
HAL Id: hal-01390528
https://hal.science/hal-01390528v1

Submitted on 2 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Arybo: Manipulation, Canonicalization and
Identification of Mixed Boolean-Arithmetic Symbolic

Expressions
Adrien Guinet, Ninon Eyrolles, Marion Videau

To cite this version:
Adrien Guinet, Ninon Eyrolles, Marion Videau. Arybo: Manipulation, Canonicalization and Iden-
tification of Mixed Boolean-Arithmetic Symbolic Expressions. GreHack 2016, Nov 2016, Grenoble,
France. �hal-01390528�

https://hal.science/hal-01390528v1
https://hal.archives-ouvertes.fr

Arybo: Manipulation, Canonicalization and
Identification of Mixed Boolean-Arithmetic

Symbolic Expressions

Adrien Guinet1, Ninon Eyrolles1,2, and Marion Videau1,3

1 Quarkslab
Paris, France

2 Laboratoire de Mathématiques de Versailles
UVSQ, Université Paris-Saclay, CNRS

Versailles, France
3 LORIA

Université de Lorraine, CNRS, INRIA
Nancy, France

{aguinet, neyrolles, mvideau}@quarkslab.com

Abstract. This article presents arybo4, a tool that gives a bit-level sym-
bolic representation of expressions involving various types of operators
on bit strings. Such a tool can be used to gain a better understanding of
complex expressions, for example expressions that mix both arithmetic
and boolean operators. It can also be useful for optimization purposes,
such as proving bit hacks easily.
We describe why we created this tool and the various related issues,
such as the choice of the internal representation and the various possible
optimizations. We also show how it can be used to identify some basic
arithmetic or boolean functions, and present various usage examples.

Keywords: Boolean expressions, symbolic evaluation, expression simplification,
expression identification, mixed boolean arithmetic, expression storage

1 Introduction

1.1 Context

Mixed Boolean-Arithmetics (MBA) expressions are expressions that use both
the conventional computer integer arithmetic on n-bit words (addition, +, sub-
traction, −, multiplication, × and division, /) and the bitwise logic operations
(AND, ∧, OR, ∨, XOR, ⊕ and NOT, ¬).

This kind of expressions arises naturally when manipulating bit strings with
these operators. They indeed allow efficient computations on modern processors.
Symmetric cryptographic primitives also provide many examples of such expres-
sions, and building blocks like T-functions [6] were studied in this purpose. In

4 https://github.com/quarkslab/arybo

another setting, which is of most interest to us, they also appear in obfuscation5.
Indeed, MBA expressions were first presented in [12] as a theoretical ingredient
intended for an obfuscation technique relying on rewriting operators. They are
also used in bit hacks and optimization techniques. For instance, two 8-bit num-
bers can be interleaved using 64-bit AND, shift and multiply operations 6.

Understanding how these constructions work can be interesting for code op-
timizers, but also in a deobfuscation context to generate more human-readable
expressions. On the other hand, code obfuscators can leverage this knowledge to
create new expression construction schemes.

For this purpose, the idea we focused on is to compute what is going on
at the bit-level, that is knowing the effect of every operation on each bit of
the resulting value. Indeed, at this level, MBA expressions can be expressed as
boolean expressions. Moreover, by using a canonical representation, we have the
guarantee of the unicity of the representation. This allows, for instance, equal-
ity checks between two different original expressions and various identification
processes. Thus, we can rephrase our goal as getting a symbolic and canonical
representation of MBA expressions at the bit-level.

Various tools and techniques are closely related to this purpose: Satisfiability
Modulo Theories (SMT) solvers, computer algebra software or symbolic com-
putation libraries. After debating the pros and cons of each, we describe our
contribution.

1.2 Related work

SMT solvers use the bit-vector logic [7] to prove that a boolean system is solv-
able or not (the SAT problem). Among them, we can cite Microsoft Z3 [3]
or Boolector [2]. The issue solved by this type of software is to prove a sys-
tem SAT or not (and give a possible solution in such a case). Even if they
often have ”simplification” models, they do not necessarily end up in a canon-
ical form (at least with what is exposed through their public APIs). Indeed,
they are designed towards proving SAT which does not require necessarily a
canonical form. For instance, calling the Z3 simplify API on the expression
((x ∧ 87) ∨ 43) ⊕ ((x ∧ 94) ∨ 138)) (with x an 8-bit symbolic variable) gives
(1 1 x2 1 x4 1 x6 0)⊕(0 1 x2 1 x4 0 x6 1), where we would expect (1 0 0 0 0 1 0 1).

Some computer algebra tools support boolean expressions 7 8 and even their
canonicalization (typical examples being Maple and Matlab). The issue is that
such systems often limit the list of operators to purely boolean ones and are
not intended to mix both boolean and arithmetic operators. Besides, to our
knowledge, no such software implements a bit-level symbolic computation of
arithmetic operations.

5 Obfuscation is the act of transforming a code so that it becomes hard for humans
to understand.

6 https://graphics.stanford.edu/ seander/bithacks.html#Interleave64bitOps
7 Matlab: http://mathworks.com/help/symbolic/mupad ref/bool.html
8 Maple: http://www.maplesoft.com/support/help/maple/view.aspx?path=boolean

Finally, the problem of finding an equivalent but smaller description of an
obfuscated expression already led to some research [8,1,5] but no public piece
of software has been published to work at bit-level. Thus, to the best of our
knowledge, no publicly available tool allows to get a symbolic and canonical
bit-level representation of MBA expressions.

1.3 Our contribution

We designed a tool, arybo, based on the principles of the bit-vector logic [7]. It
works with MBA expressions, representing them with a bit-per-bit symbolic and
canonical representation. It includes a C++ library, libpetanque, that provides
an efficient implementation for storing and manipulating boolean expressions.

This paper describes the choices and representations used in arybo and
libpetanque, giving insights on how the bit-level and the word-level are used
and some internal details on the tool. Finally, we provide examples in various
domains (deobfuscation, cryptography. . .) where arybo proves quite useful, and
discuss the topics that still require further works.

2 Representation of Boolean Expressions and Bit-Vectors

In this section, we describe how boolean expressions and bit vectors are repre-
sented in arybo, and the various choices we made.

2.1 Choice of the Algebraic Normal Form

We use the algebraic normal form (ANF) of a boolean expression, which means
it only contains XOR and AND operators. We take advantage of the underlying
algebraic structure which involves the finite field with 2 elements:

({0, 1} ,⊕,∧) = F2.

Any n-bit boolean expression can be expressed in the following form:

⊕
u∈Fn

2

cu

n−1∧
i=0

xui
i ,

where cu ∈ F2, xui
i = xi if ui = 1 and xui

i = 1 if ui = 0, and ⊕ is the bitwise
XOR.

Focusing on the ANF has several advantages. All boolean expressions can be
represented by their ANF (i.e. the set of gates {⊕,∧} is complete). Moreover, it
is a canonical form [11], meaning that, as stated in the introduction, it provides
a unique representation for any equivalent expressions. This characteristic is of
interest to us for further identification purposes.

The ANF of a boolean expression can naturally be extended to vectorial
boolean expressions. Any vectorial boolean function from Fn

2 into Fm
2 can be

expressed canonically. Indeed, each coordinate of the vectorial expression is a
boolean expression.

As a convention, for a bit-vector x that belongs to Fn
2 and with xi the i-th

bit of x, we define x0 as its LSB (Least Significant Bit), and xn−1 its MSB
(Most Significant Bit). That is, the 4-bit string x = b3b2b1b0 (in big-endian
representation) maps to the vector x = (b0 b1 b2 b3)ᵀ. We will use both column
vector and transposed row vector representations for the sake of readability.
We write {·,⊕} for boolean and bitwise AND and XOR operators and {×,+} for
multiplication and addition in Z2n .

2.2 Examples

The application defined by F0(X) = (X ⊕ 14) · 7 from F4
2 into F4

2, is represented
by:

x0
x1
x2
x3

 7−→

x0
x1 ⊕ 1
x2 ⊕ 1

0

Another simple example illustrating a multi-variable application is defined

by F1(X,Y) = X ∨ Y from F4
2 × F4

2 into F4
2, where ∨ is the bitwise OR. It is

represented by:

(x0 x1 x2 x3 y0 y1 y2 y3)ᵀ 7−→

x0 · y0 ⊕ x0 ⊕ y0
x1 · y1 ⊕ x1 ⊕ y1
x2 · y2 ⊕ x2 ⊕ y2
x3 · y3 ⊕ x3 ⊕ y3

Our motivation is to represent symbolically expressions mixing boolean and

arithmetic operations like F2(X,Y, Z) = (((X + Y)⊕ 27)× Z) ∨ 42. The next
sections explain how we achieve this.

2.3 Canonicalization

Getting to the ANF of a boolean or a vectorial boolean function can be done in
several ways depending on the input.

– If the input is a symbolic expression, we can apply usual rewriting rules for
boolean operators and the equivalent boolean expressions corresponding to
the arithmetic operators (e.g. + and ×). This process is more detailed in
Section 5.1.

– If the input is the set of output values of the function, we can reconstruct
its ANF from it.

– It may also happen that, depending on the complexity of the rewriting and
the size of the input variables, directly reconstructing an ANF from the
output values is faster than using the symbolic expression.

2.4 Elementary symmetric function (ESF)

Symmetric boolean functions are functions whose outputs do not depend on the
order of their input boolean variables, which means their output values only
depend on the Hamming weight of the input vector [11]. They occur ”naturally”
in many parts of arithmetic operators expressed at their boolean levels, as can
be seen in Sections 3.1 and 3.2.

An elementary symmetric function of degree d with k input variables is a
boolean function defined as:

σd : Fk
2 −→ F2

(x1, . . . , xk) 7−→
⊕

1≤j1<j2<...<jd≤k

xj1 · · ·xjd

One of the interest of ESF in that the OR operator can be expressed with
elementary symmetric functions. We can prove that for all x1, . . . , xn in F2, we
have:

x1 ∨ · · · ∨ xn =

n⊕
d=1

σd(x1, . . . , xn). (1)

We can prove this result by induction on the number of variables.
First we have x1 ∨ x2 = x1 · x2 ⊕ (x1 ⊕ x2). By using the result for n − 1

variables, we can write:

x1 ∨ · · · ∨ xn = (x1 ∨ · · · ∨ xn−1) ∨ xn

=

(
n−1⊕
d=1

σd(x1, . . . , xn−1)

)
∨ xn

=

(
n−1⊕
d=1

σd(x1, . . . , xn−1)

)
· xn

⊕

(
n−1⊕
d=1

σd(x1, . . . , xn−1)

)
⊕ xn

We have:(
n−1⊕
d=1

σd(x1, . . . , xn−1)

)
· xn = σn(x1, . . . , xn)

⊕

(
n−2⊕
d=1

σd(x1, . . . , xn−1)

)
· xn

and: (
n−1⊕
d=1

σd(x1, . . . , xn−1)

)
⊕ xn = σ1(x1, . . . , xn)

⊕

(
n−1⊕
d=2

σd(x1, . . . , xn−1)

)
.

Then we use the fact that for d < n:

σd(x1, . . . , xn) = σd−1(x1, . . . , xn−1) · xn ⊕ σd(x1, . . . , xn−1),

which yield:(
n−2⊕
d=1

σd(x1, . . . , xn−1)

)
· xn ⊕

(
n−1⊕
d=2

σd(x1, . . . , xn−1)

)

=

n−1⊕
d=2

σd(x1, . . . , xn).

It proves that the result also holds for n variables.
This result is useful, for instance, for the identification process (see sec-

tion 4.2).

3 Integer Arithmetic Operations

This section describes how addition, subtraction, multiplication and division are
performed.

3.1 Addition

A classical one-bit carry adder (also called full adder) is used. Let X and Y be
two n-bit variables and R = add(X,Y), where X,Y and R belongs to Fn

2 , we
can express each bit of R, namely Ri with i < n, using the following equations:

Ri = xi ⊕ yi ⊕ ci

with

{
c0 = 0

ci+1 = xi · yi ⊕ ci · (xi ⊕ yi)
(2)

Using the concept of ESF introduced in Section 2.4, we can rewrite the carry as
ci+1 = σ2(xi, yi, ci).

An optimization can be done if Y is a constant known at runtime. It uses
the fact than x + y = (x ⊕ y) + ((x ∧ y) � 1) 9. By applying recursively this
formula and because x+ 0 = x, we can write the following recursive algorithm:

def add (x , y) :
i f (y == 0) : return x
return add (xˆy , (x&y)<<1)

For instance, if Y = (0 . . . 0 1)ᵀ, the addition will be reduced to only one XOR
in one loop iteration, while the original algorithm would have gone through the
computation of every carry bit.

9 This can actually be proven with our software and the full adder algorithm for a
given number of bits.

3.2 Subtraction

The subtraction can be performed based on the fact that −y = ¬y + 1. So,
x − y = x + (−y) = x + ¬y + 1. The drawback of this representation is that it
involves two additions. Another way is to write a real binary subtractor. This
is similar to constructing a full adder, only changing the way the carry bit is
computed: for a subtractor, ci+1 = σ2(xi ⊕ 1, yi, ci).

3.3 Multiplication

The generic multiplication of two n-bit variables x and y use the fact:

y =

n−1∑
i=0

2iyi.

It is therefore possible to perform the multiplication using n additions:

x× y = x× (

n−1∑
i=0

2iyi)

=

n−1∑
i=0

x× 2iyi

=

n−1∑
i=0

(x� i)× yi

3.4 Division

Only a division by a known constant at runtime is supported in arybo for the
moment. The main idea is to transform a division by a n-bit constant into a
multiplication by a (2n)-bit constant and a right logical shift.

The details of the complete algorithm are in [10]. It also can be found in
optimization libraries, for instance in libdivide10.

4 High-Level Representation

A word-level representation of expressions is defined in arybo. A word can be of
any arbitrary number of bits. This representation is close to what can be found
in SMT solvers like Z3. We support the following operations:

– boolean operators (XOR, OR, AND, NOT, as well as shuffles) and arithmetic
operators as shown in Section 3,

– extraction of bits from a vector and concatenations of multiple vectors,
– arbitrary permutation of the bits of a vector.

10 http://www.libdivide.org

This representation has two main interests. The first one is that we can use it
to do a lazy-evaluation of the bits of an expression, and not compute all of them
if it is not necessary. The second one is that we can recreate such a high-level
representation from a bit-vector to get more readable expressions (we call this
process identification).

4.1 Lazy Evaluation

In some situation, it is not mandatory to compute every bits of a given expres-
sion. A simple example is (x + y) ∧ 0xff, with x and y two 32-bit symbolic
variables. In a classical evaluation, the full 32 bits of the addition are computed,
and then only the first 8 bits are kept. Using lazy evaluation, only the 8 first
bits of the addition will be computed, and the result will be zero-extended to 32
bits.

These kind of expressions are often found when converting binary code to
semantically equivalent expressions, as modern processors tend to work on 32/64
bits registers to perform arithmetic and boolean operations, and then keep only
and/or extend to the number of necessary bits. For instance, using the analysis
framework Triton [9], this happens a lot when a Triton AST is converted to our
world-level representation (see Section 5.2).

4.2 Identification

The identification process (noted Id) is the inverse of the canonicalization process
presented in Section 2.3.

It takes an application F in canonical form at the bit-level as input and
returns an equivalent function f at word-level which uses various operators.
Indeed, the latter is supposed to be more readable (therefore, more useful) for a
human analyst.

Boolean operations Binary boolean operations between a symbolic variable
and a constant are easily identifiable, thanks to the choice of a canonical form
(the ANF).

Boolean operations between two or more symbolic variables are also trivially
identifiable for the XOR and AND operations. For the OR operator, the strategy
adopted is to first identify various ESF inside the boolean expressions, and then
looks for the patterns described in Section 2.4.

Arithmetic operations We propose a technique to identify y = F (x) = x+V ,
the addition of one variable x and one constant V . We base it on two observa-
tions:

– the addition is a T-function, meaning that each bit yi of the output sum
only depends on the (i+ 1) first bits, x0, . . . , xi, of the input value x ;

– F (0) = V . The value F (0) can be easily computed from the ANF of F .

Considering this, we determine if a function F is an addition in Fn
2 by:

1. checking that F is a T-function with a dependency graph,
2. testing if the canonicalized version of f = x 7→ x+ F (0) equals F .

Then, Id(F) = f : x 7→ x + F (0). Using the first check allows to weed out
non T-functions.

Similar techniques can be used to identify a subtraction. Further work needs
to be done for the multiplication and division operators.

5 Software Implementation

This section describes the choices made regarding the design of the two parts of
the toolkit arybo:

– libpetanque: library used to manipulate boolean expressions and bit-vectors
inside Fn

2 , written in C++ with Python bindings,
– arybo: Python library that uses libpetanque to support MBA expressions.

5.1 Libpetanque

The libpetanque library handles the storage of symbolic expressions and vec-
tors of symbolic bit expressions (bit-vectors) and the canonicalization of these
expressions.

Internal representation A boolean expression in F2 is represented in libpetanque

with an Abstract Syntax Tree (AST): a node can represent a XOR or an AND
operation, a symbol (that is a 1-bit variable) or an immediate (1 or 0). Only the
XOR and AND nodes can have children (representing operands). This form is not
necessarily canonical when it is created from an expression, and the canonical-
ization process needed to reach this property is described in the next paragraph.
It is also possible to use two other node types: ESF and the OR operator (this
is sometimes used to help the identification process).

Getting to the Algebraic Normal Form Several transformations are applied
to the expressions to make them canonical. They are applied in order.

1. Apply elementary rules based on neutral and absorbing elements: a · 0 = 0,
a⊕ 0 = a, a · 1 = a, . . .

2. Flatten, i.e. change binary nodes in n-ary nodes when possible: a⊕ (b⊕ c) =
a⊕ b⊕ c.

3. Sort operators arguments: an arbitrary order is defined for the operators and
the symbols used. Then, for two operators of the same kind, a lexicographical
comparison is performed to order them.

4. Apply standard reduction rules, e.g. a⊕ a = 0, a · a = 1.
5. Expand multiplications.

The above process is repeated until no more transformation modifies the
AST, leading to a canonical representation.

Expression tree storage The expressions are stored using an n-ary tree. In
order to minimize the memory cost of storing this structure, we use contiguous
memory space to store the arguments of a tree node.

Expression element insertion We keep the arguments of a boolean expres-
sion sorted at each insertion. This makes an insertion composed of O(log(N))
comparisons and O(N) memory move operations (as the arguments are stored as
a continuous vector). This is more expensive than using a balanced tree (where
the memory cost would be O(1)), but consumes less memory. Using the elemen-
tary simplification rules a ·a = a and a⊕a = 0, we thus have the opportunity to
simplify expressions at this early step. Note that only doing this does not ensure
that the expressions are canonical, as for instance no expansion is performed.
The steps presented previously are still necessary.

5.2 Arybo

The Python library arybo uses libpetanque to symbolically work with MBA
expressions. It implements word-level addition, subtraction, multiplication and
division algorithms presented in Section 3.

The library can be used in any external Python script. An IPython interactive
shell is also provided for rapid prototyping.

5.3 Integration with Triton

Triton [9] is a DBA (Dynamic Binary Analysis) framework that can, among other
things, create a symbolic equivalent of a set of X86 (32/64) instructions. These
symbolic expressions are managed through an AST (Abstract Syntax Tree).

We can convert back and forth the representation presented in Section 4 to
a subset of the Triton AST. This subset includes every arithmetic and boolean
operations on bit-vectors, with vector slice extraction and concatenation of mul-
tiple vectors. We also support sign and zero-extension.

The interesting part about the Triton representation support is that we can
plug arybo inside IDA to have a symbolic bit-level representation of an assembler
function. An example is shown in the documentation 11.

6 Usage Examples

This section will show some results obtained thanks to arybo.

6.1 Obfuscated XOR

While reversing a proprietary communication protocol, Camille Mougey and
Francis Gabriel [8] discovered a function that takes an 8-bit integer as input and
outputs another 8-bit integer (rewritten here in Figure 1 in Python).

11 http://pythonhosted.org/arybo/integration.html#ida

def f(x):

v0 = x*0xe5 + 0xF7

v0 = v0&0xFF

v3 = (((((v0*0x26)+0 x55)&0 xFE)+(v0*0xED)+0 xD6)&0 xFF)

v4 = ((((((- (v3*0x2))+0 xFF)&0 xFE)+v3)*0 x03)+0 x4D)

v5 = (((((v4*0x56)+0 x24)&0 x46)*0 x4B)+(v4*0xE7)+0 x76)

v7 = ((((v5*0x3A)+0 xAF)&0 xF4)+(v5*0x63)+0 x2E)

v6 = (v7&0x94)

v8 = ((((v6+v6+(- (v7&0xFF)))*0 x67)+0xD))

res = ((v8*0x2D)+(((v8*0xAE)|0 x22)*0 xE5)+0 xC2)&0 xFF

return (0xed*(res -0xF7))&0 xff

Fig. 1. MBA-obfuscated operator

Using arybo and the code in Figure 2, we can get the symbolic expressions
of f .

from mba.lib import MBA

mba = MBA (8)

x = mba.var(’x’)

print(f(x))

Fig. 2. Python code to get the Arybo representation of f

The output provided by arybo is:

(x0, x1, (x2 + 1), (x3 + 1), (x4 + 1), x5, (x6 + 1), x7)ᵀ,

where + on bits stands for an addition modulo 2, that is a XOR. The identification
process quickly shows that this is equivalent to a XOR operation with the constant
(0 0 1 1 1 0 1 0), which, according to our convention (see Section 2), is 0x5C.

6.2 Opaque constants

MBA expressions can be used in order to generate opaque constants. Figure 3
is an example of such computation with 64-bit operations.

mba = MBA (64)
X = mba.var(’X’)
C = ((~X | 0x7AFAFA697AFAFA69) & 0xA061440A061440) + ((X & 0x10401050504) | 0x1010104)
print(hex(C.to_int ()))

Fig. 3. Opaque constant

This returns the constant 0xa061440b071544 in less than 100ms. Moreover,
the computation proves that the function is indeed a constant on the entire
64-bit input space.

Indeed, another way to prove that this expression always returns a constant is
to bruteforce the entire 64-bit space and check that the value obtained is always
the same. In practice, a parallel and AVX2-optimized version of this bruteforce
running on a 6 cores Xeon E5-1650 (running at 3.5GHz) takes 4.2s to run for
the first 236 integers, which makes the computation of the whole 64-bit space
doable in about 36 years.

One could argue that after these 236 trials, we could consider the function
always returning a constant. In practice, this might indeed be true in lots of
cases, but we can create a Dirac delta function, as shown in Figure 4.

mba = MBA (64)
X = mba.var(’X’)
T = ((X+1)&(~X))
C = ((T | 0x7AFAFA697AFAFA69) & 0x80A061440A061440) + ((~T & 0x10401050504) | 0x1010104)

Fig. 4. Dirac delta function

In this case, every bit of C is 1 or 0 except for the last one which is equivalent
to (
∧62

i=0 xi)∧ (1⊕x63). This last bit is thus equal to 1 for the sole value x where
xi = 1, i = 0 . . . 62 and x63 = 0 that is X=0x7FFFFFFFFFFFFFFF. Therefore, we
have a function which always returns the same value except for a specific integer.
If no usage context is provided (from a debugging trace for instance), this can
be really hard to discover in a reasonable amount of time using the bruteforcing
technique.

6.3 A known plaintext attack against a specific Even-Mansour
based cipher

In 1991, Even and Mansour proposed the following construction: with a given
n × n-bit permutation F , two n-bit keys K1 and K2 and an n-bit plaintext P ,
encrypt P and get the ciphertext as C = F (P ⊕K1)⊕K2.

In this section, we describe how arybo can be used to perform a known
plaintext attack on the specific case where F is an affine function, F (X) =
M ·X⊕V . Knowing a ciphertext and a plaintext allows the recovery of any other
plaintext encrypted with the same key pair. Indeed, with P1 and P2 two different
plaintexts, C1 and C2 the respective encrypted versions, we have C1 ⊕ C2 =
M ·(P1⊕P2). The function F being a bijective affine application, M is invertible.
Thus, knowing P1, C1 and C2 gives P2 = P1 ⊕M−1 · (C1 ⊕ C2).

Using arybo, the equivalent boolean expressions of the function F can be
retrieved, and the matrix M extracted. An example of such an attack has been
done on a challenge presented during the HITB 2015 conference in Amsterdam12.
In this case, the function F is composed of, among others things, an SBOX which
appears to be representable by an affine function. The script solving the challenge
is in the examples/hitb2015 crypto400.py file in the source code.

12 http://conference.hitb.org/hitbsecconf2015ams/

7 Runtime Performances

This sections shows some performance results of arybo. It has been performed on
a Core i7-3520M with Intel SpeedStep and power saving features desactivated.
Benchmarks were run 15 times and the mean time was computed by removing
the two lowest and highest results.

The different examples used are present in the examples directory of the
source code. The xor 5C.py file is the operation presented in Section 6.1. The
gen mba.py file computes a generic MBA expression with two input variables for
a given amount of bits. The gen mba2.py file does the same for another expres-
sion. The stribog.py file computes a Stribog hash (defined in RFC6986 [4])
of a 256-bit value with a given number of symbolic input bits (the other are
randomly choosen). Results are shown Figure 5.

Example Time (ms) Memory (Mb)

xor 5C.py 143.0 13.4
gen mba.py 7 45.0 13.2
gen mba.py 8 80.0 13.6
gen mba.py 9 271.8 14.1
gen mba2.py 7 112.7 13.7
gen mba2.py 8 853.6 15.0
gen mba2.py 9 17552 19.0
stribog.py 1 8890 16.9
stribog.py 2 24230 18.1
stribog.py 3 69350 22.6
stribog.py 4 272630 30.1

Fig. 5. Runtime and memory performances

Using callgrind (a valgrind-based tool) 13, we can see that the CPU time
is mostly spent in the insertion method. Performance could be improved using
a balanced tree, but at the cost of more memory. This is kept for further work.

8 Conclusion

In this paper, we presented arybo, a tool that allows symbolic manipulation
and simplification of expressions that combine n-bit words with arithmetic and
boolean operators. We represent boolean expressions in Fn

2 using the XOR and
AND logical operations. We use bit-vectors to describe n-bit variables in Algebraic
Normal Form. One of the drawback is that this representation can sometimes
consume a lot of memory, for example in the case of the arithmetic addition of
two n-bit symbolic variables.

13 http://valgrind.org/docs/manual/cl-manual.html

The software is based on a custom C++ library for representing symbolic
boolean expressions, and a Python module in order to provide arithmetic and
boolean operations on a symbolic n-bit variable. Such choices have been made
for interoperability, performance and memory reasons. Benchmarks show that
an obfuscated XOR 0x5C function operating on 8-bit integers (see Figure 1) can
be symbolically described in about 150ms, using only about 10MB of memory.

Finally, we demonstrated various usages of our software, including under-
standing opaque predicates and describing a known plaintext attack on a very
special case of an Even-Mansour cryptographic scheme. This shows that arybo

can be used for more than just understanding complex mixed boolean arithmetic
functions.

As further works, lots of optimizations are still possible. We first need to
investigate the use of symmetric boolean functions, as they appear very naturally
in the boolean expressions of arithmetic operators. Simplifying expressions based
on ESF simplification rules could speed-up the process and save lots of expanding
and temporary memory. Moreover, it could be interesting to be able to switch
to a balanced-tree representation for the boolean expressions, and compare the
runtime performances and the memory cost against the current structure.

8.1 Acknowledgement

We would like to thank Aurélien Wailly for his helpful comments.

References

1. F. Biondi, S. Josse, A. Legay, and T. Sirvent. Effectiveness of Synthesis in Concolic
Deobfuscation. Preprint available at https://hal.inria.fr/hal-01241356, Dec 2015.

2. R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors
and Arrays. In 15th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 174–177. Springer-Verlag, 2009.

3. L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In 14th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer-Verlag, 2008.

4. V. Dolmatov and A. Degtyarev. RFC6986: GOST R 34.11-2012: Hash Function,
2013.

5. N. Eyrolles, L. Goubin, and M. Videau. Defeating MBA-based Obfuscation. In
Proceedings of the 2nd International Workshop on Software Protection, SPRO ’16,
2016. To appear.

6. A. Klimov and A. Shamir. A New Class of Invertible Mappings. In Cryptographic
Hardware and Embedded Systems - CHES 2002, volume 2523 of LNCS, pages 470–
483. Springer, 2003.

7. D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point of
View. Springer, 2008.

8. C. Mougey and F. Gabriel. DRM obfuscation versus auxiliary attacks. REcon
2014.

9. F. Saudel and J. Salwan. Triton: A Dynamic Symbolic Execution Framework. In
Symposium sur la sécurité des technologies de l’information et des communications,
pages 31–54. SSTIC, 2015.

10. H. S. Warren. Hacker’s Delight. Addison-Wesley Professional, 2012.
11. I. Wegener. The Complexity of Boolean Functions. John Wiley & Sons, 1987.
12. Y. Zhou, A. Main, Y. X. Gu, and H. Johnson. Information Hiding in Software with

Mixed Boolean-Arithmetic Transforms. In International Workshop in Information
Security Applications, pages 61–75, 2007.

