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Abstract

Recent numerical results show that if a scalar is mixed by periodically forced

turbulence, the average mixing rate is directly affected for forcing frequencies

small compared to the integral turbulence frequency. We elucidate this by an

analytical study using simple turbulence models for spectral transfer. Adding

a large amplitude modulation to the forcing of the velocity field enhances the

energy transfer and simultaneously diminishes the scalar transfer. Adding a

modulation to a random stirring protocol will thus negatively influence the

mixing rate. We further derive the asymptotic behaviour of the response

of the passive scalar quantities in the same flow for low and high forcing

frequencies.
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1. Introduction

Recent results from direct numerical simulation suggest that the time-

averaged mixing in turbulent flow can be affected by adding a periodic mod-

ulation to the energy injection of the turbulent velocity field [1]. Indeed it is

shown that the scalar flux towards small scales, or mixing rate, is attenuated

by the modulation. On the contrary an enhanced transfer of kinetic energy

towards small scales is observed. In the present work we will explain these

observations analytically using a second order analysis of simple turbulence

closure models.

1.1. Closures and turbulence

Nowadays numerical simulations allow us to reproduce academic exper-

iments of isotropic turbulence at Reynolds numbers of the same order as

obtained in large wind-tunnel facilities [2]. Closures have therefore partially

lost their interest as tools to predict the behavior of turbulent flows at large

Reynolds numbers. However, they are still very valuable for the interpreta-

tion of results on turbulent flows. If we know the minimum ingredients of a

model which is capable of reproducing particular features of a turbulent flow,

there is a good chance that we can obtain a qualitative understanding of the

particular flow features. If we adopt this viewpoint, it is important to choose

the adequate, i.e., the simplest possible model which is able to reproduce the

physics of a problem.

The simplest model for spectral transfer of turbulent kinetic energy is

probably Kovaznay’s closure [3]. It should be used if the only features one

needs to retain of the nonlinear transfer is the constant flux dynamics of
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a long inertial range, consistent with Kolmogorov’s ideas. Another simple,

but more elegant closure was proposed by Leith [4]. In addition to giving

the Kolmogorov scaling, his diffusion-approximation is compatible with the

thermal equilibrium properties of Galerkin truncated inviscid turbulent flow.

In reference [5] the simplest turbulence models were assessed for the case

of scalar mixing in isotropic turbulence. Indeed, also in the scalar case,

Kovaznay’s and Leith’s models [6] are examples of simple models consistent

with a conserved flux and local interactions. In the present work we will use

such simple closure models to explain the observations of the recent numerical

study [1] on mixing in periodically forced turbulence.

More precisely, the questions that we will answer in this manuscript are

the following:

• What is the frequency response of the scalar field at low and high

frequencies of the modulation of the velocity forcing?

• How is the mixing rate affected when the amplitude of the periodic

part of the forcing is not small?

Here and in the following, a low (high) frequency refers to a frequency ω of

the periodic forcing, small (large) compared to the integral frequency of the

turbulent flow.

1.2. Notation

In the present work we consider both one-point and two-point statistics,

as well as time-, phase- and ensemble-averages, and therefore a word on

the notation is helpful in order to clearly distinguish the different types of

statistics.
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To start with, all quantities we consider are averaged, and since we con-

sider only statistically homogeneous flows, all quantities are independent of

the space coordinate. If no tildes or overlines are used, the quantities are en-

semble averages, such as k = k(ω, t), depending in principle on the frequency

ω and time t. We decompose the ensemble averages in a time-averaged part,

indicated by overlined symbols, such as k = k(ω) and the remaining, peri-

odic quantities indicated by a tilde, k̃ = k̃(ω) (see for instance reference [7]).

Lower-case symbols (k, ǫ, p) are one-point statistics, upper-case symbols are

wavenumber spectra (E = E(κ, ω, t), E = E(ω, κ), ..., with κ the wavenum-

ber). Phase-shifts are indicated by φ = φ(ω), for the one-point statistics and

Φ = Φ(κ, ω) for the wavenumber spectra.

2. Periodically forced turbulence and mixing

2.1. One-point statistics

We investigate how turbulent mixing is affected if the velocity statistics

contain a periodic component. The energy balance is

∂tk = p− ǫ, (1)

where k, p, ǫ are ensemble-averages of the kinetic energy, production and

dissipation, respectively. The periodic component of the velocity field is

created by a modulated forcing,

p = p+ p̃ cos(ωt). (2)

The time-averaged and periodic components satisfy,

0 = p− ǫ, (3)
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and

ωk̃ sin(ωt+ φk) = ǫ̃ cos(ωt+ φǫ)− p̃ cos(ωt). (4)

In this expression φk and φǫ are phase-shifts. We have assumed that the

periodic response of the velocity statistics will be dominated by a contribu-

tion at the forcing frequency ω. The frequency responses of k̃ and ǫ̃ were

investigated theoretically in [8, 9], numerically in [10, 11] and experimentally

in [12].

The scalar is forced by an injection pθ = pθ, without periodic component.

But since the velocity field which advects the scalar field is modulated, a

trace of the modulation can be found back in the scalar statistics. The scalar

variance evolves as

∂tkθ = pθ − ǫθ. (5)

The mean and periodic parts of the scalar are given, respectively, by

0 = pθ − ǫθ, (6)

and

ωk̃θ sin(ωt+ φθ) = ǫ̃θ cos(ωt+ φǫθ). (7)

An interesting feature of this last equation is that it does not contain any

source term. On the level of single point averages it is therefore difficult to

do any predictions on the behavior of k̃θ and ǫ̃θ. The only result obtained

from this equation is that

ω|k̃θ| = |ǫ̃θ|, (8)

and that the phase-shifts will differ by a constant value of π/2.

If we define the velocity and scalar timescales as

T =
k

ǫ
, Tθ =

kθ
ǫθ
, (9)
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then we can relate the mixing rate to the scalar timescale by

χθ = T−1

θ . (10)

Equivalently we can relate the energy transfer rate to the inverse of the

integral timescale,

χ = T−1. (11)

In the present case of statistically homogeneous flow, these definitions of the

transfer and mixing rate are straightforward choices. In inhomogeneous flows

the mixing process will also involve the turbulent diffusion and the definition

of a mixing rate is less straightforward. When the scalar quantity is not

passive, the definitions of mixing efficiency and mixing rate are far more

complicated (as for instance in stably stratified flows [13], or flows generated

by Rayleigh-Taylor instabilities [14] or Richtmyer-Meshkov instabilities [15]).

2.2. Spectral description of the problem

The case we consider consists in an isotropic turbulent flow, maintained

statistically stationary by a forcing containing a time-periodic component.

More precisely, we consider the dynamics of a turbulent flow, characterized

by the kinetic energy spectrum E(κ, t), given by the evolution equation

∂tE = −∂κΠ− 2νκ2E + P. (12)

where

P = P + P̃ cos(ωt), (13)

and ν is the kinematic viscosity. The choice of a model for the spectral flux

Π determines the precise dynamics of the flow. An important property of
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this flux is that it should vanish at k = 0 and k = ∞, so that the integral of

(12) yields (1).

We consider the advection of a passive scalar in the same flow, which is

forced by a large scale injection, without any periodic component (Pθ = P θ).

The scalar spectrum Eθ(κ, t) obeys,

∂tEθ = −∂κΠθ − 2ακ2Eθ + Pθ, (14)

where α is the diffusivity of the scalar. The case of unity Prandtl number,

ν = α is investigated.

We consider that both the velocity and scalar forcing are confined to the

largest scales. To facilitate the considerations, we assume the forcing terms

to act on wavenumber κf only,

P = p δ(κ− κf ), Pθ = pθ δ(κ− κf ). (15)

A more complicated case could be investigated, where the periodic forcing

acts at another scale than the steady part of the forcing, with possible rel-

evance to flow-control, or geophysical flows, but this case is not considered

here.

The energy spectrum and scalar spectrum will contain a time-averaged

component and a periodic component,

E = E + Ẽ cos(ωt+ ΦE), (16)

Eθ = Eθ + Ẽθ cos(ωt+ ΦEθ
). (17)

The time-averaged spectra obey then the equations,

0 = −∂κΠ− 2νκ2E + P (18)

0 = −∂κΠθ − 2ακ2Eθ + P θ, (19)
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and the periodic contributions,

(

∂t + 2νκ2
)

Ẽ cos(ωt+ ΦE) = −∂κ

(

Π̃ cos(ωt+ ΦΠ)
)

+ P̃ cos(ωt)(20)

(

∂t + 2ακ2
)

Ẽθ cos(ωt+ ΦEθ
) = −∂κ

(

Π̃θ cos(ωt+ ΦΠθ
)
)

. (21)

Upto this point we have not introduced any serious approximations, apart

from the assumption that the response of the fields will be periodic with

frequency ω. In the following, section 3 we will first focus on the low frequency

dynamics of the velocity and scalar statistics. Then, in section 4, the high

frequency dynamics of the scalar will be investigated.

3. Low frequency dynamics

In the low frequency, or quasi-static limit all scales have sufficient time

to adapt to the forcing. The modulation does therefore not introduce any

phase-shifts in the statistics. This means that in equations (20) and (21) the

quantities ΦE , ΦEθ
, ΦΠ and ΦΠθ

are close to zero. Also, the time-derivative

vanishes in this limit. The equations simplify then to

2νκ2Ẽ = −∂κΠ̃ + P̃ (22)

2ακ2Ẽθ = −∂κΠ̃θ. (23)

To solve these equations, we need to specify the fluxes Π and Πθ. The sim-

plest model for those fluxes, compatible with conserved flux and Kolmogorov-

Obukhov scaling, is Kovaznay’s closure for the nonlinear transfer of kinetic

energy [3] and its analog for scalar turbulence [5]. These models read

Π = C
−3/2
k κ5/2E3/2, (24)
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with Ck the Kolmogorov constant, and

Πθ = Cθκ
5/2E1/2Eθ, (25)

where Cθ is related to the Kolmogorov and Corrsin-Obukhov constants by

the relation

Cθ = (CkC
2

CO)
−1/2. (26)

These closures are consistent with the dominant effect of straining in the

transfer of energy and scalar variance towards small scales, compatible with

Kolmogorov and Corrsin-Obukhov scaling. The influence of sweeping is not

dominant in the energy transfer process, but its effect on the mixing efficiency

constitutes an interesting direction for further research [16, 17].

Now these models are specified we can solve the equations to assess the

influence of the modulated forcing on the dynamics of E and Eθ.

3.1. Modulated kinetic energy

Introducing E = E+Ẽ in (24) and expanding in terms of Ẽ/Ē we obtain,

Π ≈ C
−3/2
k κ5/2E

3/2

(

1 +
3

2

Ẽ cos(ωt)

E
+O((Ẽ/E)2)

)

, (27)

So that

Π ≈ C
−3/2
k κ5/2E

3/2
(

1 +O((Ẽ/E)2)
)

, (28)

and

Π̃ cos(ωt) ≈ C
−3/2
k κ5/2E

3/2

(

3

2

Ẽ cos(ωt)

E
+O((Ẽ/E)2)

)

. (29)

Combining these expressions, we have therefore to first order

Π̃ =
3

2

Ẽ

E
Π. (30)
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In the inertial range, in the quasi-static limit, fluxes should balance the energy

input,

Π ≈

∫ k

Pdk = p, Π̃ ≈

∫ k

P̃ dk = p̃, (31)

which gives

Ẽ =
2

3

p̃

p
E. (32)

Integration gives the modulated kinetic energy in the quasi-static limit,

k̃ =
2

3

p̃

p
k, (33)

a result which was also obtained in [8] by elementary arguments.

3.2. Average kinetic energy and integral timescale

From equation (28) it can be seen that, to first order, the modulated en-

ergy input does not influence the time-averaged dynamics. This is consistent

with previous studies of modulated turbulence, where the amplitude of the

modulated forcing was small compared to the averaged component [10], [8].

However, in the recent simulations by Yang et al. [1], where the amplitude of

the modulation was taken equal to the value of the time-averaged component,

a significant modification of the averaged kinetic energy was observed for low

frequencies. For such amplitudes, it is possible that the linear approximation

breaks down, and higher order contributions should be taken into account.

Doing so, to second order, expression (28) becomes

Π = C
−3/2
k κ5/2E

3/2

(

1 +
3

8

Ẽ2 cos2(ωt)

E
2

)

. (34)

The time-average of the quadratic fluctuation is,

Ẽ2 cos2(ωt) =
1

2
Ẽ2, (35)
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and combining this with (32), we obtain in the inertial range

p = ǫ = Π = C
−3/2
k κ5/2E

3/2

(

1 +
1

12

(

p̃

p

)2
)

. (36)

This shows that the modulation leads to an enhanced energy transfer to small

scales. The physical consequence of this is that if there is a time-periodic

part in the large-scale forcing of a flow, the energy spectrum will be equal to

E(k) = C ′

kǫ
2/3k−5/3, (37)

where the Kolmogorov constant is affected by the second-order correction.

Its effective value will be

C ′

k = Ck

(

1 +
1

12

(

p̃

p

)2
)

−2/3

, (38)

and for a fixed energy input, the kinetic energy will be lowered by the same

factor, with respect to the unperturbed value k∞

k = k∞

(

1 +
1

12

(

p̃

p

)2
)

−2/3

. (39)

3.3. Modulated scalar variance

Introducing E = E+Ẽ and Eθ = Eθ+Ẽθ in (25) and expanding in terms

of Ẽ/Ē and Ẽθ/Ēθ we obtain to first order

Π̃θ ≈ Cθκ
5/2E

1/2
Eθ

(

Ẽθ

Eθ

+
1

2

Ẽ

E

)

. (40)

Since there is no modulated production term, the flux in the inertial range

should vanish. This gives the relation

Ẽθ

Eθ

+
1

2

Ẽ

E
= 0, (41)
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and thereby

Ẽθ = −
1

2

Ẽ

E
Eθ. (42)

Using (32), we find that

Ẽθ = −
1

3

p̃

p
Eθ. (43)

The minus sign in this expression shows that the scalar modulation is always

completely out of phase with respect to the kinetic energy. The modulated

scalar variance is obtained by integration, yielding

|k̃θ| =
1

3

p̃

p
kθ, (44)

and according to (8),

|ǫ̃θ| =
1

3

p̃

p
ǫθω. (45)

3.4. Average scalar variance and mixing rate

Again, as for the average kinetic energy, the modulation of the flow does

not affect the linear expansion of the average scalar flux Πθ. Retaining second

order contributions in the expansion of (25), we obtain

Πθ = Cθκ
5/2EθE

1/2

(

1 +
1

2

ẼθẼ

EθE
cos2(ωt)−

1

8

Ẽ2

E
2
cos2(ωt)

)

(46)

using (43), (35) and (32) this gives

Πθ = Cθκ
5/2EθE

1/2

(

1−
1

12

(

p̃

p

)2
)

. (47)

Again, as for the kinetic energy, we see that the modulation affects the flux,

but this time the effect is the opposite: the transfer rate is diminished. For

a fixed input, in the inertial range we have,

pθ = ǫθ = Πθ, (48)
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yielding, with (37) and 38,

Eθ = C ′

COǫθǫ
−1/3k−5/3, (49)

where

C ′

CO = CCO

(

1 + 1

12

(

p̃
p

)2
)1/3

(

1− 1

12

(

p̃
p

)2
) . (50)

The variance of the passive scalar is then enhanced by the same factor,

kθ = kθ(p̃ = 0)
C ′

CO

CCO
. (51)

Since the mixing rate can be defined as

χθ = ǫθ/kθ, (52)

we have for a fixed scalar input,

χθ(p̃) = χθ(p̃ = 0)
CCO

C ′

CO

. (53)

This expression is shown in Figure 1, together with the kinetic energy transfer

rate. The mixing rate goes down for a large-amplitude modulation and the

energy transfer rate increases, as observed in the DNS [1].

4. High frequency behavior of the modulated variances

In the previous section, the quasi-static limit was considered. In that

limit the different phase-shifts disappeared from the dynamics. When the

frequency goes up, the phase-shifts ΦE and ΦEθ
, both functions of ω and κ,
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Figure 1: Transfer rate χ and mixing rate χθ in the low frequency limit, as a function of

the relative forcing amplitude. Adding a slow, large amplitude modulation to the energy

input diminishes the mixing rate and enhances the kinetic energy transfer rate.

complicate the analysis. In [8], it was shown that it is convenient to rewrite

these equations in terms of spectra in- and out-of-phase,

E = E + F̃ cos(ωt) + G̃ sin(ωt), (54)

Eθ = Eθ + F̃θ cos(ωt) + G̃θ sin(ωt). (55)

We have hereby eliminated the phases ΦE and ΦEθ
from our description.

Both descriptions are obviously equivalent and can be related by

F̃ 2 + G̃2 = Ẽ2 and tan(ΦE) = −G̃/F̃ , (56)

with equivalent expressions for the scalar case. The first question to address is

how the quantities F̃θ and G̃θ will be influenced by the periodically fluctuating

energy input. The expressions for F̃ and G̃ were determined in [8]. It was
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shown that in the inertial range, for large ω, F̃ , G̃ were given by

G̃/E ∼ ω−3κ2f p̃ and F̃ /E ∼ ω−2κ2f p̃ǫ
−1/3κ−2/3. (57)

In the light of our recent investigation of out-of-equilibrium turbulence [18],

G̃ corresponds to the equilibrium and F̃ to the non-equilibrium contribution

of the modulated kinetic energy spectrum.

The derivation of the large-frequency behaviour of k̃θ is straightforward.

First we replace in Πθ (expression (25)) the energy spectrum and the scalar

spectrum by their expressions (54) and (55). Assuming the fluctuating spec-

tra small compared to the time-averaged spectra, Ẽ/E ≪ 1, Ẽθ/Eθ ≪ 1, the

flux can be approximated (to first order) by,

Π̃θ cos(ωt+ φΠ) ≈ Πθ

(

F̃θ cos(ωt) + G̃θ sin(ωt)

Eθ

+
1

2

F̃ cos(ωt) + G̃ sin(ωt)

E

)

.(58)

We substitute this expression in the equation for the fluctuating scalar spec-

trum (21). Evaluating the expression at t = 0 and t = π/2 yields two coupled

equations,

−ωF̃θ = −∂κ

(

Πθ

(

G̃θ

Eθ

+
1

2

G̃

E

))

− 2ακ2G̃θ (59)

ωG̃θ = −∂κ

(

Πθ

(

F̃θ

Eθ

+
1

2

F̃

E

))

− 2ακ2F̃θ. (60)

In the inertial range, we assume that

E(k) = Ckǫ
2/3κ−5/3, Eθ = CCOǫθǫ

−1/3κ−5/3. (61)

We further use the results (57), and, ignoring the diffusive terms, the above

set of equations can be rewritten as

F̃θ

Eθ

= ψ∂κ

(

G̃θ

Eθ

)

(62)
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and

[1 + ψ∂κ [ψ∂κ]]
G̃θ

Eθ

= ψω−2κ2f p̃ǫ
−1/3κ−5/3 (63)

where we introduced the expression,

ψ ∼ ω−1ǫ1/3k5/3. (64)

The second term in (63), containing the second derivative, is proportional to

ω−2. For large frequencies we can thus ignore it compared to the first one,

yielding,

G̃θ

Eθ

∼ ω−3κ2f p̃ (65)

and

F̃θ ∼
ǫ1/3k2/3

ω
G̃θ. (66)

Since p̄ = ǭ ∼ k̄/T and κf ∼ ǭk̄−3/2, this can be expressed as

G̃θ

Eθ

∼ (ωT )−3(p̃/p̄), (67)

and therefore

k̃θ ∼ k̄θ(ωT )
−3(p̃/p̄). (68)

We see thus that the periodic part of the scalar variance, at large ω is deter-

mined by large scale quantities. Furthermore, the scalar dissipation is given

directly by

|ǫ̃θ| = ω|k̃θ|, (69)

and therefore,

ǫ̃θ =
p̃

p
ǫθ(ωT )

−2. (70)

Our estimates for the low and high frequency asymptotes are sketched in

Figure 2.
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Figure 2: Frequency response of the modulated part of the passive scalar variance and

dissipation.

5. Discussion

The main result obtained in the present manuscript involves the mixing

rate. According to Figure 1, the mixing rate χθ will go down to 89% of

its value if the flow-forcing contains a modulation with an amplitude ratio

p̃/p = 1. The energy-transfer rate, on the other hand will increase towards

χ/χ(p̃ = 0) = 1.05. These figures are the same order of magnitude as the

figures obtained in the numerical study [1]. Note that at an amplitude of

p̃
p
= 0.2 the change in the mixing rate and energy transfer becomes less than

1%. It is thus clearly a large amplitude effect. For smaller forcing amplitudes

the linear prediction that the average fields are unaffected is approximately

satisfied.

The same conclusions hold for the Kolmogorov and Corrsin-Obukhov
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constant. Their variations also become important only for large amplitude

ratios. A recent related study of a similar effect can be found in [19]. They

exploited experimentally the idea by Monin and Yaglom [20], section 25.1,

who introduced a model to illustrate the influence of a fluctuating dissipation

rate, or energy injection rate, on the Kolmogorov constant.

We can summarize the new physical insights as follows. The time-averaged

nonlinear transfer is, at second order, influenced by the modulation of the en-

ergy injection. This enhances the energy flux. For a given energy injection at

a given scale, this will decrease the level of the kinetic energy, or equivalently,

the value of the Kolmogorov constant. The transfer of the passive scalar is

also affected by the modulation, but the influence is the contrary. Qualita-

tively, this can be understood, at least partially, by the fact that the kinetic

energy is decreased, so that the mixing of the scalar by the velocity fluctu-

ations is less efficient. Adding a modulation to the forcing of a turbulent

flow will thus decrease the integral velocity timescale and, simultaneously,

increase the scalar timescale.
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