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Abstract

We develop a general framework for the analysis of approximations to stochastic
scalar conservation laws. Our aim is to prove, under minimal consistency properties
and bounds, that such approximations are converging to the solution to a stochastic
scalar conservation law. The weak probabilistic convergence mode is convergence
in law, the most natural in this context. We use also a kinetic formulation and
martingale methods. Our result is applied to the convergence of the Finite Volume
Method in the companion paper [15].
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1 Introduction

Let (Ω,F ,P, (Ft), (βk(t))) be a stochastic basis and let T > 0. Consider the first-order
scalar conservation law with stochastic forcing

du(x, t) + div(A(u(x, t)))dt = Φ(x, u(x, t))dW (t), x ∈ TN , t ∈ (0, T ). (1)

Equation (1) is periodic in the space variable: x ∈ TN where TN is the N -dimensional
torus. The flux function A in (1) is supposed to be of class C2: A ∈ C2(R;RN ).
We assume that A and its derivatives have at most polynomial growth. The right-
hand side of (1) is a stochastic increment in infinite dimension. It is defined as follows
(see [11] for the general theory): W is a cylindrical Wiener process, W =

∑
k≥1 βkek,

where the coefficients βk are independent Brownian processes and (ek)k≥1 is a complete
orthonormal system in a Hilbert space H. For each x ∈ TN , u ∈ R, Φ(x, u) ∈ L2(H,R)
is defined by Φ(x, u)ek = gk(x, u) where gk(·, u) is a regular function on TN . Here,
L2(H,K) denotes the set of Hilbert-Schmidt operator from the Hilbert space H to an
other Hilbert space K. Since K = R in our case, this set is isomorphic to H, thus we
may also define

Φ(x, u) =
∑
k≥1

gk(x, u)ek,

the action of Φ(x, u) on e ∈ H being given by 〈Φ(x, u), e〉H . We assume gk ∈ C(TN×R),
with the bounds

G2(x, u) = ‖Φ(x, u)‖2H =
∑
k≥1

|gk(x, u)|2 ≤ D0(1 + |u|2),

(2)

‖Φ(x, u)− Φ(y, v)‖2H =
∑
k≥1

|gk(x, u)− gk(y, v)|2 ≤ D1(|x− y|2 + |u− v|h(|u− v|)),

(3)
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where x, y ∈ TN , u, v ∈ R, and h is a continuous non-decreasing function on R+ such
that h(0) = 0. We assume also 0 ≤ h(z) ≤ 1 for all z ∈ R+.

Notation: in what follows, we will use the convention of summation over repeated indices
k. For example, we write W = βkek for the cylindrical Wiener process in (1).

This paper is a preliminary work to the analysis of convergence of the numerical ap-
proximation to (1) by the Finite Volume method with monotone fluxes, which is done in
[15]. We give a general notion of family of approximate solutions, see Definition 23, and
explain what kind of convergence of such family can be expected. Our main results in
this regard are Theorem 29 about convergence to martingale solutions and Theorem 40
which gives criteria for convergence to path-wise solutions.

Problem (1) has already been studied in a series of papers. Like in the deterministic
case, the approach to the existence of solutions has been the vanishing viscosity method,
see [17, 31, 19, 41, 13, 9, 4, 5, 29] in particular. Approximation by the BGK method
has been considered by M. Hofmanová in [25]. Some results of convergence of numerical
approximations to (1) (by the Finite Volume method in particular) have also be obtained
in [33, 2, 3, 1, 30, 32].

The main difference between this present paper and all the works cited above is in the
way to answer to the following question: when considering the convergence of approx-
imations to (32), which mode of convergence regarding the sample variable ω is used?
Here, we develop an approach based on convergence in law, while in the work referred
to1, weak convergence (in Lebesgue spaces, or in the sense of Young measures, cf. Sec-
tion 2.2) is considered. Convergence in law is the natural mode of convergence for the
random variables which manifest in the approximation to (1). We are aware, however,
that the difference between convergence in law and weak convergence is a particular tech-
nical issue, with no specific consequences on the kind of results that can be obtained.
Nevertheless, it seemed important to us to develop fully the approach by convergence in
law. To achieve this is also a way to expand the theory of stochastic first-order scalar
conservation laws by kinetic formulation initiated in [13]. Indeed, in the companion
paper [15], the convergence of The Finite Volume method is obtained after a kinetic
re-formulation of the numerical scheme.

To complete this introduction, let us mention that the approximation of scalar conser-
vation laws with stochastic flux has also been considered in [22] (time-discrete scheme)
and [37] (space discrete scheme). For the corresponding Cauchy Problem, see [35, 34,
36, 21, 20, 26].

The plan of the paper is the following one: Section 2 to Section 4 are devoted to the
analysis of the Cauchy Problem for (1): we introduce the kinetic formulation of the
problem in Section 2, and prove a uniqueness result in Section 3. In Section 4, we

1with the exception of [19], where quite a strong notion of solution is used however
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develop a general approach to the analysis of convergence of approximate solutions to
(1) based on martingale methods. Note that Section 2 and Section 3 are for a large part
identical to Section 2 and Section 3 in [13]. There are however a lot of modifications,
which were needed to prepare Section 4.

2 Kinetic solution

2.1 Definition

2.1.1 Predictable sets and functions

For T > 0, we denote by B([0, T ]) the Borel σ-algebra on [0, T ] and we denote by
PT ⊂ B([0, T ]) ⊗ F the predictable σ-algebra, [10, Section 2.2]. If E is a Banach
space, a process (f(t)) with values in E is said to be weakly-predictable if the process
(〈f(t), ϕ〉E,E′) is predictable for every ϕ in the topological dual E′. This is equivalent to
say that f is weakly PT -measurable, in the sense of [42, Definition 1, p.130]. Similarly,
we can define the notion of strong predictability: the process (f(t)) is said to be strongly
predictable if there exists a sequence of E-valued, PT -measurable simple functions which
converges to f at every point (t, ω) in a set of full measure in [0, T ] × Ω. By Pettis’
Theorem, [42, Theorem p.131], the two notions of measurability coincide if E is separable:
in this case we say simply ”predictable”.

Let us assume that E is separable to introduce the following notations. Let p ∈ [1,+∞).
The set Lp([0, T ] × Ω;E) is the set of E-valued, B([0, T ]) ⊗ F-measurable, Bochner
integrable functions f which satisfy∫∫

[0,T ]×Ω
‖f(t, ω)‖pEd(L × P)(t, ω) < +∞,

where L is the Lebesgue measure on [0, T ]. Equivalently, by definition of the product
measure L × P,

E
∫ T

0
‖f(t)‖pEdt < +∞.

We denote by LpP([0, T ]×Ω;E) the set of functions g in Lp([0, T ]×Ω;E) which are equal
L × P-almost everywhere to a predictable function f . This is the case if, and only if,
〈g, ϕ〉 is equal L× P-almost everywhere to 〈f, ϕ〉 for all ϕ ∈ E′ (we use the fact that E′

is separable since E is separable), so let us briefly consider the case E = R. The class of
processes in LpP([0, T ] × Ω;R) is analysed in [10, p. 66] or [40, p. 172]. In particular, if
X(t) is an adapted process with

E
∫ T

0
|X(t)|pdt < +∞,

then X ∈ LpP([0, T ]× Ω;R). A progressively measurable process X in Lp([0, T ]× Ω;R)
also is in LpP([0, T ]× Ω;R).
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Let m ∈ N∗. In the case where E is itself a Lebesgue space E = Lp(D), where D is an
open subset of Rm, we have Lp([0, T ]×Ω;Lp(D)) = Lp(D×[0, T ]×Ω), where D×[0, T ]×Ω
is endowed with the product measure Lm+1×P (Lm being the m-dimensional Lebesgue
measure), see [16, Section 1.8.1]. Similarly, we have

LpP([0, T ]× Ω;Lp(D)) = LpP(D × [0, T ]× Ω),

where LpP(D × [0, T ] × Ω) is the set of functions in Lp(D × [0, T ] × Ω) which are equal
Lm × L × P-almost everywhere to a B(D) × PT -measurable function (here B(D) is the
Borel σ-algebra on D). We will apply these results with D = (0, 1)N , in which case, by
periodic extension, we obtain

Lp([0, T ]× Ω;Lp(TN )) = Lp(TN × [0, T ]× Ω), (4)

and similarly for spaces LpP .

2.1.2 Kinetic measure, solution

LetMb(TN × [0, T ]×R) be the set of bounded Borel signed measures on TN × [0, T ]×R.
We denote by M+

b (TN × [0, T ]× R) the subset of non-negative measures.

Definition 1 (Random measure). A map m from Ω to Mb(TN × [0, T ]× R) is said to
be a random signed measure (on TN × [0, T ]× R) if, for each φ ∈ Cb(TN × [0, T ]× R),
〈m,φ〉 : Ω → R is a random variable. If almost-surely m ∈ M+

b (TN × [0, T ] × R), we
simply speak of random measure.

If m is a random measure, then Em is well defined and this is a measure on TN×[0, T ]×R.
In particular, it satisfies the following tightness condition

lim
R→+∞

Em(TN × [0, T ]×Bc
R) = 0, (5)

where Bc
R = {ξ ∈ R, |ξ| ≥ R}. We note this fact here, since uniform versions of (5) will

be required when considering sequences of random measures, see (66).

To define a notion of solution, we introduce the following time averages (cf. Remark 3):
let T > 0 and let u ∈ Lp(TN × [0, T ]× Ω). For ε ∈ (0, T/2), we set

M+
ε u(t) =

1

ε

∫ T∧(t+ε)

t
u(s)ds, M−ε u(t) =

1

ε

∫ t

0∨(t−ε)
u(s)ds, t ∈ (0, T ). (6)

We also fix a decreasing sequence (εn) such that ε0 < T/2 and εn ↓ 0.

Definition 2 (Solution). Let u0 ∈ L∞(TN ). A function u ∈ L1(TN × [0, T ]×Ω) is said
to be a solution to (1) with initial datum u0 if

1. u ∈ L1
P(TN × [0, T ]× Ω),
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2. for all p ∈ [1,+∞), there exists Cp ≥ 0 such that

E

(
sup
n

sup
t∈[0,T ]

‖M±εnu(t)‖p
Lp(TN )

)
≤ Cp, (7)

3. there exists a random measure m such that f := 1u>ξ satisfies: for all ϕ ∈ C1
c (TN×

[0, T )× R),∫ T

0
〈f(t), ∂tϕ(t)〉dt+ 〈f0, ϕ(0)〉+

∫ T

0
〈f(t), a(ξ) · ∇ϕ(t)〉dt

= −
∑
k≥1

∫ T

0

∫
TN

gk(x, u(x, t))ϕ(x, t, u(x, t))dxdβk(t)

− 1

2

∫ T

0

∫
TN

∂ξϕ(x, t, u(x, t))G2(x, u(x, t))dxdt+m(∂ξϕ), (8)

a.s., where f0(x, ξ) = 1u0(x)>ξ, G2 :=
∑∞

k=1 |gk|2 and a(ξ) := A′(ξ).

Remark 3 (Time averages). A solution u in the sense of Definition 2 is not a process
in the usual sense since it is only defined almost everywhere with respect to time. Part
of our work below is to show that u has a natural representative which has almost-sure
continuous trajectories with values in Lp(TN ) (p ∈ [1,+∞)), see Corollary 21. If u(t)
was known to have some continuity properties from the start, then we would require
simply that

E

(
sup
t∈[0,T ]

‖u(t)‖p
Lp(TN )

)
≤ Cp, (9)

instead of (7).

In (8), we have used the brackets 〈·, ·〉 to denote the duality between C∞c (TN × R) and
the space of distributions over TN × R. In what follows, we will denote similarly the
integral

〈F,G〉 =

∫
TN

∫
R
F (x, ξ)G(x, ξ)dxdξ, F ∈ Lp(TN × R), G ∈ Lq(TN × R),

where 1 ≤ p ≤ +∞ and q is the conjugate exponent of p. In (8) also, we have used (with
φ = ∂ξϕ) the shorthand m(φ) for

m(φ) =

∫
TN×[0,T ]×R

φ(x, t, ξ)dm(x, t, ξ), φ ∈ Cb(TN × [0, T ]× R).

6



2.2 Generalized solutions

With the purpose to prepare the proof of existence of solution, we introduce the following
definitions.

Definition 4 (Young measure). Let (X,A, λ) be a finite measure space. Let P1(R)
denote the set of probability measures on R. We say that a map ν : X → P1(R) is a
Young measure on X if, for all φ ∈ Cb(R), the map z 7→ νz(φ) from X to R is measurable.
We say that a Young measure ν vanishes at infinity if, for every p ≥ 1,∫

X

∫
R
|ξ|pdνz(ξ)dλ(z) < +∞. (10)

Proposition 5 (An alternative definition of Young measures). Let (X,A, λ) be a mea-
sure space with λ(X) = 1. Let L be the Lebesgue measure on R and let Y1 be the set
of probability measures ν on (X × R, λ× L) such that π#ν = λ, where π#ν is the push
forward of ν by the projection π : X ×R→ X. Then Y1 is the set of Young measures as
defined in Definition 4.

For the proof of this result, which uses the Disintegration Theorem, we refer to the
discussion in [8, p.19-20] on the spaces Y1 and Y1

dis (“dis” for “disintegration”: this
corresponds to the Definition 4). Note that there is no loss in generality in assuming
λ(X) = 1.

Definition 6 (Kinetic function). Let (X,A, λ) be a finite measure space. A measurable
function f : X×R→ [0, 1] is said to be a kinetic function if there exists a Young measure
ν on X that vanishes at infinity such that, for λ-a.e. z ∈ X, for all ξ ∈ R,

f(z, ξ) = νz(ξ,+∞).

We say that f is an equilibrium if there exists a measurable function u : X → R such
that f(z, ξ) = f(z, ξ) = 1u(z)>ξ a.e., or, equivalently, νz = δξ=u(z) for a.e. z ∈ X.

Definition 7 (Conjugate function). If f : X×R→ [0, 1] is a kinetic function, we denote
by f̄ the conjugate function f̄ := 1− f .

We also denote by χf the function defined by χf (z, ξ) = f(z, ξ)− 10>ξ. This correction
to f is integrable on R. Actually, it is decreasing faster than any power of |ξ| at infinity.
Indeed, we have χf (z, ξ) = −νz(−∞, ξ) when ξ < 0 and χf (z, ξ) = νz(ξ,+∞) when
ξ > 0. Therefore

|ξ|p
∫
X
|χf (z, ξ)|dλ(z) ≤

∫
X

∫
R
|ζ|pdνx,t(ζ)dλ(z) <∞, (11)

for all ξ ∈ R, 1 ≤ p < +∞.

The so-called kinetic functions appear naturally when one examines the stability of a
sequence of solutions to (1). We discuss this topic in details in Section 4, but let us
already mention the following compactness results.
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Theorem 8 (Compactness of Young measures). Let (X,A, λ) be a finite measure space
such that A is countably generated. Let (νn) be a sequence of Young measures on X
satisfying (10) uniformly for some p ≥ 1:

sup
n

∫
X

∫
R
|ξ|pdνnz (ξ)dλ(z) < +∞. (12)

Then there exists a Young measure ν on X and a subsequence still denoted (νn) such
that, for all h ∈ L1(X), for all φ ∈ Cb(R),

lim
n→+∞

∫
X
h(z)

∫
R
φ(ξ)dνnz (ξ)dλ(z) =

∫
X
h(z)

∫
R
φ(ξ)dνz(ξ)dλ(z). (13)

The convergence (13) is the convergence for the τWY1 topology defined in [8, p.21]. By

[8, Corollary 4.3.7], (12) implies that the set {νn;n ∈ N} is τWY1-relatively compact,
and for this result, it is not necessary to assume that A is countably generated. This
latter hypothesis is used as a criteria of metrizability of τWY1 , [8, Proposition 2.3.1]. A
consequence of Theorem 8 is the following proposition.

Corollary 9 (Compactness of kinetic functions). Let (X,A, λ) be a finite measure space
such that A is countably generated. Let (fn) be a sequence of kinetic functions on X×R:
fn(z, ξ) = νnz (ξ,+∞) where νn are Young measures on X satisfying (12). Then there
exists a kinetic function f on X × R such that fn ⇀ f in L∞(X × R) weak-*.

We will also need the following result.

Lemma 10 (Convergence to an equilibrium). Let (X,A, λ) be a finite measure space.
Let p > 1. Let (fn) be a sequence of kinetic functions on X × R: fn(z, ξ) = νnz (ξ,+∞)
where νn are Young measures on X satisfying (12). Let f be a kinetic function on X×R
such that fn ⇀ f in L∞(X × R) weak-*. Assume that fn and f are equilibria:

fn(z, ξ) = 1un(z)>ξ, f(z, ξ) = 1u(z)>ξ.

Then, for all 1 ≤ q < p, un → u in Lq(X) strong.

Proof of Lemma 10. Let r ∈ [1,+∞]. By choosing θ′(ξ)γ(z) as a test function, and
by use of a standard approximation procedure, we obtain∫

X
θ(un(z))γ(z)dz →

∫
X
θ(u(z))γ(z)dz (14)

for all θ ∈ C1(R), γ ∈ Lr(X) such that supn ‖θ(un)‖Lr′ (X) < +∞, where r′ is the

conjugate exponent to r. Assume first p > 2. We show the strong convergence of (un)
to u in L2(X), by developing the scalar product

‖u− un‖2L2(X) = ‖u‖2L2(X) + ‖un‖2L2(X) − 2〈u, un〉L2(X).
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The convergence of the norms follows from (14) with θ(ξ) = ξ, γ(z) = 1. The weak
convergence 〈u, un〉L2(X) → ‖u‖2L2(X) follows from (14) with θ = 1, γ = u. Still when
p > 2, the remaining cases 1 ≤ q < p are obtained by interpolation and by the uniform
bound on ‖un‖Lp(X). If p ≤ 2 now, we notice that, for every R > 0, the truncate
functions

TR(un) := min(R,max(−R, un))

satisfy (14), and we can apply the reasoning above to show TR(un) → TR(u) in Lr(X)
strong for every r < +∞. For 1 ≤ q < p, the uniform estimate

‖TR(un)− un‖Lq(X) ≤
1

R1/s
sup
n
‖un‖1+1/s

Lp(X),
1

q
=

1

p
+

1

s
,

and similarly for u, then gives the result.

In the deterministic setting, if (un) is a sequence of solutions to (1), then, due to natural
bounds and to Theorem 8, the sequence of Young measures δun on X := TN×(0, T ) has,
up to a subsequence, a limit ν. Then every non-linear expression φ(un) for φ ∈ Cb(R)
will converge to 〈φ, ν〉 in the sense of (13). This is why it is natural (cf. [14]), for such
non-linear problems as (1), to introduce the following generalization to Definition 2.

Definition 11 (Generalized solution). Let f0 : TN ×R→ [0, 1] be a kinetic function. A
measurable function f : TN × [0, T ]× R× Ω → [0, 1] is said to be a generalized solution
to (1) with initial datum f0 if

1. almost-surely, f is a kinetic function,

2. for all p ∈ [1,+∞), there exists Cp ≥ 0 such that ν := −∂ξf satisfies

E

(
sup
n

sup
t∈[0,T ]

∫
TN

∫
R
|ξ|pdM±εnνx,t(ξ)dx

)
≤ Cp, (15)

3. for all ψ ∈ Cb(R), the random map (x, t) 7→ 〈ψ, νx,t〉 belongs to L2
P(TN×[0, T ]×Ω),

4. there exists a random measure m such that for all ϕ ∈ C1
c (TN × [0, T )× R),∫ T

0
〈f(t), ∂tϕ(t)〉dt+ 〈f0, ϕ(0)〉+

∫ T

0
〈f(t), a(ξ) · ∇ϕ(t)〉dt

= −
∑
k≥1

∫ T

0

∫
TN

∫
R
gk(x, ξ)ϕ(x, t, ξ)dνx,t(ξ)dxdβk(t)

−1

2

∫ T

0

∫
TN

∫
R
∂ξϕ(x, t, ξ)G2(x, ξ)dν(x,t)(ξ)dxdt+m(∂ξϕ), a.s.

(16)

In (15), we have used the same notation as in (6): for x ∈ TN , t ∈ (0, T ),

M+
ε νx,t =

1

ε

∫ T∧(t+ε)

t
νx,sds, M+

ε νx,t =
1

ε

∫ t

0∨(t−ε)
νx,sds. (17)
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Note that the stochastic integral in (16) is well-defined. Indeed, the bound (15) implies

E
(∫ T

0

∫
TN

∫
R
|ξ|pdM±εnνx,t(ξ)dx

)
≤ CpT. (18)

Using successively Jensen’s Inequality, the growth hypothesis (2), and (18) with p = 2,
we obtain

E
∫ T

0

∑
k≥1

∣∣∣∣∫
TN

∫
R
gk(x, ξ) ϕ(x, t, ξ)dνx,t(ξ)dx|2

≤ E
∫ T

0

∑
k≥1

∫
TN

∫
R
|gk(x, ξ)ϕ(x, t, ξ)|2 dνx,t(ξ)dx

= E
∫ T

0

∫
TN

∫
R

G2(x, ξ) |ϕ(x, t, ξ)|2 dνx,t(ξ)dx

≤ ‖ϕ‖2L∞x,t,ξD0(1 + C2T ). (19)

If ϕ(x, t, ξ) is the tensor function ψ(ξ)θ(x, t), then∫
TN

∫
R
ϕ(x, t, ξ)dνx,t(ξ)dx =

∫
TN
〈ψ, νx,t〉θ(x, t)dx

is in L2
P([0, T ]×Ω) by item 3 in Definition 11. An argument of density then shows that∫

TN

∫
R
gk(x, ξ)ϕ(x, t, ξ)dνx,t(ξ)dx

is in L2
P([0, T ]× Ω). To sum up, we have proved the following result.

Lemma 12 (Admissible integrand). Let f0 : TN × R→ [0, 1] be a kinetic function. Let
f : TN × [0, T ] × R × Ω → [0, 1] be a generalized solution to (1) with initial datum f0.
Then, for all ϕ ∈ C1

c (TN × [0, T ]× R) the l2(N∗)-valued process

t 7→
(∫

TN

∫
R
gk(x, ξ)ϕ(x, t, ξ)dνx,t(ξ)dx

)
k≥1

is in L2
P([0, T ]× Ω; l2(N∗)).

Let us now state a simple result of reduction from generalized solution to mere solution.

Proposition 13. Let u0 ∈ L∞(TN ). Assume that f : TN × [0, T ]× R× Ω → [0, 1] is a
generalized solution to (1) with initial datum 1u0. If f is an equilibrium,

f(x, t, ξ, ω) = f(x, t, ξ, ω) = 1u(x,t,ω)>ξ, (20)

for a.e. (x, t, ξ, ω) ∈ TN × [0, T ]× R× Ω, then u is a solution to (1) with initial datum
u0.

10



Proof of Proposition 13. If f = 1u>ξ, then u(t, x) =
∫
R χf (x, t, ξ)dξ. Therefore

u ∈ L1
P(TN × [0, T ]× Ω). Moreover, ν = δξ=u and∫

TN
|u(t, x)|pdx =

∫
TN

∫
R
|ξ|pdνx,t(ξ)dx.

Condition (7) is thus contained in the condition (15). It is also clear that, for f = 1u>ξ
and ν = δξ=u, Equation (16) is Equation (8).

We will show in Theorem 20 that (20), which we give as an hypothesis in Proposition 13,
is automatically satisfied by any generalized solution starting from an equilibrium f0 =
f0 = 1u0>ξ.

We conclude this paragraph with two remarks. The first remark is the following

Lemma 14 (Distance to equilibrium). Let (X,λ) be a finite measure space. Let f : X×
R→ [0, 1] be a kinetic function. Then

m(ξ) :=

∫ ξ

−∞
(1u>ζ − f(ζ))dζ, where u :=

∫
R
χf (ζ)dζ,

is well defined and non-negative.

Note in particular that the difference f(ξ)− 1u>ξ writes ∂ξm where m ≥ 0.

Proof of Lemma 14. Let νz = −∂ξf(z, ·), z ∈ X. By Jensen’s Inequality, we have

H

(∫
R
ζdνz(ζ)

)
≤
∫
R
H(ζ)dνz(ζ) (21)

for all convex sub-linear function H : R→ R. Note that

u(z) =

∫
R
f(z, ζ)− 10>ζdζ =

∫
R
ζdνz(ζ)

by integration by parts. By integration by parts, we also have, for all sub-linear function
H ∈ C1(R), ∫

R
H(ζ)dνz(ζ) = H(0) +

∫
R
H ′(ζ)(f(z, ζ)− 10>ζ)dζ

and

H(u(z)) =

∫
R
H(ζ)dδu(z)(ζ) = H(0) +

∫
R
H ′(ζ)(1u(z)>ζ − 10>ζ)dζ.

By (21), it follows that ∫
R
H ′(ζ)(f(z, ζ)− 1u(z)>ζ)dζ ≥ 0

for all convex and sub-linear H ∈ C1(R). Approximating ζ 7→ (ζ−ξ)− by such functions
H, we obtain m(ξ) ≥ 0.
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2.3 Left and right limits of generalized solution

We show in the following proposition that, almost-surely, any generalized solution admits
possibly different left and right weak limits at any point t ∈ [0, T ]. This property is
important to prove a comparison principle and then uniqueness. Also, it shows that the
weak form (16) of the equation satisfied by a generalized solution can be strengthened:
we write below (see (27)) a formulation which is weak only with respect to x and ξ.

Proposition 15 (Left and right weak limits). Let f0 be a kinetic initial datum. Let
f be a generalized solution to (1) with initial datum f0. Then f admits almost-surely
left and right limits at all point t∗ ∈ [0, T ]. More precisely, there exists a subset Ω̂ ⊂ Ω
of probability 1 such that, for all ω ∈ Ω̂, for all t∗ ∈ [0, T ], there exists some kinetic
functions f∗,± on TN × R such that

〈f(t∗ − ε), ϕ〉 → 〈f∗,−, ϕ〉

and
〈f(t∗ + ε), ϕ〉 → 〈f∗,+, ϕ〉

as ε→ 0 for all ϕ ∈ C1
c (TN × R). Moreover,

〈f∗,+ − f∗,−, ϕ〉 = −
∫
TN×[0,T ]×R

∂ξϕ(x, ξ)1{t∗}(t)dm(x, t, ξ). (22)

Define f+ on [0, T )× Ω̂ and f− on (0, T ]× Ω̂ by f±(t∗) := f∗±. Then

1. f = f+ = f− almost everywhere in TN × [0, T ]× R× Ω,

2. for all ϕ ∈ C1
c (TN ×R), the process (〈f+(t), ϕ〉)t∈[0,T ) is càdlàg (it is almost-surely

continuous from the right with limits from the left) and (〈f−(t), ϕ〉)t∈(0,T ] is càglàd.

Note that we obtain continuity with respect to time of solutions to (1) in Corollary 21
below.

Proof of Proposition 15. The set of test functions C1
c (TN × R) (endowed with the

topology of the uniform convergence of the functions and their first derivatives) is sepa-
rable and we fix a dense countable subset D1 (see the argument about Γ in Section 4.5.1
for a proof of the existence of D1). For all ϕ ∈ C1

c (TN × R), a.s., the map

Jϕ : t 7→
∫ t

0
〈f(s), a(ξ) · ∇ϕ〉ds+

∑
k≥1

∫ t

0

∫
TN

∫
R
gk(x, ξ)ϕ(x, ξ)dνx,s(ξ)dxdβk(s)

+
1

2

∫ t

0

∫
TN

∫
R
∂ξϕ(x, ξ)G2(x, ξ)dνx,s(ξ)dxds (23)

is continuous on [0, T ]. Consequently: a.s., say for ω ∈ Ω1 where Ω1 is of full measure,
for all ϕ ∈ D1, Jϕ is continuous on [0, T ]. For test functions of the form (x, t, ξ) 7→

12



ϕ(x, ξ)α(t), α ∈ C1
c ([0, T )), ϕ ∈ D1, Fubini’s Theorem and the weak formulation (16)

give ∫ T

0
gϕ(t)α′(t)dt+ 〈f0, ϕ〉α(0) = 〈m, ∂ξϕ〉(α), (24)

where gϕ(t) := 〈f(t), ϕ〉−Jϕ(t). This shows that ∂tgϕ is a Radon measure on (0, T ), i.e.
the function gϕ ∈ BV (0, T ). In particular it admits left and right limits at all points
t∗ ∈ (0, T ) and a right limit on t∗ = 0, a left limit on t∗ = T . Since Jϕ is continuous,
this also holds for 〈f, ϕ〉: for all t∗ ∈ (0, T ), the limits

〈f, ϕ〉(t∗+) := lim
t↓t∗
〈f, ϕ〉(t) and 〈f, ϕ〉(t∗−) := lim

t↑t∗
〈f, ϕ〉(t)

exist. Note that:

〈f, ϕ〉(t∗+) = lim
ε→0

1

ε

∫ t∗+ε

t∗

〈f, ϕ〉(t)dt, 〈f, ϕ〉(t∗−) = lim
ε→0

1

ε

∫ t∗

t∗−ε
〈f, ϕ〉(t)dt. (25)

Now we use the estimate (15): there exists a set of full measure Ω2 in Ω such that, for
every ω ∈ Ω2,

sup
n

sup
t∈[0,T ]

∫
TN

∫
R
|ξ|pd

[
ν̃±εn
]
x,t

(ξ)dx ≤ Cp(ω) < +∞. (26)

Let ω ∈ Ω̂ := Ω1 ∩ Ω2 be fixed. Assume n large enough to ensure t∗ + εn < T . The
function

fn : TN × R→ [0, 1], x 7→ 1

εn

∫ t∗+εn

t∗

f(x, t, ξ, ω)dt

is a kinetic function. By (26), it satisfies the condition (12). Since L1(TN ) is separable,
and by Corollary 9, there exist a kinetic function f∗,+ on TN × R and a subsequence
(εnk) such that

1

εnk

∫ t∗+εnk

t∗

f(t)dt ⇀ f∗,+

weakly-∗ in L∞(TN ×R) as k → +∞. We obtain similar results for the left limit: up to
a subsequence still denoted (εnk), we have

1

εnk

∫ t∗

t∗−εnk
f(t)dt ⇀ f∗,−,

weakly-∗ in L∞(TN × R) as k → +∞, where f∗,− is a kinetic function on TN × R. By
(25), we deduce that

〈f, ϕ〉(t∗+) = 〈f∗,+, ϕ〉 and 〈f, ϕ〉(t∗−) = 〈f∗,−, ϕ〉.

The cases t∗ = 0 and t∗ = T are treated similarly. To prove (22), we take for α the hat

function αk(t) =
1

εnk
min((t− t∗+εnk)+, (t− t∗−εnk)−) in (24) and get (22) at the limit

[k → +∞]. Set then

A = {t ∈ [0, T ];Em(TN × {t} × R) > 0}.

13



Then A is countable. By (22), we have

〈f−, ϕ〉 = 〈f+, ϕ〉 on ((0, T ) \A)× Ω̂,

for all ϕ ∈ D1 ⊂ C1
c (TN × R). Since D1 is dense, this gives f+ = f− almost everywhere

in TN × [0, T ]×R×Ω. To end the proof of item 1, let us consider first the applications

t 7→ 〈f(·, t, ·, ω), ϕ〉, t 7→ 〈f±(·, t, ·, ω), ϕ〉.

Here ω ∈ Ω̂ and ϕ ∈ D1 are fixed. Let Eϕ denote the set of Lebesgue points of t 7→
〈f(·, t, ·, ω), ϕ〉 on (0, T ), from which we remove the set A. Then Eϕ is measurable and
of full measure in (0, T ). If t ∈ Eϕ, then

1

2εn

∫ t+εn

t−εn
〈f(·, s, ·, ω), ϕ〉ds→ 〈f(·, t, ·, ω), ϕ〉,

but we have also (up to a subsequence possibly),

1

2εn

∫ t+εn

t−εn
〈f(·, s, ·, ω), ϕ〉ds

=
1

2εn

∫ t

t−εn
〈f(·, s, ·, ω), ϕ〉ds+

1

2εn

∫ t+εn

t
〈f(·, s, ·, ω), ϕ〉ds

→1

2

(
〈f+(·, t, ·, ω), ϕ〉+ 〈f−(·, t, ·, ω), ϕ〉

)
= 〈f+(·, t, ·, ω), ϕ〉 = 〈f−(·, t, ·, ω), ϕ〉.

We set E = ∩ϕ∈D1Eϕ, then E is measurable and of full measure in (0, T ) and f = f+ =

f− in TN × E × R × Ω̂. For the proof of item 2, we take in (16) a test function of the
form (x, s, ξ) 7→ ϕ(x, ξ)α(s) where α is the following approximation of the characteristic
function of the interval [0, t]:

α(s) = min

(
1,

(
1− s− t

ε

)
+

)
.

We obtain at the limit [ε→ 0]: for all ω ∈ Ω̂, for all t ∈ [0, T ] and ϕ ∈ C1
c (TN × R),

〈f+(t), ϕ〉 = 〈f0, ϕ〉+ Jϕ(t)− 〈m, ∂ξϕ〉([0, t]), (27)

where 〈m, ∂ξϕ〉([0, t]) =

∫
TN×[0,t]×R

∂ξϕ(x, ξ)dm(x, s, ξ). This shows that the process

(〈f+(t), ϕ〉)t∈[0,T ) is càdlàg. We have, similarly,

〈f−(t), ϕ〉 = 〈f0, ϕ〉+ Jϕ(t)− 〈m, ∂ξϕ〉([0, t[), (28)

This shows that (〈f−(t), ϕ〉)t∈(0,T ] is càglàd.
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Remark 16 (Uniform bound). Note that, by construction, f± satisfies the following
bound: for all ω ∈ Ω̂, for all t ∈ [0, T ],∫

TN

∫
R
|ξ|pdν±x,t(ξ)dx ≤ Cp(ω), (29)

Using Fatou’s lemma and the following bounds (see (15))

E
1

εn

∫ t+εn

t

∫
TN

∫
R
|ξ|pdν±x,t(ξ)dx ≤ Cp, E

1

εn

∫ t

t−εn

∫
TN

∫
R
|ξ|pdν±x,t(ξ)dx ≤ Cp

we also have, for all t ∈ [0, T ],

E
∫
TN

∫
R
|ξ|pdν±x,t(ξ)dx ≤ Cp. (30)

Proposition 17 (The case of equilibrium). Assume that f∗,− is at equilibrium in (22):
there exists a random variable u∗ ∈ L1(Td) such that f∗,− = 1u∗>ξ a.s. Then f∗,+ =
f∗,−.

Proof of Proposition 17. Let m∗ denote the restriction of m to TN × {t∗} × R. We
thus have

f∗,+ − 1u∗>ξ = ∂ξm
∗. (31)

Let (Rn) be a sequence increasing to +∞. By the condition at infinity (5) on m, there
exists a subset Ω3 of Ω of probability 1 (independent on t∗) and a subsequence still
denoted (Rn) such that, for all ω ∈ Ω3, we have

lim
n→+∞

m(TN × [0, T ]×Bc
Rn) = 0.

In particular, limn→+∞m
∗(TN × Bc

Rn
) = 0 and this implies that the right-hand side of

(31) vanishes when we integrate it over R. We have therefore: for all ω ∈ Ω̂ ∩ Ω3, for
a.e. x ∈ TN , ∫

R
(f∗,+(x, ξ)− 10>ξ)dξ =

∫
R

(1u∗>ξ − 10>ξ)dξ = u∗.

Introduce now

p∗ : ξ 7→
∫ ξ

−∞
(1u∗>ζ − f∗,+(ζ))dζ.

By Lemma 14, p∗ is non-negative. Besides, ∂ξ(m
∗+p∗) = 0 due to (31) and the definition

of p∗. Therefore m∗ + p∗ is constant, and actually vanishes by the condition at infinity
(5) and the obvious fact that p also vanishes when |ξ| → +∞. Since m∗, p∗ ≥ 0, we
finally obtain m∗ = 0 and f∗,+ = f∗,−.
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3 Comparison, uniqueness and reduction of generalized so-
lutions

3.1 Doubling of variables

In this paragraph, we prove a technical proposition relating two generalized solutions fi,
i = 1, 2 of the equation

dui + div(A(ui))dt = Φ(ui)dW. (32)

Proposition 18. Let fi, i = 1, 2, be generalized solution to (32). Then, for 0 ≤ t ≤ T ,
and non-negative test functions ρ ∈ C∞(TN ), ψ ∈ C∞c (R), we have

E
∫

(TN )2

∫
R2

ρ(x− y)ψ(ξ − ζ)f±1 (x, t, ξ)f̄±2 (y, t, ζ)dξdζdxdy

≤ E
∫

(TN )2

∫
R2

ρ(x− y)ψ(ξ − ζ)f1,0(x, ξ)f̄2,0(y, ζ)dξdζdxdy + Iρ + Iψ, (33)

where

Iρ = E
∫ t

0

∫
(TN )2

∫
R2

f1(x, s, ξ)f̄2(y, s, ζ)(a(ξ)− a(ζ))ψ(ξ − ζ)dξdζ · ∇xρ(x− y)dxdyds

and

Iψ =
1

2

∫
(TN )2

ρ(x− y)E
∫ t

0

∫
R2

ψ(ξ − ζ)
∑
k≥1

|gk(x, ξ)− gk(y, ζ)|2dν1
x,s ⊗ ν2

y,s(ξ, ζ)dxdyds.

Remark 19. Each term in (33) is finite. Let us for instance consider the first one on
the right-hand side. Introduce the auxiliary functions

ψ1(ξ) =

∫ ξ

−∞
ψ(s)ds, ψ2(ζ) =

∫ ζ

−∞
ψ1(ξ)dξ,

and omit the index 0 in f1,0, f2,0 for simplicity. Since ψ is compactly supported, both ψ1

and ψ2 vanish at −∞. When ξ → +∞, ψ1 remains bounded while ψ2 has linear growth.
Since

f1(ξ) =

∫
(ξ,+∞)

dν1(ξ), f̄2(ζ) =

∫
(−∞,ζ)

dν2(ζ),

for a.e. ξ, ζ ∈ R the Fubini Theorem gives us the formula∫
R2

ψ(ξ − ζ)f1(ξ)f̄2(ζ)dξdζ =

∫
R2

ψ2(u− v)dν1(u)dν2(v). (34)

The function ψ2 being sub-linear, and the measures νj having moments of arbitrary
orders by (10), the right-hand side of (34) is finite.
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Proof of Proposition 18. Set

G2
i (x, ξ) =

∞∑
k=1

|gk,i(x, ξ)|2, i ∈ {1, 2}.

Let ϕ1 ∈ C∞c (TNx ×Rξ) and ϕ2 ∈ C∞c (TNy ×Rζ) be some given test-functions. Equation

(27) reads 〈f+
1 (t), ϕ1〉 = 〈m∗1, ∂ξϕ1〉([0, t]) + F1(t), where F1 is the stochastic integral

F1(t) =
∑
k≥1

∫ t

0

∫
TN

∫
R
gk,1ϕ1dν

1
x,s(ξ)dxdβk(s)

and t 7→ 〈m∗1, ∂ξϕ1〉([0, t]) is the function with bounded variation defined by

〈m∗1, ∂ξϕ1〉([0, t]) = 〈f1,0, ϕ1〉δ0([0, t]) +

∫ t

0
〈f1, a · ∇ϕ1〉ds

+
1

2

∫ t

0

∫
TN

∫
R
∂ξϕ1G

2
1dν

1
(x,s)(ξ)dxds− 〈m1, ∂ξϕ1〉([0, t]).

Note that, by Remark 17, 〈m1, ∂ξϕ1〉({0}) = 0 and thus the value of 〈m∗1, ∂ξϕ1〉({0}) is
〈f1,0, ϕ1〉. Similarly, we write a decomposition of 〈f̄+

2 (t), ϕ2〉 as the sum of a stochastic
integral

F̄2(t) = −
∑
k≥1

∫ t

0

∫
TN

∫
R
gk,2ϕ2dν

2
y,s(ζ)dydβk(s)

with a function with bounded variation given by

〈m̄∗2, ∂ζϕ2〉([0, t]) = 〈f̄2,0, ϕ2〉δ0([0, t]) +

∫ t

0
〈f̄2, a · ∇ϕ2〉ds

− 1

2

∫ t

0

∫
TN

∫
R
∂ξϕ2G

2
1dν

2
(y,s)(ζ)dyds+ 〈m2, ∂ζϕ2〉([0, t]).

Again, we note that 〈m̄∗2, ∂ζϕ2〉({0}) = 〈f̄2,0, ϕ2〉. Let us define the test-function

α(x, ξ, y, ζ) = ϕ1(x, ξ)ϕ2(y, ζ).

We have then
〈f+

1 (t), ϕ1〉〈f̄+
2 (t), ϕ2〉 = 〈〈f+

1 (t)f̄+
2 (t), α〉〉 (35)

There are four terms in the product in the left-hand side of (35). We use Itō’s Formula
to compute F1(t)F̄2(t), we use integration by parts for functions of finite variation (see
for instance [40], chapter 0) for the term 〈m∗1, ∂ξϕ1〉([0, t])〈m̄∗2, ∂ζϕ2〉([0, t]), which gives

〈m∗1, ∂ξϕ1〉([0, t])〈m̄∗2, ∂ζϕ2〉([0, t])

= 〈m∗1, ∂ξϕ1〉({0})〈m̄∗2, ∂ζϕ2〉({0}) +

∫
(0,t]
〈m∗1, ∂ξϕ1〉([0, s))d〈m̄∗2, ∂ζϕ2〉(s)

+

∫
(0,t]
〈m̄∗2, ∂ζϕ2〉([0, s])d〈m∗1, ∂ξϕ1〉(s).
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We use also the following formula

〈m∗1, ∂ξϕ1〉([0, t])F̄2(t) =

∫ t

0
〈m∗1, ∂ξϕ1〉([0, s])dF̄2(s) +

∫ t

0
F̄2(s)〈m∗1, ∂ξϕ1〉(ds),

which is easy to obtain since F̄2 is continuous, and a similar formula for the product
〈m̄∗2, ∂ζϕ2〉([0, t])F̄1(t), to get, by (35), the following identity:

E〈〈f+
1 (t)f̄+

2 (t), α〉〉 = 〈〈f1,0f̄2,0, α〉〉

+ E
∫ t

0

∫
(TN )2

∫
R2

f1f̄2(a(ξ) · ∇x + a(ζ) · ∇y)αdξdζdxdyds

+
1

2
E
∫ t

0

∫
(TN )2

∫
R2

∂ξαf̄2(s)G2
1dν

1
(x,s)(ξ)dζdxdyds

− 1

2
E
∫ t

0

∫
(TN )2

∫
R2

∫
R
∂ζαf1(s)G2

2dν
2
(y,s)(ζ)dξdydxds

− E
∫ t

0

∫
(TN )2

∫
R2

G1,2αdν
1
x,s(ξ)dν

2
y,s(ζ)dxdy

− E
∫

(0,t]

∫
(TN )2

∫
R2

f̄+
2 (s)∂ξαdm1(x, s, ξ)dζdy

+ E
∫

(0,t]

∫
(TN )2

∫
R2

f−1 (s)∂ζαdm2(y, s, ζ)dξdx (36)

where G1,2(x, y; ξ, ζ) :=
∑

k≥1 gk,1(x, ξ)gk,2(y, ζ) and 〈〈·, ·〉〉 denotes the duality distri-

bution over TNx × Rξ × TNy × Rζ . By a density argument, (36) remains true for any

test-function α ∈ C∞c (TNx × Rξ × TNy × Rζ). Using similar arguments as in Remark 19,
the assumption that α is compactly supported can be relaxed thanks to the condition
at infinity (5) on mi and (10) on νi, i = 1, 2. Using truncates of α, we obtain that (36)
remains true if α ∈ C∞b (TNx ×Rξ×TNy ×Rζ) is compactly supported in a neighbourhood
of the diagonal

{(x, ξ, x, ξ);x ∈ TN , ξ ∈ R}.

We then take α = ρψ where ρ = ρ(x− y), ψ = ψ(ξ − ζ). Note the remarkable identities

(∇x +∇y)α = 0, (∂ξ + ∂ζ)α = 0. (37)

In particular, the last term in (36) is

E
∫

(0,t]

∫
(TN )2

∫
R2

f−1 (s)∂ζαdξdxdm2(y, s, ζ)

=− E
∫

(0,t]

∫
(TN )2

∫
R2

f−1 (s)∂ξαdξdxdm2(y, s, ζ)

=− E
∫

(0,t]

∫
(TN )2

∫
R2

αdν1,−
x,s (ξ)dxdm2(y, s, ζ) ≤ 0
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since α ≥ 0. The symmetric term

−E
∫

(0,t]

∫
(TN )2

∫
R2

f̄+
2 (s)∂ξαdm1(x, s, ξ)dζdy

=− E
∫

(0,t]

∫
(TN )2

∫
R2

αdν2,+
y,s (ζ)dydm1(x, s, ξ)

is, similarly, non-positive. Consequently, we have

E〈〈f+
1 (t)f̄+

2 (t), α〉〉 ≤ 〈〈f1,0f̄2,0, α〉〉+ Iρ + Iψ, (38)

where

Iρ := E
∫ t

0

∫
(TN )2

∫
R2

f1f̄2(a(ξ) · ∇x + a(ζ) · ∇y)αdξdζdxdyds

and

Iψ =
1

2
E
∫ t

0

∫
(TN )2

∫
R2

∂ξαf̄2(s)G2
1dν

1
(x,s)(ξ)dζdxdyds

− 1

2
E
∫ t

0

∫
(TN )2

∫
R2

∫
R
∂ζαf1(s)G2

2dν
2
(x,s)(ζ)dξdydxds

− E
∫ t

0

∫
(TN )2

∫
R2

∫
R

G1,2αdν
1
x,s(ξ)dν

2
y,s(ζ)dxdy.

Equation (38) is indeed equation (33) for f+
i since, by (37),

Iρ = E
∫ t

0

∫
(TN )2

∫
R2

f1f̄2(a(ξ)− a(ζ)) · ∇xαdξdζdxdyds

and, by (37) also and integration by parts,

Iψ =
1

2
E
∫ t

0

∫
(TN )2

∫
R2

α(G2
1 + G2

2 − 2G1,2)dν1
x,s ⊗ ν2

y,s(ξ, ζ)dxdyds

=
1

2
E
∫ t

0

∫
(TN )2

∫
R2

α
∑
k≥0

|gk(x, ξ)− gk(y, ζ)|2dν1
x,s ⊗ ν2

y,s(ξ, ζ)dxdyds.

To obtain the result for f−i , we take tn ↑ t, write (33) for f+
i (tn) and let n→∞.

3.2 Uniqueness, reduction of generalized solution

In this section we use Proposition 18 above to deduce the uniqueness of solutions and
the reduction of generalized solutions to solutions.

Theorem 20 (Uniqueness, Reduction). Let u0 ∈ L∞(TN ). Assume (2)-(3). Then,

19



• there is at most one solution with initial datum u0 to (1). Besides, if f is a gene-
ralized solution to (1) with initial datum f0 at equilibrium: f0 = 1u0>ξ, then there
exists a solution u to (1) with initial datum u0 such that f(x, t, ξ) = 1u(x,t)>ξ a.s.,
for a.e. (x, t, ξ).

• if u1, u2 are two solutions to (1) associated to the initial data u1,0, u2,0 ∈ L∞(TN )
respectively, then

E‖(u1(t)− u2(t))+‖L1(TN ) ≤ E‖(u1,0 − u2,0)+‖L1(TN ). (39)

This implies the L1-contraction property, and comparison principle for solutions.

Corollary 21 (Continuity in time). Let u0 ∈ L∞(TN ). Assume (2)-(3). Then, for
every p ∈ [1,+∞), the solution u to (1) with initial datum u0 has a representative in
Lp(Ω;L∞(0, T ;Lp(TN ))) with almost-sure continuous trajectories in Lp(TN ).

Proof of Theorem 20. Consider first the additive case: Φ(u) independent on u. Let
fi, i = 1, 2 be two generalized solutions to (1). Then, we use (33) with gk independent
on ξ and ζ. By (3), the last term Iψ is bounded by

tD1

2
‖ψ‖L∞

∫
(TN )2

|x− y|2ρ(x− y)dxdy.

We then take ψ := ψδ and ρ = ρε where (ψδ) and (ρε) are approximations to the identity
on R and TN respectively, i.e.

ψδ(ξ) =
1

δ
ψ

(
ξ

δ

)
, ρε(x) =

1

εN
ρ
(x
ε

)
,

where ψ and ρ are some given smooth probability densities on R and TN respectively,
to obtain

Iψ ≤
tD1

2
ε2δ−1. (40)

Denote by νi,±x,t the Young measure associated to f±i , i ∈ {1, 2}. By a computation

similar to (34), we have, almost-surely, for almost all x, y ∈ TN ,∫
R
f±1 (x, t, ξ)f̄±2 (y, t, ξ)dξ =

∫
R2

(u− v)+dν1,±
x,t (u)dν2,±

y,t (v). (41)

By (34), we have also∫
R2

ψδ(ξ − ζ)f±1 (x, t, ξ)f̄±2 (y, t, ζ)dξdζ =

∫
R2

ψ2,δ(u− v)dν1,±
x,t (u)dν2,±

y,t (v), (42)

where

ψ2,δ(ξ) =

∫ ξ

−∞
ψ1,δ(ζ)dζ, ψ1,δ(ξ) =

∫ ξ

−∞
ψδ(ζ)dζ.
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Assume that ψ is supported in (0,+∞). Then ψ2,δ(ξ) = 0 if ξ ≤ 0 and, for ξ > 0,

ξ+ − ψ2,δ(ξ) =

∫ ξ

0

∫ +∞

ζ/δ
ψ(u)dudζ =

∫ +∞

0
ξ ∧ (δu)ψ(u)du. (43)

Using (43) in (41), (42) gives

0 ≤
∫
R
f±1 (x, t, ξ)f̄±2 (y, t, ξ)dξ −

∫
R2

ψδ(ξ − ζ)f±1 (x, t, ξ)f̄±2 (y, t, ζ)dξdζ

≤
∫
R2

∫ +∞

0
(u− v)+ ∧ (δζ)ψ(ζ)dζdν1,±

x,t (u)dν2,±
y,t (v).

Since (u− v)+ ∧ (δζ) ≤ |u| ∧ (δζ) + |v| ∧ (δζ), we have

0 ≤
∫
R
f±1 (x, t, ξ)f̄±2 (y, t, ξ)dξ −

∫
R2

ψδ(ξ − ζ)f±1 (x, t, ξ)f̄±2 (y, t, ζ)dξdζ

≤
∫ +∞

0

(∫
R
|ξ|dν1,±

x,t (ξ) +

∫
R
|ξ|dν2,±

y,t (ξ)

)
∧ (δζ)ψ(ζ)dζ.

It follows that∣∣∣∣∣
∫

(TN )2

∫
R
ρε(x− y)f±1 (x, t, ξ)f̄±2 (y, t, ξ)dξdxdy

−
∫

(TN )2

∫
R2

ρε(x− y)ψδ(ξ − ζ)f±1 (x, t, ξ)f̄±2 (y, t, ζ)dξdζdxdy

∣∣∣∣∣
≤
∫ +∞

0

(∫
TN

∫
R
|ξ|(dν1,±

x,t (ξ) + dν2,±
x,t (ξ))dx

)
∧ (δζ)ψ(ζ)dζ

≤
∫ +∞

0
(2C1(ω)) ∧ (δζ)ψ(ζ)dζ. (44)

We have used (29) to obtain (44). When ε→ 0, we have∣∣∣∣∣
∫

(TN )2

∫
R
ρε(x− y)f±1 (x, t, ξ) f̄±2 (y, t, ξ)dξdxdy −

∫
TN

∫
R
f±1 (x, t, ξ)f̄±2 (x, t, ξ)dξdx

∣∣∣∣
≤ sup
|z|<ε

∫
TN

∫
R
f±1 (x, t, ξ)

∣∣f̄±2 (x− z, t, ξ)− f̄±2 (x, t, ξ)
∣∣ dξdx

≤ sup
|z|<ε

∫
TN

∫
R

∣∣∣χf±2 (x− z, t, ξ)− χf±2 (x, t, ξ)
∣∣∣ dξdx. (45)

Consequently (see (44), (45)),

lim
ε,δ→0

∫
(TN )2

∫
R2

ρε(x− y)ψδ(ξ − ζ)f±1 (x, t, ξ)f̄±2 (y, t, ζ)dξdζdxdy

=

∫
TN

∫
R
f±1 (x, t, ξ)f̄±2 (x, t, ξ)dξdx,
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for all ω ∈ Ω̂. Since

E
∫

(TN )2

∫
R2

ρε(x− y)ψδ(ξ − ζ)f±1 (x, t, ξ)f̄±2 (y, t, ζ)dξdζdxdy

≤ E
∫
TN

∫
R
f±1 (x, t, ξ)f̄±2 (x, t, ξ)dξdx,

we conclude by Fatou’s Lemma, that

E
∫
TN

∫
R
f±1 (x, t, ξ)f̄±2 (x, t, ξ)dxdξ

= E
∫

(TN )2

∫
R2

ρε(x− y)ψδ(ξ − ζ)f±1 (x, t, ξ)f̄±2 (y, t, ζ)dξdζdxdy + ηt(ε, δ),

where limε,δ→0 ηt(ε, δ) = 0. We need now a bound on the term Iρ. Since a has at most
polynomial growth, there exists C ≥ 0, p > 1, such that

|a(ξ)− a(ζ)| ≤ Γ(ξ, ζ)|ξ − ζ|, Γ(ξ, ζ) = C(1 + |ξ|p−1 + |ζ|p−1).

This gives

|Iρ| ≤ E
∫ t

0

∫
(TN )2

∫
R2

f1f̄2Γ(ξ, ζ)|ξ − ζ|ψδ(ξ − ζ)|∇xρε(x− y)|dξdζdxdydσ.

By integration by parts with respect to (ξ, ζ), we deduce

|Iρ| ≤ E
∫ t

0

∫
(TN )2

∫
R2

Υ(ξ, ζ)dν1
x,σ ⊗ ν2

y,σ(ξ, ζ)|∇xρε(x− y)|dxdydσ,

where

Υ(ξ, ζ) =

∫ +∞

ζ

∫ ξ

−∞
Γ(ξ′, ζ ′)|ξ′ − ζ ′|ψδ(ξ′ − ζ ′)dξ′dζ ′.

It is shown below that Υ admits the bound

Υ(ξ, ζ) ≤ C(1 + |ξ|p + |ζ|p)δ. (46)

Since ν1 and ν2 vanish at infinity, cf. (15), we then obtain, for a given constant Cp,

|Iρ| ≤ tCpδ
(∫

TN
|∇xρε(x)|dx

)
.

It follows that, for possibly a different Cp,

|Iρ| ≤ tCpδε−1. (47)

We then gather (40), (47) and (33) to deduce for t ∈ [0, T ]

E
∫
TN

∫
R
f±1 (t)f̄±2 (t)dxdξ ≤

∫
TN

∫
R
f1,0f̄2,0dxdξ + r(ε, δ), (48)
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where the remainder r(ε, δ) is r(ε, δ) = TCpδε
−1 +

TD1

2
ε2δ−1 +ηt(ε, δ)+η0(ε, δ). Taking

δ = ε4/3 and letting ε→ 0 gives

E
∫
TN

∫
R
f±1 (t)f̄±2 (t)dxdξ ≤

∫
TN

∫
R
f1,0f̄2,0dxdξ. (49)

Assume that f is a generalized solution to (1) with initial datum 1u0>ξ. Since f0 is
the (translated) Heavyside function 1u0>ξ, we have the identity f0f̄0 = 0. Taking f1 =
f2 = f in (49), we deduce f+(1 − f+) = 0 a.e., i.e. f+ ∈ {0, 1} a.e. The fact that
−∂ξf+ is a Young measure then gives the conclusion: indeed, by Fubini’s Theorem, for
any t ∈ [0, T ], there is a set Et of full measure in TN × Ω such that, for (x, ω) ∈ Et,
f+(x, t, ξ, ω) ∈ {0, 1} for a.e. ξ ∈ R. Let

Ẽt = Et ∩ (TN × Ω̂).

The set Ẽt is of full measure in TN ×Ω. For (x, ω) ∈ Ẽt, −∂ξf+(x, t, ·, ω) is a probability
measure on R. Therefore f+(t, x, ξ, ω) = 1u+(x,t,ω)>ξ for a.e. ξ ∈ R, where u+(x, t, ω) =∫
R(f+(x, t, ξ, ω)−1ξ>0)dξ. We have a similar result for f−. Proposition 13 implies that
u+ is a solution in the sense of Definition 2. Since f = f+ a.e., this shows the reduction
of generalized solutions to solutions. If now u1 and u2 are two solutions to (1), we deduce
from (49) with fi = 1ui>ξ and from the identity∫

R
1u1>ξ1u2>ξdξ = (u1 − u2)+,

the contraction property (39).

In the multiplicative case (Φ depending on u), the reasoning is similar, except that there
is an additional term in the bound on Iψ. More precisely, by Hypothesis (3) we obtain
in place of (40) the estimate

Iψ ≤
TD1

2
ε2δ−1 +

D1

2
Ihψ,

where

Ihψ = E
∫ t

0

∫
(TN )2

ρε

∫
R2

ψδ(ξ − ζ)|ξ − ζ|h(|ξ − ζ|)dν1
x,σ ⊗ ν2

y,σ(ξ, ζ)dxdydσ.

Choosing ψδ(ξ) = δ−1ψ1(δ−1ξ) with ψ1 compactly supported gives

Iψ ≤
TD1

2
ε2δ−1 +

TD1Cψh(δ)

2
, Cψ := sup

ξ∈R
‖ξψ1(ξ)‖. (50)

We deduce (48) with a remainder term r′(ε, δ) := r(ε, δ)+
TD1Cψh(δ)

2
and conclude the

23



proof as in the additive case. There remains to prove (46): setting ξ′′ = ξ′ − ζ ′, we have

Υ(ξ, ζ) =

∫ +∞

ζ

∫
|ξ′′|<δ,ξ′′<ξ−ζ′

Γ(ξ′′ + ζ ′, ζ ′)|ξ′′|ψδ(ξ′′)dξ′′dζ ′

≤C
∫ ξ+δ

ζ
max

|ξ′′|<δ,ξ′′<ξ−ζ′
Γ(ξ′′ + ζ ′, ζ ′)dζ ′ δ

≤C
∫ ξ+δ

ζ
(1 + |ξ|p−1 + |ζ ′|p−1)dζ ′ δ,

which gives (46).

Proof of Corollary 21. We use the notations and the results of Proposition 15. We
fix p ∈ [1,+∞). By Item 1. in Proposition 15, f+ and f− are generalized solutions
to (1) associated to the initial datum 1u0>ξ. By Theorem 20, they are at equilibrium:
f± = 1u±>ξ. It follows then from Item 2. in Proposition 15 and Lemma 10 that, almost-
surely, u+ is càdlàg as a function [0, T ] → Lp(TN ). Note that the limit from the left
u+(t− 0) of u+ at t ∈ (0, T ] is u−(t) since the limit from the left of 〈f+, ϕ〉 at t ∈ (0, T ]
is 〈f−(t), ϕ〉 (this is a consequence of the equations (27) and (28)). Furthermore, thanks
to Proposition 17, the fact that f− is at equilibrium has the following consequence: at
every t ∈ (0, T ), f+(t) = f−(t). In particular, we have u+ = u− and thus, almost-surely,
u+ is continuous from [0, T ] into Lp(TN ).

We apply (39) to infer an L∞ bound on solutions to (1) in the particular case of a
multiplicative noise with compact support.

Theorem 22 (L∞ bounds). Assume (2)-(3) and

gk(x,−1) = gk(x, 1) = 0, (51)

for all x ∈ TN , k ≥ 1. Let u0 ∈ L∞(TN ) satisfy −1 ≤ u0 ≤ 1 almost everywhere. Then,
for all t ≥ 0, the solution u to (1) with initial datum u0 satisfies: almost-surely,

− 1 ≤ u(x, t) ≤ 1, (52)

a.e. in TN .

Proof of Theorem 22. We use (39) to compare u to the two particular constant
solutions (x, t) 7→ −1 and (x, t) 7→ 1.

4 Convergence of approximate solutions

In this section, we develop the tools required for the proof of convergence of a certain type
of approximate solutions to (1). The basic principle is to generalize the notion of solution
introduced in Definition 2. Indeed, this facilitates the proof of existence/convergence. In
a second step a result of reduction (or “rigidity result”), which asserts that a generalized
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solution is a solution is used. This principle is of much use in the deterministic theory
of conservation laws (cf. [14] with the use of “measure-valued entropy solutions”, [18]
with the use of “entropy process solutions”, [39] with the use of kinetic solutions as
defined here). We have already introduced a generalization of the notion of solution
in Definition 11, and have proved a result of reduction in Theorem 20. Here we will
work mainly on the probabilistic aspects of the questions. We will have to consider
“solutions in law”, or ”martingale solutions” (see the comment after Theorem 29 for more
explanations about the terminology). The plan of this section is the following one: in
Section 4.1, we define the notion of approximate generalized solution. In Section 4.2, we
give a martingale characterization of the stochastic integral. In Section 4.3, we give some
tightness results on sequence of approximate generalized solutions. The main result,
Theorem 29, which shows the convergence of a sequence of approximate generalized
solutions to a martingale generalized solution, is proved in Section 4.5. Eventually, we
obtain a result of pathwise convergence in Section 4.6.

4.1 Approximate generalized solutions

Let d be an integer fixed once and for all.

Definition 23 (Approximate generalized solutions). Let fn0 : TN × R → [0, 1] be some
kinetic functions. Let fn : TN × [0, T ] × R × Ω → [0, 1] be some measurable kinetic
functions. Assume that the functions fn are satisfying item 1, 2, 3 in Definition 11 and
Equation (16) up to an error term, i.e.: for all ϕ ∈ Cd

c (TN ×R), there exists an adapted
process εn(t, ϕ), with t 7→ εn(t, ϕ) almost-surely continuous such that

lim
n→+∞

sup
t∈[0,T ]

|εn(t, ϕ)| = 0 in probability, (53)

and there exists some random measures mn, such that, for all n, for all ϕ ∈ Cd
c (TN×R),

for all t ∈ [0, T ], almost-surely,

〈fn(t), ϕ〉 =〈fn(0), ϕ〉+

∫ t

0
〈fn(s), a(ξ) · ∇xϕ〉ds−

∫∫∫
T×[0,t]×R

∂ξϕ(x, ξ)dmn(x, s, ξ)

+

∫ t

0

∫
T

∫
R
gk(x, ξ)ϕ(x, ξ)dνnx,s(ξ)dxdβk(s)

+
1

2

∫ t

0

∫
T

∫
R

G2(x, ξ)∂ξϕ(x, ξ)dνnx,s(ξ)dxds+ εn(t, ϕ). (54)

Then we say that (fn) is a sequence of approximate generalized solutions to (1) with
initial datum fn0 .

Note that we use a formulation “at fixed given time t” in (54), contrary to the formulation
(16), which is weak in time. In particular, each function t 7→ 〈fn(t), ϕ〉 is càdlàg, and
we will see that the accumulation point obtained in Theorem 29 has the same property
(cf. Item 8 of Theorem 29).
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4.2 Martingale characterization of the stochastic integral

In order to pass to the limit in an equation such as (54), we will first characterize (54)
in terms of a martingale problem, and then we will use martingale methods to pass
to the limit. In the present section, we give the characterization of (54) in terms of
a martingale problem, see Proposition 24 and Proposition 25 below. We refer to [28,
Example 1.4, p.143] for characterization of the standard Wiener Process in terms of a
martingale problem. In the context of SDEs and SPDEs, such kind of characterizations
have been applied in [38, 7, 27, 24, 12] in particular.

Let us define the stochastic integrands

hnϕ,k(t) =

∫
TN

∫
R
gk(x, ξ)ϕ(x, ξ)dνnx,t(ξ)dx, hnϕ(t) =

(
hnϕ,k(t)

)
k≥1

, (55)

and the stochastic integrals

Mn
ϕ (t) =

∑
k≥1

∫ t

0

∫
TN

∫
R
gk(x, ξ)ϕ(x, ξ)dνnx,s(ξ)dxdβk(s). (56)

By Lemma 12, we have hnϕ ∈ L2
P([0, T ]×Ω; l2(N∗)) for all n, ϕ. Using Itō’s Formula, we

deduce from (56) the following statement.

Proposition 24. Let (fn) be a sequence of approximate generalized solutions to (1) with
initial datum fn0 . Let ϕ ∈ Cd

c (TN × R). Let Mn
ϕ (t) be defined by (56) and hnϕ,k(t) by

(55). Then the processes

Mn
ϕ (t), Mn

ϕ (t)βk(t)−
∫ t

0
hnϕ,k(s)ds, |Mn

ϕ (t)|2 −
∫ t

0
‖hnϕ(s)‖l2(N∗)ds, (57)

are (Ft)-martingales.

What will interest us is the reciprocal statement.

Proposition 25. Let h ∈ L2
P([0, T ]×Ω; l2(N∗)). Let X(t) be a stochastic process starting

from 0 such that the processes

X(t), X(t)βk(t)−
∫ t

0
hk(s)ds, |X(t)|2 −

∫ t

0
‖h(s)‖l2(N∗)ds (58)

are (Ft)-martingales. Then

X(t) =
∑
k≥1

∫ t

0
hk(s)dβk(s), (59)

for all t ∈ [0, T ].
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Proof of Proposition 25. The proof can be found in [24, Proposition A.1]. Let us
give some details about it. We first claim that the following identity is satisfied:

E
[
(X(t)−X(s))

∫ t

s
θ(σ)dβk(σ)dσ −

∫ t

s
hk(σ)θ(σ)dσ

∣∣∣Fs] = 0 (60)

for all 0 ≤ s ≤ t ≤ T , all k ≥ 1 and all θ ∈ L2
P([0, T ] × Ω). The proof consists in

approximating θ on the interval [s, t] by predictable simple functions. It is similar to a
computation of quadratic variation. Note that (60) uses only the fact that

X(t), X(t)βk(t)−
∫ t

0
hk(s)ds

are (Ft)-martingales. We apply (60) with s = 0 and θ = hk and sum over k to obtain

E[X(t)X̄(t)] = E
∫ t

0
‖h(s)‖2l2(N∗)ds, X̄(t) :=

∑
k≥1

∫ t

0
hk(s)dβk(s). (61)

This gives the expression of the cross-product when we expand the term E|X(t)−X̄(t)|2.
Using the fact that

|X(t)|2 −
∫ t

0
‖h(s)‖2l2(N∗)ds

is a (Ft)-martingale and applying Itō’s Isometry to E|X̄(t)|2 shows that the square terms
are also given by

E|X(t)|2 = E|X̄(t)|2 =

∫ t

0
‖h(s)‖2l2(N∗)ds.

It follows that X(t) = X̄(t).

4.3 Tightness

Let (fn) be a sequence of approximate generalized solutions, in the sense of Definition 23.
Recall that Y1 is the notation for the set of Young measures on TN × [0, T ] × R (cf.
Proposition 5) and thatMb(TN × [0, T ]×R) is the notation for the set of bounded Borel
measures on TN × [0, T ] × R while M+

b (TN × [0, T ] × R) is the subset of non-negative
measures. Let νn be the Young measure associated to fn (νn = −∂ξfn). The law of
νn is a probability measure on the space Y1. We will see in Section 4.3.1 that, under a
natural a priori bound, see (62), the sequence (Law(νn)) is tight in Y1. In Section 4.3.2,
this is the sequence (Law(mn)) that we will analyse. We show under (65) and (66) that
it is tight in M+

b (TN × [0, T ]× R) (see, more specifically, Proposition 27).

We also need to analyse the tightness of (〈fn(t), ϕ〉) in the Skorokhod space D([0, T ]):
this is done in Section 4.3.3.
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4.3.1 Compactness of the Young measures

In this section, we will use the following notions: we say that a sequence (νn) of Y1

converges to ν in Y1 if (13) is satisfied. A random Young measure is by definition a
Y1-valued random variable.

Proposition 26. Let (fn) be a sequence of approximate generalized solutions to (1) with
initial datum fn0 . Assume that the following bound is satisfied: for all p ∈ [1,+∞), there
exists Cp ≥ 0 independent on n such that νn := −∂ξfn satisfies

E

(
sup
l∈N

sup
t∈[0,T ]

∫
TN

∫
R
|ξ|pdM±εl ν

n
x,t(ξ)dx

)
≤ Cp, (62)

Then, there exists a probability space (Ω̃, F̃ , P̃) and some random Young measures ν̃n,
ν̃, such that

1. ν̃n has the same law as νn,

2. ν̃ satisfies

Ẽ

(
sup
l∈N

sup
t∈[0,T ]

∫
TN

∫
R
|ξ|pdM±εl ν̃x,t(ξ)dx

)
≤ Cp, (63)

3. up to a subsequence still denoted (ν̃n), there is P̃-almost-sure convergence of (ν̃n)
to ν̃ in Y1.

Furthermore, if f̃n, f̃ : TN × [0, T ]× R× Ω̃→ [0, 1] are defined by

f̃n(x, t, ξ) = ν̃nx,t(ξ,+∞), f̃(x, t, ξ) = ν̃x,t(ξ,+∞),

then f̃n → f̃ in L∞(TN × [0, T ]×R)-weak-* P̃-almost-surely, f̃ being a kinetic function.

Proof of Proposition 26. Note first that (62) yields

E
(∫

TN

∫ T

0

∫
R
|ξ|pdνnx,t(ξ)dxdt

)
≤ Cp. (64)

For R > 0, let us denote by KR the set of Young measures ν ∈ Y1 such that∫
TN

∫ T

0

∫
R
|ξ|pdνx,t(ξ)dxdt ≤ R.

By [8, Theorem 4.3.2, Theorem 4.3.8,Theorem 2.1.3], the set KR is compact in Y1 for the
τWY1-topology, which is metrizable, [8, Theorem 2.3.1] and corresponds to the convergence
(13). By (64), we have

P(νn /∈ KR) ≤ Cp
R
,
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which shows that the sequence (νn) of Y1-valued random variables is tight. The set Y1

endowed with the τWY1-topology is Polish, [8, Theorem 2.3.3]: we can use the Prokhorov’s

metric, [6, p. 72]. By Prokhorov’s Theorem, [6, Theorem 5.1], there exists a Y1-valued
random variable ν and a subsequence still denoted (νn) such that (νn) converges in
probability to ν. Since the maps

ψ±p : Y1 → [0,+∞], ν 7→ sup
l∈N

sup
t∈[0,T ]

∫
TN

∫
R
|ξ|pdM±εl νx,t(ξ)dx,

are lower semi-continuous, we have

Eψ±p (ν) ≤ lim inf
n→+∞

Eψ±p (νn) ≤ Cp

by (62) and, consequently, ν satisfies the condition (15). Let us now apply the Skorokhod
Theorem [6, p. 70]: there exists a probability space (Ω̃, F̃ , P̃) and some random variables
ν̃n, ν̃, such that

1. ν̃n and ν̃ have the same laws as νn and ν respectively,

2. up to a subsequence still denoted (ν̃n), there is P̃-almost-sure convergence of (ν̃n)
to ν̃ in Y1.

Since ν̃ and ν have same laws, ν̃ satisfies the bound (63). If we apply Corollary 9, we
obtain that f̃n → f̃ in L∞(TN × [0, T ] × R)-weak-* P̃-almost-surely, f̃ being a kinetic
function.

4.3.2 Compactness of the random measures

Proposition 27. Let (fn) be a sequence of approximate generalized solutions to (1) with
initial datum fn0 . Assume that

Emn(TN × [0, T ]× R) is uniformly bounded, (65)

and that mn vanishes for large ξ uniformly in n: if Bc
R = {ξ ∈ R, |ξ| ≥ R}, then

lim
R→+∞

Emn(TN × [0, T ]×Bc
R) = 0, (66)

uniformly in n. Then, there exists a probability space (Ω̃, F̃ , P̃) and some random mea-
sures m̃n, m̃ : Ω̃→Mb(TN × [0, T ]× R) such that

1. m̃n has the same law as mn,

2. up to a subsequence still denoted (m̃n), there is P̃-almost-sure convergence of (m̃n)
to m̃ in Mb(TN × [0, T ]× R)-weak-*.
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Proof of Proposition 27. Let η : R+ → R+ be defined by

η(R) = sup
n∈N

Emn(TN × [0, T ]×Bc
R).

Let h be a fixed function on TN × [0, T ]×R, h continuous, positive, integrable. Proving
the statement for the sequence of measures

B 7→ mn(B) +

∫
B
h(x, t, ξ)dxdtdξ

is equivalent to prove the statement for the original sequence (mn). We will assume
therefore that η(R) > 0 for all R ≥ 0 and that

‖mn‖ := mn(TN × [0, T ]× R) ≥ δ > 0,

where δ is independent on n. Let µn := mn

‖mn‖ . We consider the random variables

Xn = (µn, ‖mn‖), taking values in P1(TN × [0, T ]×R)×R+, where P1(TN × [0, T ]×R)
is the set of probability measures on TN × [0, T ] × R. For A > 0, let KA be the set of
probability measures µ ∈ P1(TN × [0, T ]× R) such that

sup
R>1

µ(TN × [0, T ]×Bc
R)

η(R)
≤ A.

Then KA is compact in P1(TN × [0, T ]× R)-weak-* by Prokhorov’s Theorem and (66).
Using the Markov Inequality, and the definition of η(R), we obtain

P(µn /∈ KA) ≤ C

A
,

where C is independent on n: this shows that (µn) is tight in P1(TN×[0, T ]×R) endowed
with the topology of the weak convergence of probability measures. Similarly, using (65)
and the Markov Inequality, we have

P(‖mn‖ > A) ≤ C

A
,

where C is independent on n:, therefore (‖mn‖) is tight in R. It follows that (Xn) is
tight in P1(TN × [0, T ]×R)×R+ endowed with the product topology. This topology is
separable, metrizable and there exists a compatible metric which turns the space into a
complete space (we can take the sum of the Prokhorov’s metric and of the usual metric
on R+). Therefore we can apply the Skorokhod Theorem: there exists a probability
space (Ω̃, F̃ , P̃) and some random variables X̃n = (µ̃n, α̃n), X̃ = (µ̃, α̃) such that X̃n

has same law as Xn and, P̃-almost-surely, X̃n → X̃ in P1(TN × [0, T ] × R) × R+. Set
m̃n = α̃nµ̃n and m̃ = α̃µ̃. Then m̃n has the same law as mn and there is P̃-almost-sure
convergence of (m̃n) to m̃ in Mb(TN × [0, T ]× R)-weak-*.
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4.3.3 Tightness in the Skorokhod space

Let D([0, T ]) denote the space of càdlàg functions on [0, T ]. See [28, VI.1] and [6, Chap-
ter 3] for the definition of D([0, T ]). Let (fn) be a sequence of approximate generalized
solutions to (1) with initial datum fn0 . In Section 4.4 below, where we analyse the
convergence of (fn), it would be desirable to have a result of tightness of the processes
t 7→ 〈fn(t), ϕ〉 since as random variables in D([0, T ]) (here, ϕ is a given test-function).
It seems difficult to get such a result. The only fact which we can infer naturally from
(62), (65), (66), is that the sequence of processes

t 7→ 〈fn(t), ϕ〉+Anϕ(t), Anϕ(t) := 〈mn, ∂ξϕ〉([0, t]),

is tight in D([0, T ]), see Proposition 28 below. Showing additionally that (Anϕ) is tight
in D([0, T ]) seems impossible, however, if no additional properties of (mn) are known.
Indeed, the weak convergence of µn := 〈mn, ∂ξϕ〉 to a measure µ on [0, T ] is not a
sufficient condition for the convergence of Anϕ to A(t) = µ([0, t]) in D([0, T ]). Consider
for example the case

µn = δt∗−sn + δt∗−σn ,

where t∗ ∈ (0, T ) and (sn) ↓ 0, (σn) ↓ 0 with sn < σn for all n. Then (µn) converges
weakly to µ = 2δt∗ , we have

αn(t) := µn([0, t])→ α(t) := µ([0, t])

for every t ∈ [0, T ], but (αn), or any subsequence of (αn), does not converge to α in
D([0, T ]). This example should be compared to [28, Example 1.20, p.329]. See also
Theorem 2.15, p.342 in [28].

As asserted above, we will show that the sequence of processes

t 7→ 〈fn(t), ϕ〉+Anϕ(t), Anϕ(t) := 〈mn, ∂ξϕ〉([0, t]),

where

〈mn, ∂ξϕ〉([0, t]) :=

∫∫∫
TN×[0,t]×R

∂ξϕ(x, s, ξ)dmn(x, s, ξ),

is tight in D([0, T ]). It is sufficient to show that

t 7→ 〈fn(t), ϕ〉+Bn
ϕ(t), Bn

ϕ(t) := 〈mn, ∂ξϕ〉([0, t])− εn(t, ϕ) (67)

is tight in D([0, T ]) since each function t 7→ εn(t, ϕ) converges in probability to 0 in
C([0, T ]) by (53). We have

〈fn(t), ϕ〉+Bn
ϕ(t) = 〈fn(0), ϕ〉+ Jnϕ(t), (68)

P-almost-surely, where

Jnϕ : t 7→
∫ t

0
〈fn(s), a(ξ) · ∇ϕ〉ds+

∑
k≥1

∫ t

0

∫
TN

∫
R
gk(x, ξ)ϕ(x, ξ)dνnx,s(ξ)dxdβk(s)

+
1

2

∫ t

0

∫
TN

∫
R
∂ξϕ(x, ξ)G2(x, ξ)dνnx,s(ξ)dxds. (69)

We will show that (Jnϕ(t)) is tight in C([0, T ]).
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Proposition 28. Let (fn) be a sequence of approximate generalized solutions to (1) with
initial datum fn0 . For ϕ ∈ Cd

c (TN × R), set

Dn
ϕ(t) =

∫ t

0
〈fn(s), a(ξ) · ∇ϕ〉ds,

Mn
ϕ (t) =

∑
k≥1

∫ t

0

∫
TN

∫
R
gk(x, ξ)ϕ(x, ξ)dνnx,s(ξ)dxdβk(s),

Inϕ(t) =
1

2

∫ t

0

∫
TN

∫
R
∂ξϕ(x, ξ)G2(x, ξ)dνnx,s(ξ)dxds.

Then each sequence (Dn
ϕ), (Mn

ϕ ), (Inϕ) is tight in C([0, T ]). In particular, the sequence
(Jnϕ) defined by (69) is tight in C([0, T ]).

Proof of Proposition 28. Note first the trivial uniform bounds

E|Dn
ϕ(t)|, E|Mn

ϕ (t)|, E|Inϕ(t)| = O(1),

obtained for t = 0 since all three terms vanish. We then use the Kolmogorov’s criterion
to obtain some bounds in some Hölder space Cα([0, T ]). We have the following estimate
on the square of the increments of Dn

ϕ:

E|Dn
ϕ(t)−Dn

ϕ(σ)|2 ≤ ‖a · ∇ϕ‖2L1(TN×R)|t− σ|
2, (70)

since |fn| ≤ 1 almost-surely. Similarly, we have

E|Inϕ(t)− Inϕ(σ)|2 ≤ D0‖∂ξϕ‖2L∞(TN×R)|t− σ|
2. (71)

The estimates (70) and (71) give some bounds on E‖Dn
ϕ‖Cα([0,T ]) and E‖Inϕ‖Cα([0,T ])

respectively, for α < 1
2 . Furthermore, the Burkholder - Davis - Gundy Inequality gives,

for p > 2,

E|Mn
ϕ (t)−Mn

ϕ (σ)|p ≤ E
[

sup
σ≤r≤t

|Mn
ϕ (t)−Mn

ϕ (σ)|
]p

≤ CpE

∑
k≥1

∫ t

σ

∣∣∣∣∫
TN

∫
R
gk(x, ξ)ϕ(x, ξ)dνnx,s(ξ)dx

∣∣∣∣2 ds
p/2 .

By Jensen’s Inequality, and a bound analogous to (19), we obtain

E|Mn
ϕ (t)−Mn

ϕ (σ)|p ≤ Cp‖ϕ‖pL∞(TN×R)
D
p/2
0 |t− σ|

p/2, (72)

and (72) gives a bound on E‖Mn
ϕ‖Cα([0,T ]) for α < 1

2 −
1
p . We obtain in this way some

tightness conditions on the laws of Dn, Mn, In respectively on C([0, T ]).
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4.4 Convergence of approximate generalized solutions

We conclude here this section about the stability of generalized solutions by the following
statement.

Theorem 29 (Convergence to martingale solutions). Let (fn) be a sequence of ap-
proximate generalized solutions to (1) with initial datum fn0 satisfying (62), (65) and
(66). We suppose that there exists a kinetic function f0 on TN such that fn0 → f0 in
L∞(TN×R)-weak-*. Then there exists a probability space (Ω̃, F̃ , P̃), a filtration F̃t, some
F̃t-adapted independent Brownian motions (β̃k)k≥1, some random Young measures ν̃n,
ν̃, some random measures m̃n, m̃ on TN × [0, T ]× R such that

1. ν̃n has the same law as νn,

2. ν̃ satisfies (63),

3. up to a subsequence still denoted (ν̃n), there is P̃-almost-sure convergence of (ν̃n)
to ν̃ in Y1.

4. for all ψ ∈ Cb(R), the random map (x, t) 7→ 〈ψ, ν̃x,t〉 belongs to L2
P̃(TN×[0, T ]×Ω̃),

5. m̃n has the same law as mn,

6. up to a subsequence still denoted (m̃n), there is P̃-almost-sure convergence of (m̃n)
to m̃ in Mb(TN × [0, T ]× R)-weak-*.

Let f̃ be defined by f̃(x, t, ξ) = ν̃x,t(ξ,+∞), then, P̃-almost-surely, f̃ is a kinetic function
and

7. up to a subsequence, and P̃-almost-surely, f̃n converges in L∞(TN × [0, T ] × R)-
weak-* to f̃

8. for all ϕ in Cd
c (TN × R), P̃-almost-surely, t 7→ 〈f̃(t), ϕ〉 is càdlàg,

9. for all ϕ ∈ Cd
c (TN × [0, T )× R), f̃ satisfies∫ T

0
〈f̃(t), ∂tϕ(t)〉dt+ 〈f0, ϕ(0)〉+

∫ T

0
〈f̃(t), a(ξ) · ∇ϕ(t)〉dt

= −
∑
k≥1

∫ T

0

∫
TN

∫
R
gk(x, ξ)ϕ(x, t, ξ)dν̃x,t(ξ)dxdβ̃k(t)

−1

2

∫ T

0

∫
TN

∫
R
∂ξϕ(x, t, ξ)G2(x, ξ)dν̃(x,t)(ξ)dxdt+ m̃(∂ξϕ), P̃− a.s.

(73)

After one does the substitution

(Ω,F ,P,Ft, βk(t))← (Ω̃, F̃ , P̃, F̃t, β̃k(t)),
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which is a substitution of the probabilistic data in the Cauchy Problem for Equation (1),
the points 2, 4, 9 in Theorem 29 show that f̃ is a generalized solution associated to the
initial datum f0. Such a function f̃ , which turns out to be a generalized solution to (1)
after a substitution of the probabilistic data, is called a martingale generalized solution.
The term martingale refers to the martingale characterization of (73), cf. Proposition 24
and Proposition 25, which we will use to prove Theorem 29.

4.5 Proof of Theorem 29

In this section, we will give the proof of Theorem 29. We will use the results (and the
proofs) of Proposition 26, Proposition 27, see Section 4.3.1 and Section 4.3.2 respectively.

4.5.1 State space and Skorokhod’s Theorem

Recall that
W (t) =

∑
k≥1

βk(t)ek,

where (ek)k≥1 is the orthonormal basis of the Hilbert space H. Let U be an other
separable Hilbert space such that H ↪→ U with Hilbert-Schmidt injection. Then the
trajectories of W are P-a.s. in the path-space XW = C([0, T ];U) (see [11, Theorem 4.3]).
We consider the Cd-norm

‖ϕ‖Cd = sup{‖Dmϕ‖L∞(TN×R);m ∈ {0, . . . ,d}N+1}

on Cd
c (TN × R). Let

Γ = {ϕ1, ϕ2, . . .}

be a dense countable subset of Cd
c (TN×R) for this norm. We can construct Γ as follows:

let

ρε(x, ξ) :=
1

εN+1
ρ(ε−Nx, ε−1ξ)

be a compactly supported approximation of the unit on TN × R. Let {θp; p ∈ N} be
a dense subset of L1(TN × R). We can assume that all the functions θp are compactly
supported (otherwise, we use a process of truncation). Then any function in Cd

c (TN×R)
can be approximated by functions in

Γ := {ρk−1 ∗ θp; p ∈ N, k ∈ N∗} ⊂ Cd
c (TN × R)

for the convergence measured by the Cd-norm. Indeed, given ϕ ∈ Cd
c (TN × R), a > 0,

and m ∈ {0, . . . ,d}N+1, we have, by the triangular inequality,

‖Dmϕ−Dmρε ∗ θp‖L∞ ≤ ‖Dmϕ−Dmρε ∗ ϕ‖L∞ + ‖Dmρε ∗ (ϕ− θp)‖L∞

≤ ωDmϕ(ε) +
‖ρ‖L∞
εN+1+|m| ‖ϕ− θp‖L1 , (74)
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since the norm of Dmρε in L∞ is bounded by ‖ρ‖L∞
εN+1+|m| . In (74), ωDmϕ denotes the

modulus of continuity of Dmϕ. We choose ε = k−1 with k large enough to ensure
ωDmϕ(ε) < a for all m ∈ {0, . . . ,d}N+1. Taking then p ∈ N such that ‖ϕ − θp‖L1 <
aε(d+1)(N+1), we obtain ‖ϕ− ρk−1 ∗ θp‖Cd < 2a.

Let also R∞ denote the product space
∏
ϕ∈Γ R endowed with the topology of point-

wise convergence. As such, R∞ is separable, complete and admits a compatible metric.
Define the Polish space

E := C([0, T ];R∞)× C([0, T ];R∞)× C([0, T ];R∞),

and
εnϕ(t) = εn(t, ϕ), 〈fn←, ϕ〉(t) = 〈fn(t), ϕ〉+ 〈mn, ∂ξϕ〉([0, t])− εnϕ(t), (75)

for all ϕ ∈ Cd
c (TN×R). Note that, as a consequence of Equation (68) and Proposition 28,

we know that, for all ϕ ∈ Cd
c (TN × R),

(〈fn←, ϕ〉) is tight in C([0, T ]). (76)

By (53), we also have εnϕ → 0 in C([0, T ]) for all ϕ ∈ Cd
c (TN × R). We introduce the

three following sequences:

{fn←(t)} := (〈fn←(t), ϕj〉)j∈N, {Mn(t)} := (Mn
ϕj (t))j∈N, {εn(t)} := (εnϕj (t))j∈N,

where Mn
ϕ is defined by (56). We will consider the multiplet

Zn = (νn, {fn←}, {Mn}, {εn}, µn, ‖mn‖,W ) ∈ X ,

where the state space X is

X := Y1 × E × P1(TN × [0, T ]× R)× R+ ×XW .

Let ε > 0. By (76), there exists for each j ∈ N a compact Kj in C([0, T ]) such that

inf
n∈N

P (〈fn←, ϕj〉 ∈ Kj) ≥ 1− ε

2j
.

Let K =
∏
j∈NKj . Then K is compact2 in C([0, T ];R∞) and

P({fn←} ∈ Kc) ≤
∑
j∈N

P
(
〈fn←, ϕj〉 ∈ Kc

j

)
≤
∑
j∈N

ε

2j
= ε,

for all n ∈ N. This shows that ({fn←}) is tight in C([0, T ];R∞). We have similar results
about ({Mn}) and ({εn}) thanks to Proposition 28. On XW we consider the topology
induced by the norm

‖v‖ = sup
t∈[0,T ]

‖v(t)‖U

2since C([0, T ];R∞) is homeomorphic to the countable product, over Γ, of copies of C([0, T ];R)
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Then XW is separable and complete. A first consequence of this is the fact that the
law of the single random variable W is tight in XW . A second consequence is the fact
that X is a separable completely-metrizable space. By Section 4.3.1 and Section 4.3.2,
we conclude that (Zn) is tight in the Polish space X . We may thus apply Skorokhod’s
Theorem to (Zn): there exists a probability space (Ω̃, F̃ , P̃) and some random variable
Z̃n, Z̃ such that Z̃n has the same law as Zn and, up to a subsequence, P̃-almost-surely,
Z̃n converges to Z̃ in X .

4.5.2 Identification of the limit

Let us denote the component of Z̃ as follows:

Z̃ = (ν̃, {f̃←}, {M̃}, {ε̃}, µ̃, α̃, W̃ ).

Note first that ε̃ = 0 by (53). Let f∗(x, t, ξ) = ν̃x,t(ξ,+∞) and m∗ = α̃µ̃. It was shown
in the proof of Proposition 26 that item 1, 2, 3, 7 of Theorem 29 are satisfied. By the
proof of Proposition 27, we have also 5, 6 of Theorem 29. For each t ∈ [0, T ], define the
distribution f∗←(t) by

〈f∗←(t), ϕ〉 = 〈f∗(t), ϕ〉+ 〈m∗, ∂ξϕ〉([0, t]). (77)

We have the following identification result:

Lemma 30. For j ∈ N, the j-th component of {f̃←} is 〈f∗←, ϕj〉, i.e.

{f̃←} = {f∗←} P̃− a.s.

Proof of Lemma 30. Let

Ãnj (t) = 〈m̃n, ∂ξϕj〉([0, t]), A∗j (t) = 〈m∗, ∂ξϕj〉([0, t]). (78)

The sequence of processes t 7→ Ãnj (t) is bounded by

‖∂ξϕj‖L∞(TN×R) sup
n
m̃n(TN × [0, T ]× R)

and supn m̃
n(TN × [0, T ]×R) is P̃-almost-surely finite by (65). We also have, P̃-almost-

surely, Ãnj (t)→ A∗j (t) for all t ∈ [0, T ], except for the set N∗j of atomic points t such that

A∗j has a jump at t, which form a countable subset of [0, T ]. In particular, P̃-almost-

surely, Ãnj (t) → A∗j (t) for a.e. t ∈ [0, T ]. By the dominated convergence theorem, it

follows that, P̃-almost-surely,

Ãnj → A∗j in L∞(0, T ) weak− ∗. (79)

The convergence of (ν̃n), which means that, P̃-almost-surely,(
(x, t) 7→ 〈ν̃n(x,t), φ〉

)
→
(
(x, t) 7→ 〈ν̃x,t, φ〉

)
in L∞(TN × (0, T )) weak− ∗,
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has the consequence that, P̃-almost-surely,∫∫
TN×(0,T )

∫
R
α(x, t, ξ)dν̃nx,t(ξ)dxdt→

∫∫
TN×(0,T )

∫
R
α(x, t, ξ)dν̃x,t(ξ)dxdt, (80)

for every bounded Carathéodory integrand α. This is a consequence of the identity
τMY1 = τWY1 in the Portmanteau Theorem [8, Theorem 2.1.3] (see also [8, Lemma 1.2.3]

about Carathéodory integrands). We deduce from (80) that, P̃-almost-surely,(
t 7→

∫
TN

∫
R
α(x, ξ)dν̃nx,t(ξ)dx

)
→

(
t 7→

∫∫
TN×(0,T )

∫
R
α(x, ξ)dν̃x,t(ξ)dx

)
(81)

in L∞(0, T )-weak-*, for every bounded Carathéodory integrand α(x, ξ). We apply (81)
to

α(x, ξ) =

∫ ξ

−∞
ϕj(x, ζ)dζ,

to obtain the convergence, P̃-almost-surely, 〈f̃n, ϕj〉 → 〈f∗, ϕj〉 in L∞(0, T ) weak-*. By
(75), (77) and (79), we deduce that, P̃-almost-surely, 〈f̃n←, ϕj〉 → 〈f∗←, ϕj〉 in L∞(0, T )
weak-*. We also know that, P̃-almost-surely, 〈f̃n←, ϕj〉 converges to the j-th component
of {f̃←} in C([0, T ]). Since convergence in C([0, T ]) implies convergence in L∞(0, T )
weak-*, and since the limit in L∞(0, T ) weak-* is unique, we have {f̃←} = {f∗←}, P̃-
almost-surely.

Remark 31. we have seen, in the proof of Lemma 30, that, P̃-almost-surely, Ãnj (t) →
A∗j (t) for all t in (0, T ), outside of a countable set N∗j . In Equation (75), the terms

〈f̃←(t), ϕ〉 and ε̃n(t, ϕ) are converging. Therefore, P̃-almost-surely,{
f̃n(t)

}
→
{
f∗(t)

}
in R∞, (82)

for a.e. t ∈ (0, T ).

As a corollary to Lemma 30, we obtain item 8 in Theorem 29.

Corollary 32. For all ϕ ∈ Γ, P̃-almost-surely, t 7→ 〈f∗(t), ϕ〉 is càdlàg.

Proof of Corollary 32. Indeed P̃-almost-surely, t 7→ 〈f̃←(t), ϕ〉 is continuous, hence
càdlàg, and t 7→ 〈m, ∂ξϕ〉([0, t]) is càdlàg.

Let us set

M∗ϕ(t) =
∑
k≥1

∫ t

0

∫
TN

∫
R
gk(x, ξ)ϕ(x, ξ)dν̃x,s(ξ)dxdβ̃k(s), (83)

(β̃k is defined in Lemma 36 below). Our aim is to prove the identification {M̃} = {M∗}.
To do this, we will use the martingale characterization developed in Section 4. The proof
is decomposed in several steps.
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Step 1. Filtration The approximation procedures to (1) (vanishing viscosity method,
Finite Volume method as here) construct approximate solutions on arbitrary time inter-
vals [0, T ]. We will therefore consider the functions as defined on the whole time interval
R+. This is simply to avoid the special case of the final time in the definition of the
Skorokhod space D([0, T ]), cf. [6], [28, Remark 1.10]. Let E be a Polish space. Let us
introduce the following notations (see [28, Definition 1.1 p.325] in the case E = Rm): on
the space D(R+;E), D0

t (E) is the σ-algebra generated by the maps α 7→ α(s), s ≤ t;

Dt(E) =
⋂
t<s

D0
s (E), Dt−(E) =

∨
s<t

Ds(E).

Note that Dt(E) 6= D0
t (E): the time of entrance in an open subset U of E,

τU (α) = inf {t ≥ 0;α(t) ∈ U}

is a stopping time with respect to (Dt(E)), but not with respect to (D0
t (E)).

Proposition 33. Let t > 0. Given a continuous bounded function θ : E → R, s ∈ [0, t)
and ε > 0, let θ#s denote the evaluation map α 7→ θ(α(s)) on D(R+;E), and let θε#s
denote the regularization

θε#s : α→ 1

ε

∫ t∧(s+ε)

s
θ(α(σ))dσ (84)

of θ#s. Then θε#s is a Dt−(E)-measurable bounded function, continuous for the Skorokhod

topology, and Dt−(E) is generated by the finite products θ1,ε1
#s1
· · · θk,εk#sk

, k ≥ 1, 0 ≤ s1 <

· · · < sk < t, 0 < ε1, . . . , εk, θ1, . . . , θk ∈ Cb(E).

Proof of Proposition 33. This is essentially the proof of [28, Lemma 1.45 p.335].
Let α ∈ D(R+;E) and let (αn) be a sequence in D(R+;E) such that αn → α a.e. on
[0, t]: this is the case if αn → α in D(R+;E) since αn(σ)→ α(σ) for every σ not in the
(countable) jump set of α. Then, by the dominated convergence theorem, θε#s(αn) →
θε#s(α). Therefore θε#s is a bounded function, continuous for the Skorokhod topology.
The σ-algebra Dt−(E) is generated by the characteristic functions 1A of cylindrical sets

A = {α ∈ D(R+;E);α(s1) ∈ B1, . . . , α(sk) ∈ Bk} ,

for B1, . . . , Bk closed subsets of E and 0 ≤ s1 < · · · < sk < t. We can choose some
sequences of continuous bounded functions θn1 , . . . , θ

n
k : E → R converging simply to the

characteristic functions 1B1 , . . . ,1Bk (by considering, for example, the function distance
to Bj , which is continuous). It is then clear that θε#s is Dt−(E)-measurable and that

Dt−(E) is generated by the finite products θ1
#s1
· · · θk#sk . Since

θ
j,εj
#sj

(α)→ θj#sj (α),

when εj → 0 for all j ∈ {1, . . . , k}, α ∈ D(R+;E), we conclude that Dt−(E) is generated

by the finite products θ1,ε1
#s1
· · · θk,εk#sk

.
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Remark 34. Note that the function

H = θ1,ε1
#s1
· · · θk,εk#sk

is more than merely continuous for the Skorokhod topology. Indeed, what we have seen
in the proof of Proposition 33 is that, for any α ∈ D(R+;E) and any sequence (αn) in
D(R+;E) such that αn → α a.e. on [0, t], we have H(αn)→ H(α).

Define
{f∗} = (〈f∗, ϕj〉)j∈N, E = R∞ × R∞ × U.

Recall that R∞ is the product space
∏
ϕ∈Γ R endowed with the topology of point-wise

convergence. Since E is a product of Polish spaces, it is a Polish space. Since the product
of D(R+;R∞) with C(R+;R∞ × U) is, topologically, a subset of D(R+;E), the triplet
({f∗}, {M̃}, W̃ ) is an element of D(R+;E).

Definition 35. The filtration (F̃t) is the completion of the filtration generated by the
triplet ({f∗}, {M̃}, W̃ ):

F̃t = σ
(
({f∗}, {M̃}, W̃ )−1 (Dt(E)) ∪

{
N ∈ F̃ ; P̃(N) = 0

})
, t ∈ [0, T ]. (85)

Note that (F̃t) is right-continuous since (Dt(E)) is, and complete by definition.

Step 2. Wiener process Let j : H → U denote the injection of H into U. Note that
j ◦ j∗ is a Trace-class operator on U. The Brownian motions β̃k(t) are the components
of W̃ (t) on the orthonormal basis (ek):

Lemma 36. The process W̃ has a modification which is a (F̃t)-adapted j ◦ j∗-Wiener
process, and there exists a collection of mutually independent real-valued (F̃t)-Brownian
motions {β̃k}k≥1 such that

W̃ =
∑
k≥1

β̃kek (86)

in C([0, T ];U).

Note: see [11, Paragraph 4.1] for the definition of a Q-Wiener process.

Proof of Lemma 36. It is clear that W̃ is a j ◦ j∗-cylindrical Wiener process (this
notion is stable by convergence in law; actually it can be characterized in terms of the
law of W̃ uniquely if we drop the usual hypothesis of a.s. continuity of the trajectories.
This latter property of continuity can be recovered, after a possible modification of the
process, by using Kolmogorov’s Theorem). Also W̃ is (F̃t)-adapted by definition of
the filtration (F̃t). By [11, Proposition 4.1], we obtain the decomposition (86). The
P̃-a.s. convergence of the sum in (86) in the space C([0, T ];U) is proved as in [11,
Theorem 4.3].
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Step 3. Martingales

Proposition 37. Let ϕj ∈ Γ. Let h̃j,k(t) be defined by

h̃j,k(t) =

∫
TN

∫
R
gk(x, ξ)ϕj(x, ξ)dν̃x,t(ξ)dx.

Then, for j ∈ N, k ≥ 1, the processes

M̃j(t), M̃j(t)β̃k(t)−
∫ t

0
h̃j,k(s)ds, |M̃j(t)|2 −

∫ t

0
‖h̃j(s)‖2l2(N∗)ds, (87)

are (F̃t)-martingales.

Proof of Proposition 37. The proof is similar to the proof of [28, Proposition 1.1
p.522], except that we do not use any hypothesis of boundedness here since we use the P̃-
almost-sure convergence and the Vitali Theorem to pass to the limit in the expectation of
the quantities of interest (an other minor difference with the proof of [28, Proposition 1.1
p.522] is that M̃ is known to be continuous P̃-a.s., not only càdlàg).

Let t1, t2 ∈ R+, t1 < t2 and let H be a Dt1−(E)-measurable bounded function. By
Proposition 33 and Remark 34, we can assume without loss of generality that H is
continuous for the Skorokhod topology, and, even more, that H(αn) → H(α) for each
sequence (αn) of D(R+;E) and each càdlàg function α ∈ D(R+;E) such that αn → α
a.e. By identities of the laws of Mn

ϕ and M̃n
ϕ , we have

Ẽ|M̃n
ϕj (t2)− M̃n

ϕj (t1)|2 = E|Mn
ϕj (t2)−Mn

ϕj (t1)|2.

Using (72), it follows that

sup
n

Ẽ
∣∣∣H ({f̃n}, {M̃n}, W̃

) [
M̃n
ϕj (t2)− M̃n

ϕj (t1)
]∣∣∣2 < +∞,

since H is bounded. We have besides(
{f̃n}, {M̃n}, W̃

)
→
(
{f∗}, {M̃}, W̃

)
(88)

a.e., P̃-almost-surely by (82) and thus,

H
(
{f̃n, }, {M̃n}, W̃

)
→ H

(
{f∗}, {M̃}, W̃

)
,

P̃-almost-surely. There is also convergence

M̃n
ϕj (t2)− M̃n

ϕj (t1)→ M̃j(t2)− M̃j(t1)

P̃-almost-surely. By Vitali’s Theorem, we obtain

Ẽ
[
H
(
{f̃n, }, {M̃n}, W̃

)(
M̃n
ϕj (t2)− M̃n

ϕj (t1)
)]

→ Ẽ
[
H
(
{f∗}, {M̃}, W̃

)(
M̃j(t2)− M̃j(t1)

)]
. (89)
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By identities of the laws, the left-hand side of (89) is

E
[
H ({fn, }, {Mn},W )

(
Mn
ϕj (t2)−Mn

ϕj (t1)
)]

= 0,

since Mn
ϕ is a (Ft)-martingale. We deduce from (89) thus that

Ẽ
[
H
(
{f∗}, {M̃}, W̃

)(
M̃j(t2)− M̃j(t1)

)]
= 0. (90)

Let now s, t ∈ [0, T ) with s < t. Let (sn) and (tn) be some decreasing sequences in R+,
converging to s and t respectively. Let H be a Ds(E)-measurable bounded function.
Then H is a Dsn−(R2+m)-measurable bounded function since s < sn. By passing to the
limit in (90) written with t1 = sn, t2 = tn (we use the right-continuity of the processes
here), we obtain

Ẽ
[
H
(
{f∗, }, {M̃}, W̃

)(
M̃j(t)− M̃j(s)

)]
= 0. (91)

This shows that (M̃j(t)) is a F̃t-martingale. To go on, let us define now the increasing
processes

H̃n
j,k(t) =

∫ t

0
h̃nj,k(s)ds, H̃j,k(t) =

∫ t

0
h̃j,k(s)ds,

and

H̃nj (t) =

∫ t

0
‖h̃nj (s)‖2l2(N∗)ds, H̃j(t) =

∫ t

0
‖h̃j(s)‖2l2(N∗)ds,

and the processes
Ỹ n
k (t) = M̃n

j (t)β̃nk (t)− H̃n
j,k(t), Ỹk(t) = M̃j(t)β̃k(t)− H̃j,k(t),

Ṽ n(t) = |M̃n
j (t)|2 − H̃nj (t), Ṽ (t) = |M̃j(t)|2 − H̃j(t).

To complete the proof of Proposition 37, we have to prove that (Ỹk(t)) and (Ṽ (t)) are
F̃t-martingale. We will use the following result.

Lemma 38. Let T > 0. Then, for all j ∈ N, k ∈ N∗, P̃-almost-surely, h̃nj,k → h̃j,k and

‖h̃nj (·)‖2l2(N∗) → ‖h̃j(·)‖
2
l2(N∗) in L1(0, T ), when n→ +∞.

Lemma 38 implies that, P̃-almost-surely, for every t ∈ [0, T ], H̃n
j,k(t) and H̃nj (t) are

converging to H̃j,k(t) and H̃j(t) respectively. We have also M̃n
j → M̃j in C(R+), from

which follows the convergences M̃n
j β̃k → M̃j β̃k and |M̃n

j |2 → |M̃j |2 in C(R+), P̃-almost-

surely. We deduce that, P̃-almost-surely,

Ỹ n
k (t)→ Ỹk(t), Ṽ n(t)→ Ṽ (t), (92)

for all t ≥ 0. With the estimate (72), it is easy to obtain the bounds

Ẽ|Ỹ n
k (t)− Ỹ n

k (s)|2 ≤ C, Ẽ|Ṽ n(t)− Ṽ n(s)|2 ≤ C, (93)
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where the constant C depend on s, t ∈ [0, T ], k, but not on n. By (92) and (93)
(this last condition shows the equi-integrability of (Ỹ n

k (t)− Ỹ n
k (s)) and (Ṽ n(t)− Ṽ n(s))

respectively), we can use the arguments applied to the martingale M̃n
ϕ (t) in the first part

of the proof: it will establish that Ỹk(t) and Ṽ (t) are (F̃t)-martingales.

Let us now give the

Proof of Lemma 38. Let π : TN×[0, T ]×R→ [0, T ] denote the projection (x, t, ξ) 7→ t.
Let π#m

∗ denote the push-forward of m∗ by π: P̃-almost-surely, this is a non-negative
measure on [0, T ]. Let

N∗ =
{
t ∈ [0, T ]; P̃ (π#m

∗({t}) > 0) > 0
}
. (94)

Note that N∗ is at most countable. Indeed, if t ∈ N∗, then there exists p, q ∈ N such
that

P̃
(
π#m

∗({t}) > 1

q

)
>

1

2p
.

By the Markov Inequality,

Ẽπ#m
∗({t}) > 1

2pq
, (95)

and there can be only a finite number of t ∈ [0, T ] satisfying (95) since Ẽπ#m
∗ is a finite

measure on [0, T ]. Define, for every ψ ∈ Cb(TN × R),

h̃nψ(t) =

∫
TN

∫
R
ψ(x, ξ)dν̃nx,t(ξ)dx, h̃ψ(t) =

∫
TN

∫
R
ψ(x, ξ)dν̃x,t(ξ)dx. (96)

We have seen in the proof of Lemma 30 that h̃nψ → h̃ψ in L∞(0, T )-weak-*. We will
show also the following convergence result:

for all t ∈ [0, T ] \N∗, h̃nψ(t)→ h̃ψ(t). (97)

Assume

sup
n

∫ T

0

∫
TN

∫
R

(1 + |ξ|2)dν̃nx,t(ξ)dxdt < +∞. (98)

By (64), we know that (98) is satisfied P̃-almost-surely. By an argument of density, and
by the tightness condition (98), it is sufficient to prove (97) in the case where

ψ(x, ξ) =

∫ ξ

−∞
ϕ(x, ζ)dζ, ϕ ∈ Γ. (99)

We have then the expression

h̃nψ(t) = 〈f̃n(t), ϕ〉 = 〈f̃n←(t), ϕ〉 − 〈m̃n, ψ〉([0, t])− ε̃nϕ(t),

by (75), which gives the desired convergence. Let us apply then (97) with ψ = gkϕj .
The growth hypothesis (2) shows that∣∣∣h̃nj,k(t)∣∣∣2 ≤ D0‖ϕj‖2L∞(TN×R)

∫
TN

∫
R

(1 + |ξ|2)dν̃nx,t(ξ)dx.

By (98) and the dominated convergence theorem, it follows that, P̃-almost-surely, h̃nj,k →
h̃j,k and ‖h̃nj ‖2l2(N∗) → ‖h̃j‖

2
l2(N∗) in L1(0, T ).
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Step 4. Conclusion of the martingale method Let us first prove that M∗ϕ(t) given
in (83) is well-defined.

Lemma 39. Item 4 in Theorem 29 is satisfied, i.e.: for all ψ ∈ Cb(R), (x, t) 7→ 〈ψ, ν̃x,t〉
belongs to L2

P̃(TN × [0, T ]× Ω̃).

Proof of Lemma 39. Let ϕ ∈ Γ. By Corollary 32, the process X∗ϕ : t 7→ 〈f̃∗(t), ϕ〉
is càdlàg. Since (X∗ϕ(t)) is adapted by definition of (F̃t), it is an optional process [40,
p. 172]. In particular, X∗ϕ is progressively measurable [40, Proposition 4.8], hence X∗ϕ ∈
L2
P̃([0, T ] × Ω̃). This holds true when ϕ is any element of Cd

c (TN × R). Indeed, as

L2
P̃([0, T ]× Ω̃) is closed in L2([0, T ]× Ω̃) and Γ dense for the Cd-norm, it is sufficient to

show that
X∗ϕn → X∗ϕ in L2([0, T ]× Ω̃) (100)

if ϕn → ϕ and ∂ξϕn → ∂ξϕ for the C0-norm on TN × R. This is clearly the case since

|X∗ϕn(t)−X∗ϕ(t)| =
∣∣∣∣∫

TN

∫
R
∂ξ(ϕn − ϕ)dν̃x,t(ξ)dx

∣∣∣∣ ≤ sup
x∈TN ,ξ∈R

|∂ξϕn(x, ξ)− ∂ξϕ(x, ξ)|.

We have used the identity

X∗ϕ =

∫
TN

∫
R
∂ξϕdν̃x,t(ξ)dx,

which shows that

t 7→
∫
TN

∫
R
φ(x, ξ)dν̃x,t(ξ)dx ∈ L2

P̃([0, T ]× Ω̃) (101)

for every φ of the form φ(x, ξ) =
∫ ξ
−∞ ϕ(x, ζ)dζ. By a new argument of approximation

and truncation, we see that (101) is satisfied for every Carathéodory function φ(x, ξ). In
particular (take φ(x, ξ) = θ(x)ψ(ξ) with θ ∈ L2(TN )), for all ψ ∈ Cb(R), (x, t) 7→ 〈ψ, ν̃x,t〉
belongs to L2

P̃([0, T ] × Ω̃;L2(TN )) (here we use the fact that being weakly or strongly

P̃-measurable is the same thing, cf. Section 2.1.1). By (4), we obtain the result.

We can apply now Proposition 25, thanks to Proposition 37, to obtain M̃ϕ(t) = M∗ϕ(t),
with M∗ϕ(t) defined by (83), for every ϕ ∈ Γ.

Step 5. Equation Let ϕ ∈ Γ. From (68), we deduce

〈f̃n(t), ϕ〉+ Ãnϕ(t) = 〈fn(0), ϕ〉+ J̃nϕ(t) + ε̃nϕ(t), (102)

P̃-almost-surely, where Ãnϕ(t) = 〈m̃n, ∂ξϕ〉([0, t]). Since

Ãnϕ(t)→ 〈m∗, ∂ξϕ〉([0, t]),
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P̃-almost-surely, for all t outside a countable set N∗ϕ (cf. Remark 31), we can pass to the
limit in (102) to obtain

〈f∗(t), ϕ〉+ 〈m∗, ∂ξϕ〉([0, t]) = 〈f(0), ϕ〉+ J̃ϕ(t), (103)

P̃-almost-surely, for all t ∈ [0, T ] \N∗ϕ, where J̃ϕ(t) is given by

J̃ϕ : t 7→
∫ t

0
〈f∗(s), a(ξ) · ∇ϕ〉ds+

∑
k≥1

∫ t

0

∫
TN

∫
R
gk(x, ξ)ϕ(x, ξ)dν̃x,s(ξ)dxdβ̃k(s)

+
1

2

∫ t

0

∫
TN

∫
R
∂ξϕ(x, ξ)G2(x, ξ)dν̃x,s(ξ)dxds.

Since t 7→ 〈f∗(t), ϕ〉 is càdlàg by Corollary 32, P̃-almost-surely, (103) is satisfied for every
t ∈ [0, T ). By a density argument (see the properties of Γ in Section 4.5.1), the result
holds true for any ϕ ∈ Cd

c (TN×R). This proves Item 8 of Theorem 29. This formulation
at fixed t also implies the weak formulation (73).

4.6 Pathwise solutions and almost-sure convergence

If f0 is at equilibrium in Theorem 29, then we have seen in Theorem 20 that (1) ad-
mits a unique solution for a given initial datum. We can use this uniqueness result to
obtain existence of pathwise solution and almost-sure convergence of the sequence of
approximate solutions in that case.

Theorem 40 (Path-wise solution). Suppose that there exists a sequence of approximate
generalized solutions (fn) to (1) with initial datum fn0 satisfying (62), (65) and the
tightness condition (66) and such that (fn0 ) converges to the equilibrium function f0(ξ) =
1u0>ξ in L∞(TN × R)-weak-*, where u0 ∈ L∞(TN ). We have then

1. there exists a unique solution u ∈ L1(TN × [0, T ]×Ω) to (1) with initial datum u0;

2. let

un(x, t) =

∫
R
ξdνnx,t(ξ) =

∫
R

(fn(x, t, ξ)− 10>ξ) dξ.

Then, for all p ∈ [1,∞[, (un) is almost-surely converging to u in Lp(TN × (0, T )).

Proof of Theorem 40. We use the Gyöngy-Krylov argument, [23, Lemma 1.1] (the
basis of the Gyöngy-Krylov argument is this simple fact: if a couple (Xn, Yn) of random
variables converges in law to a random variable written (Z,Z), i.e. concentrated on the
diagonal, then Xn − Yn converges to 0 in probability). Let us go back to Section 4.5.1.
We introduce the random variable

Zn,q = (νn, {fn←}, {Mn}, {εn}, µn, ‖mn‖, νq, {f q←}, {M q}, {εq}, µq, ‖mq‖,W )
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in the state space Z equal to

Y1 × E × P1(TN × [0, T ]× R)× R+ × Y1 × E × P1(TN × [0, T ]× R)× R+ ×XW .

We repeat the arguments used in Section 4.5 to show that Zn,q is tight in Z and that
there exists a probability space (Ω̃, F̃ , P̃) and a new random variable Z̃n,q with the same
law as Zn,q, such that a subsequence (Z̃nl,ql)l is converging P̃-almost-surely in Z to a
random variable Z̃. Let ν̃ be the the first component of Z̃ and ˇ̃ν be the the seventh
component of Z̃. Repeating the steps 1-5 in Section 4.5.2 we obtain two generalized
solutions

f̃(x, t, ξ) = ν̃(x,t)(ξ,+∞),
ˇ̃
f(x, t, ξ) = ˇ̃ν(x,t)(ξ,+∞),

to Equation (1) with probabilistic data (Ω̃, F̃ , P̃, (F̃t), W̃ ), where (F̃t) is the completion

of the filtration generated by the five-uplet ({f̃}, {M̃}, { ˇ̃
f}, { ˇ̃M}, W̃ ):

F̃t = σ
(
({f̃}, {M̃}, { ˇ̃

f}, { ˇ̃M}, W̃ )−1
(
Dt(Ě1)×Dt(Ě2)

)
∪
{
N ∈ F̃ ; P̃(N) = 0

})
,

for t ∈ [0, T ], with
Ě1 := R∞ × R∞, Ě1 := R∞ × R∞ × U.

Note that Dt(Ě1)×Dt(Ě2) 6= Dt(Ě1 × Ě2) since the natural topologies of D(R+; Ě1)×
D(R+; Ě2) and D(R+; Ě1 × Ě2) are different (the topology of the former is the product
topology of the Skorokhod topologies on each space: this authorizes two changes of
times, one for each coordinate; for the Skorokhod topology on D(R+; Ě1× Ě2), only one

change of time is admissible). The solutions f̃ and
ˇ̃
f have the same initial condition f0,

which is an equilibrium function f0. By Theorem 20, we have

f̃ =
ˇ̃
f = f, (104)

where f is the equilibrium function 1ũ>ξ, where

ũ(x, t) :=

∫
R
ξdν̃(x,t)(ξ).

A first consequence of (104) is that ν̃ = ˇ̃ν. By the Gyöngy-Krylov argument hence, we
obtain that (νn) is converging in probability in Y1. Extracting an additional subsequence
if necessary, we can assume that (νn) is converging almost-surely in Y1. Note that
Theorem 20 does not give the uniqueness of the random measure m, but it clearly gives
the uniqueness of ∂ξm (use simply Equation (16)). Therefore we can use the Gyöngy-
Krylov argument (and extraction of subsequence with a diagonal argument) to obtain
the almost-sure convergence of mn(∂ξϕ)([0, t]) for all ϕ ∈ Γ and t /∈ N∗, where N∗ is the
jump set defined in (94). By the arguments of Section 4.5.2 (except for Step 1., since
the filtration (Ft) is already known here), it follows that f(t, x, ξ) := νx,t(ξ,+∞) is a
generalized solution to (1). We use the second identity in (104) now. It says equivalently
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that P̃-almost-surely, for a.e. (x, t), ν̃(x,t) = δũ(x,t). The fact that ν̃ is a Dirac mass can
be characterized in terms of equality in the Jensen Inequality:

Ẽ
∫∫

TN×(0,T )
Φ

(∫
R
ξdν̃(x,t)(ξ)

)
= Ẽ

∫∫
TN×(0,T )

∫
R

Φ(ξ)dν̃(x,t)(ξ), (105)

where Φ is a strictly convex, polynomially bounded function, like Φ(ξ) = ξ2 for example.
The identity (105) depends on Law(ν̃) = Law(ν) uniquely. Therefore ν also is almost-
surely a Dirac mass: P-almost-surely, for a.e. (x, t), ν(x,t) = δu(x,t), where

u(x, t) :=

∫
R
ξdν(x,t)(ξ).

By Proposition 13, u is a solution to (1): it is the unique solution by Theorem 20. Using
Lemma 10, we obtain the second point of Theorem 40.
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[7] Z. Brzeźniak and M. Ondreját. Weak solutions to stochastic wave equations with
values in Riemannian manifolds. Comm. Partial Differential Equations, 36(9):1624–
1653, 2011.

46



[8] C. Castaing, P. Raynaud de Fitte, and M. Valadier. Young measures on topolog-
ical spaces, volume 571 of Mathematics and its Applications. Kluwer Academic
Publishers, Dordrecht, 2004. With applications in control theory and probability
theory.

[9] G.-Q. Chen, Q. Ding, and K. H. Karlsen. On nonlinear stochastic balance laws.
Arch. Ration. Mech. Anal., 204(3):707–743, 2012.

[10] K. L. Chung and R. J. Williams. Introduction to stochastic integration. Probability
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