N

N

An Energy Efficient Approach to Virtual Machines
Management in Cloud Computing
Damien Borgetto, Patricia Stolf

» To cite this version:

Damien Borgetto, Patricia Stolf. An Energy Efficient Approach to Virtual Machines Management in
Cloud Computing. 3rd IEEE International Conference on Cloud Networking (CloudNet 2014), Oct
2014, Luxembourg, Luxembourg. pp. 229-235. hal-01390842

HAL Id: hal-01390842
https://hal.science/hal-01390842

Submitted on 2 Nov 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01390842
https://hal.archives-ouvertes.fr

OATAQO

Open Archive Toulouse Archive Ouverte

Open Archive TOULOUSE Archive Ouverte (OATAQO)

OATAO is an open access repository that collects the work of Toulouse researchers and
makesit freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toul ouse.fr/
EprintsID : 15198

The contribution was presented at CloudNet 2014:
http://cloudnet2014.ieee-cloudnet.org/

Tocitethisversion : Borgetto, Damien and Stolf, Patricia An Energy Efficient
Approach to Virtual Machines Management in Cloud Computing. (2014) In: 3rd
IEEE International Conference on Cloud Networking (CloudNet 2014), 8
October 2014 - 10 October 2014 (Luxembourg, Luxembourg).

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@listes-diff.inp-toulouse.fr

An Energy Efficient Approach to Virtual Machines Management in Cloud
Computing

Damien Borgetto, Patricia Stolf
IRIT, University of Toulouse, Toulouse, France
{borgetto, stolf}@irit.fr

Abstract—Cloud computing platforms are well established as
the reference infrastructure for flexibility allowing business to
scale according to user demands. However, several challenges
remain to be addressed. Scaling up the infrastructure to match
up the resource demand of the users is relatively straight
forward. However in order to save up on power consumption,
cloud providers have to dynamically consolidate the virtual
machines (VM), so that only a reduced subset of hosts remains
powered on. To solve this issue, the cloud scheduler, which
handles the VM allocations, has to balance between providing
enough resource to each user, and reducing the overall power
consumption of the cloud. In this paper we investigate the
VM allocation and reallocation inside a cloud in order to save
energy while maintaining the resources required by users. Such
actions have to be made in order to minimize the number
of hosts powered on, while limiting concurrent migrations of
virtual machines, and in a reasonable computational time.
We propose to effectively consolidate virtual machines with
an approach handling the reallocation, migration and host
management problems. Our approach has been implemented
in OpenNebula, and experimentally compared with its default
approach.

Keywords-Cloud Computing; Virtual Machine; Consolida-
tion ; Energy-aware ; Migration

I. INTRODUCTION

With the recent trends in application decentralization,
largely embodied by cloud computing platforms, there is an
increased offer and demand of applications over the internet
and via mobile devices.

While traditional cloud management algorithms mainly
focus on handling the initial allocation of the virtual ma-
chines, it is interesting to tackle the management of the
virtual machines during their execution, as the VMs don’t
have necessarily the same duration. It is essential for the
datacenters owners and operators to assess and improve
the performance using energy efficiency. The idea being
to reduce the energy consumption of the infrastructure by
reducing the number of hosts powered on. One approach to
dynamically reallocate resources of a cloud is to take the
initial placement algorithm and periodically or upon events
proceed to a full reallocation of VMs. However, it might
be preferable not to have the same algorithm for initial
allocation and for consolidation, since rearranging the whole
pool of VMs will create a contention point where too many
migrations are being done at the same time. The issue is

worse if the system uses pre-copy live migration, which has
less downtime but more data transfer, instead of post-copy
live migration [1], which has more downtime but guarantees
the memory transfer to be done only once.

That being said, the focus of the VM management ap-
proach used inside a cloud must be put on several points:

o Energy consumption: The resulting energy consump-
tion must be lower and account for all the overheads
that can impact the energy reduction.

o Migration number: The aim is to avoid a bottleneck on
the network by dimensioning and limiting the migra-
tions done in a certain time interval.

e Quality of Service: Users or applications require a
certain amount of resource for their VMs, and it should
be accessible to them at all time. However, even if
we can respect that constraint, there are possible QoS
reduction due to the time between when the VM is
spawned and when it is actually running.

o Computation time: The solution must be completed in
reasonable time to be enforced while it is still relevant.

The work presented in this paper has been made on the
context of the SOP project (think global Services for per-
sOnal comPuter)'. It aims at providing users with an all-
inclusive offer that allows them to be able to use appli-
cations in the cloud. In this paper, we propose and study
the different aspects of consolidation algorithms on a real
platform, while comparing them to the default one proposed
in OpenNebula[2], although the approach presented is not
specific to OpenNebula.

We study the migration behaviour on a specific platform to
better tune the consolidation algorithm. We also implement
a host management strategy to be able to function with a
packing based consolidation approach. Evaluation is made
regarding both energy consumption and VM effective dura-
tion, while monitoring the effect of the infrastructure load
on the quality of the reallocation.

This paper is organized as follows: Section II will describe
related works concerning allocation and reallocation of vir-
tual machines in a cloud computing environment. Section
III and IV respectively present a problem formulation and

IResearches presented in this paper have been partially funded by the
ANR in the context of SOP project ANR-11-INFR-001.

the approach proposed. Finally, section V will cover the
experiments and discussion part.

II. RELATED WORK

There have been extensive studies on how to manage data
center and clouds in regards to the power consumption and
QoS trade-off. Especially in the VM allocation and cloud
reconfiguration area.

The architectural framework for energy efficient clouds
proposed in [3] introduces notions of VM provisioning,
as well as allocation and reallocation of VMs on physical
machines. The authors use the CPU resource to dynamically
consolidate the VMs, thus reducing significantly the global
energy consumption of the infrastructure. Moreover, the
authors implement a VM replacement policy based on a
double threshold (low and high), as well as a migration
minimization policy, in order to limit the number of mi-
grations, for instance from an overloaded host. They study
the impact of the Service Level Agreement degradation on
energy consumption reduction.

Xiao et al. in [4] present a system based on application
requirement to support green computing in the cloud. The
main way to do so is by consolidation. They introduce the
concept of skewness, which represent the imbalance over
the different resource consumption of a server, applied in
their case to the CPU, memory and disk. Reducing this
imbalance is aimed at increasing individual host’s utilization.
The consolidation algorithm they present is based on a multi-
threshold approach to define cold and hot spots. It then
reallocates VMs to reduce cold spots and mitigate hot spots.
The authors also combine this approach to a virtual machine
load prediction to better provision the resources.

Based on the observation that the type of application
running inside a virtual machine can drastically change its
behaviour depending on where is the VM image, Yang et
al. in [5] propose different workload characteristic-aware bin
packing algorithms to be applied for consolidation in cloud
environment. They propose in their paper a dynamic pro-
gramming optimal algorithm and an approximation heuristic
that they compare between each other, the performance
metric being the number of hosts used. The approximation
algorithm is a bin packing algorithm called SEP-pack, which
stands for separate packing. The idea being that, since it is
possible to characterize the different VMs according to their
type of workload, data intensive or CPU intensive, they have
to be treated differently.

In [6], the authors present two algorithms for energy
consumption reduction and migration cost mitigation in the
cloud. They compute an exact solution based on integer
linear programming in order to minimize the energy con-
sumption under constraints of CPU, memory and storage of
the VMs. Their approach allows to assign a power budget
to each host, that should not be overran. They compare it
with an energy-aware best fit heuristic.

Another approach to the virtual machine packing problem
by integer linear programming is also presented in [7]. The
authors have worked on different VM packing algorithms
that aim at reducing the energy consumption, modeled as
the cost of the hosts’ electrical consumption and the cost of
the reconfiguration. That way, the authors aim at reducing
power consumption while maintaining a certain level of
performance, and diminishing the cost of reconfiguration by
live migration. Reducing collisions of VM live migration is
made by putting a hard constraint on the number of VMs
that can migrate from and to a host. Takahashi et al. then
define two algorithms, a matching-based algorithm based on
graph and the modeling of the problem, that computes the
optimal solution, and a greedy heuristic that computes the
solution faster.

All those approaches are akin to ours, as the main focus
is to save energy by powering off hosts unloaded by consoli-
dation. However, small differences are to be seen on the sort
of information the manager has, whether it is categorizing
the virtual machines, being able to oversubscribe the hosts,
and how to manage virtual machines migration and the
bottleneck induced. The main difference being the ability
to take into account the actual overhead of powering on and
off hosts.

III. PROBLEM FORMULATION

A. Cloud Definition

We first present the environment and the problem we are
trying to solve. We are set in a cloud, operated over a single
data center by a provider. This provider allows user to start
and run VMs over the cloud, with the constraint of having
provided to them what they have required.

The cloud has H physical hosts, with the ability to power
on and off when empty. Over time, VMs are run on the
cloud for a certain duration. Over the duration 7' of the
experiment, J VMs will be executed. Each VM has resource
requirements, which we chose in our case to be CPU and
RAM. Let’s note vm©FU the number of CPU required by a
VM, and vm™FM the number of MB of RAM required
by the VM. The VMs will be allocated on the different
hosts so that their requirements are matched. We will note
eym,n = 1 if the VM vm is allocated to the host h, eym,n =
0 otherwise.

If hCPU is the CPU capability and hMFM the MEM
capability of the host, the load of the host is defined as the
following:

-
om’” X €ym,p
h”

r€R={CPUMEM}: loady= >

vmeJ

The load of the host over each resource considered by the
VMs should never be exceeded.

Each VM is finite in time, thus will also be defined by
its duration:

dvm = tsched + thoot + trun

Where tscheq comprises the scheduling time and the time
for its implementation. The values tpo0¢ and t,.,, represent
respectively the time taken by the VM boot time, and the
time during which the VM is in the running state. It also
means that if a VM requires an hour of time on the cloud, it
will effectively run the requested hour minus the time taken
to spawn and boot the VM.

B. Metrics

We defined a hard bound on how the different jobs are to
be allocated, meaning that a VM can’t get less than required.
This also means, that to be able to have a sort of QoS
metric, we can’t reach inside the VM to get response time
for example, because this model is agnostic to what kind of
application the VM is running. That’s why we will define
the QoS metric of the VMs run on the cloud by defining the
effective duration of the VMs:

t
di{;{ _ drun
vm

An effective duration of 90% of a particular VM will mean
that this VM spent 90% of the requested time in the running
state.

The other performance metric we obviously want for our
model is the energy consumption of the cloud. There are two
types of energy consumption that we will get or compute.
The first is the real energy consumption, calculated as the
sum of all the power consumptions measured over all the

hosts.
t t
E:/ Ptdt:/ > Pyt
0 0

heH

The other one will be used in section V-D, is the simulated
power consumption. Since the overheads of the powering on
and off the hosts are quite significant as shown in [8], it can
be quite hard to quantify as such the improvement of energy
consumption that a consolidation algorithm will bring. As
such, we can compute the simulated power consumption
as the artificial elimination of all overheads induced by
the host states management which is the measured power
consumption with simulated hosts state. That means the
assumption that the hosts power on and off instantly, and
with no cost.

t t
Esim — / Primt = / D evmn x Pt
0 0

heH vmeJ

IV. VM MANAGEMENT APPROACH
A. OpenNebula Scheduler

OpenNebula already provides a base scheduler with its
installation. It is a configurable scheduler called match-
making scheduler or mm_sched and is described in details
in [9].

The mm_sched algorithm operates in three simple steps:

o Filter hosts that lack the required characteristics (e.g:

that are not in the right state or don’t have enough
resources).

o Sort all hosts according to the ranking policy (described

hereafter).

o The hosts with the highest rank are chosen for the

allocation.

B. SOPVP

The implementation of the scheduler for the cloud that
we defined will follow the same functioning pattern as
mm_sched. We will have the same periodic calls to the
scheduler in order to have a consistent comparison.

The scheduler has to take into account different con-
straints. The first is that it has to be separated into two
distinct algorithms: one for the initial allocation of VMs,
and one for the periodic reconfiguration of the VMs in the
cloud, to better handle the subset of migrations that have to
be done for energy reduction without having to reallocate
all VMs. The algorithm allocates pending VMs based on a
best-fit heuristic.

The algorithm to reallocate will bring the most energy
savings by using consolidation to reduce the number of
hosts used by the VMs when the system changed because
some of the VMs have ended for instance. We used a
modified vector packing algorithm, described as algorithm
1, to reallocate the virtual machines from one or several
hosts to reduce the global host number. The approach used is
based on the algorithm presented in [10], and is working by
separating the hosts in as much list as we have dimensions
for the allocation. Each list contains the hosts with more
requirements in one particular resource. In our case, we
will have two lists, one for the hosts that have more CPU
than MEM, and one for the opposite. The CPU and MEM
are not the same type of resource, since the CPU can be
oversubscribed more easily than the memory, and it is better
to not provide an application with less memory than what
it required. However, we took into account both resources
at the same level to guarantee an execution time quality of
service for applications running inside VMs.

Then, the VMs are allocated to the hosts, previously
sorted, so that the allocation reduces the current resource
imbalance. For example, if the VM has vym©FV > omMEM
then we will pick preferably a host from the list where
load}EM > oad{TV. That way, the imbalance of resource
consumption will be reduced.

We have to choose the number of hosts that we will try
to consolidate. That number can be chosen via numerous
ways, like having thresholds to define low loaded hosts that
will be chosen to consolidate, or like we do in this paper
choosing to unload a fixed number of hosts. That number
must vary regarding the global number of hosts and VMs.
In addition, it will also have to depend on the number of
concurrent migrations that can be made toward one host, and
on the network infrastructure. Live migrations are putting a
strain on the network as they transfer the memory pages
of the VM potentially more than once, depending on how
data intensive is the application. That being said, the number
of hosts chosen for unloading needs to be capped to the
maximum amount of concurrent migration one wants, as
well as being tailored to match the infrastructure size.

We will compute the number of hosts to be 20% of the
total host number H, with a minimum of 1. We also chose
to mitigate that number regarding the projected amount of
migrations, as we will describe in V-C. The algorithm 1 is
presented for a number of 1, since it’s rather straightforward
to extend it to several hosts to unload.

As we can see, in the algorithm, one should note that the
migrations are only enforced if and only if the host may
be fully unloaded. It is an optimization choice. The aim
is to avoid migrations that could irrelevant because another
decisions may be better in the next scheduling loop and that
will only generate overhead.

C. Implementing Energy Savings

There are several ways to handle the hosts state, that is
when to power off and power on the physical machines to
better save energy accordingly to what the VM consolidation
algorithm is doing [8].

1) FirstEmpty: The first one is the easiest but not the
most efficient, it works in a simple way, switching off hosts
as soon as one host is empty, and power on hosts when the
global load of the cloud is over a certain threshold.

2) Pivot: The second one works by keeping a pivot host.
It first computes the projected number of host that is needed
to run all the VMs, and tries to keep this number of hosts
powered on plus the number of pivot hosts. This reveals the
fact that the algorithm used for consolidation has to account
for the pivot host, otherwise it will wind up consolidating
too much and having an empty host, as previously shown
in [11]. Although in any case it allows some leeway in
the reallocation process, which will diminish VM effective
duration degradation.

2 e VM
H)

3) Variation: The last host state management strategy we
defined is based on the variation of the global load over time.
It keeps the history of all the variations that occurred, and
count how many of the loads are going up and down. If

host_number = m]%x(

begin Consolidate VMs
H = sort(H, load ascending);
llh = h € H where min(load},);
{HOPY HMEM Nigrations} = 0;
for h € H,h # llh do

if l0ad{"Y > load)'PM then

] add h to HEPU:
else
] add h to HMEM,

end
end
success=True;
foreach vm : (eymun = 1) do
found = False ;
if vmCPY > ymMEM then
found = Try to find a suitable host A in
HMEM first, then HCPU,
else
found = Try to find a suitable host in
HEPU first, then HMEM,
end
if found then
add (vm, h) to Migrations;
change list of h if needed ;

else
] success=False;
end

end
if success=True then

‘ enforce Migrations;
end

end
Algorithm 1: SOPVP Reallocation algorithm

there is more down than up, it will try to power off a host,
and vice versa.

V. EXPERIMENTS

A. Experimental Platform

In this section, we will describe the experimental platform
and methodology used to evaluate the allocation and real-
location strategies, and compare them against each other.
We have done the experiments on a RECS testbed [12].
It comprises a single cloud deployed with OpenNebula
over KVM, on 6 Intel i7-3615QE nodes (4 cores). Power
consumption values are retrieved for each single processor
with a Plogg watt-meter, thus giving us the ability to monitor
each host (i.e: an i7) separately. In regards to OpenNebula,
VM images are stored in a shared NFS storage, and each
host has a capacity of 4 CPU, and 15.6 GB of RAM.

B. Methodology

Each experiment is done over the different scheduling
algorithms. The first is the one that is default in OpenNebula,
mm_sched with the striping heuristic. This setting is set by
default because it is the one that will give the best QoS to
the VMs, as it tries to allocate each VM to the host where
there is the most resources.

The SOPVP scheduler is described in IV-B. For each al-
gorithm, we collect several metrics. The power consumption
as expected, but also the migrations number over time, and
finally the relative duration of the VMs. The relative duration
is computed as the actual duration from the moment the
VM is actually running on the cloud, divided by the total
duration, which is the duration from the spawn of the VM,
until its deletion.

We randomly generate the workload over time on the
cloud by randomly spawning VMs that are CPU stressed
for their running duration. The random generation is done
following a Poisson process, with a A value tailored to
generate an average load onto the cloud. The mean load
of the cloud depends on the mean load generated by each
VM. We will generate each VM to take between 0.1 and
2 CPUgs, following a uniform distribution. Each VM will
last for a duration between 300 and 500 seconds, uniformly
generated, which is an average duration of 400 seconds. We
will also generate the memory requirement for each VM to
be between 1024 MB and 6624 MB. Each VM is designed
to represent on average around 25% of a single host.

With those values in mind, we can compute the A required
for the Poisson process that will generate a specific average
load.

Each VM is submitted to the cloud for the duration of
the experiment, and the schedulers, that are on a periodic
loop of 30 seconds, will allocate and reallocate them.
Experiments between different schedulers are done using the
same generated workload. Each set of settings is used on an
experiment that will last 2 hours. That means that we’ve
done a total of 17 different experiments, which represents
more than 34 hours.

One should note here that a lot of variability inside a
single run can occur. Indeed, there are small variations in
the orders of actions that can take place when for example
OpenNebula is responding to request, or even the variability
in the time to boot a VM or a host, and yield to a different
result.

C. Concurrent Migrations

We first start with an empirical experiment to calibrate
the number of migrations we can do simultaneously on the
testbed. To do so, we instantiate several VMs each with
2GB of memory, then we choose a fixed number of VM and
migrate toward a random host. Obviously the network layout
and the application inside the VM plays a big part in the
result, but we need to keep in mind that it is only to define

the number of hosts that we will unload in the algorithm.
The RECS’s hosts are all connected to a 1 Gbps switch.
The last part of the data transfer, when the VM is stopped
on the source host and the core of dirtied page is sent to the
destination host [13], is done without bandwidth limitation.
Theoretically, if all the memory of the VM is dirtied during
the process of sending memory pages, migrating a single
VM would take up to 18 seconds.

As we can see in Table I, the average migration time of
the virtual machines migrating concurrently from one host to
another is increasing as the number of migration increases.
This is possibly due to either the speed of the memory of
the destination host, some contention in the network, and
the time OpenNebula takes to proceed with the migrations.

Although the numbers themselves are specific to the
platform and experimentation, it still tells us that at a certain
point, concurrent migrations tend to be near a time that is
unacceptable. This time is defined arbitrarily by the provider.

In our platform with this particular setup and VM size,
we consider that 6 concurrent VM live migrations toward
the same host is the maximum we aim to set.

Table I
TIME SPEND WITH CONCURRENT LIVE MIGRATIONS

Nb. migrations 1 2 3 4 5 6
Avg Time (s) | 5.5 | 744 | 11.68 | 12.55 | 14.05 | 16.62

D. Simulated Energy Consumption

In this experiment we have run the workload of VMs
on the cloud without powering on and off hosts, but we
have used the simulated power P described in section
II-B. As we can see in Figure 1 which plots the energy
consumption on different cloud loads. We can see that there
is a steady increase of the energy consumption due to the
increase in load, and that SOPVP is more energy efficient
by between 36% and 16% for respectively low and high
loads.

1100000

- - mm_sched
—— SOPVP i

1000000

900000

800000}

700000}

Energy ()

600000}

500000

400000

30000

%o 35 20 as 55 60 65 70

50
Load (%)

Figure 1.
sumption

Power consumption vs System Load, simulated energy con-

However, those values are mitigated with the results
shown in Figure 2 which plots the effective duration of

the VMs. As expected, with an increase in load we see a
decrease in average VM duration. This is due to the spikes
in load that render the initial allocation harder to achieve.
We can also see that even if the SOPVP is better at low
loads, the difference between the two decreases as the load
increases, to be even in reverse roles at high loads, because
mainly SOPVP does more requests to OpenNebula, thus
slowing a bit the decision by waiting each time for the
responses.

We can see however that the duration is between 0%
and 3% of average VM duration, which is rather low,
thus meaning energy savings can be achieved without QoS
degradation if host management overhead is neglected.

Mean VM duration (%)

@
>

82}

845 35 a0 a5 55 60 65 70

50
Load (%)

Figure 2. VM durations vs System Load, simulated energy consumption

E. Host Management Strategy

In this experiment, we are trying out the different types
of host management strategies as described in IV-C, and
their effect on the energy consumption and average effective
duration. Table II presents the results of both the energy
consumption, where lower is better, and the effective dura-
tion, where a higher value is better. NOHM represents the
baseline when we are not switching on and off the hosts. The
PIVOTCEILL is similar to the PIVOT strategy with the number
ceiled instead of rounded. The values are for a cloud with
an average load of 50%, and the same SOPVP algorithm,
which as seen before consolidates effectively. As we can see
in Table II, the most efficient strategy is the pivot, as it is
the most tailored for this experiment in particular, and reacts
the best to fast and slow load changes. We can save up to
23% of power while having a degradation of QoS of only
5%. We can also see that compared to the FIRSTEMPTY
approach, we gain with PIVOT both in energy consumption
(7%) and QoS (4%). The VARIATION strategy yields bad
results, since for this kind of cloud load, it will switch on
and off hosts, when there are already a sufficient number of
host usable.

F. Real Energy Consumption

In the last experiments we have implemented real pow-
ering on and off of the hosts, to see whether the energy

Table IT
HOST MANAGEMENT STRATEGIES

Strategy noHM | FirstEmpty | Pivot | PivotCeil | Variation

Encrgy (k) 167 360 334 308 131

Duration (%) | 84.58 77.24 80.73 88.86 87.40

consumption reduction observed in the simulated power
consumption experiments remains. This time, the overhead
in both time and power consumption due to the powering on
and off of the hosts is not ignored, and it can be significant,
as shown in [8]. We will conduct experiments twice as
long as in V-D, with the host management strategy PIVOT
presented before.

550000
500000}
= 450000
=
2
g
uw 4000001

350000}

300000}

o .
25000%0 35 40 a5

Figure 3. Energy consumption vs System Load, real energy consumption

Mean VM duration (%)

7 _ -
30 35 40 a5 55 60 65 70

50
Load (%)

Figure 4. VM durations vs System Load, real energy consumption

As we can see in Figure 3, which represents the energy
consumption for loads of 30%, 50% and 70%, the energy
consumed is still better using the SOPVP algorithm. How-
ever, for loads of 30%, the energy consumption difference
between the two algorithms is less than what was achieved
using the simulated power consumption, which is because
when the mean load is around this value, it oscillates
between 10% and 50%, which means that since we have
only 6 hosts, it is difficult to go with a load under than
2 hosts. It also means that in proportion the overhead for
switching on and off an host will have more impact.

We can also see that for higher loads, we can still save up
21% energy for a load of 50%, due to the reasons mentioned
above, but also to a higher strain on the cloud, it is even more
important to power on and off hosts.

Figure 4 presents the corresponding average effective
duration of the virtual machines. We can see that we can
maintain roughly the same amount of QoS as mm_sched,
but that QoS is dropping as the load increases, which is
to be expected. This drop is due to different reasons. For
mm_sched, it’s mainly due to the fact that on one hand we
have the PIvOT, which may be suited because it will take
advantage always of the extra host if any, but on the other
hand the global load on the powered on hosts which is higher
induces the algorithm to fail to find suitable hosts for VMs,
which leads to pending VMs, waiting to be allocated. That’s
also the reason why SOPVP is better at high loads, because
there are more VMs, and it becomes increasing more likely
that mm_sched will not find suitable host.

One should note here that even if an effective duration
around 70-80% in average seems bad, it is mainly due to the
fact that with VM duration around 400 seconds, a scheduling
loop of 30s, 30s to power on an host, and between 30s and
1 minute for OpenNebula to acknowledge the host and add
in to the host pool we can have a important impact of the
waiting time that is due to the experimental platform, since it
represents a high portion compared to the average duration.
Such an effect would be greatly mitigated it we took VMs
with higher mean durations.

VI. CONCLUSION AND FUTURE WORKS

In this paper we have studied the reallocation of VMs
in a cloud, in order to save energy. We have compared the
algorithm we proposed, SOPVP to the default algorithm
provided in OpenNebula. We took into account several
important factors to achieve consistent consolidation, such as
the number of hosts to unload, directly related to the number
of migrations we aim to make, but also the overhead induced
by the powering on and off of the hosts, which takes time
by itself in a real system.

We aim at pushing the evaluation further by tackling the
computation time, which is low with the SOPVP, but that
we could increase by adding steps in larger instances to
increase the quality of the reconfiguration, while keeping a
low computation time. However, this must be done on much
larger instances, thus needing simulation. For this purpose,
we aim to use the DcWORMS[14] simulation platform to
model and simulate the execution at a larger scale. The host
management strategies are also critical and must scale and
behave properly with larger instances, and will need refining.
Finally, we have to switch from artificial workloads to real
workloads, to better match real world environments.

REFERENCES

[1] M. R. Hines and K. Gopalan, “Post-copy based live virtual
machine migration using adaptive pre-paging and dynamic

(2]

(31

(4]

[5]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

self-ballooning,” in Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS international conference on Virtual execution
environments, ser. VEE ’09. New York, NY, USA: ACM,
2009, pp. 51-60.

“Open nebula: Flexible enterprise cloud made simple,”
http://opennebula.org/, June 2014.

A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware
resource allocation heuristics for efficient management of data
centers for cloud computing,” Future Gener. Comput. Syst.,
vol. 28, no. 5, pp. 755-768, May 2012.

7. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation
using virtual machines for cloud computing environment,”
Parallel and Distributed Systems, IEEE Transactions on,
vol. 24, no. 6, pp. 1107-1117, June 2013.

J.-S. Yang, P. Liu, and J.-J. Wu, “Workload characteristics-
aware virtual machine consolidation algorithms,” in Cloud
Computing Technology and Science (CloudCom), 2012 IEEE
4th International Conference on, Dec 2012, pp. 42-49.

C. Ghribi, M. Hadji, and D. Zeghlache, “Energy efficient
vm scheduling for cloud data centers: Exact allocation and
migration algorithms,” in Cluster, Cloud and Grid Computing
(CCGrid), 2013 13th IEEE/ACM International Symposium
on, May 2013, pp. 671-678.

S. Takahashi, A. Takefusa, M. Shigeno, H. Nakada, T. Kudoh,
and A. Yoshise, “Virtual machine packing algorithms for
lower power consumption,” in Cloud Computing Technology
and Science (CloudCom), 2012 IEEE 4th International Con-
ference on, Dec 2012, pp. 161-168.

L. Lefevre and A.-C. Orgerie, “Designing and Evaluating an
Energy Efficient Cloud,” Journal of Supercomputing, vol. 51,
no. 3, pp. 352-373, Mar. 2010.

“Open nebula: Match making scheduler,”
http://archives.opennebula.org/documentation:rel4.4:schg,
June 2014.

W. Leinberger, G. Karypis, and V. Kumar, “Multi-capacity
bin packing algorithms with applications to job scheduling
under multiple constraints,” in Parallel Processing, 1999.
Proceedings. 1999 International Conference on, 1999, pp.
404-412.

D. Borgetto, M. Maurer, G. Da Costa, I. Brandic, and J.-
M. Pierson, “Energy-efficient and SLA-Aware Management
of TaaS Clouds (regular paper),” in ACM/IEEE International
Conference on Energy-Efficient Computing and Networking
(e-Energy), Madrid, 09/05/2012-11/05/2012. ACM DL,
2012.

“The RECS testbed,” http://recs.irit.fr/doku.php?id=recs:features,

June 2014.

“Kvm live migration,”
kvm.org/page/Migration, June 2014.

http://www linux-

K. Kurowski, A. Oleksiak, W. Piatek, T. Piontek, A. W. Przy-
byszewski, and J. Weglarz, “Dcworms - a tool for simulation
of energy efficiency in distributed computing infrastructures.”
Simulation Modelling Practice and Theory, vol. 39, pp. 135—
151, 2013.

