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Abstract

Fucoxanthin is a carotenoid present in brown micro- and macro algae, that induces apoptosis or autophagy in
cancer cells grown in vitro. In vivo studies confirmed its interest as a natural anticancer compound, as it exerts
antitumoral, antimetastatic and antiangiogenic activities in animal models. Studies focused on the pharmacology of
fucoxanthin in cancer cells and tumors have revealed that it affects a wide panel of cellular, molecular and tissular
processes, suggesting that its biological activity may be related in part to a nonspecific integration in cell
membranes, and possible interaction with lipid rafts. Thus, preliminary data confirming this interaction of fucoxanthin
with lipid rafts were obtained in mast cells and hepatoma WIF-B9 cells. We here discuss this hypothesis, in view of
the critical function of lipid rafts in cancer cell survival, invasivity and communication with the tumoral
microenvironment.
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Introduction
Plant and algae carotenoids have a great potential as natural

anticancer compounds as they exert cytotoxic, antitumoral,
antimetastatic, and antiangiogenic activities [1,2]. Particularly,
fucoxanthin (Figure 1), a marine carotenoid purified from brown
micro- and macroalgae, attracts extensive interest owing to its
antiproliferative, pro-apoptotic and pro-autophagic activities,
demonstrated in a large panel of cancer cells [3-14].

Figure 1: Chemical structure of fucoxanthin.

Its antitumoral activity was validated in animal models, in which it
limits tumor growth, angiogenesis and invasivity, suggesting a possible
use for clinical oncology [1,15]. Studies focused on the pharmacology
of fucoxanthin in cancer cells and tumors have revealed that it induces
cell cycle arrest in G0/G1 phases [5], cyclins and CDK down-
regulation, CDK inhibitors up-regulation [16], as well as the common
hallmarks of apoptosis (disturbance of the mitochondrial
transmembrane potential, modulation of the expression of the Bcl-2
family proteins, activation of caspases/PARP/CAD, DNA
fragmentation and phosphatidylserine exposure) (for review see [3]).

Fucoxanthin was also reported to inhibit mammalian topoisomerases
[2,3], disturb the MAPK and NF-kB pathways [17], enhance Gap
junctional intercellular communication by up-regulating the
expression of connexins [12], and reverse multi-drug resistance by
interfering with drugs efflux systems [3,13]. It also inhibits matrix
metalloproteases involved in tumor tissular invasivity [8,18], and
induces autophagy in some cancer cell models [19]. This multimodal
activity has led us to hypothesize that the cytotoxic activity of
fucoxanthin may be related, at least in part, to a nonspecific
integration into plasma and/or intracellular membranes, triggering a
wide variety of cellular responses eventually leading to cancer cells
apoptosis or autophagy. In support of this hypothesis, fucoxanthin
contains two polar heads, separated by a polyene chain, that confer to
the molecule a bolaphile behaviour and the appropriate size for its
integration into plasma and intracellular membranes. Accordingly, it is
assumed that the first evolutionary function of carotenoids was to
rigidify the cell membranes of archaebacteria [20]. In algae,
fucoxanthin locates in thylakoid membranes where it is tightly bound
to chlorophyll molecules and apoproteins to form functional light-
harvesting complexes [21]. In the same way, dietary carotenoids such
as lutein and zeaxanthin concentrate in the rod outer segment
membranes in human retina [22] where they play a key function in eye
photoprotection against the deleterious wavelengths of blue light [23].
The first indication that carotenoids may interfere with lipid rafts in
the plasma membrane has come from the observation that
fucoxanthin, astaxanthin, zeaxanthin and b-carotene inhibit the
antigen-induced degranulation of basophiles and mast cells [24]. In
these models, it is assumed that fucoxanthin integration into lipid rafts
blocks the translocation and aggregation of high affinity IgE receptors
(FcεRI) and subsequently inhibits the signaling cascade triggering
degranulation [24]. To address this hypothesis in other cell types, we
recently investigated the interaction of fucoxanthin with subcellular
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fractions obtained by ultracentrifugation of Wif-B9 hepatoma cells
using the flotation method [25]. The WIF-B9 hepatic cell line, obtained
by fusion of Fao rat hepatoma cells and WI 38 human fibroblasts, are
highly differentiated and polarized cells, developing morphologic
features close to primary rat and human hepatocytes. They constitute a
relevant model for hepatotoxicity assays, xenobiotic metabolism
studies and evaluation of xenobiotic interaction with lipid rafts [25]. In
these preliminary investigations using cells treated with 10 µM
fucoxanthin for 24 h, we observed a tendency of fucoxanthin to
preferentially incorporate into subcellular domains containing lipid
rafts (66.5 %) when compared to those devoided of lipid rafts,
according to absorbance increases at 446 nm per mg proteins
(unpublished data). This observation is in line with the data obtained
in mast cells, and suggests that fucoxanthin probably interacts with
lipid rafts in several cell types. If confirmed, the demonstration of this
interaction opens new perspectives to discuss the biological activity of
fucoxanthin and understand why it exerts cytoprotective effects in
normal cells, while it induces apoptosis or autophagy in cancer cells.

Fucoxanthin is usually considered as a potent antioxidant because of
the presence of an allenic bond and hydroxyle function in its structure.
In normal cells, in a context of low oxidative stress, it is conceivable
that fucoxanthin integrates cell membranes in domains containing or
not lipid rafts, and scavenges ROS that could trigger lipid oxidation
and inflammation. Some studies suggest that the antioxidant activity of
fucoxanthin may also be related to its ability to undergo ring-opening
reactions on its 5,6 monoepoxide function and exert a pro-oxidant
activity on surrounding molecules [26], eventually leading to an
activation of the transcription factor Nrf2 (nuclear factor (erythoid-
derived 2)- like2, stimulating the expression of antioxidant enzymes,
such as glutathione peroxidase, and NAD(P)H quinone
oxydoreductase 1 [26,27]. In cancer cells, because of an increased ROS
production and high oxidative stress, integration of fucoxanthin in cell
membranes may induce the generation of high levels of ROS, that
exceed the capacity of antioxidant enzymes and eventually trigger
apoptosis or autophagy. In support of this hypothesis, it was shown
that fucoxanthin exerts a pro-apoptotic activity in human leukemia
cells through a ROS-mediated BCL- xL pathway [28] and that this pro-
apoptotic activity is inhibited by the antioxidant N-acetylcysteine. In
addition to its pro- and antioxidant activity, it is reasonable to
speculate that fucoxanthin interaction with lipid rafts may participate
to its cytotoxicity in cancer cells. Lipid rafts are cholesterol and
sphingolipid-enriched microdomains found in the plasma and Golgi
membranes, characterized by their resistance to solubilization in
nonionic detergents at low temperature and ability to float and
concentrate in low-density fractions of a sucrose gradient after
ultracentrifugation [29,30]. They are mobile and play a major function
in protein trafficking and integration of signal transduction complexes,
as they can rapidly include or exclude proteins and mediate protein-
protein interactions. Lipid rafts are thus involved in key cellular
functions, such as the control of cytoskeletal dynamics for cell
adhesion and migration, or regulation of ion channels and signaling
complexes trafficking to the plasma membrane. As such, they are also
critically involved in adhesion, motility, invasivity, survival and
proliferation of cancer cells, and represent an innovative target for the
development of new anticancer drugs [31]. It has been shown that
alteration of the lipid rafts composition (e.g. decrease in the cholesterol
content) or integration of exogeneous lipids into lipid rafts (e.g.
alkylphospholipid analogues such as edelfosine) could trigger cancer
cells apoptosis [32-35]. It is also demonstrated that cell death can be
initiated by activation of death domain receptors, located in lipid rafts

[33]. Previous studies have documented that some cancer cells contain
an increased level of cholesterol-rich lipid rafts [36] and that a
cholesterol-depleting agent such as methyl-β-cyclodextrin triggered
BcL-XL down regulation, caspase-3 activation and Akt inactivation
[36]. These changes, that correspond to classical observations
associated with apoptosis, have also been reported in cancer cells
treated with fucoxanthin [3]. In this view, the selective cytotoxicity of
fucoxanthin towards cancer cells may be explained in part by the
elevated level of lipid rafts in cancer cells and increased ability of
fucoxanthin to integrate their plasma membranes. Lipid rafts have
been involved in the triggering of death receptor-mediated apoptosis
through the recruitment and activation of Fas/CD95 death receptor
[38]. Activation of Fas leads to the subsequent formation of the death-
inducing signaling complex (DISC),that triggers apoptosis. Further
studies should thus be undergone to determine if fucoxanthin
cytotoxicity in cancer cells may be related to its ability to trigger Fas
activation in lipid rafts and formation of the DISC. It is also well
established that cancer cell migration and metastatic behaviour is
controlled in part by ion channels associated in functional membrane
complexes located in lipid rafts. As an example, the interaction
between the SK3 potassium channel and Orai-1 calcium channel was
documented as critical for the metastastic potential of breast cancer
cells [38]. Accordingly, integration of apolar drugs such as ohmline
into lipid rafts has proved efficacy to disrupt the interaction of SK3 and
Orai-1 channels in lipid rafts and inhibit the metastatic potential of
cancer cells [38]. The demonstration that fucoxanthin can integrate
lipid rafts opens the way for further studies to understand if its
antimetastatic activity may be related to a disturbance in the
interaction and functionality of such ion channels complexes located
in lipid rafts. Additionally, dysregulation of ions channels expression is
often observed in cancer cells [39]. These alterations promote cell
proliferation, tissular invasivity and insensitivity to growth inhibitory
signals. Fucoxanthin may counteract such dysregulations by disturbing
ions channels integration and association in functional complexes in
the plasma membrane. Ions channels and connexins also play a pivotal
role to control the molecular dialogue between cancer cells and the
tumor microenvironment. Fucoxanthin was reported to stimulate the
expression of connexins 32 and 43 in cancer cells, enhance Gap
junction intracellular communication and increase the concentration
of intracellular Ca2+ [12]. Stimulation of the gap junctional
communication facilitates the distribution of anticancer drugs within
neighbouring tumor cells, and may explain in part why fucoxanthin is
able to sensitize tumor cells to some anticancer drugs. Increase in the
intracellular calcium concentration induced by fucoxanthin may also
explain in part how fucoxanthin triggers cell cycle arrest, caspase
activation and cytoskeleton reorganization. Changes in the whole cell
shape and cell movement involve rapid and transient reorganization of
membrane micro domains that are mostly mediated by the
cytoskeleton dynamics in response to activation of membrane
signaling pathways and local calcium concentration changes. Thus,
integration of fucoxanthin in lipid rafts may induce major disturbances
in these regulatory pathways and dysfunctions of the cytoskeleton.
Fucoxanthin was also reported to decrease the expression of CD44 [8],
a cell surface glycoprotein involved in cell-cell interactions, cell
adhesion and migration, and interaction with matrix metalloproteases
(MMPs), that plays a critical function in invasion of the tissular
environment of the tumor by cancer cells. Lipid rafts play a crucial role
in the localization and functionality of CD44 as proved using
cholesterol-depleting agents, that stimulate CD44 shedding and
supress cancer cell migration [40]. Consequently, inhibition of MMPs
by fucoxanthin and its physiological metabolite fucoxanthinol may be
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related to their integration into lipid rafts and disturbance of CD44
expression. Fucoxanthin was also reported to inhibit angiogenesis in
various tumor models or endothelial cells (e.g. HUVEC) by supressing
the mRNA expression of FGF-2 and its receptor FGFR-1, as well as
their trans-activation factor, EGR-1 [40]. It also induces a decrease in
the phosphorylation of FGF-2-mediated intracellular signaling
proteins such as ERK1/2 and Akt, eventually leading to a repression of
the migration of endothelial cells and inhibition of their differentiation
into tube-like structures in Matrigel [40]. It it possible to hypothesize
that incorporation of fucoxanthin may interfere with the function of
growth factors receptors, that are located in lipid rafts. Finally,
fucoxanthin may also disrupt protein palmitoylation or myristoylation,
and alter their submembrane localization. The possible incorporation
of fucoxanthin into organelle membranes, particularly mitochondrial
membranes, and interaction with proteins of the Bcl-2 family, may also
not be excluded. To conclude, the rigorous demonstration that
fucoxanthin interacts with lipid rafts may provide a new clue to

understand the cellular and molecular mechanisms involved in its
cytotoxicity in cancer cells. Continued exploration of fucoxanthin
cytotoxicity in cancer cells should confirm if its interaction with lipid
rafts is a key event triggering apoptosis or autophagy (Table 1).
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Cell model to study the integration of xenobiotics into lipid rafts [24]

Antioxidant and pro-oxidant activity of fucoxanthin in animal cells and tissues [25-27]
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Targeting lipid rafts in cancer cells [30-36]
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Lipid rafts, cytoskeleton, cancer cells invasivity and tumor angiogenesis [30,40]
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