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Abstract: In the context of semantic segmentation of urban scenes, the calibrated multi-views and the flatness assump-

tion are commonly used to estimate a warped image based on the homography estimation. In order to classify

planar and non-planar areas, we propose an evaluation protocol that compares several Image Quality As-

sessments (IQA) between a reference zone and its warped zone. We show that cosine angle distance-based

measures are more efficient than euclidean distance-based for the planar/non-planar classification and that the

Universal Quality Image (UQI) measure outperforms the other evaluated measures.

1 INTRODUCTION

The semantic segmentation consists in detecting

and identifying objects present in the scene. For ex-

ample, in urban scenes, we would like to distinguish

the ground (road, pavement) from the façades of the

buildings. A first step for solving this problem con-

sists in using an over-segmentation, such as super-

pixel construction. It is an intermediate feature of in-

terest, in comparison with using pixels only or with

the use of regular patches, that combines a space sup-

port and a photometric criterion (Felzenszwalb and

Huttenlocher, 2004; Achanta et al., 2012). These

methods aim at facilitating the segmentation and they

allow to pre-process high resolution images by reduc-

ing the problem complexity (Arbelaez et al., 2009).

Illustrated in figure 1, the two superpixels SP1

and SP2 are helpful for the semantic segmentation

because they are coherent with the scene geometry.

However, the striped non-planar superpixel SP3, is

not well adapted because it is astride a boundary of

two adjacent planes, i.e. two façades. A superpixel

should represent a meaningful 3D surface.

Regarding urban scenes, planar geometry con-

straints are commonly used as prior knowledge on

the context in monocular images (Saxena et al., 2008;

Hoiem et al., 2008; Gould et al., 2008). An in-

termediate level of image segmentation is to clas-

sify zones into planar and non-planar classes but the

choice of a discriminative similarity measure remains

difficult. If multiple images are available, the sparse

Figure 1: Superpixel analysis and presentation of the IQA
evaluation protocol – It is based on a photo-consistency cri-
terion IQA between a piece of the reference image z and its
corresponding warped area z̃ estimated by the homography
H induced by the plane of support.

3D point clouds and the epipolar geometry are use-

ful to strengthen the understanding of the scene (Bar-

toli, 2007; Mičušı́k and Košecká, 2010; Gallup et al.,

2010).

In particular, under the planar hypothesis, know-



ing the epipolar geometry and the orientation of the

represented surface, the homography estimation be-

tween two regions is defined. Then, an Image Quality

Assessment (IQA) is used to evaluate the similarity

(or the dissimilarity) between the initial area z and the

warped area z̃ from which we can deduce the planarity

of z. The IQA(SP1, ˜SP1) and the IQA(SP2, ˜SP2) are

more similar than IQA(SP3, ˜SP3), cf. Figure 2 that

shows an example of this behaviour with a planar and

a non-planar regions z delimited by three 2D points

noted q1, q2 and q3.

(a) P (b) NP

Figure 2: Two regions of interest z of the reference image I:
(a) one planar and (b) one non-planar. The point qλ follows
the line [q1q2]. The intersection of the two planes π1 ∩π2

is denoted qλ⋆ which corresponds to our ground truth, i.e. it
delimits the edge between the two planes.

In this work, two successive calibrated images I

and I′ are used, cf. Figure 3. We denote PI = K[I|0]
the projection matrix of I, where K is the matrix of

the intrinsic parameters and PI′ = K[R|t] the projection

matrix associated to the image I′ where R is the rota-

tion matrix and t the translation vector that determines

the relative poses of the cameras. Each 3D point Qi

corresponds to 2D matched points qi ∈ I and q′i ∈ I ′.
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Figure 3: Configuration between I and I′: the 3D points Qi

obtained by the 2D matched points qi ↔ q′i. It determines
the regions of interest z and z′ to estimate the homography.

In order to obtain an over-segmentation consistent

with the scene geometry, in this article, we use the

flatness assumption on objects represented in the im-

ages to compute the similarity between z and z̃. One

of the difficulty of this problem is to choose a perti-

nent measure between several similarity and dissim-

ilarity measures used in the literature such as the r-

consistency in (Kutulakos, 2000; Bartoli, 2007) or the

Zero mean Cross Correlation (ZNCC) (Quan et al.,

2007; Häne et al., 2013). Therefore, we propose

an IQA evaluation protocol for planar/non-planar re-

gions classification. It means that we want to high-

light the measure that is the most sensitive to pho-

tometric differences induced by the estimation of the

warped corresponding areas in non-planar case. To

simplify the problem and as a preliminary work, we

apply IQA over triangles instead of superpixels be-

cause only three matched points are required to esti-

mate the homography if the epipolar geometry of the

two views is known.

The next section presents five of the existing mea-

sures. We also introduce a new measure that merges

two main ideas of two existing measures. Then, in

§ 3, our evaluation protocol is detailed. Finally, exper-

imentations followed by our analyses are presented.

2 PHOTO-CONSISTENCY

MEASURES

The quantification of how a reference region z

and a target region z̃ are photometrically similar (or

dissimilar) is computed from photo-consistency mea-

sures which compare pixel intensities. Here, source

and target regions are delimited by the same poly-

gon, the former includes pixels of the reference im-

age while the latter includes warped pixels obtained

by transferring intensities from the target image, un-

der the planarity assumption of the projected surface.

We propose a classification of photo-consistency

measures into two classes: euclidean distance-based

or cosine angle distance-based measures. All the mea-

sures are illustrated in figure 4 and we note:

• N = card{qi ∈ z} is the number of pixels in the

considered region z (or equivalently z̃);

• vi (resp. ṽi) is the luminance coordinate in CIELab

color space of pixel qi in the region z (resp. z̃).

Euclidean Distance-based Measures – Denoted

by IQAd , they quantify the dissimilarity between the

region z and the warped corresponding region z̃ by re-

lying on the Euclidean distance between the two vec-

tors v and ṽ linearising z and z̃. The first one is the

well-known Mean Square Error (MSE), defined by:

MSE(z, z̃) =
1

N
∑

i

(vi− ṽi)
2 (1)

This measure can be extended, if for a given pixel

qi the square neighbourhood in a radius less than r is



considered:

MSEr(z, z̃) =
1

N
∑

i

[
1

(2r)2 ∑
j / |qi−q j |≤r

(v j− ṽ j)
2] (2)

The r-consistence used in (Bartoli, 2007) also falls

into this category. For a given pixel qi ∈ z, the pixel

difference in the r-ring neighbourhood of the corre-

spondent pixel q′i ∈ z′ is searching.

RCr(z, z̃) =
1

N
∑

i

(

min
j / (qi−q j)2<r2

|vi− ṽ j|
)2

(3)

Cosine Angle Distance-based Measures – De-

noted by IQAs, they quantify the similarity of the re-

gions by relying on the inner product of the two vec-

tors. Typically, these vectors are treated as random

variables and “a correlation coefficient” is computed

by dividing the covariance of the two variables by the

product of their standard deviations.

In this work, we will consider the Structural SIM-

ilarity (SSIM) coefficient (Wang et al., 2004). Three

statistical terms are involved: luminosity l(z, z̃), con-

trast c(z, z̃) and structure s(z, z̃). Moreover, Gaussian

weights are introduced to give more importance to the

central pixel. If the following terms are defined:

• µz (resp. µz̃) the mean of vi (resp. ṽi) over the

region z (resp. z̃),

• σz (resp. σz̃) the standard deviation of z (resp. z̃),

• σzz̃ the covariance of z and z̃,

then, the SSIM is defined by:

SSIM(z, z̃) = l(z, z̃) · c(z, z̃) · s(z, z̃) (4)

where:

l(z, z̃) =
2µzµz̃ +α

µ2
z +µ2

z̃ +α
, c(z, z̃) =

2σzσz̃ +β

σ2
z +σ2

z̃ +β

and s(z, z̃) =
σzz̃ + γ

σzσz̃ + γ
.

The constants α, β and γ are introduced to avoid to

divide by zero. This case occurs when a region is ho-

mogeneous in intensity, in that case σz = 0 or when

it is a black zone, i.e. µz = 0. SSIM is symmetric,

stacked and reaches its maximum when the two areas

are similar i.e. z = z̃. Let us remark that the structure

term s(z, z̃) corresponds to the Zero mean Normalised

Cross-Correlation (ZNCC) for γ = 0 (Aschwanden

and Guggenbül, 1992). The Universal Quality Index

(UQI) (Z. Wang and Bovik, 2002) corresponds to the

special case where α = β = γ = 0 and without any

weight balancing. This means that all pixels in the

sliding window have the same importance. More pre-

cisely, UQI is formulated as follow:

UQI(z, z̃) =
4σzz̃ µzµz̃

(σ2
z +σ2

z̃) [µ
2
z +µ2

z̃ ]
(5)

We proposed here a new metric called RUQI,

combining ideas from UQI by using statistic over the

r-neighbourhood and by optimising the similarity on

a neighbourhood such as in RCr:

RUQI(z, z̃) =
1

N
∑

i

(

max
j / (qi−q j)2<r2

(UQI(ξi, ξ̃ j))
)

(6)

where ξi (resp. ξ̃ j) is defined as a small window of z

(resp. z̃) around qi (resp. q j).

Conclusions and analyses about IQA – First of

all, regarding the IQA when r = 0 then RC0 =
MSE0 = MSE. In details, RCr optimizes the differ-

ence on the warped image and MSE compares pixel-

to-pixel while MSEr takes into account the neigh-

bourhood.

In SSIM, a Gaussian weight is used to give more

importance to the central pixel, compared to UQI

measure. So, we introduce RUQI that optimizes the

similarity in the r-neighbourhood over the statistical

information to combine advantages of UQI and RC.

Finally, the cosine angle distance-based measures

compute statistics over pixels belonging to the zone

instead of a simple difference. All these measures in-

troduce a parameter r and we discuss the influence of

this parameter in § 4.

Figure 4: IQA(z, z̃) computation (Euclidean distance-
based/cosine angle distance-based measures) on a reference
zone z centred on qi (in red) and on z̃ centred on q̃i (in blue).
In RCr and RUQI, the point q̃ j corresponds to the more sim-
ilar pixel in a r-neighbourhood, see § 2 for details.

3 IQA PROTOCOL EVALUATION

Assuming that a high photo-consistency is ob-

tained when correct surface orientations are known,

this IQA evaluation protocol highlights the measure

that fits with the assumption to discriminate planar

from non-planar regions. More precisely, we want



to answer the following question: if a triangle is sup-

ported by two planes, can we, by estimating homogra-

phies, detect the plane switching with a photometric

criterion? We would like to detect non-planar regions

in order to cut it until obtaining planar regions. To

make easier the evaluation task, it is natural to intro-

duce this simplification: one of the vertex lies on the

intersection.

For this reason, our approach is based on the main

idea that when λ ∈ [0−1], we are expecting to a con-

stant and high similarity (low dissimilarity) curve in

a planar case, and in a non-planar case for low simi-

larity (high dissimilarity). When a region of interest

is supported by two planes, an extrema can be reach

at the intersection of both planes, the ground truth,

noted λ⋆. An overview of our proposed approach is

presented in algorithm 1.

3.1 Homographies Estimation

To compare zones, we estimate homographies in-

duced by the plane supports, to compute the warped

image z̃ from z′. First, we split the region z defined by

q1q2q3 into two smaller triangles q1q3qλ and q2q3qλ.

Shown in figure 2, the point qλ lies on the segment

[q1q2] and is defined by qλ = λq1 +(1−λ)q2 where

λ ∈ [0,1] in I. Since we have a perspective trans-

formation between the two views, q′λ 6= λq′1 + (1−
λ)q′2. Therefore, four 2D matched points or three 2D

matched points and epipoles allow to estimate the ho-

mography induced by the 3D plane. To compute this

transformation, a few methods provided by (Hartley

and Zisserman, 2004) exist and it is achieved by the

computeHomography(.) function over three matched

points.

The 3D points Q1 and Q2 stand on each plane π1

and π2, as shown in figure 3. The points Q3 and Q4

are located on the edge between the two planes. The

interested area in the referenced (resp. adjacent) im-

age z (resp. z′), is defined by the triangle q1q2q3 (resp.

q′1q′2q′3). The homography H1 is induced by the plane

support π1 and is well defined if none of the three

points are aligned. The H1 enables us to estimate z̃1

defined by the projection of the adjacent region of in-

terest on the reference image. The same goes for H2

and the plane π2. In consequence, we have:

z̃k = {q̃i = Hkq′i / q′i ∈ z′k} where k ∈ {1,2}.

With a correct positioning of q′λ we can adjust the

homography estimation. Once homographies are esti-

mated, the warped zone z̃ is obtained by interpolating

the zone z′ through the homography transformation.

Data: 4 matching points of interest q1 ↔ q′1,

q2 ↔ q′2, q3 ↔ q′3, q4 ↔ q′4 over two

images I and I′

Result: Planar/non-planar classification

// Estimation of right value λ⋆

qλ⋆ ← (q1q2)∩ (q3q4);
// Estimation of homographies (§ 3.1)

H1 ← computeHomography(q3,q4,q1);
H2 ← computeHomography(q3,q4,q2);
// Computation of IQA value for each λ
for λ = 0 : dλ : 1 do

// Computation of the point qλ ∈ [q1q2]

qλ ← λq1 +(1−λ)q2;

// Estimation of the warped image

if λ < λ⋆ then

qλ′ ← H1(qλ);
H ← computeHomography(q2,q3,qλ);
z̃1 ← H1(z

′);
z̃2 ← H(z′);

else

qλ′ ← H2(qλ);
H ← computeHomography(q1,q3,qλ);
z̃1 ← H(z′);
z̃2 ← H2(z

′);
end

z̃← z̃1∪ z̃2;

// Computation of the IQA value (§ 3.2)

IQA(λ,z, z̃)← computeIQA(z, z̃);
// Classification in P/NP region (§ 3.3)

if max
(

IQAs(z, z̃)
)

> ε then

C (z, z̃)← P;

else

C (z, z̃)← NP;

end

end

Algorithm 1: Proposed IQA evaluation protocol

applies on P/NP classification. All the steps are de-

veloped in the section 3.

3.2 IQA Computation

The comparison between z and z̃ is done with IQA

presented § 2. In algorithm 1, the IQA values are

computed by computeIQA(z, z̃) for each pixel of the

zone. They can be integrated over each pixel to merge

information for each λ. Example of obtained results

on a non-planar region is shown at figure 5.

3.3 Planar Classification (P/NP)

To evaluate the influence of the IQA on the quality of

the classification, we use a simple classification ap-
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Figure 5: Example of UQI on a NP zone. At the top: the re-
gion z from the reference image I and the UQI means curve
depending on λ. At the bottom: UQI(z, z̃) obtained over a
NP zone for λ = 0.02 and for the ground truth λ⋆ = 0.46
where surface orientations are correctly estimated.

proach: thresholding. As we want to highlight the

best IQA candidate, i.e. the IQA that gives the best

separation between both classes, we manually select

the best threshold ε that maximizes the true positive

rate. In our application, errors on planar zone have

less impact on the results than errors on non-planar

zone classification because it is preferable to cut a pla-

nar zone than not to cut a non-planar zone. In conse-

quence, the classification is done by using the follow-

ing expression:

C (z, z̃) =

{

NP if min(IQAs(z, z̃))< ε
P otherwise.

(7)

4 EXPERIMENTATION

In our experiment we apply our IQA evalua-

tion protocol to compare the six presented measures:

MSE, MSE5, RC5, SSIM, UQI, RUQI presented in

§ 2. This is done on images from two datasets: im-

ages acquired in a control environment lighting and

real outdoor urban scene images.

Database – BD1 corresponds to a box where sides

are textured separately. Images are acquired in a con-

trolled light environment. BD2 images are outdoor

scene data and come from Oxford1 public and avail-

able database and from calibrated images acquired

with the mobile mapping system imajbox R© from ima-

jing2 company, shown figure 1. 87 zones were eval-

uated (29 from BD1, 58 from BD2). Image resolu-

tions are between 1224x1025 and 1024x768. The 2D

1www.robots.ox.ac.uk/˜vgg
2www.imajing.eu
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Figure 6: Zones classified by increasing UQI values. The
row 1 and 2 correspond to NP cases, and the last row is P
cases. On each image pair, the maximum UQI value ob-
tained is written at the bottom left of the zone z.

points of interest are detected in each image, then they

are matched to estimate a 3D position of each point

which is bundle adjusted to reduce the positioning er-

ror. This kind of input data (2D and 3D points po-

sition, PI and PI′ ) can be generated from a structure

from motion system which takes into account multi-

ple images, such as VisualSfM (Wu, 2013).

Results and Analyses – All previous measures are

evaluated with Precision-Recall (PR) and Receiver

Operator Characteristic (ROC) curves, shown fig-

ure 7. Details and explanations of the relation be-

tween these two curves are given in (Davis and Goad-

rich, 2006). We have worked on data with the high-

est resolution available since we have remarked that

lower the resolution is, more zones are similar and

less discriminative IQA are.

The parameter r which corresponds to the size of

the neighbourhood taken into account in MSEr, UQI,

SSIM and RUQI, influences the results in the follow-

ing way: the larger r is, the less significant the IQA is.

It means that there is a higher IQA value between two

corresponding pixels than two mismatched pixels ob-

tained in non-planar cases. The parameter r for RC,

corresponds to the searching window for finding the

best match. The higher it is, the higher the errors can

be introduced. Moreover, it means that even when the

zone is not planar, we will find a correspondent that

gives a low IQA value. So, it will have the same be-

haviour as MSE when r is increased.

Cosine angle-distances use statistics over neigh-

bourhood pixels and overcome results obtained with

distance-based measures (red curves are above blue

curves).

The planar classification is done in order to cut

non-planar zone and to build a triangular mesh co-

herent with the geometry. So, the non-planar class
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Figure 7: Obtained results on all data (6 measures on 87 triangles). On the left: the ROC and on the right: the PR curves.
Dot product-based measures (red curves) are more efficient than distance-based measures (blue curves) and UQI overcomes
all the others measures.

corresponds to the positive case. Best results on both

classes, are obtained with UQI.

5 CONCLUSION

In order to obtain a planar/non-planar classifi-

cation of zones, we have proposed an evaluation

protocol which able to compare state-of-the-art of

photo-consistency measures. We define a new photo-

consistency measure, RUQI which combines the ad-

vantage of both UQI and RC methods.

We conclude that cosine angle distance-based

are more adapted than difference-based measures for

planar/non-planar classification. Among this mea-

sures, UQI overcomes other measures. Blurred im-

ages and low resolution are two limitations of our pro-

tocol, since they both induce erroneous data in the im-

age comparison.

Our next work will consist of applying this mea-

sure in superpixel constructor to obtain a semantic

segmentation taking into account the geometry of the

scene through homography estimation.
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