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A THREE-DIMENSIONAL CONSTITUTIVE MODEL 
FOR THE LARGE STRETCH BEHAVIOR OF 

RUBBER ELASTIC MATERIALS 

ELI.E"' M. ARRUDA and MARY C. BoYer 

The Department of Mechanical Engineering. The Massachusetts Institute of Technology. 
Cambridge, MA O~l.W. U.S.A. 

ABSTRACT 

A coSSliTt TIVE model i, proposed for tho: deformation of rubber materials which is shnwn tn rcpres..:nt 
successfully the response of these materials in uniaxial extension. biaxial extension. uniaxial compression. 
plane strain compression and pure shear. The developed constitutive relation is based on an eight chain 
representation of the underlying macromokcular network structure of the rubber and the non-Gaussian 
behavior of tho: individual chains in the proposed network. The eight chain model accurately captun:s the 
coorx:rativc nature of network d..:formation while requiring only two material parameters. an initial 
modulus and a limiting chain extensibility. Since these two parameters arc mechanistically linked tn the 
physics of molecular chain orientation involved in the deformatinn nf rubber, the proposed model rcprcs..:nts 
a simple and accurate constitUtive model ol rubber ddimnatwn. The chain extension in this network model 
reduces to a function of the root-mean-square of tho: principal applied stretches as a result of effectively 
sampling eight orientations of principal stretch space. The results of the proposed eight chain model as 
well as thos..: of several prominent models arc compared with cxperim..:ntal data of TRELOAR ( 1944. Trans. 
hm1day Soc. 40, 59) illustrating the superiority. simplicity and pr..:dictivc ability of tho: proposed modd. 
Additionally. a new set of experiments which captures the state of deformation dependence of rubber is 
described and conduct~'<.! on three rubber materials. The eight chain model is found to model and prL-dict 
accurately {he behavior of the three tested materials further conlirming its superiority and ctf..:ctiveness 
over earlier models. 

I. I"'TRODUCTION 

THE AIM OF THIS WORK has been to develop a fully three-dimensional. mechanistically 
motivated constitutive relationship for nonlinear elasticity which would successfully 
account for the state of deformation dependent response of rubber materials. The 
need for such a relationship is readily evident to any processor of rubber components 
or purveyor of rubber goods concerned with aspects of material behavior under large 
stretch deformation states which arc not simple tension. A good constitutive model 
should represent the three-dimensional nature of the stress ·stretch behavior using a 
minimal number of parameters to represent physically the deformation process. 
ldcany, .the parameters should be obtainable from a small number. preferably one, of 
experiments. Previous models of rubber elasticity such as WA]';G and Gun! ( 1952) 
and FLORY and REHNRR ( 1943) have described or otherwise accounted for the charac
teristic 'S'-shaped load versus stretch curve exhibited by rubber materials in uniaxial 
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tension. The load-stretch curve is highly dependent upon the state of imposed defor
mation, shown, for example, in the data of TRELOAR ( \944) depicted in Fig. I. The 
authors know of no existing model which accurately represents the behavior of such 
materials in various deformation states and satisfies the criterion of requiring only a 
small number of "physically based" parameters. Such material parameters or con
stants should be independent of deformation state in order to provide a predictive 
capability to the constitutive model. 

The first statistical mechanics approach to describing the force on a deforming 
polymeric network assumed Gaussian statistics to apply, that is the chains never 
approached their fully extended length rL = IN where N is the number of statistical 
links of length I in the chain between chemical crosslinks. [See TRELOAR (1975) for 
instance for a more detailed description of Gaussian statistics and the corresponding 
assumptions.] Gaussian statistics yields 
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FIG. I. Data from TRELOAR (1944), plotted as force per unit unstrained area versus stretch, showing the 
state of deformation dependence of a rubber material in uniaxial extension, biaxial extension and shear. 
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W= ~G(),f+Jci+lcj-3), G = nk0 (I) 

for the strain energy where the lei are the applied stretches and the rubbery modulus 
G is a function of the chain density, n, Boltzmann's constant, k and temperature 0. 

Investigators since have built networks from chains described by Gaussian statistics 
or have modified the chain statistics to allow larger stretches than are afforded by the 
assumption of Gaussian statistics, then incorporated these non-Gaussian chains into 
networks of three, four or an infinite number of chains. See WANG and GUTH (1952), 
FLORY and REHNER (1943) and TRELOAR (1946) for the three chain non-Gaussian, 
four chain Gaussian and four chain non-Gaussian networks, respectively, or TRELOAR 
(1975) for an overview of network models including his own proposed method of 
averaging the contribution of a single chain over a large number of orientations.t 
These models have in common two physically based parameters, the rubbery modulus 
G given in (I) and a chain locking stretch A.L defined as the value of the chain stretch 
when the chain length reaches its fully extended state. Chain stretch is always given 
by the current chain length divided by the initial chain length 

fchain 
)•chain = - - · 

ro 
(2) 

The initial chain length is given from random walk statistics as r0 =for Thus for 
the fully extended or locking chain length, rL = IN, the locking stretch becomes 

(3) 

Other statistical models have investigated affine versus phantom deformation of 
junctions in networks and these have been discussed by MARK and ERMAN (1988). In 
many cases models such as these require a third or fourth parameter to describe some 
measure of chain interaction in the network. 

Excellent historical perspectives of the phenomenological invariant-based models 
of rubber deformation such as those of MooNEY ( 1940), RIYLIN (1948), V ALANIS and 
LANDEL (1967) and OGDEN (1972) have been given by TRELOAR (1975, 1976). The 
theories of this genre are aimed at obtaining an expression for the elastic strain 
energy which is of the form dictated by continuum mechanics as concerns an initially 
isotropic, incompressible, hyperelastic solid. The phenomenological theories lack a 
direct physical connection to the underlying mechanisms of deformation. The most 
sophisticated of these is that of OGDEN ( 1972) which proposes the following form for 
the strain energy function 

(4) 

with fln and the 'Y." as experimentally fitted constants. Ogden makes no attempt to link 
the adjustable parameters to any physical deformation mechanism. The Ogden model 
is essentially empirical and generally requires more than one experiment to obtain the 
number of constants required to capture state of deformation dependence. 

tThe averaging was later published in TRELOAR and RID!t'G (1979). 
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2. PROPOSED MODEL 

2.1. Requirements of a model 

The existing models referenced above have merit and are frequently used in treating 
rubber deformation problems. Many of the early models capture the 'S' -shaped load 
versus stretch curve exhibited by rubber materials in uniaxial tension. A relative dearth 
of experimental evidence exists in the literature for the response of rubbers in other 
deformation states up to very large stretches save for the work of TRELOAR ( 1944), 
in uniaxial extension, biaxial extension and shear, considered by many to be the 
quintessential rubber data,t and the extensive biaxial experiments of JoNES and 
TRELOAR (1975). Consequently, many of the existing models fail in the task of describ
ing the response of a rubber material under different states of deformation without 
changing the model parameters. In other cases the models are prohibitive in the 
number of parameters required to fit the data or the mathematical complexity they 
represent. The need for a constitutive relationship which possesses mathematical 
simplicity, requires one test to characterize the material and has a limited number of 
parameters, has prompted the authors' development of the following model. 

2.2. Langevin chain statistics 

The statistical mechanics approach to rubber elasticity models the rubber chain 
segment between chemical crosslinks as a number N of rigid links of equal length /. 
The rigid link is that segment length of the actual chain which undergoes rigid body 
motion in response to an imposed strain, depending on the actual rubber material the 
statistical rigid link may span one or several repeat molecular units. The initial chain 
length is taken from a random walk consideration of N steps oflength /, and is denoted 
by r 0 , 

ro = J!vz. (5) 

The fully extended chain has approximate length IN so that the limiting extensibility 
(or chain locking stretch), defined as the final length divided by initial length, is given 
in terms of the statistical parameters as )~L = "/N. At any value of chain length the 
most probable angular distribution of rigid links about the chain vector length may 
be found. Following the use of Langevin statistics by KuHN and GRON (1942), the 
probability of the most probable link angle distribution about a given vector length 
is taken to be equal to the probability of the vector length. The chain vector length is 
denoted by rchain· In this way Kuhn and Gri.in obtain an expression for the probability 
density function for chain lengths and subsequently the configurational entropy of a 
stretched chain of current length rchain 

i" Some debate has persisted over whether the characteristic upturn in the observed stress-stretch behavior 
is solely due to crystallization and therefore. not present in all rubbers. In the following section we offer 
additional experimental results on three rubber materials which exhibit the same basic. characteristic 
behavior as that of Treloar's data. 
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[ (
rchain fJ )] 

Schain = k c- N -iff f3 + ln sinh 7J ' (6) 

where cis a constant, k is Boltzmann's constant and f3 is the inverse Langevin function, 
f3 = 2' - 1 

[rchain/ Nl], for the Langevin function defined as 2'[/3] = coth f3- (1 / /3). The 
use of Langevin statistics properly accounts for the limiting chain extensibility. The 
work of deformation is proportional to the entropy change on stretching the chains 
from the unstretched state and may be written in terms of the chain length as 

(
r chain f3 ) , W = nk0N --/]+In--. -- -ec, 
Nl smh f3 

(7) 

where n is the chain density, c' is a combination of constants and the remaining terms 
are as defined previously. The material is considered to be incompressible and the 
principal stresses can be determined from the work of deformation to within an 
arbitrary pressure, p, 

(8) 

where the A., are the principal stretches and the pressure may be determined from the 
boundary conditions. The stress-stretch relations are frequently written in terms of 
the difference in two principal stresses in order to eliminate the pressure term. 

(9) 

2.3. Use of Langevin chain networks 

The use of Langevin chain statistics in networks has been considered by WANG and 
Gum (1952) in their three chain model by TRELOAR (1946) in his extension of the 
tetrahedron model of FLORY and REHNER (1943). TRELOAR (1975) and later TRELOAR 
and RIDING (1979) also considered a model of a large assembly of chains which were 
averaged by integrating over many spatial orientations. Analytical results of non
Gaussian three chain, tetrahedron and total assembly of chains models are presented 
in TRELOAR (1975) for uniaxial tension. The three chain and tetrahedron models have 
been considered by the present authors for use as constitutive models of rubber 
deformation, results of simulations of different deformation states using both models 
will be presented later and compared to the proposed model. The three chain and 
tetrahedron model systems are sketched in Figs 2 and 3 respectively for undeformed, 
uniaxial extension and biaxial extension load geometries. 

These models were also previously considered for their general predictive capabilities 
of the characteristic 'S' -shaped uniaxial response by TRELOAR (1975). He observed 
that the response of the tetrahedron model was slightly dependent upon the orientation 
of the volume element with respect to the extension direction. In their 1952 paper, 
Wang and Guth stipulated that the faces of the three chain cube element be aligned 
with the principal stretch space during deformation. TRELOAR (1975) concluded that 
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(a) 

FIG. 2. Three chain rubber elasticity model for (a) undeformed, (b) uniaxial extension and (c) biaxial 
extension configurations. 

these models possess an inherent anisotropy which could be eliminated by a system 
of a large assembly of chains, each of length equal to the root-mean-square chain 
length, r0 = .,jNz, which occupy random orientations in space. In this manner the 
contributions from chains in several orientations may be averaged to give the overall 
response. His proposed total assembly of chains model requires integration over 
the distribution of chains for each subjected stretch state, a procedure which was 
mathematically prohibitive 15 years ago and remains cumbersome today. 

The authors agree with Treloar's assessments of the existing network models except 
for his reluctance to restrict the orientation of a model to some specific relationship 
with respect to principal stretch space as Wang and Guth had done. Motivated by 
Treloar's assertion to present a model which averages several spatial orientations, but 
recognizant of the need for a mathematically concise representation, we have proposed 
a model which possesses the cubic symmetry of principal stretch space as it averages 
eight orientations of that space in determining the network response. The clear 
advantage of this technique is its ability to simulate a true network response of 
cooperative chain stretching which presents a clear picture of the deformation process 
with mathematical ease. 

2.4. Proposed model geometry 

The proposed model considers eight orientations of chains in space which may be 
envisioned by the eight chain network system sketched in Fig. 4 for undeformed, 

(b) (c) 

FIG. 3. Four chain rubber elasticity model for (a) undeformed, (b) uniaxial extension and (c) biaxial 
extension configurations. 
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(a) 

FIG. 4. Eight chain rubber elasticity model for (a) undeformed, (b) uniaxial extension and (c) biaxial 
extension configurations. 

uniaxial extension and biaxial extension loaded configurations. The chain length, 
rchain• is sought for each of the chains in the eight chain model as a function of the 
imposed principal global stretches A~> A2 , A3 in order that (7) may be differentiated to 
obtain the stress-stretch relations (9). Consider the cube containing the eight chain 
configuration in Fig. 5. The cube edges are taken to remain aligned with principal 
stretch space during deformation, chains linked at the center of the cube extend to 
the eight corners. In principal space the cube is allowed expansion along each principal 
direction subject only to incompressibility which may be expressed as 

(10) 

Note that the restriction to principal stretch space does not limit the usefulness of 
the model to axisymmetric deformations. For example, in pure shear the principal 
stretches are }. 1 = ),, A 2 = 1 and A 3 = A- 1

• The directions in which these stretches act 
rotate continuously with the deformation and this rotation is monitored by the 
standard kinematics of finite strain deformation making use of the polar decompo
sition and subsequent extraction of the stretch tensor eigenvalues from the general 

FIG. 5. The unstretched network for the proposed eight chain model. 
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deformation gradient tensor. See for example the discussion by Hopkins in TRELOAR 
(1976) or FARDSHISHEH and 0NAT (1972). The eight chain model is always stretched 
in the principal frame and is in general oriented differently from the laboratory frame. 
The rationale for use of the model in this manner follows from the consideration that 
in response to any deformation a principal stretch frame exists and the chains in that 
reference frame will undergo stretches describable by the principal values of stretch, 
i. 1• ) 2 and i. 3 . 

The unstretched network includes eight chains of length r 0 = }Nl inside a cube of 
dimension a 0 . From this geometry 

2 
Clo = -- = ro. 

)3 
(II) 

In Fig. 6 the cube is stretched by) J, Jc 2] and i.i( so that the cube edges measure }. 1 a 0 , 

). 2a0 and ). 3a0 in the[, j and k directions, respectively. A chain vector from the center 
of the cube to a corner may be written for one chain as 

(\ 2) 

This chain has vector length 

( \3) 

as do all remaining chains in the given network geometry, regardless of deformation 
state. Substitution from (11) and (5) into (13) gives the chain length in terms of the 
statistical parameters and the principal stretches 

k 

A. a 
2 0 

FI<i. 6. The eight chain network in a stretched configuration. 
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rchain = ~jNl(Jcr+Jc~+Jcj) 112 • (14) 

In this form the expression for the chain vector length is suitable for substitution 
into (7) which with (9) yields the following stress-stretch relation for the proposed 
model 

nk0 -I [Achain] (Jc I- Jci) 
(JI -(J? = -- N2? --

- 3 jN Achain ' 
(15) 

where the chain stretch, Achain = rchain/r 0 , is the same in each chain and is given by 

) 1 ('2 12 )2)1/2 ·chain=~ AI +A2 + •3 · · 

J3 
(16) 

Because each chain in the system undergoes a stretch equivalent to that in every other 
network chain, the model is likened to averaging the contributions of a single chain 
over eight spatial orientations. 

The three stretch invariants are given by 

II= ).f+A~+).~, 

I2 = JciJc~+Jc~Jc~+2iJcL 

I3 = JctJciJc~. 

(17) 

(18) 

(19) 

The expression for chain stretch is seen to reduce to a function of the first stretch 
invariant, I~> and (16) may be rewritten as 

- I 1/2 
Achain - J3 I 1 • (20) 

The strain energy of the proposed model may be found from integration of (15) using 
the series expansion form for the inverse Langevin function given for example in 
TRELOAR (t 954). The first five terms for the strain energy of this model are 

(21) 

Note that the strain energy in (21) exhibits a nonlinear I 1 dependence as a result of 
the chain stretch being defined in terms of / 1 only. 

3. EXPERIMENTAL PROCEDURE 

The uniaxial compression test and plane strain compression test represent near 
extremes in the behavior of polymeric networks under biaxial deformation states. 
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FIG. 7. Sketch of plane strain compression testing apparatus. Specimen (A) is compressed by punch (B) 
in the Y-direction and expands in the X-direction. The die (C) constrains the specimen along the Z-axis. 

During uniaxial compression the polymer chains in the material stretch freely in all 
directions within a plane perpendicular to the load axis. Under plane strain com
pression the specimen is held within a channel die which completely constrains the 
material in one direction while allowing expansion in a second direction perpendicular 
to the first. The material flows along the expansion direction as a result of the 
compressive load applied perpendicular to the plane containing the constrained and 
expansion directions. In the plane strain compression die apparatus sketched in Fig. 
7, expansion occurs along the X-axis, the material is constrained along the Z-axis and 
Y is the load direction. Polymer network stretching occurs only along the axis of free 
expansion in plane strain. The resulting stress versus stretch curve in plane strain 
compression differs from that in uniaxial compression because of the vastly different 
chain stretch behaviors in these two compression geometries. 

Three commonly available rubber materials were chosen for this study: silicone 
rubber (40 durometer), neoprene rubber (60 durometer) and gum rubber (hardness 
unknown).t Uniaxial cubes of length 12 mm and plane strain specimens measuring 
12 mm x 9 mm x 12 mm were cut from these materials. rn the plane strain compression 
tests the 9 mm dimension was constrained. Uniform deformations of the order of 
-200% strain were achieved in uniaxial compression and - 150% strain in plane 
strain compression. The specimen (and die, in the case of plane strain) was placed 
between flat plates on the ends of the load strain on an T nstron model 1350 servo
hydraulic testing machine. Liberal lubrication was applied on all specimen surfaces 
in contact with plates or die walls to insure uniform deformations; a MoS2 based 
paste made by Dow Corning was deemed sufficient for lubricating these materials. 
Linear ramp tests were performed on all three materials for both deformation states 
at displacement rates of approximately I mm s ·· 1

• The load and displacement output 
responses of the testing machine were converted to digital signals by a Kiethly AID 

t These three materials were obtained at the Greene Rubber Company of Cambridge. MA. 
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FIG. 8. Ramp tests in uniaxial compression and plane strain compression for silicone rubber. 

board then transferred to a Macintosh personal computer for storage. The raw load 
versus displacement data were corrected for the testing machine compliance before 
being converted to nominal load (that is, load divided by initial area) versus stretch 
information. The results of ramp tests in uniaxial compression and plane strain 
compression are presented in Figs 8, 9 and I 0 for silicone, gum and neoprene rubber, 
respectively. Each of the three materials shows the basic characteristic response of a 
limiting stretch which is dependent upon the state of deformation. The three materials 
differ significantly in their initial moduli and/or locking stretch values. 
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FIG. 9. Ramp tests in uniaxial compression and plane strain compression for gum rubber. 
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FtG. 10. Ramp tests in uniaxial compression and plane strain compression for neoprene rubber. 

4. RESULTS 

4.1. Explanation of the experimental data 

As shown earlier in Fig. 1, the data on Treloar's vulcanized rubber include tests in 
uniaxial extension, biaxial extension and pure shear to very large extension ratios and 
are plotted as load normalized by initial area versus stretch. The strong state of 
deformation dependence of the large and limiting stretch behavior of the polymeric 
network materials is shown in the data of Figs 1, 8, 9 and 10 and remains a primary 
obstacle to true characterization of rubber elasticity. Additionally, ARRUDA and 
BoYCE (1991) have also reported a similar state of deformation dependent strain 
hardening response in glassy polymeric materials. These data on several different 
polymeric materials, both above and below the glass transition temperature, clearly 
demonstrate a certain level of generality to the presence of limiting stretch states in 
polymeric materials whether rubbery or glassy. 

The equi-biaxial extension data in Fig. I varies significantly from either the uniaxial 
extension or pure shear data. The divergence of the biaxial data is due to the nature 
of the molecular chain stretching in equi-biaxia\ extension versus uniaxial extension. 
Biaxial extension offers two venues of principal tensile stretch (}. 1 =A, l 2 = i_, 

)., = ). · 2); an initially isotropic network of chains will reach limiting chain extension 
due to stretching in both directions providing a planar state of orientation. In uniaxial 
tensile deformation the chains extend along one direction only (A 1 = )., }. 2 = ). 12

, 

). 3 = ).- 12
), additional stretch is thus allotted through the drawing of material from 

the transverse directions, and the onset of limiting chain extension is delayed with 
respect to the biaxial deformation locking. The pure shear data are plotted in terms 
of the maximum principal stretch, A 1, vs the corresponding normal force (i.e. not the 
shear force) which acts in the direction of /. 1• Pure shear deformation is more closely 
related to uniaxial extension than to equi-biaxial extension because chain stretch 
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occurs due to stretching along one principal direction (A 1 = },, A2 = 1, A3 = }_- 1
) with 

chains being drawn from one direction transverse to the extension direction in pure 
shear. Thus a pure shear experiment yields a limiting stretch value which is similar to 
that obtained in uniaxial extension. A good model should be able to capture the 
observed differences between biaxial and uniaxial tensile behavior as well as the 
similarities in behavior between uniaxial and shear tests. 

The plane strain compression and uniaxial compression data in Figs 8, 9 and 10 
diverge for reasons similar to those used to explain the biaxial extension divergence 
from the uniaxial extension and pure shear data above. Uniaxial compression offers 
two directions of equal principal stretch (..1. 1 = A, A2 = ), · 1'

2
, A3 = )_- 1

'
2
), whereas in 

plane strain compression chains extend along one direction only. The plane strain 
compressionstretchstateisequivalenttothatofpureshear(A- 1 = ),,A2 = l,A- 3 =A - 1

). 

4.2. Explanation of simulations 

Equation (15) has been used together with the appropriate boundary conditions to 
simulate the uniaxial extension, biaxial extension and shear reponses of the proposed 
model. Characterization of a particular material requires determination of two par
ameters, the initial modulus and limiting extensibility, which is accomplished by fitting 
the model to the data for any one deformation state. The authors chose to fit Treloar's 
uniaxial extension data which yielded the following parameters for this material: 
CR = 0.09 and N = 26.5. These parameters were used in the simulations of biaxial 
extension and pure shear tests. The results appear in Fig. 11. Using constants deter
mined from this single set of uniaxial extension data the model quite accurately predicts 
the biaxial extension and pure shear data. These results demonstrate the predictive 
and fully three-dimensional aspects of our proposed eight chain model. 

This exercise was repeated for both the three chain model of WANG and GuTH 
(19 52) and the non-Gaussian tetrahedron model as modified by TRELOAR (1946, 
1954). The stress-stretch relations for the Wang and Guth model are of the type 

nkEJ j -(. .. 1 { A 1 } • _ 1 { ),2 }) 
a1 -(52= 3- N A12" J!V -A25£ fo , (22) 

where the parameters have the same meaning as in (15). The numerical treatment 
used for the tetrahedron model followed the early method of TRELOAR (1954) which 
allowed the central junction point to seek an equilibrium position for affine dis
placements of the tetrahedron corners. Equilibrium was found using an iterative 
Newton scheme after each stretch increment for the condition of no net force on the 
junction point. Stretch-stress relations are a function of the junction point equilibrium 
position and must be determined numerically. Each of these models requires one set 
of data to determine an initial modulus and locking stretch. The constants were found 
by fitting the models to the uniaxial extension data then used in predicting the biaxial 
extension and pure shear responses. The results for the three chain model are given 
in Fig. 12 and for the tetrahedron model in Fig. 13; each figure includes the values 
used for the model parameters. As these figures clearly show, the early models do not 
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FIG. 11. Results of simulations using the eight chain model versus data from TRELOAR (1944) in uniaxial 
extension, biaxial extension and shear. 

predict much of a state of deformation dependence beyond the initial modulus and 
cannot be used as constitutive indicators of rubber elastic deformation. 

The three chain model shows no state of deformation dependence beyond a stretch 
of 4.0 for the three stretch states examined; the results of the simulations for three 
states of deformation converge at large stretches whereas the data diverge. The failure 
of the three chain model to capture the state of deformation dependence lies in the 
absence of a cooperative nature of network chain deformation in this model except 
through the imposition of incompressibility. In uniaxial extension, depicted in Fig. 2, 
the chain parallel to the extension direction stretches until it reaches the locking 
stretch. The remaining two chain stretches are determined by incompressibility and 
do not contribute significantly to the force. Under equi-biaxial extension, two coplanar 
chains extend independently until simultaneously reaching the locking stretch and the 
third chain stretch is determined by consideration of incompressibility. Therefore the 
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FIG. 12. Results of simulations using the Wang and Guth model versus data from TRELOAR (1944) in 
uniaxial extension, biaxial extension and shear. 

limiting stretch in equi-biaxial extension as predicted by the three chain model has 
the same value as that obtained in uniaxial extension and in pure shear, the result is 
convergence of the load vs stretch predictions for the three different stretch states 
rather than the actual divergence of these curves which the data show. 

The tetrahedron model shows a slight state of deformation dependence at small 
stretches which is retained at large stretches. This model has some success in predicting 
a state of deformation dependence because the chains in this network do respond 
cooperatively to the deformation, see Fig. 3. Four chains stretch along the extension 
direction in uniaxial extension resulting in an overall network limiting tensile stretch 
which exceeds the locking stretch of a single chain (A.L = J'N). In biaxial extension 
perpendicular to one chain in the tetrahedron the remaining three chains undergo 
stretching. The result is again increased network extensibility over the single chain 
limiting stretch to a value which differs from the tensile locking stretch. The different 
values for locking in uniaxial and biaxial extension are manifested in the load-stretch 
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FrG. 13. Results of simulations using the four chain model versus data from TRELOAR ( 1944) in uniaxial 
extension. biaxial extension and shear. 

predictions of the four chain model which reach asymptotes at different values of 
stretch for different states of deformation. 

The tetrahedron model does not possess symmetry with respect to the principal 
stretch space. The load versus stretch predictions depend upon the orientation of the 
four chain tetrahedron with respect to i. 1, i. 2 and ). 3 in addition to the magnitudes of 
the ..:t,. 

The eight chain model is clearly superior to the other statistical models in the state 
of deformation dependence predicted. The advantages of the eight chain model arc 
its proximity in kind to a system which is initially isotropic, the use of Langevin chains 
which capture the effects of limiting chain extensibility and a network configuration 
which responds cooperatively to an imposed deformation. These features allow for 
mechanically simulating the state of deformation dependence of the behavior during 
large deformation while retaining mathematical simplicity. The features of the eight 
chain model as seen in Fig. 4 combine the favorable aspects of the previous three 
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chain and four chain network models. The model possesses symmetry with respect to 
the principal stretch space which was required by WANG and GUTH (1952) in their 
discussion. All eight chains stretch uniaxially in response to an imposed uniaxial 
extension deformation as is true for the four chains in the FLORY-REHNER (1943) 
model. Again the limiting network stretch of the eight chain network exceeds the 
extensibility of a single chain in extension. In biaxial extension all eight chains extend 
identically due to stretching in two principal directions. The resulting limiting stretch 
is something other than either the individual chain locking stretch or the limiting 
stretch in uniaxial extension. A significant feature of the eight chain model is that all 
chains stretch equally under biaxial extension as well as uniaxial extension. The chain 
stretch is always the root-mean-square of the global principal stretch state. This 
unique feature of the eight chain model is true for all other deformation states; all 
chains stretch equally in response to any given deformation state. 

Additional existing models were similarly tested against Treloar's data. These results 
are discussed in the Appendix. 

30 

25 

20 

til 
0.. 
~ 15 

10 

5 

1.0 

8 chain: N~7.9 
CA~0.145 

o uniaxial data 
+ plane strain data 

uniaxial simulation 
············ plane strain simulation 

0.8 0.6 
Stretch 

0.4 0.2 0.0 

FIG. 14. Results of simulations using the eight chain model and data on silicone rubber. 
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FIG. I 5. Results of simulations using the eight chain model and data on gum rubber. 

The proposed model was used to predict the plane strain compression responses of 
the three materials examined in this study based on the constants derived from their 
corresponding uniaxial compression responses. Results of these simulations appear 
in Figs 14, I 5 and I 6 for the silicone, gum and neoprene rubber materials previously 
described. The model parameters used to fit the uniaxial compression data are listed 
for each material on the corresponding figure. The model accurately captures the state 
of deformation dependence of all three materials. Each of these materials differs in 
the modulus and/or locking stretch value needed by the model to fit the uniaxial 
compression response. A direct comparison of the uniaxial compression responses of 
the three materials has been made in Fig. 17, here the differences in actual material 
moduli and limiting extensibilities are easily seen. Including Treloar's data the model 
has been shown to characterize four materials representing a range of material prop
erties. Previous network models considered contained the same basic parameters of 
an initial modulus and a measure of finite extensibility, but were unable to predict a 
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FIG. 16. Results of simulations using the eight chain model and data on neoprene rubber. 

state of deformation dependence because of inabilities of the models to effectively 
represent a network response. In the case of the eight chain model the successful 
prediction is a result of correct usage of the finite extensibility parameter as that of an 
averaged measure of applied stretches over eight spatial orientations. The math
ematically tractable eight chain model of (15) represents a true constitutive relation
ship for rubber deformation which is able to correctly account for the large stretch 
deformation response in one state of deformation, then with that characterization, 
predict other states of deformation. 

A polymer below its glass transition temperature exhibits the same network response 
in strain hardening as rubber materials do during large stretch deformations. ARRUDA 

and BoYCE (1991) have shown the eight chain model to be successful in predicting the 
state of deformation dependence of the strain hardening response of glassy polymers 
whereas the three chain and tetrahedron models again fail. 
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5. SuMMARY 

A physically based constitutive model for large stretch rubber deformation has been 
proposed which has been specifically designed to account for the three-dimensional 
state of deformation dependence in networked solids. The eight chain model presented 
here is formulated such that the nature of the state of deformation dependence is 
clearly seen to be the result of a network of chains reaching the individual chain 
extensibility limit at different imposed global stretch levels for different stretch states. 
The eight chain model successfully accounts for the state of deformation dependence 
using a rubbery modulus and a locking stretch as its only two parameters, both of 
which can be determined from a single experiment. Present in all statistical models, 
these parameters are physically linked to the polymeric network and therefore provide 
a basis for including other aspects of rubber elastic behavior such as temperature 
dependence, swelling and Mullin's effect. Indeed,-the rubbery modulus term explicitly 
includes temperature. 
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Experiments were conducted on three rubber materials to illustrate the state of 
deformation dependence of these materials and to determine the predictive capability 
and effectiveness of the proposed model. In addition the model was compared to 
existing rubber elasticity models in the ability to capture the response of data in the 
literature (TRELOAR, 1944) in three states of deformation. The eight chain model was 
shown to be superior in its overall ability to successfully account for the three
dimensional nature to the underlying mechanics of network solid deformation for a 
total of four materials representing a range in material hardness and extensibilities. 

The eight chain model contains many attractive features of concern in modelling 
the complicated deformation procedures involved in the finite straining of amorphous 
polymeric solids. It retains mathematical feasibility as a two parameter model and 
also contains the ability to respond to an imposed deformation state in a manner 
which simulates the actual mechanism governing the state of deformation response 
of rubber materials. 
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APPE[';DIX 

Additional models were considered for comparison with the eight chain model in their ability 
to reproduce the state of deformation dependence of TRELOAR's (1944) data. Two phenom-
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enological models were considered, the well known Mooney-Rivlin (1948) relation and the 
Ogden (1972) model. The strain energy in the Mooney-Rivlin relation is given as 

W= C,(l,-3)+C2 (/2 -3), (AI) 

where C, and C 2 are constants. The strain energy expression for the Ogden model was given 

in the text of this manuscript. The results of simulations with both of these models appear in 

Fig. A I along with the constants needed for each model. The simulations with the Ogden 

model were taken directly from OGDEN (1972). A minimum of six independently adjustable 

parameters are required by the Ogden model to fit these three deformation states shown in 

Fig. A I ; more than one deformation state may have been considered in determining the six 

constants as only the first four constants are necessary to produce the uniaxial extension result. 

An additional statistical mechanics model of FLORY and ERMAN ( 1982) which accounts for 

chain interactions has been considered. The elastic strain energy of the network is found from 

the sum of phantom and constraint contributions 

w = wrh+ w" 
where Wrh of phantom Gaussian chains is 

6 .+r:O-gd-e-n:-H""1-.-.61-B-:03:----:A,-1--1-.3-, 

H2:.00118 A2·5.0 
H3··.00981 A3··2.0 
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FIG. A\. Results of simulations using the Mooney··Rivlin and Ogden models versus data from TRELOAR 

(1944) in uniaxial extension, biaxial extension and shear. 
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FIG. A2. Results of simulations using the Flory and Erman model versus data from TRELOAR (1944) in 
uniaxial extension, biaxial extension and shear. 

wph = ~r!k8(11 -3). (A3) 

Note that (A3) differs from (I) in the text by the parameter<! where 

(A4) 

The parameter n is the number of network chains and ¢ is the number of chains meeting at a 
junction. When ¢ = 4 the junction is tetrafunctional and the strain energy of the phantom 
network in (A3) is one-half of the affine strain energy in (I). The contribution of constraints 
to the free energy is given as 

for 

B, = K2 (A.,Z-J)(A.l+K)- 2
, 

D, = A.,IK- 1B, 

(A5) 

(A6) 

(A7) 
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and where K is a measure of the strengths of the constraints which depends on the relative sizes 
of free (phantom) fluctuations and actual constrained fluctuations. This model depends on the 
parameters n, ¢ and K. In it K-> CXJ for completely constrained junctions and K-> 0 in the 
phantom chain limit, n can take on any large, positive value and ¢ must be greater than two. 

Results of simulations with the Flory and Erman model appear in Fig. A2. 
The model results shown in Figs AI and A2 reveal that of these existing models, only the 

Ogden model captures the state of deformation dependence of deformation. However, in order 
to capture this behavior, the Ogden model required six parameters. 
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