0(1 + C2)T ‖ϕ j‖2Cb(T

N×R)
.

Again, using the dominated convergence theorem, we deduce that

‖h̃nj‖2l2(N∗) → ‖h̃ j‖2l2(N∗)

in L1((0, T ) × �̃), which allows us to conclude the proof of the lemma. 
�
Step 4. Conclusion of the martingale method Let us first prove that M∗

ϕ(t) given
in (4.36) is well-defined.

Lemma 4.14. Item 3 in Theorem 4.6 is satisfied, that is: for all ψ ∈ Cb(R),
(x, t) �→ 〈ψ, ν̃x,t 〉 belongs to L2

P̃ (TN × [0, T ] × �̃).
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Proof of Lemma 4.14. For ψ ∈ Cb(R), set X̃ψ(x, t) = 〈ψ, ν̃x,t 〉. We have X̃ϕ ∈
L2(TN × [0, T ] × �̃), with

Ẽ‖X̃ψ‖2L2(TN×[0,T ]) � ‖ψ‖2Cb(R)T . (4.54)

If θ ∈ C(TN ), and if ψ is C1, vanishes in the neighbourhood of −∞ and satisfies
ψ ′ ∈ Cc(R), then, due to (2.31), we have

〈X̃ψ(t), θ〉L2(TN ) = 〈 f̃ (t), ϕ〉, ϕ(x, ξ) := θ(x)ψ ′(ξ).

By Item 7 of Theorem 4.6, the process Yt := 〈X̃ψ(t), θ〉L2(TN ) is càdlàg. Since (Yt )

is adapted by definition of (F̃t ), it is an optional process [42, p. 172]. In particular,
(Yt ) is progressively measurable [42, Proposition 4.8], hence Y ∈ L2

P̃ ([0, T ] ×
�̃). A limiting argument (by approximation and truncation of the function ψ in
particular), using (4.54) and the fact that ν̃ vanishes at infinity shows that the
result holds true when ψ is merely a function in Cb(R) and θ any function in
L2(TN ). We obtain, therefore, that, for allψ ∈ Cb(R), Xψ belongs to L2

P̃ ([0, T ]×
�̃; L2(TN ) − weak). Since being weakly or strongly P̃-measurable is the same
thing, (cf. Section 2.1.1), we have established the result. 
�

We can apply now Proposition 4.2. Indeed, due to Lemma 4.14, the processes
h̃ j,k in Proposition 4.12 are in L2

P̃ ([0, T ] × �̃). By the martingale property (4.42),

we conclude that M̃ϕ(t) = M∗
ϕ(t), with M∗

ϕ(t) defined by (4.36), for every ϕ ∈ �.

4.5.4. Identification of the Limit: Equation We now prove (4.23). Let ϕ ∈ �.
By item 2 and item 6 of Theorem 4.6, using also the identity M̃ϕ(t) = M∗

ϕ(t), we
have the identification

J̃ϕ(t) =
∫ t

0
〈 f̃ (s), a(ξ) · ∇ϕ〉 ds +

∑

k�1

∫ t

0

∫

TN

∫

R

gk(x, ξ)ϕ(x, ξ) dν̃x,s(ξ) dx dβ̃k(s)

+ 1

2

∫ t

0

∫

TN

∫

R

∂ξϕ(x, ξ)G2(x, ξ) dν̃x,s(ξ) dx ds.

The equation (4.23) follows therefore from the identity (4.34).

4.6. Pathwise Solutions and Almost Sure Convergence

If f0 is at equilibrium in Theorem 4.6, then we have seen in Theorem 3.2 that
(1.1) admits a unique solution for a given initial datum. We can use this uniqueness
result to obtain the existence of a pathwise solution and convergence in L p of the
sequence of approximate solutions in that case.

Theorem 4.15. (Pathwise solution). Suppose that there exists a sequence of approx-
imate generalized solutions ( f n) to (1.1) with initial datum f n0 satisfying (4.10),
(4.14) and the tightness condition (4.15) and such that ( f n0 ) converges to the equi-
librium function f0(ξ) = 1u0>ξ in L∞(TN × R)-weak-*, where u0 ∈ L∞(TN ).
We then have



Sylvain Dotti & Julien Vovelle

1. there exists a unique solution u ∈ L1(TN × [0, T ] × �) to (1.1) with initial
datum u;

2. let

un(x, t) =
∫

R

ξ dνnx,t (ξ) =
∫

R

(
f n(x, t, ξ) − 10>ξ

)
dξ.

Then, for all p ∈ [1,∞[, (un) is converging to u with the following two different
modes of convergence: un → u in L p(TN ×(0, T )×�) and, for a subsequence
(nk), almost surely, for all t ∈ [0, T ], unk (t) → u(t) in L p(TN ).

Proof of Theorem 4.15. We use the Gyöngy-Krylov argument, [24, Lemma 1.1]
(the basis of the Gyöngy-Krylov argument is this simple fact: if a couple (Xn,Yn)
of random variables converges in law to a random variable written (Z , Z), that is
concentrated on the diagonal, then Xn − Yn converges to 0 in probability). Let us
go back to Section 4.5.1. We introduce the random variable

Zn,q = (νn, {Jn}, {Mn}, {εn}, { f nin}, μn, ‖mn‖, νq , {Jq }, {Mq }, {εq }, { f qin}, μq , ‖mq‖,W )

in the state space Z equal to

Y1 × E × P1(TN × [0, T ] × R) × R+ × Y1 × E × P1(TN × [0, T ] × R)

×R+ × XW .

We repeat the arguments used in Section 4.5 to show that Zn,q is tight inZ and that
there exists a probability space (�̃, F̃ , P̃) and a new random variable Z̃ n,q with the
same law as Zn,q , such that a subsequence (Z̃ nl ,ql )l is converging P̃-almost surely
in Z to a random variable Z̃ . Let ν̃ be the the first component of Z̃ and ˇ̃ν be the
seventh component of Z̃ . Repeating all steps from Section 4.5.2, 4.5.3, 4.5.4, we
obtain the generalized solutions

f̃ (x, t, ξ) = ν̃(x,t)(ξ,+∞) and ˇ̃f (x, t, ξ) = ˇ̃ν(x,t)(ξ,+∞),

to Equation (1.1) with probabilistic data (�̃, F̃ , P̃, (F̃t ), W̃ ), where (F̃t ) is the

completion of the filtration generated by the five-uplet ({ f̃ }, {M̃}, { ˇ̃f }, { ˇ̃M}, W̃ )

F̃t = σ
(
({ f̃ }, {M̃}, { ˇ̃f }, { ˇ̃M}, W̃ )−1

(
Dt (E) × Dt (Ě)

)
∪ {

N ∈ F̃; P̃(N ) = 0
})

for t ∈ [0, T ], with
E := R

∞ × R
∞, Ě := R

∞ × R
∞ × U.

Note thatDt (E)×Dt (Ě) �= Dt (E× Ě), since the natural topologies of D(R+; E)×
D(R+; Ě) and D(R+; E×Ě) are different (the topologyof the former is the product
topology of the Skorokhod topologies on each space; this authorizes two changes
of times, one for each coordinate; for the Skorokhod topology on D(R+; E × Ě),

only one change of time is admissible). The solutions f̃ and ˇ̃f have the same initial
condition f0, which is an equilibrium function f0. By Theorem 3.2, we have

f̃ = ˇ̃f = f, (4.55)
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where f is the equilibrium function 1ũ>ξ , where

ũ(x, t) :=
∫

R

ξ dν̃(x,t)(ξ).

A first consequence of (4.55) is that ν̃ = ˇ̃ν, P̃-almost surely. By Remark 3.2 on the
uniqueness of the kinetic measure, we have also m̃ = ˇ̃m, P̃-almost surely. We apply
theGyöngy-Krylov argument: we obtain that (νn) is converging in probability inY1

and (mn) is converging in probability inMb(T
N ×[0, T ]×R)-weak-*. Extracting

an additional subsequence if necessary, we can assume that the convergences are
also P-almost sure. By the arguments of the sections 4.5.2, 4.5.3, 4.5.4, it follows
that f (t, x, ξ) := νx,t (ξ,+∞) is a generalized solution to (1.1). Note, to give few
details, that we do not need to follow Step 1 and Step 2 of Section 4.5.3 here,
since the filtration (Ft ) and the Wiener processes βk(t) are already known here.
The convergence of the stochastic integral in Jnϕ (t) does not require the martingale
method of Step 3. of Section 4.5.3 either. Using the L2 convergence of the integr
and (cf. Lemma 4.13) is sufficient by the Itô isometry.

We use the second identity in (4.55) now. This states, equivalently, that P̃-almost
surely, for almost every (x, t), ν̃(x,t) = δũ(x,t). The fact that ν̃ is a Dirac mass can
be characterized in terms of equality in the Jensen Inequality:

Ẽ

∫∫

TN×(0,T )

�

(∫

R

ξ dν̃(x,t)(ξ)

)

dx dt = Ẽ

∫∫

TN×(0,T )

∫

R

�(ξ) dν̃(x,t)(ξ) dx dt,

(4.56)

where � is a strictly convex, polynomially bounded function, like �(ξ) = ξ2 for
example. The identity (4.56) depends on Law(ν̃) = Law(ν) uniquely. Therefore
ν also is almost surely a Dirac mass; P-almost surely, for almost every (x, t),
ν(x,t) = δu(x,t), where

u(x, t) :=
∫

R

ξ dν(x,t)(ξ).

(Remark that ν(x,t) = δu(x,t) a.s., almost everywhere, is also a consequence of
Theorem 3.2. However this theorem is difficult to show, and, although we have
already used Theorem 3.2, the argument based on (4.56) is simple and natural.) By
Proposition 2.8, u is a solution to (1.1); it is the unique solution by Theorem 3.2.
Using Lemma 2.6 as well, we have ‖un − u‖p

L p(TN×(0,T ))
→ 0 in probability. We

also have the uniform bound

E‖un − u‖pr
L p(TN×(0,T ))

� C, (4.57)

where r > 1 andC is independent on n. Taking (4.57) for granted, we deduce, with
the convergence in probability, that E‖un −u‖p

L p(TN×(0,T ))
→ 0 and we obtain the

first part of the second point of Theorem 4.15. The bound (4.57) follows from the
estimate

E‖un − u‖pr
L p(TN×(0,T ))

� E‖un − u‖pr
L pr (TN×(0,T ))

T r−1,
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as well as (2.5) and (4.10). To prove this almost surely, for all t ∈ [0, T ], unk (t) →
u(t) in L p(TN ), we use Lemma 2.6 and Proposition 4.9. This gives, almost surely,
for all t ∈ [0, T ]\Bat,unk (t) → u(t) in L p(TN ),where Bat is defined inLemma2.1.
Since, almost surely,u is continuous in timewith values in L p(TN )byCorollary 3.3,
it follows from (2.34) that Bat is empty. This gives the desired result. 
�

5. Some Applications

5.1. Vanishing Viscosity Method

Assume that (1.3) and (1.4) are satisfied. Consider the parabolic approximation
to (1.1):

duη + div(A(uη)) dt − η�uη dt = �η(x, uη) dW (t). (5.1)

For η > 0 and uη
0 ∈ L∞(TN ), the existence of solutions to (5.1) under the initial

condition uη(0) = uη
0 has been proved in [25] provided the noise has a finite number

of components. Therefore, we assume [compare to (1.2)]

�η(x, u) =
∑

1�k�Kη

gk(x, u)ek, (5.2)

where Kη is finite, Kη → +∞ when η → 0. Let (ηn) ↓ 0. In [14], we have
shown that the sequence (uηn ) gives rise to a sequence of approximate generalized
solutions ( f n), with random measure mn , given by

f n = fn = 1uηn>ξ ,

〈mn, ϕ〉 =
∫∫

TN×(0,T )

ϕ(x, t)ηn|∇xu
ηn (x, t)|2 dx dt,

εn(t, ϕ) = ηn

∫ t

0

∫

TN
fn(x, s, ξ)�ϕ(x, ξ) dξ dx ds.

Here the order is d = 2. Let p ∈ [1,+∞). By Theorem 4.15, we recover the result
given in [14] of convergence uη → u in L p(TN × (0, T ) × �), where u is the
solution to (1.1) with initial datum u0. We also obtain that, if (ηn) ↓ 0, then, for a
subsequence (nk), almost surely, for all t ∈ [0, T ], uηnk (t) → u(t) in L p(TN ).

5.2. BGK Approximation

We consider now the following BGK approximation to (1.1):

d f η + a(ξ) · ∇x f
η dt = fη − f η

η
dt − ∂ξ f

η�η dW (t) − 1

2
∂ξ (G2∂ξ (− f η)),

(5.3)

fη := 1uη>ξ , uη =
∫

R

( f η(ξ) − 10>ξ ) dξ. (5.4)
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Assume (5.2), and assume that (1.4) is satisfied and that (instead of (1.3)), either
G2(x, ξ) � D0|ξ2| orG2(x, ξ) � D0 is satisfied.M.Hofmanová has proved in [27]
the existence of solutions to (5.3)–(5.4) with given initial datum f η

0 = fη
0 = 1uη

0>ξ

(the fact that the initial datum is at equilibrium can be relaxed). Let (ηn) ↓ 0. Then
f n := f ηn provides a sequence of generalized approximate solutions of order
d = 0, with

∂ξm
n = fn − f n

ηn
,

εn(t, ϕ) = 0.

Let u0 ∈ L∞(TN ). Assume uηn
0 → u0 in L p(TN ) for all p ∈ [1,+∞), and let

u be the solution to (1.1) with initial datum u0. By Theorem 4.15, we recover the
convergence un → u proved in [27]. We also have, for a subsequence (nk), almost
surely, that for all t ∈ [0, T ], unk (t) → u(t) in L p(TN )

5.3. Approximation by the Finite Volume Method

The approximation of (1.1) by the Finite Volume method is considered in the
companion paper [16].
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