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Abstract—Recent advances in information theory have pro-
vided achievability bounds and converses for the coding rate for
the finite blocklength regime. In this paper, recent results on the
non-asymptotic coding rate for fading channels with no channel
state information at the transmitter are exploited to analyze
the goodput in additive white Gaussian noise (AWGN) and the
energy-efficiency spectral-efficiency (EE-SE) tradeoff where the
fundamental relationship between the codeword length and the
EE is given. Finally, the true outage probability in Ricean and
Nakagami-m block fading channels is investigated and it is proved
that the asymptotic outage capacity is the Laplace approximation
of the average error probability in finite blocklength regime.

I. INTRODUCTION

The channel capacity is the maximal achievable rate for
a given average/maximum error probability in the asymptote
of infinite codeword length. This fundamental communication
limit was derived by Shannon for various channels such as
the discrete memoryless channel (DMC) and the additive
white Gaussian noise (AWGN) channel [1]. The fundamental
performance evaluation in block fading channels encounters a
definition problem, at least in the Shannon sense. Indeed, the
channel capacity of block fading channels is strictly zero in the
Shannon sense since no codeword can be designed to ensure
a vanishing error probability for all the channel realizations,
when channel state information (CSI) is not available at the
transmitter. The outage capacity is defined as the maximal
spectral efficiency achievable under a given error probability;
see [2] and references therein. However, the term ’capacity’
is not really well chosen since it is neither an upper nor a
lower bound but simply an asymptotic approximation of the
successful packet transmission rate.

The behavior of the second-order rate, i.e. achievable rate
for finite blocklength, with respect to (w.r.t.) the asymptotic
channel capacity is an old fundamental problem dating back
to Feinstein and Gallager in the 1960’s [3], [4]. Recently,
Polyanskiy et al. reformulated the problem and rigorously de-
rived some non-asymptotic achievability and converse results
for the finite blocklength regime [5]. This work motivated
considerable interest and several authors have continued the
characterization of the non-asymptotic achievable rate regions
for more complicated channels such as the multiple access
channel (MAC) and broadcast channel (BC), e.g. [6], [7], [8],
[9].

The finite blocklength theory is particularly relevant when
addressing the block fading channel since a finite codeword
length spans one realization of the channel. Several works have

dealt with non-asymptotic achievability and converse bounds
in block fading environments [10], [11], [12], [13]. In terms of
context, the non-asymptotic information theory is particularly
relevant to address the upcoming challenges of internet of
things (IoT) and machine-to-machine (M2M) communications
which will be part of the 5G networks. Indeed, in these
networks, the flow is expected to be sporadic and with a
relatively small quantity of information to transmit.

In this paper, we exploit recent results on the non-
asymptotic rate for fading channel with no channel state
information at transmitters (CSIT) to investigate the impact
of the finite blocklength on physical parameters of practical
systems, such as the energy-efficiency (EE) or packet error
rate (PER). Some studies have dealt with the finite block-
length framework to analyze some practical communication
schemes, e.g. [14], in which authors have used the recent finite
blocklength information theory results to derive closed-form
expression for the outage probability and feedback delay of
incremental redundancy (IR) hybrid automatic repeat request
(HARQ).

The rest of this paper is organized as follows. Section II
provides the model and definitions used throughout the paper.
Section III deals with the fundamental behavior of the goodput
and EE of a finite blocklength communication system. The
average error probability in block fading channels is addressed
in Section IV. Simulation results are given in Section V and
conclusions are drawn in Section VI.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider a wireless network in which the nodes ex-
change small packets, typically k ≤ 100 where k is the
number of bits in each packet. From an information theoretic
perspective, these packets are considered as messages. Let
M = 2k denote the cardinality of the message space. An
encoder is a mapping function such as f : {1, · · · ,M} → An,
where An is the set of codewords of length n, and n is also
known as the number of channel uses (c.u.) in transmitting
a packet. The blockcode is transmitted over a noisy, possibly
block fading, channel which corrupts the bits. At the receiver
end, a decoder produces an estimate of the original message by
observing the channel output, according to a certain function
given as g : Bn → {1, · · · ,M}, where Bn is the set of received
codewords of length n. The average error probability is defined

as ǫ = Pr
(

W 6= Ŵ
)

, where W ∈ {1, · · · ,M} is the message

to be sent. According to [5], a tuple (n,M, ε) is feasible, if



a source of cardinality M can transmit with a probability of
success 1− ε over n channel uses.

Definition 1. An AWGN channel is defined as a triple of
two alphabets, i.e. A = Cn, B = Cn, and a collection of
conditional probability functions, i.e. PY n|Xn representing the
channel such as

PY n|Xn=xn = N (xn, In) (1)

where In is the n× n identity matrix and Xn, Y n represent
the channel inputs and outputs, respectively, over n channel
uses.

The codewords are subject to an equal-power constraint,
i.e. for each codeword ci ∈ Xn, i ∈ {1, · · · ,M}, we have

||ci||2 = nP = E, where P and E are the power per channel
use and the energy of the code, respectively. In the non-
asymptotic regime, the error probability cannot be as small as
desired for a given rate k/n, as stated in [5]. The authors of [5]
have shown that for an error probability (maximal or average)
ǫ and a power constraint P , the following approximation on
the achievable rate holds:

1

n
log2 M(n, ǫ, P ) ≈ C(P )−

√

V (P )

n
Q−1(ǫ) (2)

considering that the noise variance σ2 = 1, we have
C(P ) = log2(1 + P ) the Shannon channel capacity, V (P ) =
P
2

P+2
(P+1)2 log

2
2 e is the AWGN channel dispersion and Q(x) =

1/
√
2π

∫∞

x
exp

(

−u2/2
)

du. The non asymptotic achievable
rate in (2) reveals to be tight even for relatively small n, e.g.
n = 200 [5].

III. GOODPUT AND ENERGY EFFICIENCY IN AWGN
CHANNEL

A. Goodput

As already mentioned, for non-asymptotic values of n, the
achievable data rate for a given error probability, denoted by
R(n, ǫ), can be very far from the asymptotic Shannon limit.
In a practical system, four parameters k, n, ε, P can be tuned
to optimize the performance. Let us consider a system where
the packet size is fixed, which means that n channel uses
are needed to transmit an amount of information. Under this
assumption, what is the best choice to maximize the global
capacity and how far is the result from the Shannon capacity?
The goodput, G (k | n, P ), for a given k knowing the number
of c.u. and power per c.u. is defined as

G(k|n, P ) = (1− ε(k|n, P )) · k
n

(3)

where ǫ (k | n, P ) is the average error probability for k
information bits sent in n c.u. with a power P per c.u.
Figure 1 shows the goodput defined as in (3) versus the
rate, i.e. the number of information bits k when n is fixed.
It can be observed that for low rates, the goodput matches
with the rate (according to Shannon) since very low error
probability can be achieved. However, for rates near capacity,
i.e. 1 bit/s/Hz at P = 0 dB (for unitary noise variance),
the goodput suddenly decreases as a consequence of the
Gaussian Q function involved in the error probability, i.e.

Q
(

√

n/V (P )(C(P )− k/n)
)

. In particular, we note that for
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Fig. 1. The numerical evaluation of the goodput given by (3) for three
different values of the blocklength n

short packets, the goodput is only 50% of the achievable
channel capacity, which means that working with the Shannon
limit is clearly far from the reality for small packet commu-
nications. The optimal number of information bits leading to
the maximum achievable goodput can be easily obtained by
solving ∂G

∂k
= 0.

B. Energy efficiency versus spectral efficiency

The energy efficiency - spectral efficiency (EE-SE) tradeoff
is a Pareto front drawing the achievable frontier of a wireless
communication system on these two quantities. It is an impor-
tant information especially when the energy efficiency comes
into play in the design of a wireless communication system
as it is the case for IoT for instance. In order to evaluate
different EE-SE tradeoffs, for a given quantity of information
k to be sent with a given reliability ε, we are interested in
trading between n and E = n · P . In the asymptotic case,
the relation between capacity and energy is simply given by
k/n = log2(1+E/n) which leads to the classical Pareto front:

E = (2
k

n − 1) · n, with k = log2(M). In this approach, there
is no error probability since the asymptotic Shannon capacity
is assumed to be achievable and the idea is to say that if the
rate exceeds the capacity all packets are dropped. However,
especially with small packets and poor coding, the Shannon
capacity is not achieved. At any signal level, the system will
suffer from a certain error probability and hence the EE-SE
tradeoff will be different from that in the asymptotic case.
From (2) we have:

k = n · C(E/n)−
√

n · V (E/n)Q−1 (ǫ) (4)

We can now state the first main result:

Theorem 1. The energy efficiency - spectral efficiency tradeoff
subject to the packet size and error probability constraints is
given by:

E(λ) = f2(λ) · V −1(λ) (5)

n(λ) = f2(λ) (6)
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Fig. 2. EE-SE tradeoff for k = 16 bits and error probability ranging from
10

−1 to 10
−4.

where λ ∈ [0; log22(e)/2[ and

V −1(λ) =
1

√

1− 2λ
log2

2
(e)

− 1 (7)

f(λ) =
b(λ) +

√

b2(λ) + 4kC(V −1(λ))

2C(V −1(λ))
(8)

b(λ) =
√
λ ·Q−1(ε) (9)

Proof: The proof relies first on the inversion of the
divergence function λ = V (E/n) which is a second order
polynomial with a unique positive solution : E/n = V −1(λ) =

1/
√

1− 2λ/ log22(e)− 1. Since V is a monotonic function in

[0, log22(e)/2[, λ is bounded. Replacing E/n in (4) leads to a
new polynomial nC(V −1(λ))−√

n · b(λ)− k = 0 which has
a unique positive solution in

√
n. This completes the proof of

Theorem 1.

Let us fix the number of information bits, k, to be
transmitted. The spectral and energy efficiencies are simply
k/n and k/E where n and E are given by (5) and (6)
respectively. Figure 2 presents the EE-SE tradeoff for k = 16
bits and various values of codeword error probability, i.e. from
ǫ = 10−1 to ǫ = 10−4. It can be noticed that the real frontier
can be relatively far from the Shannon bound when dealing
with small packets as is the case in IoT networks. Moreover,
the more the targeted error rate decreases the more the SE-EE
tradeoff in finite length theory mismatches with the Shannon
bound.

IV. OUTAGE PROBABILITY IN BLOCK FADING

A. Model

We consider block fading channels, where the state is not
known at the transmitter [15]. The signal model is given as

y [l] = h [l]x [l] + w [l] (10)

where the index l denotes the l−th coherence interval, w ∼
CN (0, 1) is centered complex AWGN with unit variance, x
is the transmitted codeword and h is the complex channel

coefficient, being Rice or Nakagami−m distributed with spec-
ular component K , or parameter m respectively1. The channel
remains constant over T consecutive symbols and a codeword
of length n = T spans over one channel realization.

B. Message error rate in fading channels

The block-fading channel is conditionally ergodic w.r.t. the
channel realization h. In that case, (2) holds in non-asymptotic
regime by setting

C(γ) = log2 (1 + γ) (11)

V (γ) =
γ (γ + 2)

2 (γ + 1)
2 log22 e (12)

where γ = P |h|2 and P is the average power per channel use.
Since, the error probability extracted from (2) is conditioned
on the channel realization, one can define an average error
probability in block fading channel as

ǫ =

∫

R+

Q

(
√

n

V (γ)
(C(γ)−R)

)

pγ(γ)dγ (13)

where pγ is the probability density function (pdf) of the in-
stantaneous SNR γ. In some cases, the non-asymptotic average
error probability can be different from the outage probability
defined with the Shannon formula as

P (O) = P (log2 (1 + γ) < R)

= P
(

γ < 2R − 1
)

= Fγ

(

2R − 1
)

(14)

where Fγ is the cumulative distribution function (cdf) of the
instantaneous SNR. The difference between (14) and (13) is
that the former is the integration of the channel probability
density function (pdf) weighted by an indicator function (hence
null after a threshold, i.e. 2R − 1) while the latter is the
integration of the pdf weighted by a Gaussian Q function which
is never zero. Hence, according to the nature of the pdf and
the rate threshold considered, the average non-asymptotic error
probability can be quite different from the outage probability.

There is not an exact closed-form expression for (13), but
an interesting question would be ”can we approximate this
integral?”. The average symbol error probability expression
combines the Gaussian Q function and the SNR pdf and the
Laplace approximation has been shown to be a successful
method to approach the exact error rate in fading channels
[16], [17], [18]. One can attempt to follow the same kind of
steps here, but due to the form of the average error probability
one can prove that the Laplace approximation of (13) results
in the outage probability obtained with Shannon formula as
stated in the following result.

Theorem 2 (Average Error Probability). In block fading
channels, the asymptotic outage probability constitutes the
Laplace approximation, a.k.a. the saddle point approximation,
of the non-asymptotic average error probability, i.e.

ǫ ≈ Fγ (γ0) (15)

1The Rayleigh distribution is encompassed in the Rice distribution by setting
K = 0 and in the Nakagami distribution with m = 1.



where γ0 = 2R−1 and Fγ is the cdf of the SNR. For Rice and

Nakagami-m channels, Fγ (γ0) = 1−Q1

(√
2K,

√

2 1+K
γ

γ0

)

and Fγ (γ0) = 1
Γ(m)γinc (m,mγ0/γ) respectively, where

Q1 (·, ·) is the generalized Marcum Q function of order 1,
γinc (a, b) is the incomplete gamma function and γ is the
average SNR per c.u.

Proof: Using integration by parts, the expression in (13)
can be rewritten as

ǫ = −
∫

R+

∂

∂γ
Q

(
√

n

V (γ)
(C(γ)−R)

)

Fγ(γ)dγ (16)

The derivative of the Gaussian Q function results in

∂Q

∂γ
= −

√

n

π
h (γ) e−Tg(γ)

where h (γ) =
√

1
γ(γ+2)

(

1− C(γ)−R

γ(γ+2) log2 e

)

and T =
√

n
2 ,

and hence the average error probability can be expressed as

ǫ ≈
√

n

π

∫

R+

h (γ)Fγ (γ) e
−Tg(γ) (17)

by letting h̃ (γ) = h (γ)Fγ (γ) and g (γ) = (C(γ)−R)2

V (γ) . The

function g is twice differentiable, smooth and has a unique

minimum over R+ at γ0. Moreover, h̃ is continuous with a
constant sign over R+. Hence, (17) can be approached via the
Laplace method with

ǫ ≈
√

n

π

√

2π

Tg′′ (γ0)
h̃ (γ0) e

−Tg(γ0) (18)

Here we obviously have γ0 = 2R−1 and using straightforward

calculus we obtain g
′′

(γ0) = 4/ (γ0 (γ0 + 2)) and h̃ (γ0) =
√

1/ (γ0 (γ0 + 2))Fγ (γ0). Substituting these expressions into
(18) completes the proof.

The speed of convergence of the second-order average error
probability to the actual outage probability in Rayleigh block
fading channels is quite fast [10] but the difference is not
negligible in Ricean fading channels as we will see in the
next section.

V. NUMERICAL RESULTS

In this section, the average error probability in the finite
blocklength regime is compared to the outage probability in
Ricean and Nakagami−m block fading channels. The param-
eter settings are K = 15dB, m = 6 and n = 200 throughout
this section, unless otherwise mentioned. Recall that the larger
K respectively m, the more the channel acts as an AWGN
channel. Figures 3(a) and 3(b) show the average error and
outage probabilities for low and high rates in a Ricean fading
channel respectively. A substantial difference can be observed
for very low rate, i.e. R = 2 · 10−2 between the outage
probability defined using the Shannon formula and the non-
asymptotic average error probability. The practical scenario
corresponding to this regime could be wireless communication
with a line of sight situation but with a low SNR. In that case,
high redundancy in the channel coding is needed to ensure
reliable communication. Even for moderate rate, i.e. R = 0.2
the mismatch between the asymptotic outage probability and
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Fig. 3. Average error probability in Ricean fading from non-asymptotic and
asymptotic formula.

the average probability could be non-negligible in particular
for γ = 0dB. For higher rates, e.g. R = 0.8, the average
error and the asymptotic outage probabilities converge as can
be seen in Figure 3(b). Moreover for high average SNR, the
outage and the average error probabilities converge.

Figures 4(a) and 4(b) show the non-asymptotic average
error probability and the outage probability in Nakagami−m
fading for low and high coding rates respectively. As in
the former case, the greatest difference between the outage
probability defined with the Shannon formula and the non-
asymptotic average error probability occurs for small rates,
i.e. R = 2 ·10−2−4 ·10−2. Unlike the Ricean fading channel,
the gap between the non-asymptotic average error probability
and outage probability is asymptotically constant, i.e. for
large SNR, due to the linear behavior of error probability
in Nakagami−m channels when SNR goes to infinity. In
Figure 4(b), the gap between the non-asymptotic average error
probability and the outage probability decreases as the coding
rate increases due to the weighting of the tail of channel
pdf by the Gaussian Q-function. Indeed, the larger R, the
farther, in SNR, the inflection point of Q function. Hence,
the contribution of the integral in the range [γ0,∞[ to the non
asymptotic error probability is negligible compared to the part
in [0, γ0].

In order to analyze how the outage and the finite block-
length average error probabilities behave relative to each other,
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Fig. 4. Average error probability in Nakagami−m fading from non-
asymptotic and asymptotic formula.

we define a mismatch coefficient

Qf =

∣

∣

∣

∣

ǫ− P (O)

P (O)

∣

∣

∣

∣

(19)

where P (O) is the asymptotic outage probability defined as
P (C (γ) < R). Figures 5(a) and 5(b) illustrate the behavior
of the quality factor defined above according to the average
received SNR γ and the communication rate R for a codeword
length n = 200 in Ricean fading. The colored curves represent
the set of couples (γ,R) for which there is the same amount
of relative error between the asymptotic outage probability and
the average error probability in block fading channels. Figure
5(a) in particular illustrates a significant degree of mismatch
for small average SNR, i.e. from −12 to −4 dB, and small
rates. In that case, the performance of small packet-based
communications has to be assessed by the finite blocklength
theory due to the important difference between the asymptotic
description and the finite length predictions. In Figure 5(b) a
relative error of at least 50% can be observed for a wide range
of rates and SNR values, i.e. from R = 0.2 to R = 0.7 and
γ = −7 to γ = 9dB respectively.

Figures 6(a) and 6(b) investigate the quality factor defined
above in Nakagami−m fading. We can observe the constant
behavior of each curve above a certain SNR level, in particular
on Figure 6(a). This is due to the constant gap between both
metrics in Nakagami fading. Even for high rates, ie. Figure
6(b), the relative difference can be large, at least 10%, for a
wide range of combinations of SNRs and rates.
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Fig. 5. Relative difference between the outage and the average error
probabilities in Ricean block fading vs the SNR and the rate.

In these figures, an important change of scale can be
observed between low rate and high rate figures. This can be
explained by the outage and non asymptotic error probabilities
expressions. The outage probability is obtained by integrating
the channel pdf up to γ0 = 2R − 1, which is close to zero
for low rates and which increases when rate increases. On the
other hand, an integral on R+ is involved in the computation of
the non asymptotic error probability in which the channel pdf
is weighted by the Q function. For low rates, a little part of
the channel pdf comes into play in the outage computation
contrarily to the non asymptotic error probability formula
which is done over R+. Even if the channel pdf is weighted
by the Q function, the integration part over [γ0,∞[ counts for
an important contribution in the value of the non asymptotic
error probability. This explains the big difference between
outage and non asymptotic error probabilities for low rates.
When R increases, the outage probability takes into account
the tail of the SNR distribution and the difference with the non
asymptotic error probability reduces.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we have investigated the impact of the non-
asymptotic coding theory from a practical wireless commu-
nication point of view. In particular, we have studied the
gap between the Shannon Pareto front on the EE-SE tradeoff
and the real achievable tradeoff when finite-length codewords
are employed in AWGN channels. The investigation reveals
an increasing gap between the asymptotic fundamental limit
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Fig. 6. Relative difference between the outage and the average error
probabilities in Nakagami−m block fading vs the SNR and the rate.

(Shannon theory) and the non-asymptotic achievable EE-SE
tradeoff when the error probability is decreasing. Moreover,
the outage probability has also been investigated in Ricean
and Nakagami-m block fading channels, where the definition
using the Shannon capacity formula can largely underestimate
the outage probability compared to a non-asymptotic analysis,
particularly for low rates. These results may be of particular
interest for the study of the fundamental performance of future
IoT/M2M networks, wherein low rates and short packets are
envisaged to be the key characteristics.
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