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Abstract—The current trend in high performance and embedded signal
processing consists of designing increasingly complex heterogeneous
hardware architectures with non-uniform communication resources. In
order to take hardware and software design decisions, early evaluations
of the system non-functional properties are needed. These evaluations of
system efficiency require high-level information on both the algorithms
and the architecture. In this paper, we define the notion of Model of
Architecture (MoA) and study the combination of a Model of Computation
(MoC) and an MoA to provide a design space exploration environment for
the study of the algorithmic and architectural choices. A cost is computed
from the mapping of an application, represented by a model conforming
a MoC onto an architecture represented by a model conforming an MoA.
The cost is composed of a processing-related part and a communication-
related part. It is an abstract scalar value to be minimized and can
represent any non-functional requirement of a system such as memory,
energy, throughput or latency.

I. INTRODUCTION

In the 1990s, models of parallel computation such as the ones
surveyed by Maggs et al. in [1] were designed to represent a
system including hardware and software-related features. Since the
early 2000s, rapid prototyping initiatives such as the Algorithm-
Architecture Matching (AAA) methodology [2] have fostered the
separation of algorithm and architecture models in order to automate
design space exploration.

Models of Computation (MoCs) and especially dataflow MoCs
are currently gaining popularity for the design of stream processing
systems [3]. Their popularity comes from their capacity to model
a parallel application and to guarantee (under certain conditions)
functional properties such as deadlock-freeness and memory bound-
edness while ignoring hardware concerns (instruction set, number of
processing elements, etc.).

Modern hardware processing systems are a combination of non-
equivalent processing and communication resources, referred to as
heterogeneous Multiprocessor Systems-on-Chips (MPSoCs) [4]. The
design and programming costs of heterogeneous MPSoCs are con-
stantly rising, because the improvement of programming efficiency is
slower than the increase of system complexity. This phenomenon is
known as software and hardware productivity gaps [4]. In MPSoCs,
different sources of heterogeneity arise such as different types of pro-
cessing units, Non Uniform Memory Access (NUMA) and different
types of interprocessor communication (IPC). A unique MoC model
is thus unable to represent the properties of an application and the
resources of the hardware platform.

In this paper, the notion of Model of Architecture (MoA) is intro-
duced. The main goal of an MoA is to offer standard, reproducible
ways to evaluate the efficiency of design decisions. Reproducibility

signifies that the model alone, without an associated implementation,
is sufficient to reproduce the cost computation. One may note a
difference between system performance and system efficiency. In
computer science, and considering an application alone, performance
is often a synonym of throughput [5][6]. However, signal processing
system design requires decisions based on many non-functional costs
such as memory, energy, throughput, latency, or area. These costs can
be seen as the different modalities of a system’s efficiency. In order
to evaluate these non-functional costs, an MoA models the internal
behavior of an architecture at a high level of abstraction.

Modern streaming applications such as telecommunication, video
processing, or deep learning, require a great amount of computation.
An early evaluation of the system efficiency is a valuable tool for
system designers, as shown by company products such as Poly-
Platform from PolyCore Software, Inc., SLX Explorer from Silexica
or Pareon from Vector Fabrics whose objectives include providing
early performance numbers to the designers. These tools have internal
performance models but no standard approach is shared between
them. MoAs complement the work on MoCs in providing precise se-
mantics for the second input of the Y-chart [7]. The Y-chart separates
the description of an application from the one of an architecture, as
illustrated in Figure 1 where algorithm descriptions, conforming to a
precise MoC are combined with architecture descriptions conforming
to an MoA.

Model of ArchitectureModel ofComputation Algorithm Architecture

Mapper and Simulator

efficiency metrics

conform to conform to

redesign redesign

Fig. 1: MoC and MoA in the Y-chart [7].

The paper is organized as follows: Section II presents state of the
art MoCs for parallel computation. Section III introduces the notion
of MoA and Section IV proposes a new MoA named Linear System-
Level Architecture Model (LSLA). Section VI demonstrates system-
atic, reproducible cost computation from algorithm and architecture
models.

II. STATE OF THE ART OF MOCS

The objective of this paper is to sketch the contours of MoAs as
the architectural counterparts of MoCs, thereby helping to bridge the
increasing gap between MoC-based application design, and platform-
based hardware/software implementation. This section introduces a
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few representative MoCs that are relevant to signal processing system
design. These MoCs will be used in Section VI to demonstrate the
proposed LSLA MoA.

Many MoCs have been designed to represent the behavior of a
system. The Ptolemy II project [8] has had a considerable influence
in promoting MoCs with precise semantics and different forms.
Different families of MoCs exist such as finite state machines,
process networks, Petri nets, synchronous MoCs and functional
MoCs. This paper leverages on both dataflow MoCs and the Bulk
Synchronous Parallel (BSP) MoC for their capacity to represent
parallel computations, and their relevance to signal processing system
design. Section II-A presents static and dynamic dataflow models
while Section II-B introduces the BSP MoC.

A. Dataflow MoCs

A dataflow MoC represents a streaming application with a graph
where vertices, named actors, represent computation and exchange
data through First In, First Out data queues (FIFOs). The unitary
exchanged data is called a data token. Computation is triggered when
the data present on the input FIFOs of an actor respect its firing rules.
Dozens of different dataflow MoCs have been explored [9] and this
diversity of MoCs demonstrates the benefit of precise semantics and
reduced model complexity.

1) The Synchronous Dataflow (SDF) MoC: Synchronous Dataflow
(SDF) [10] is the most commonly used dataflow MoC [11]. SDF has
a limited expressivity and an extended analyzability. Production and
consumption token rates set by firing rules are fixed scalars in an SDF
graph and for that reason, SDF is commonly called a static dataflow
MoC.

Static analysis can be applied on an SDF graph to determine
whether or not fundamental consistency and schedulability properties
hold. Such properties, when they are satisfied, ensure that an SDF
graph can be implemented with deadlock-free execution and FIFO
memory boundedness.

An SDF graph (Figure 2) is defined as G = 〈A,F 〉 where A
is the set of actors, and F is the set of FIFOs. For an SDF actor,
a fixed integer-valued data rate is set for each port by the function
rate : P in

data ∪ P out
data → N∗ where P in

data is the set of input ports,
P out
data is the set of output ports for an actor and N∗ is the set of

strictly positive integers. A delay d : F → N is set for each FIFO
f ∈ F , corresponding to a number of tokens initially present in the
FIFO F . N refers to the set of non negative integers.

A Actor

FIFO

Port name
and rate A Bp: 1 p: 1

pi: 2

fi: 4 fo: 4

Cpo: 6
p: 3

*4*4
Delay and
number of tokens

Fig. 2: Example of an SDF Graph.

If an SDF graph is consistent and schedulable, a fixed sequence of
actor firings, called a graph iteration, can be repeated indefinitely to
execute the graph, and there is a well defined concept of a minimal
sequence for achieving an indefinite execution with bounded memory.

The notion of graph iteration will be used to compute the cost of
mapping an SDF algorithm model on an LSLA architecture model
in Section VI-A.

2) The Enable-Invoke Dataflow (EIDF) and Core Functional
Dataflow (CFDF) MoCs: EIDF is a highly expressive form of
dataflow MoC that is useful as a common basis for implementing
and analyzing a wide variety of specialized dataflow MoCs [12].
While specialized models such as SDF are useful for exploiting
specific characteristics of targeted application domains, the more
flexibly-oriented MoC EIDF is useful for interfacing different forms

of dataflow and providing tool support that spans heterogeneous
systems.

In EIDF, the behavior of an actor is decomposed into a set of actor
modes such that each actor firing operates according to a given mode.
At the end of each actor firing, the actor determines a next mode set,
which specifies the set of possible modes according to which the
next actor firing can execute. The dataflow behavior (production or
consumption rate) for each actor port is constant for a given actor
mode. However, the dataflow behavior for the same port can differ
for different modes of the same actor, which allows for specification
of dynamic dataflow behavior. An EIDF graph is defined as G =
〈A,F 〉 and notations used to denotes actors, FIFOs, and data ports
are identical to these defined in SDF.

In this paper, we focus on a restricted form of EIDF called
core functional dataflow (CFDF) (Figure 3a). CFDF requires the
next mode set that emerges from any firing to contain exactly one
element [13], ensuring model determinacy. The unique actor mode
within the next mode set of a CFDF actor firing is referred to as the
next mode associated with the firing. Dataflow attributes of a CFDF
actor are characterized by a dataflow table (Figures 3b and 3c). The
rows of the table correspond to the different actor modes, and the
columns correspond to the actor ports. Given a CFDF actor A, we
denote the dataflow table for A by TA. If m is a mode of A and p
is an input port of A, then TA[m][p] = −κ(m, p), where κ(m, p) is
the number of tokens consumed from p in mode m. Similarly, if q is
an output port of A, then TA[m][q] = ρ(m, q), where ρ(m, q) is the
number of tokens produced onto q in mode m. Mode transition for
a CFDF actor is represented by a mode transition graph (Figures 3d
and 3e). Given a CFDF actor A, the mode transition graph for A,
denoted MTG(A) is a directed graph in which the vertices corrspond
to the modes of A. The edge set of MTG(A) can be expressed
as {(x, y) ∈ VA × VA | y ∈ µA(x)}, where VA represents the
set of vertices in MTG(A), and µA(x) is the set of possible next
modes for actor x. While production and consumption rates for CFDF
actor modes cannot be data-dependent, the next mode can be data-
dependent, and thus, µA(x) can have any number of elements up to
the number of modes in A.

X Y
Port:p1

Port:p2

A Actor

FIFO

(a) Example of a CFDF graph.
Mode p1

1
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(b) Dataflow table for X.

Mode p2

-1
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2

(c) Dataflow table for Y.

M(X,1) M(X,2)M(X,1) M(X,2)

(d) Mode transition graph
for X.

M(Y,1) M(Y,2)

(e) Mode transition graph
for Y.

Fig. 3: Dataflow attributes of an example CFDF graph.

The combination of the CFDF MoC and the LSLA MoA to
compute an efficiency cost will be discussed in Section VI-B.

B. The Bulk Synchronous Parallel MoC

Another example of a MoC for parallel computation is the Bulk
Synchronous Parallel (BSP) [14] MoC. BSP analyzes an applica-
tion into several phases called supersteps. A BSP computation is
composed of a set of components A called agents in this paper to
distinguish them from the Processing Elements (PEs) in an MoA.
Each agent α ∈ A has its own memory. An agent α can access
the memory of another agent β through a remote access (message)
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r(α, β) via a so-called router. Application execution happens in a
series of supersteps indexed by σ ∈ N and consisting of processing
efforts, remote accesses and a global synchronization s(σ) (Figure 4).

α Agent α β γ δ ε

Memory

Router
time

Remote
access

Superstep

α1

β1

γ1
δ1

ε1

α2
β2

γ2
δ2

ε2

α3

β3

γ3
δ3

α1
Firing of A in
superstep 1

Synchronization

ε3

Fig. 4: Example of a BSP Representation.

Each agent α executes in the superstep σ the processing effort ασ ,
requiring a time w(ασ) ∈ N. During the superstep σ, an agent sends
or receives at most hσ remote accesses, each access transferring one
atomic data from one agent to another. A barrier synchronization
follows each superstep, ensuring global temporal coherency before
starting the superstep σ + 1.

A lower bound for the time of a superstep is computed by:

Tσ = max
0≤α<card(A)

w(ασ) + hσ × g + s (1)

where card(A) is the number of agents, g is the time to execute
one atomic remote transfer, and s is a fixed synchronization time.
A superstep has a discrete length n × L with n ∈ N and L the
minimal period of synchronization. Smaller values of L in general
lead to superstep times that are closer to the corresponding lower
bounds. The BSP execution cost computation is limited to latency
and assumes that communication costs for an agent are additive. The
combination of the BSP MoC and the LSLA MoA to compute an
efficiency cost will be explained in Section VI-C.

Each one of the previous MoCs is characterized by a specific set of
properties such as their expressiveness, dynamicity, analyzability, or
their decidability. Depending on the complexity and constraints of the
modeled application, a simple SDF representation or a more complex
CFDF or BSP representation may be chosen. MoCs, by nature, do not
carry hardware related information such as resource limitations and
hardware efficiency. In this paper, we propose the concept of MoA
to complement MoCs in the process of design space exploration.

III. DEFINITION OF MODELS OF ARCHITECTURE (MOAS)

Definition 1. A Model of Architecture (MoA) is an abstract
efficiency model of a system architecture that provides a unique,
reproducible cost computation, unequivocally assessing a hardware
efficiency cost when processing an application described with a
specified MoC.

An MoA does not need to reflect the real hardware architecture
of the system. It only aims to represent its efficiency at a coarse
grain. As an example, a complete cluster of processors in a many-
core architecture may be represented by a single Processing Element
(PE) in its MoA representation, hiding the internal structure of this
PE. MoAs are intended to be used at a high level of abstraction
where hardware, operating system and middleware may be abstracted
together. MoAs can be used at all stages of the system design process,
from early steps (e.g. to define how many hardware coprocessors

are necessary) to late steps (e.g. to optimize runtime scheduling). In
addition to classical information such as processor frequency, number
of cores or memory architecture, an MoA can give information on
physical properties such as energy consumption and temperature
dissipation.

In the next section, a new MoA is proposed and named LSLA.
This model is providing simple semantics for computing an abstract
cost from the mapping of an application described with a precise
MoC.

IV. THE LINEAR SYSTEM-LEVEL ARCHITECTURE MODEL

(LSLA) MOA

A. Definitions

As an MoA, LSLA provides reproducible cost computation when
the activity A of an application is mapped on the architecture. Three
application-related notions are required prior to the definition of
LSLA: application activity, quanta and tokens. These notions are
necessary because they make LSLA independent from the chosen
MoC.

Definition 2. The application activity A represents the amount
of processing and communication necessary for accomplishing the
requirements of the application.

Definition 3. A quantum q is the smallest unit of application
activity. There are two types of quanta: processing quantum qP and
communication quantum qC .

Two distinct instances of processing quanta are equivalent in the
sense that they represent the same amount of computational activity.
Processing and communication quanta do not share the same unit of
measurement. As an example, in a system with a unique clock and
Byte addressable memory, 1 cycle of processing can be chosen as
the processing quantum and 1 Byte as the communication quantum.

Definition 4. A token τ ∈ TP ∪ TC is a non-divisible unit of
application activity, composed of a number of quanta. The function
size : TP ∪ TC → N associates to each token the number of quanta
composing the token. There are two types of tokens: processing tokens
τP ∈ TP and communication tokens τC ∈ TC .

The activity A of an application is defined by the set:

A = {TP , TC} (2)

where TP = {τ1P , τ2P , τ3P ...} is the set of tokens composing the
application processing and TC = {τ1C , τ2C , τ3C ...} is the set of tokens
composing the application communication.

An example of a processing token can be a run-to-completion task.
It is composed of N processing quanta (for instance, N cycles). An
example of a communication token is a message in a message passing
system. It is composed of M communication quanta (for instance M
Bytes). Using the two levels of granularity of a token and a quantum,
the LSLA MoA can reflect the cost of managing a quantum and the
overhead of managing a token composed of several quanta. Definition
5 formally defines the LSLA model, illustrated in Figure 5.

Link

PE Processing Element

CN Communication Node

10x+1 Per token cost
(x=# of quanta)

z
B

1x

x y

10x 1xA10x+1

5x+1 D

C 2x+1

2x+1
λ=0.3

Fig. 5: LSLA MoA semantics elements.



4

Definition 5. The Linear System-Level Architecture Model (LSLA)
is a Model of Architecture (MoA) that consists of a four-tuple
M = (G,L, cost, λ). Here, G = (P,C) is an undirected graph
where P is the set of abstract architecture Processing Elements (PEs)
and C is the set of architecture Communication Nodes (CNs). A
processing token τP must be mapped to a PE p ∈ P to be executed.
A communication token τC must be mapped to a CN c ∈ C to be
transferred. L = (ni, nj), ni ∈ C, nj ∈ C ∪P is a set of undirected
links connecting either two CNs or one CN and one PE. A link models
the capacity of a CN to communicate tokens to/from a PE or to/from
another CN.

The element of G denoted as “cost” is a function associating a
cost to different elements. The cost related to the management of a
token τ by a PE or a CN is defined by:

cost : TP ∪ TC × P ∪ C → R
τ, n 7→ αn.size(τ) + βn,

αn ∈ R, βn ∈ R
(3)

where αn is the fixed cost of a quantum when executed on n and
βn is the fixed overhead of a token when executed on n. A token
communicated between two PEs connected with a chain of CNs Γ =
{x, y, z...} is reproduced card(Γ) times and each occurrence of the
token is mapped to 1 element of Γ. This procedure is explained on
different exemples in Section VI. A token not communicated between
two PEs, i.e. internal to one PE, does not cause any cost.

The cost of the execution of application activity A on an LSLA
model M is defined as:

cost(A,M) =
∑
τ∈TP

cost(τ,map(τ)) + λ
∑
τ∈TC

cost(τ,map(τ))

(4)
where map : TP ∪ TC → P ∪ C is a surjective function returning
the architecture elements where a token is mapped.
λ ∈ R is a lagrangian coefficient setting the Computation to

Communication Cost Ratio (CCCR), i.e. the cost of a single commu-
nication quantum relative to the cost of a single processing quantum.

V. RELATED WORK ON MOAS

Model Abstr- Distributed Cost Reprodu-
action Memory type(s) cible cost

UML Marte [15] - - yes multiple no
AADL [16] - yes multiple no

[4] - yes multiple no
[17] + yes multiple yes
[18] + yes time no
[19] ++ yes multiple no

S-LAM [20] ++ yes time no
LSLA +++ yes abstract yes

TABLE I: Properties of different state of the art architecture models.

The concept of MoA is evoked in [21] where it is defined as “a
formal representation of the operational semantics of networks of
functional blocks describing architectures”. This definition is very
broad, and allows the concepts of MoC and MoA to overlap. As
an example, an SDF graph representing a fully specialized system
may be considered as a MoC because it formalizes the application.
It may also be considered as an MoA because it fully complies with
the definition from [21]. This is in contrast to the orthogonalization
between MoC and MoA representations that is supported in our
proposed modeling framework. Moreover, contrary to the definition
from [21], our proposed definition of MoA does not compel the MoA
to match the internal structure of the hardware architecture, as long
as the generated cost is of interest.

Table I references architecture models of abstract heterogeneous
parallel architectures. An evaluation of the level of abstraction of
each model is given, as well as some properties.

UML Marte [15] is a system modeling standard offering a holistic
approach encompassing all aspects of real-time embedded systems.
The standard consists of Unified Modeling Language (UML) classes
and stereotypes. As a specification language, UML Marte does not
standardize how a cost should be derived from the specified hardware
resources and non-functional properties. In contrast, an MoA focuses
on reproducible cost computation.

The Architecture Analysis and Design Language (AADL) language
[16] defines a syntax and semantics to describe both software and
hardware components. The language constructs match logical and
physical features such as threads and processes for software and bus
and memory for hardware. In contrast, MoAs offer abstract features
for describing hardware architectures and delegate responsibility for
modeling algorithms to MoCs.

Castrillón and Leupers define in [4] a quasi-MoA that divides an
architecture into PEs. Each PE has a specific Processor Type (PT)
associated to multiple costs and attributes such as context switch time
and resource limitations. A graph G of PEs is defined where each
edge interconnecting a pair of PEs is associated to a Communication
Primitive (CP), i.e. a software application programming interface
that is used to communicate among tasks. A CP refers to a refers
to a Communication Resource (CR) and has its own cost model
associating different costs to communication volumes taking into
account the number of channels and, the amount of available memory
in the module, etc. This model is refered to as a quasi-MoA because
it does not specify the cost computation procedure from the data
provided in the model.

In [17], Kianzad and Bhattacharyya present the CHARMED frame-
work that aims at optimizing multiple system parameters represented
in pareto fronts. CHARMED uses an MoA composed of a set of
PEs and Communication Resources (CR). Each PE has an attribute
vector including processor area, processor price, data memory size,
instruction memory size, and power consumption. Each CR also has
a vector of attributes including power consumption and transmission
speed. This model constitutes, to our knowledge, the only existing
MoA as stated by Definition 1. Compared to LSLA, the model in [17]
is more complex and does not abstract the computed cost, limiting
the model to the defined metrics.

In [18], Grandpierre and Sorel define a graph-based quasi-MoA
for message passing and shared memory data transfer simulations
of heterogeneous platforms. Memory sizes and bandwidths are taken
into account in the model. This model can also be considered as a
quasi-MoA because the cost computation procedure is not specified.

In [19], Raffin et. al, describe a quasi-MoA for evaluating the per-
formance of a Coarse Grain Reconfigurable Architectures (CGRAs).
The model is customized for a processor type named ROMA and
based on a graph representing PEs, memories, a network connecting
PEs to memories, and a network interconnecting PEs. The model
contains memory sizes, network topologies and data transfer laten-
cies. The objective of the model is to provide early estimations of
the necessary resources to execute a dataflow application. Contrary to
[19], LSLA abstracts the computed cost and provides a reproducible
cost computation procedure.

The System-Level Architecture Model (S-LAM) [20] quasi-MoA
focuses on timing properties of a distributed system and defines
communication enablers such as Random Access Memory (RAM)
and Direct Memory Access (DMA). S-LAM is focused on time
modeling and does not provide reproducible cost computation.

Compared to all models except [17], LSLA is the only model
that abstracts the type of the computed implementation cost. By its
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flexibility and low complexity, LSLA is intended to be used both (a)
early in the system design process, when high modeling accuracy
is not needed, and (b) post-deployment for runtime management
decisions, when the decision processing budget is limited. The next
sections illustrate the cost computation provided by LSLA when
combined with SDF, CFDF, and BSP MoCs (Section II).

VI. COMPUTING THE COST OF AN APPLICATION EXECUTION ON

AN LSLA ARCHITECTURE

A. Computing the cost of an SDF application execution on an LSLA
architecture

LSLA architecture

A1
p: 1 p: 2

A2 activity of an iteration: 
2 A1 tokens, 
2 data tokens, 
1 A2 token

tokens relative costs: 
decomposition into quanta

mapping tokens 
to PEs and CNs

SDF
application

z
B

1x

x y

10x 1xA10x+1

5x+1 D

C 2x+1

2x+1
λ=0.3

Fig. 6: Computing the cost of executing an SDF graph on an LSLA
architecture. The obtained cost for 1 iteration is 31 + 21 + 0.3 (2 +
2 + 20 + 2) + 7 = 66.8 (Equation 4). The cost unit depends on the
type of cost represented by the model.

The cost computation mechanism of the LSLA MoA is illustrated
by an example in Figure 6 combining an SDF application model
and an LSLA architecture model. The scope chosen for the cost
computation of a couple (SDF, LSLA), provided that the SDF
graph is consistent, is one SDF graph iteration (Section II-A1).
Each actor firing is transformed into one processing token and each
dataflow token is transformed into one communication token. A
token is embedding several quanta (Section IV), allowing a designer
to describe heterogeneous tokens to represent firings and data of
different weights. In Figure 6, each firing of actor A1 is associated
with a cost of 3 quanta and each firing of actor A2 is associated to
a cost of 4 quanta. Communication tokens represent 2 quanta each.

Each processing token is mapped to one PE (A, B, C or D).
Communication tokens are “routed” to the CNs connecting their
producer and consumer PEs. For instance, the second communication
token in Figure 6 is generating 3 tokens mapped to CNs x, y,
and z because the data is carried from PE C to PE B. Since a
multiplication by λ = 0.3 brings the cost of communication tokens
to the processing domain, the total cost for communication would be
0.3× (2 + 2 + 20 + 2) = 7.8. The resulting cost from Equation 4 is
66.8. This cost is reproducible and abstract, making LSLA an MoA.

B. Computing the efficiency of a CFDF application execution on an
LSLA architecture

Using dynamic dataflow models such as CFDF, a simulation-based
integration is a natural way to apply MoA-driven cost computation
since there is in general no standard, abstract notion of an application
iteration — i.e., no notion that plays a similar role as the periodic
schedules of consistent SDF graphs. Figure 7 illustrates an example
of execution of a CFDF dataflow graph on an LSLA architecture.
We define the cost of execution of actor X in mode M(X, 1) to be
3 quanta and the cost of execution of actor X in mode M(X, 2) to
also be 3 quanta. Similarly, the cost of execution of actor Y in mode

M(Y, 1) is 2 quanta and the cost of execution of actor Y in mode
M(Y, 2) is 4 quanta. These choices represent additional information
associated with the CFDF MoC. The cost of communication tokens
on the FIFO is set to 2 quanta.

z
B

1x

x y

10x 1xA
10x+1

5x+1 D

C
2x+1

2x+1

λ=0.3

X

p1 p2
Y

activity of 
an execution:
1 X token,
2 X tokens,
2 X token, 
5 data tokens, 
1 Y token
1 Y token

mapping tokens: 
to PEs and CNs

CFDF
application

LSLA architecture

token relative costs: 
decomposition 
into quanta

Fig. 7: Computing the cost of executing a CFDF graph on an LSLA
architecture. The obtained abstract cost for the chosen simulation
scope is 62 + 32 + 0.3 (10 + 20 + 2) + 7 = 110.6.

We can then compute a cost for every PE and CN. There are 2
actor tokens mapped to PE A. Each of them has 3 quanta. The cost
for PE A is 2× (3×10 + 1) = 62. There are 2 actor tokens mapped
to PE B representing 2 and 4 quanta respectively. The cost for PE
B is 1 × (2 × 5 + 1) + 1 × (4 × 5 + 1) = 32. There is 1 actor
token mapped to PE C representing 3 quanta. The cost for PE C is
1× (3× 2 + 1) = 7. There are 5 communication tokens mapped to
CN x. Each of them has 2 quanta. Therefore, the cost for CN x is
5×(2×1) = 10. Similarly, the cost of y is 1×(2×10) = 20 and the
cost of z is 1× (2× 1) = 2. The obtained cost is the summation of
all PEs’ costs and CNs’ costs multiplied by λ, which in this example
sums up to 62 + 32 + 9.6 + 7 = 110.6.

C. Computing the efficiency of a BSP application execution on an
LSLA architecture

α β γ δ ε
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δ2
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δ1 ε1

α2
β2 γ2

δ2
ε2

time

σ=1
processing

σ=1
communication

σ=2
communication

σ=2
processing

Fig. 8: Extracting the activity of a BSP model.

Figures 8 and 9 illustrate the cost computation of the execution
of a BSP algorithm on an LSLA architecture. Figure 8 displays
the extraction of the activity from the BSP description, where
each processing effort ασ is transformed into one processing token
consisting of w(ασ) quanta (Section II-B) and each (atomic) remote



6

access is transformed into one communication token of one quantum.
Figure 9 shows the mapping and pooling of tokens, consisting of
associating tokens to PEs and CNs and replicating communication
tokens to route the communications. Agents α and β are mapped on
core B, agent γ is mapped on core A, agent ε is mapped on core C
and agent δ is mapped on core D. The global cost is computed as the
sum of the cost of each token on its PE or CN. The communication
token α→ β is ignored because it is communicating a token between
two agents mapped on the same PE and such a communication has
no cost in LSLA, because there is no remote access. The abstract cost
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x y
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5x+1 D

C
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λ=0.3

LSLA architecture
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Mapping
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Fig. 9: Computing the cost of executing the BSP model in Figure 8
on an LSLA architecture. The obtained abstract cost is 31 + 31 + 11
+ 11 + 11 + 6 + 0.3 (6 + 40 + 6) + 7 + 5 + 11 + 5 = 144.6 (Equation
4).

of 144.6 is obtained for this couple (BSP, LSLA) and, as for SDF
and CFDF MoCs, this cost is reproducible as long as the activity
extraction from the BSP model follows the same conventions. When
compared to using BSP alone, combining BSP and LSLA helps in
studying the cost of mapping multiple agents on a single PE — for
example, to understand the potential to exploit slack and balance
activity between PEs.

D. Discussion on LSLA cost computation

In previous sections, the cost computation mechanisms of LSLA
have been demonstrated on static SDF dataflow, dynamic CFDF
dataflow and BSP MoCs. The generic and reproducible cost com-
putation of LSLA make LSLA an MoA. While CNs with high cost
(such as y in Figure 9) represent bottlenecks in the architecture,
i.e. communication media with low data rates, PEs with high cost
(such as A in Figure 9) represent processing facilities with limited
processing efficiency. Each PE can indifferently model a General
Purpose Processor (GPP), a Graphics Processing Unit (GPU), or a
Digital Signal Processor (DSP) core executing software as well as
a hardware component implemented on a Field-Programmable Gate
Array (FPGA) or an Application-Specific Integrated Circuit (ASIC).

VII. CONCLUSION

High performance and embedded signal processing systems require
increasingly heterogeneous architectures. Reproducible models are
necessary in order to model reliably system-level efficiency. In this
paper, the notion of Model of Architecture (MoA) has been defined.

An MoA models the behavior of an architecture at a high level of
abstraction. When combined to an application model conforming
to a given MoC, an architecture model conforming to an MoA
provides reproducible cost computation mechanisms for evaluating
non-functional system properties such as memory, energy, throughput,
etc.

An MoA called Linear System-Level Architecture Model (LSLA)
has been introduced and compared to the state of the art of archi-
tecture models. LSLA represents hardware efficiency with a linear
model, summing the influences of processing and communication on
system efficiency.

In future publications, we intend to demonstrate the capabilities of
different MoAs to feed efficiency evaluations of systems, optimizing
various non-functional properties.
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