
HAL Id: hal-01390916
https://hal.science/hal-01390916

Submitted on 2 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pre-sorted Forward-Backward NB-LDPC Check Node
Architecture

Hassan Harb, Cédric Marchand, Laura Conde-Canencia, Emmanuel Boutillon,
Ali Al Ghouwayel

To cite this version:
Hassan Harb, Cédric Marchand, Laura Conde-Canencia, Emmanuel Boutillon, Ali Al Ghouwayel.
Pre-sorted Forward-Backward NB-LDPC Check Node Architecture. IEEE International Workshop on
Signal Processing Systems (SIPS’2016), Oct 2016, Dallas, United States. �hal-01390916�

https://hal.science/hal-01390916
https://hal.archives-ouvertes.fr


Pre-sorted Forward-Backward NB-LDPC Check
Node Architecture

Hassan Harb, Cédric Marchand,
Laura Conde-Canencia and Emmanuel Boutillon

Lab-STICC, CNRS UMR 6285
Université de Bretagne Sud, Lorient, France

Email: emmanuel.boutillon@univ-ubs.fr

Ali Al Ghouwayel
CCE Department

Lebanese International University (LIU), Beirut, Lebanon.
Email: ali.ghouwayel@liu.edu.lb

Abstract—This paper deals with reduced-complexity NB-
LDPC check node implementation based on the Extended Min-
Sum algorithm. We propose to apply a recently introduced pre-
sorting technique to the forward-backward architecture. The pre-
sorting of the check node inputs allows for significant complexity
reduction. Simulation and synthesis results showed that this
approach does not introduce any performance loss and can lead
to significant area reduction in FPGA implementations (up to
54% for high check node degrees).

Index Terms—NB-LDPC, Check Node, Forward-backward.

I. INTRODUCTION

Because of their near-channel-capacity performance, Low-
Density Parity-Check (LDPC) codes [1] have been adopted
for a wide range of standards (WiMAX, WiFi, DVB-C2,
DVB-S2X, DVB-T2). However, this performance is mainly
obtained for long codeword lengths and LDPC start to show
their weakness when considering short and moderate codeword
lengths. The last decade witnessed a great deal of research
effort devoted to the extended version of LDPC codes defined
over (GF(q), q > 2). These codes called Non-Binary (NB)
LDPC codes have shown strong potential in error correction
capability with moderate and short codeword lengths [2]. NB-
LDPC retain the benefits of steep waterfall region (typical
of convolutional turbo-codes) and low error floor (typical of
binary LDPC). Compared to their binary counterparts, NB-
LDPC codes generally present higher girths, which leads to
better decoding performance. Moreover, the NB nature of
such NB-LDPC codes makes them suitable for high-spectral-
efficiency modulation schemes where the constellation sym-
bols are directly mapped to GF(q) symbols. This mapping
bypasses the marginalization process of binary LDPC codes
that causes information loss. These characteristics place NB-
LDPC codes as serious competitors of classical binary LDPC
and Turbo-Codes in future wireless communication and digital
video broadcasting standards. However, NB-LDPC codes suf-
fer from high decoding complexity. In the NB decoder each
message exchanged between processing nodes is an array of
values, each value corresponding to a GF element. From an
implementation point of view, this leads to a highly increased
complexity compared to binary LDPC.

The direct application of the Belief Propagation (BP) algo-
rithm to NB-LDPC codes leads to a computational complexity

dominated by O(dc ·q2) [2] for each check node update, which
becomes prohibitive when considering values of q > 16. An
important effort has thus been dedicated to develop reduced-
complexity algorithms for NB-LDPC decoding. The authors in
[3] proposed to perform the BP algorithm in the logarithmic
domain. In [4] an FFT-Based BP decoding algorithm was
proposed. However, although these algorithms considerably
reduce the computational complexity of the decoding pro-
cess, they are still far from being considered for hardware
implementation. This implementation became feasible with the
introduction of the Extended Min-Sum (EMS) [5] and the Min-
Max [6] algorithms.

The EMS algorithm [5] is based on a generalization of the
Min-Sum algorithm and it has the advantage of performing
only additions while truncating the size of the messages
from q to nm (nm � q). This sub-optimality introduces a
performance degradation that is compensated by a correction
factor that can be optimized so that the EMS algorithm can
approach, or even in some cases slightly outperform, the FFT-
based BP decoder.

The bottleneck of the EMS algorithm is considered to be at
the Check Node (CN) processing step. Two approaches have
been proposed for EMS CN implementation: the Forward-
Backward CN (FB-CN) [3] and, more recently, the Syndrome
architecture (SB-CN) [7]. Unlike the serial processing of the
FB-CN, the SB-CN allows for parallel CN design. However
the complexity of the SB-CN architecture is given by the
number of computed syndromes which is in the order of
O(d2

c) thus reducing its interest for high dc values. A powerful
original technique to reduce the number of syndromes has
been recently presented in [8]. This so-called pre-sorting
technique reorders the dc CN inputs in order to simplify the
CN architecture without affecting performance.

In this paper we investigate the application of the pre-
sorting technique to the FB-CN approach to obtain significant
complexity reduction of the NB-LDPC CN implementation.
The sorting of the dc CN inputs prior to the CN processing
modifies the behaviour of the Elementary Check Nodes (ECN).
This behaviour is analyzed through statistics and, from this
analysis, the architecture of each ECN is simplified leading to
a design that uses the minimum number of hardware resources
that guarantee a correct processing. Among the different



reduced-complexity architectures for EMS ECN processing
(see [9] [10] [11]), we considered the S-Bubble which presents
the better performance/complexity trade-off [11].

This paper is organised as follows: section II reviews NB-
LDPC EMS CN processing and the FB implementation. Sec-
tion III presents the pre-sorting technique and its application
to the FB-CN architecture. Then, Section IV describes the pre-
sorted FB-CN (P-FB) with the simplified ECNs. The imple-
mentation and simulation results are presented and discussed
in Section V. Finally, Section VI concludes the paper.

II. NB-LDPC CHECK NODE PROCESSING

A. Check Node and LLR description

In the Tanner bi-partite graph representation of NB-LDPC
codes, a CN processor is connected to dc Variable Nodes
(VN) (Fig. 1). The CN processor receives dc variable-to-
node messages and, after processing, it generates dc node-
to-variable messages.

Fig. 1. Input and output messages in a Check Node.

Let us define a CN equation of degree dc in GF(q) as
e1 ⊕ e2 ⊕ e3 ⊕ . . . ⊕ edc = 0, where the operator ⊕ is used
to represent the addition in GF(q). Each input ei can take q
values. The a priori information about variable e is the discrete
probability distribution P (e = x), x ∈ GF(q). Each element of
the probability distribution E associated to e can be expressed
in the logarithmic domain as the Log Likelihood Ratio (LLR)
denoted by e+(x):

e+(x) = − log

(
P (e = x)

P (e = x̄)

)
(1)

where x̄ is the hard decision on e obtained by taking the most
probable GF symbol, i.e. x̄ = arg maxx∈GF(q) P (e = x).

By definition of the LLR, we have: e+(x̄) = 0 and ∀x ∈
GF(q), e+(x) ≥ 0. The distribution (or message) E associated
to e is thus E = {e+(x)}x∈GF(q).

B. The EMS algorithm

As already introduced, the EMS algorithm truncates the q
values to only the nm most reliable ones, with nm << q.
Thus, each input U of a CN is a list {U [j]}j=0...nm−1 of
couples, with U [j] = (U+[j], U⊕[j]), where U+[j] designates
the jth smallest LLR value of E and U⊕[j] is its associated GF
element, i.e., e+(U⊕[j]) = U+[j]. Note also that U+[0] = 0,
U⊕[0] = x̄, and that j ≤ j′ ⇒ U+[j] ≤ U+[j′].

The Min-Sum algorithm equation that defines the LLR value
of the GF symbol x for the ith output is:

v+
i (x) = min


dc∑

i′=1,i′ 6=i

e+
i′ (xi′) |

dc⊕
i′=1,i′ 6=i

xi′ = x

 , (2)

Fig. 2. FB-CN processing with dc = 6.

where xi′ ∈ GF(q) for i′ = 1, . . . , dc, i′ 6= i. From this
equation, we can simplify for the EMS by replacing xi′ ∈
GF(q) by U⊕i = {U⊕i [j]}j=0,1,...,nm−1, as only nm values are
considered:

v+
i (x) = min


dc∑

i′=1,i′ 6=i

U+
i′ [ji′ ] |

dc⊕
i′=1,i′ 6=i

U⊕i′ [ji′ ] = x

 ,

(3)
where ji′ ∈ {0, 1, . . . nm−1} for i′ = 1, 2, . . . dc, i′ 6= i. Then,
the v+

i (x) values are sorted in increasing order and only the
first nm smallest values constitute the output vector Vi. Note
that V +

i [0] = 0 (in fact, ji′ = 0 ⇒ U+
i′ [ji′ ] = 0 and thus, at

least one term in (3) is the addition of zero values).

C. Forward-Backward CN processing

The FB-CN algorithm divides the CN processing in three
layers: forward layer, backward layer and merge layer. Each
layer is composed of dc−2 Elementary CNs (ECNs). An ECN
is a block that processes a single output C as a function of
two inputs A and B. Fig. 2 shows the resulting structure for
a CN with dc = 6 and 3× (dc − 2) = 12 ECNs. Intermediate
results of the ECNs are reused in the last stages and avoid
re-computations [9].

The ECN processing can be performed as follows: for each
couple (a, b) ∈ {0, 1, . . . , nm−1}2, the output couples Ca,b =
(C+

a,b, C
⊕
a,b) are computed as:

C+
a,b = A+[a] +B+[b], C⊕a,b = A⊕[a]⊕B⊕[b] (4)

Then, the couples Ca,b are sorted in increasing order of C+
a,b.

The output vector C corresponds to the first nm couples with
the nm smallest values of C+

a,b. The candidate values to be
output are called bubbles. Note that, since A+[0] = 0 and
B+[0] = 0, then the first bubble in C is C(0) = C0,0 =
(0, A⊕[0]⊕B⊕[0]). Moreover, since A and B are ordered in
increasing order of their LLR, then a′ ≤ a, b′ ≤ b⇒ C+

a′,b′ ≤
C+
a,b. In other words, there are at least (a+1)(b+1)−1 LLRs

lower than C+
a,b. Since only the first nm smallest LLRs are

output, all bubbles of index (a, b) verifying (a+1)(b+1) > nm
are directly excluded. The total number of considered bubbles
is thus a function of nm and will be denoted φ(nm).

In [10] the authors showed that, in practice, the role of an
EMS ECN processor is to select the nm most reliable symbols
in a 2D matrix TΣ, where TΣ(i, j) = A(i) + B(j) ∀(i, j) ∈



Fig. 3. S-bubble check and generalized S-bubble with nm = 10.

[1, nm − 1]2. Different architectures have then been proposed
[10], [11] based on the simplification of the symbol selection.

In [9] and [11], the ECN is simplified by excluding the
bubble with both a and b greater than 1. In this study, we
now propose to generalize the variation range of a, b and c
from 0 to nm − 1 to respectively 0 to na − 1, 0 to nb − 1
and 0 to nc − 1. In Fig. 3.(a), the possible combinations of a
and b are represented by circles and are referred as potential
bubbles. For example, for nm = 10, φ(10) = 28 in Fig. 3.(a).
Different scenarios for (na, nb, nc) = (10, 10, 10), (10, 2, 10)
and (3, 1, 3) are considered in Fig. 3 where the potential
bubbles are represented.

III. INPUT MESSAGE PRE-SORTING

The idea of the input pre-sorting is to polarize the statistics
of dc variable-to-check messages by sorting them according to
the reliability of the hard decision input, i.e., the probability
P (ei = U⊕i [0]), i = 1, 2, . . . , dc. The reason for this approach
is that many bubbles in the ECN are very unlikely to contribute
to the output, suppressing them does not affect performance
but can lead to architectural simplifications.

A. Pre-sorting technique to polarize the input messages

Considering Eq. (1) and knowing that
∑
x∈GF P (ei = x) =

1, the probability P (ei = U⊕i [0]), i = 1, 2, . . . , dc can be
expressed as:

P (ei = U⊕i [0]) =
1∑q−1

j=0 e
−U+

i [j]
. (5)

Note that in Eq. 5, the values of U+
i [j] for j ≥ nm are equal to

U+
i [nm−1]+O, where O is a constant offset value, as detailed

in [12]. Since U+
i [0] = 0 and, for j > 2, U+

i [1] ≤ U+
i [j], then

P (ei = U⊕i [0]) can be approximated by:

P (ei = U⊕i [0]) ≈ 1

1 + e−U
+
i [1]

. (6)

In other words, the higher the value of U+
i [1], the higher

P (ei = U⊕i [0]) is. From this, we can state that the
pre-sorting step is performed according to vector U1 =
(U+

1 [1], U+
2 [1], . . . , U+

dc
[1]) as described by the Algorithm 1.

As shown in the example of Fig. 4 for nm = 5 and dc =
4, only a reduced number of values in the sorted vectors
{U ′i}i=1,2,...,dc are considered as inputs to the EMS CN block.

Input The dc input message {Ui}i=1,2,...,dc .
Step 1: Extract vector U1 = (U+

1 [1], U+
2 [1], ..., U+

dc
[1])

Sort U1 in ascending order to generate U ′1.
return permutation π = (π(1), . . . , π(dc)) associated to
the sorting process: U ′1(i) = U1(π(i)), i = 1, 2 . . . dc.

Step 2: Permute input vectors using the permutation π:
for i = 1, 2, . . . , dc, U ′i = Uπ(i)

Step 3: Perform the CN process with input vectors
{U ′i}i=1,2,...,dc to generate output vectors
{V ′i }i=1,2,...,dc .

Step 4: Permute output vector using the inverse
permutation π−1: for i = 1, 2, . . . , dc , Vπ(i) = V ′i

Algorithm 1: Pre-sorting principle

Fig. 4. Pre-sorting principle

This observation motivated the original approach described in
the following subsection.

B. Pre-sorting with the FB-CN algorithm

A statistical study of the behaviour of the bubbles in the
input vectors {U ′i}i=1,2,...,dc allow us to predict for each ECN
the hardware resources that can be simplified without affecting
the global performance of the CN processing. This study is
performed though the observation of each ECN processing
during the Monte-Carlo simulation of a (576, 480) GF(64)-
LDPC code at SNR = 3.5 dB over more than ten thousand
decoded frames.

To be specific, Fig. 5 represents a S-Bubble Check FB-CN
with dc = 12 and three layers of dc − 2 = 10 ECNs each.
The points (inside or outside each small square) represent
the positions of the processed bubbles with the S-Bubble
architecture [11], which are a total of b = 1680. The small
squares represent the positions of the bubbles that contribute
to an output after applying the pre-sorting technique. They
represent a number of bo = 648 bubbles, i.e. about 0.4 × b.
Consider for example ECN B10 in the Backward layer: the



Fig. 5. Matrix representation of a S-Bubble Check FB-CN with dc = 12 and nm = 20. The b = 1680 red circles represent the bubbles in the original
FB-CN algorithm. The squares represent the remaining bo = 648 bubbles after the pruning process in the S-FB algorithm.

processing of only one bubble is necessary and implementing
a S-Bubble architecture at this ECN clearly implies a waste
of resources. The idea is then to implement for each ECN
the most simplified architecture that guarantees a correct ECN
processing as detailed in the following section. Please also
note that the pre-sorting technique requires extra hardware
blocks compared to the classical not sorted CN architecture:
a dc-input vector sorter and two permutation networks (or
switches). We will also show in section V that the area cost
of this extra hardware is compensated with the ECN simplifi-
cations, leading to an optimised global CN implementation.

IV. PROPOSED FB-CN ARCHITECTURE

This section first describes the elementary blocks constitut-
ing the proposed FB-CN architecture: sorter, switch and sim-
plified ECNs. Then, the global CN architectures for different
dc values are presented.

A. Sorter

Several sorting algorithms have been proposed in the litera-
ture based on serial [13] and parallel approaches [14]. The se-
lection of the most suitable sorter architecture is based on two
main criteria: hardware complexity and speed performance.
The architecture of the sorter we implemented is a semi-
parallel architecture based on the algorithm proposed in [15].
The architecture is composed of dc/2 stages where each stage
contains dc − 1 comparator-swap blocks as shown in Fig. 6.
Since the processing time of the FB-CN processor will be
greater than the sorting time, we have implemented only one
stage that will be running dc/2 times in order to sort an input
vector of size dc and to generate the permutation order vector
π (see Fig. 4). The latency of this sorter architecture is dc/2
cycles and it constitutes a good trade-off between complexity
and performance.

B. Switch

The Switch block receives the dc inputs {Ui}i=1,2,...,dc and
permutes them based on the permutation vector π received

Fig. 6. Architecture of the Sorter and Switch blocks. The Sorter architecture
follows [15].

from the Sorter. This Switch is composed of dc multiplexers
of size dc-to-1, as shown in Fig. 6.

C. Simplified ECNs

As previously mentioned in section III-B the hardware
resources of each ECN can be reduced without affecting
performance. Five different simplified ECN architectures can
be considered:

1) S-4B: This ECN architecture known as S-bubble ECN
is described in [11] where four bubbles are compared per
clock cycle. It is composed of 4 FIFO blocks, six comparators,
four arithmetic adders and four modulo-2 adders implemented
using XOR gates.



Fig. 7. S-1B+1 ECN and its architecture

TABLE I
NUMBER OF ECN SCHEMES FOR DIFFERENT dc VALUES

S-FB S-4B S-2B S-1B S-1B+1 1B
dc = 6 5 7 - - -
dc = 8 9 5 2 1 1
dc = 12 6 10 8 4 2
dc = 20 12 7 24 1 10

2) S-2B: It is based on the S-bubble ECN but composed
of only the first row and first column of matrix TΣ. Thus,
only two bubbles are compared per clock cycle, two FIFO
blocks are needed with only one comparator and two modulo-
2 adders.

3) S-1B: This vector ECN generates the output C as:
C+
a,0 = A+[a], C⊕a,0 = A⊕[a] ⊕ B⊕[0]. Note that vectors

A and B can be exchanged depending on the distribution of
the bubbles.

4) S-1B+1: The bubbles considered in this ECN processing
are shown in Fig. 7.a and the architecture in Fig. 7.b. It is
composed of a comparator, two 2-to-1 multiplexers and a
single register. The control signal S1 is initially 0 and then set
to 1 for all the following cycles if and only if A+[i] > B+[1],
i=1, 2, ... nm − 1 and C⊕[i, 0] 6= C⊕[0, 1]. The control
signal S2 is also initialized to 0 and keeps this value while
A+[i] < B+[1]. It will be turned to 1 for only one cycle when
A+[i] > B+[1] and C⊕[0, 1] is different to all the symbols
C⊕[j, 0], j < i already output.

5) 1B: This ECN considers a single bubble where the
output is the most reliable element C⊕0,0 = A⊕[0]⊕B⊕[0].

D. ECNs simplifications for global CN with different dc values

The statistical analysis and architectural ECN simplifica-
tions were performed for dc = 6, 8, 12 and 20, i.e. coding
rates 2/3, 3/4, 5/6 and 9/10, respectively. For dc = 12, Fig. 5
details the ECN architecture retained for each ECN. Table I
presents the number of implementations of each kind of ECN
architecture in the global CN as a function of the dc values.
From these results we can predict significant potential area
gains specially for high dc values: for example, for dc = 20
the S-Bubble architecture will be replaced 10 times by the 1B
architecture.

V. IMPLEMENTATION AND SIMULATION RESULTS

To quantify the interest of the pre-sorting technique in FB-
CN architectures we implemented the different architectural

TABLE II
POST SYNTHESIS RESULTS FOR DIFFERENT ECN SCHEMES ON A XILINX

VIRTEX 6 FPGA.

ECN Number of Frequency Latency
occupied slices (MHz) (cycles)

1B 7 714 1
S-1B 17 714 1

S-1B+1 35 349 1
S-2B 82 334 2
S-4B 138 269 2

TABLE III
POST-SYNTHESIS RESULTS FOR THE FB-CNS WITH (P-FB) AND WITHOUT

(S-FB) PRE-SORTING ON A XILINX FPGA DEVICE

FB-CN Nb. of occupied slices
dc Case Sorter Switch CN Total Gain(%)

6 S-FB 0 0 1,617 1,617 5P-FB 50 93 1,268 1,532

8 S-FB 0 0 2,481 2,481 17P-FB 77 142 1,701 2,061

12 S-FB 0 0 4,666 4,666 43P-FB 160 283 1,858 2,653

20 S-FB 0 0 6,519 6,519 54P-FB 386 495 1,232 2,955

designs on a FPGA device. We also show simulations results
of the new approach without performance loss.

A. Implementation Results

We considered the Xilinx VIRTEX 6, xc6vlx240t-2ff1156
FPGA device to obtain synthesis results. The five ECN ar-
chitectures were synthesized to obtain the results presented in
Table II. The LLR and GF values are quantified on 6 bits.
The 1B and S-1B ECNs have negligible complexity and a
maximum frequency of 714 MHz. Also, the S-1B+1 and S-
2B ECNs have reduced complexity compared to S-4B and can
operate at higher frequencies.

Table III summarizes the overall complexity of the FB-CN
for different considered dc values. Please note that ”S-FB”
stands for the S-Bubble CN implementation and that ”P-FB”
stands for the presorting approach proposed in this paper.
The proposed architecture leads to a global CN complexity
reduction of 5% for dc = 6, 43% for dc = 12 and 54% for
dc = 20, compared to the state-of-the-art S-FB architecture.

Table III also shows the synthesis results of the Sorter and
Switch blocks. These extra blocks (1 Sorter and 2 Switches)
of the pre-sorting step constitute about 30% (46%) of the total
area for dc = 12 (resp. dc = 20), but the ECN architectural
simplifications compensate for this and a global gain of 43%
(resp. 54%) is obtained.

Even if the implementation of the variable node is out of the
scope of this article, let us note that significant area reduction
is expected as the number of sorted values to compute for CN
input messages is reduced. For dc = 12, the nm = 20 values
(for each message) is reduced to a maximum of 10 for U ′1 and
a minimum of 1 for U ′12, as shown in Fig. 5.



3 3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

FB−CN

E
s
/N

o
(dB)

F
E

R

 

 

Standard, S−FB

Pre−sorted, P−FB

Fig. 8. Simulation results of NB-LDPC decoding algorithms for (576, 480)
code over GF(64) and dc = 12 under AWGN channel.

B. Simulation Results

Finally we present bit-true Monte-Carlo simulation results
over the AWGN channel with a BPSK modulation scheme.
Extrinsic and intrinsic LLR messages are quantified on 6 bits
and a-posteriori LLRs on 8 bits. The two scenarios presented
in Fig. 5 are considered: 1. the S-FB which correspond to the
state of the art S-Bubble approach without pre-sorting; 2. the
P-FB which corresponds to the approach with pre-sorting and
ECN simplifications;

Fig. 8 shows the simulations results for a (576, 480),
dc = 12 GF(64)-LDPC code. The pre-sorting technique shows
negligible performance degradation while implementation re-
sults in Table III shows 43 % complexity reduction with
dc = 12.

VI. CONCLUSION

This paper proposed an efficient forward-backward CN
architecture based on a pre-sorting technique of the input
messages. The pre-sorting technique significantly reduces the
number of the values that contribute to the CN processing.
Then, the architectural design can be simplified for each
elementary architecture leading to a reduced-area implemen-
tation, specially for high dc values. To be specific, area
reductions of 43% and 54% were obtained for CN degrees
of dc = 12 and 20, respectively. Simulation results showed

that this complexity reduction does not entail any performance
loss. Finally, this work can also lead to simplified variable node
implementations.

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” Ph.D. dissertation, Cam-
bridge, 1963.

[2] M. Davey and D. MacKay, “Low-density parity check codes over
GF(q),” Communications Letters, IEEE, vol. 2, no. 6, pp. 165–167, June
1998.

[3] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain de-
coding of LDPC codes over GF(q),” in Communications, 2004 IEEE
International Conference on, vol. 2, June 2004, pp. 772–776.

[4] D. MacKay and M. Davey, “Evaluation of Gallager codes for short block
length and high rate applications,” in In Codes, Systems and Graphical
Models. Springer-Verlag, 1999, pp. 113–190.

[5] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary
LDPC codes over GF(q),” IEEE Trans. on Commun., vol. 55, pp. 633–
643, April 2007.

[6] V. Savin, “Min-max decoding for non binary LDPC codes,” in Informa-
tion Theory, 2008. ISIT 2008. IEEE International Symposium on, July
2008, pp. 960–964.

[7] P. Schlafer, N. Wehn, M. Alles, T. Lehnigk-Emden, and E. Boutillon,
“Syndrome based check node processing of high order NB-LDPC
decoders,” in Telecommunications (ICT), 2015 22nd International Con-
ference on, April 2015, pp. 156–162.

[8] C. Marchand and E. Boutillon, “NB-LDPC check node with pre-sorted
input,” in 9th International Symposium on Turbo Codes & Iterative
Information Processing, September 2016.

[9] E. Boutillon, L. Conde-Canencia, and A. A. Ghouwayel, “Design of a
GF(64)-LDPC decoder based on the EMS algorithm,” IEEE Transac-
tions on Circuits and Systems I: Regular Papers, vol. 60, no. 10, pp.
2644–2656, Oct 2013.

[10] E. Boutillon and L. Conde-Canencia, “Bubble check: a simplified
algorithm for elementary check node processing in extended Min-Sum
non-binary LDPC decoders,” Electronics Letters, vol. 46, no. 9, pp. 633–
634, 2010.

[11] O. Abassi, L. Conde-Canencia, A. A. Ghouwayel, and E. Boutillon, “A
novel architecture for elementary check node processing in non-binary
LDPC decoders,” Transactions on Circuits and Systems II: Express
Briefs, accepted for publication, 2016.

[12] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-
complexity decoding for non-binary LDPC codes in high order fields,”
IEEE Transactions on Communications, vol. 58, no. 5, pp. 1365–1375,
May 2010.

[13] D. Koch and J. Torresen, “FPGASort: A high performance sorting
architecture exploiting run-time reconfiguration on FPGAs for large
problem sorting,” in Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, 2011, pp. 45–54.

[14] A. Farmahini-Farahani, H. J. D. III, M. J. Schulte, and K. Compton,
“Modular design of high-throughput, low-latency sorting units,” IEEE
Transactions on Computers, vol. 62, no. 7, pp. 1389–1402, July 2013.

[15] J. Martinez, R. Cumplido, and C. Feregrino, “An FPGA-based parallel
sorting architecture for the burrows wheeler transform,” in 2005 Int.

Conf. on Reconfigurable Computing and FPGAs, Sept. 2005.


