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Abstract: We present a method that generates passive-guaranteed stable simulations of analog
audio circuits from electronic schematics for real-time issues. On one hand, this method is based
on a continuous-time power-balanced state-space representation structured into its energy-storing
parts, dissipative parts, and external sources. On the other hand, a numerical scheme is especially
designed to preserve this structure and the power balance. These state-space structures define the
class of port-Hamiltonian systems. The derivation of this structured system associated with the
electronic circuit is achieved by an automated analysis of the interconnection network combined
with a dictionary of models for each elementary component. The numerical scheme is based on the
combination of finite differences applied on the state (with respect to the time variable) and on the
total energy (with respect to the state). This combination provides a discrete-time version of the
power balance. This set of algorithms is valid for both the linear and nonlinear case. Finally, three
applications of increasing complexities are given: a diode clipper, a common-emitter bipolar-junction
transistor amplifier, and a wah pedal. The results are compared to offline simulations obtained from
a popular circuit simulator.

Keywords: simulation; analog circuits; network modeling; passive system

1. Introduction

The characteristic input-to-output behavior of analog audio circuits (timbre, transitory) rests
on the possibly highly nonlinear components appearing in such systems. These components make
the stability of the simulations difficult to guarantee. The motivation of this work stems from the
following observations:

1. Analog circuits combine energy-storing components, dissipative components, and sources.
2. Storage components do not produce energy, and dissipative components decrease it.

In this sense, analog circuits can be considered as passive systems with external power supply.
We shall exploit this passivity property by transposing it to the digital domain, ensuring the stability
of the simulations (see [1–3]).

The available approaches for the automated derivation of physical modeling and numerical
simulation of audio circuits can be divided in two classes [4]: wave scattering methods (WS) and
Kirchhoff’s variables methods (KV). Mixed WS/KV methods have also been proposed in references [5,6].
The well-established wave-digital filter (WDF) formalism [7] belongs to the class of WS methods.
For linear circuits, it provides a computationally realizable system of equations: First, by defining
parametric wave variables for each elementary component and multiports (serial and parallel);
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Second, by discretizing the corresponding constitutive laws with the bilinear transform; and Third,
by choosing the wave’s parameters so as to reduce the computational complexity and to avoid
instantaneous feedback loops. An extension to nonlinear circuits has been considered in [8,9]
and applied to, for example, the real-time simulation of vacuum-tube guitar amplifiers in [10,11].
WDF ensures the passivity of the resulting digital system [7,12], including systems with scalar
nonlinearity [13]. However, the passivity property of WDF structures is not ensured for circuits
with more than one nonlinear element (e.g., [14] §3.2 and [15] §6).

The class of KV methods for audio circuits encompasses nonlinear state-space representations [16].
Several modeling techniques are available to derive the discrete-time state-space model, either from
the global time-continuous model (e.g., [17]) or from the interconnection of discretized elementary
components (e.g., [18]). The resulting set of nonlinear implicit equations solved at each sample can be
structured so as to obtain a computationally realizable system by applying the K-method introduced
in [19] with developments in [18]. However, this structure does not encode the passivity of the original
circuit naturally, and it must be investigated on a case-by-case basis [20].

In this paper, we consider the port-Hamiltonian systems (PHS) approach, introduced in
the 1990’s [21–23]. PHS are extensions of classical Hamiltonian systems [24], specifically defined
to address open dynamical systems made of energy storage components, dissipative components,
and some connection ports through which energy can transit. This approach leads to a state-space
representation of physical systems structured according to energy flow, thus encoding the passivity
property, even for nonlinear cases. This class of physical systems encompasses not only electrical
circuits, but also multi-domain systems, such as loudspeakers, which involves electrical, magnetic,
mechanical, acoustical, and thermodynamical phenomena.

The port-Hamiltonian structure is derived by applying the Kirchhoff’s laws to a given schematic,
similarly to other existing approaches (e.g., WDF and K-method). Here, the advantage of the PHS
formulation is the direct encoding of the underlying passive structure. This passivity property
is transposed to the discrete-time domain by appropriate numerical methods, so as to ensure the
numerical stability. For linear storage components (inductors and capacitors), the combination of the
PHS structure with any of the trapezoidal rule or the mid-point rule yields the same numerical scheme
that preserves the passivity in discrete-time. For nonlinear storage components, we propose the use of
the discrete gradient method [25] combined with the PHS structure to achieve this goal. This result is
compared to the aforementioned methods. As a second result, we provide an automated method that
derives the PHS structure from a given analog circuit, based on an especially designed graph analysis.

This paper is organized as follows. Section 2 presents the class of the port-Hamiltonian systems;
Section 3 is devoted to the automated derivation of algebraic-differential equations in the continuous
time domain from the electronic schematics; Section 4 presents the numerical scheme which provides
a discrete-time version of the power balance; Then, applications are presented in Section 5 and results
are compared to LT-Spice simulations, before conclusions and perspectives.

2. Port-Hamiltonian Systems

First and foremost, we provide an introduction to the port-Hamiltonian systems (PHS) formalism.
It is shown how this structure guarantees the passivity of the model in continuous time. Second, for
the sake of intuition, we give an introductory example.

2.1. Formalism and Property

Denote E(t) ≥ 0 the energy stored in an open physical system (an electronic circuit). If the system
is conservative, its time variation dE

dt (t) reduces to the power S(t) received from the sources through
the external ports. If the system includes dissipative phenomena, the power D(t) ≥ 0 is dissipated,
and the evolution of energy is governed by the following power balance:

dE

dt
(t) = −D(t) + S(t). (1)
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The port-Hamiltonian approach is used to decompose such open physical systems in (i) a set
of components that are combined according to (ii) a conservative interconnection network. These two
ingredients are detailed below in the case of electronic circuits.

2.1.1. Components

Electronic circuit components are sorted as (or can be a combination of):

nS internal components that store energy E ≥ 0 (capacitors or inductors),
nD internal components that dissipate power D ≥ 0 (resistors, diodes, transistors, etc.),
nP external ports that convey power S (∈ R) from sources (voltage or current generators) or any

external system (active, dissipative, or mixed).

The behavior of each component is described by a relation between two power variables: the current
i and the voltage v, defined in receiver convention (the received power is P = v · i).

The energy Es stored in storage component s ∈ [1 · · · nS] is expressed as a storage function hs

of an appropriate state xs: Es(t) = hs
(

xs(t)
)
≥ 0. Typically, for a linear capacitor with capacitance C,

the state can be the charge x = q and the positive definite function is h(q) = q2/(2C). Storage power
variables (vs, is) are related to the variation of the state dxs

dt and the gradient of the storage function
h′s(xs), the product of which is precisely the received power: vs · is =

dEs
dt = h′s · dxs

dt . For the capacitance,
these constitutive laws are i = dq

dt = dx
dt and v = q/C = h′. Note that these definitions apply equally

for non-quadratic storage functions h(x) ≥ 0 for which h′′(x) is not constant.
The power Dd instantaneously dissipated by the dissipative component d ∈ [1 · · · nD] is expressed

with respect to an appropriate dissipation variable wd: Dd(t) ≡ Dd
(
wd(t)

)
≥ 0. Typically, for a linear

resistance R, w can be a current w = i and D(i) = R · i2. As for storage components, a mapping of
the dissipative power variables (vd, id) is provided, based on the factorization Dd(wd) = wd · zd(wd),
introducing a dissipation function zd. For the resistance, i = w and v = R · i = z(w).

The power instantaneously provided to the system through external port p ∈ [1 · · · nP]

is Sp(t), and we arrange the source variables (vp, ip) in two vectors: one is considered as an input up,
and the other as the associated output yp, so that the power received from sources on port p is
Sp = yp · up = −vp · ip (receiver convention, with vp · ip the power received by the sources).

2.1.2. Conservative Interconnection

The interconnection of the components is achieved by relating all the voltages and currents
through the application of the Kirchhoff’s laws to the interconnection network (schematic). This defines
a conservative interconnection, according to Tellegen’s theorem recalled below (see also [26]
and [27] §9.4).

Theorem 1 (Tellegen). Consider an electronic circuit made of N edges defined in same convention
(here receiver), with individual voltages v = (v1, · · · , vN)

ᵀ and currents in = (i1, · · · , iN)
ᵀ which comply

with the Kirchhoff’s laws. Then
vᵀ · i = 0. (2)

A direct consequence of (2) is that no power is created nor lost in the structure: vᵀ · i = ∑N
i=1 Pn = 0,

with Pn = vn · in the power received by edge n, thus defining a conservative interconnection
(Tellegen’s theorem is a special case of a more general interconnection structure, namely, the
Dirac structure (see [23] §2.1.2 for details)). Now, denote (vs, is), (vd, id), and (vp, ip) the sets of
all the power variables associated with storage components, dissipative components, and sources
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(respectively), and v = (vᵀ
s , vᵀ

d, vᵀ
p)

ᵀ, i = (iᵀs , iᵀd, iᵀp)ᵀ the vectors of all the power variables. Then,
Tellegen’s theorem restores the power balance (1) with

vᵀ · i = vᵀ
s · is + vᵀ

d · id + vᵀ
p · ip

= ∇Hᵀ(x) · dx
dt︸ ︷︷ ︸

dE
dt

+ z(w)ᵀ ·w︸ ︷︷ ︸
D

− uᵀ · y︸ ︷︷ ︸
S

, (3)

where ∇H : RnS → RnS denotes the gradient of the total energy E = H(x) = ∑nS
s=1 hs(xs) with respect

to (w.r.t.) the vector of the states [x]s = xs, and function z : RnD → RnD denotes the collection of
functions zd w.r.t. the vector w ∈ RnD of [w]d = wd so that z(w)ᵀ ·w = ∑nD

d=1 Dd(wd) is the total
dissipated power.

The above description of storage components, dissipative components, and source, along with
the conservative interconnection stated by the Kirchhoff’s laws, constitute the minimal definition of
a port-Hamiltonian system (PHS) (see [23] §2.2). In this work, we focus on circuits that admit an explicit
realization of PHS, for which the quantities b = (b1, · · · , bN)

ᵀ = ( dx
dt , w,−y)ᵀ (with bn = vn or bn = in)

can be expressed as linear combinations of the remaining N powers variables organized in the dual
vector a = (a1, · · · , aN)

ᵀ = (∇H(x), z(w), u)ᵀ (with an = in if bn = vn or an = vn if bn = in):

b = J · a. (4)

Then, aᵀ · b = aᵀ · J · a = 0 from Tellegen’s theorem, so that the matrix J is necessarily
skew-symmetric (Jᵀ = −J). More precisely, we consider the following algebraic-differential system
of equations 

dx
dt

w
−y


︸ ︷︷ ︸

b

=


Jx −K −Gx

Kᵀ Jw −Gw

Gx
ᵀ Gw

ᵀ Jy


︸ ︷︷ ︸

J

·

 ∇H(x)
z(w)

u


︸ ︷︷ ︸

a

, (5)

where matrices Jx, Jw, Jy are skew-symmetric. The significance of the structure matrices is the following:

Jx ∈ RnS×nS expresses the conservative power exchanges between storage components (this corresponds
to the so-called J matrix in classical Hamiltonian systems);

Jw ∈ RnD×nD expresses the conservative power exchanges between dissipative components;
Jy ∈ RnP×nP expresses the conservative power exchanges between ports (direct connections of inputs

to outputs);
K ∈ RnS×nD expresses the conservative power exchanges between the storage components and the

dissipative components;
Gx ∈ RnS×nP expresses the conservative power exchanges between ports and storage components

(input gain matrix);
Gw ∈ RnD×nP expresses the conservative power exchanges between ports and dissipative components

(input gain matrix).

The PHS (5) fulfills the definition of passivity (e.g., [16]) according to the following property.

Property 1 (Power Balance). The variation of the total energy E = H
(
x
)

of a system governed by (5) is
given by (1), with D = z(w)ᵀ ·w ≥ 0 the total dissipated power, and S = uᵀ · y the total power incoming on
external ports.

Proof. We have aᵀ· b= dE
dt + D− S. Now aᵀ· b=aᵀ· J · a=0 since J is skew-symmetric.
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Remark 1 (Power variables). This work is devoted to the treatment of electronic circuits for which power
variables are chosen as current and voltage. However, all the aforementioned definitions apply equally to
multiphysical systems, provided an adapted set of power variables, generically denoted by flux (currents,
velocities, magnetic flux variations) and efforts (voltages, forces, magnetomotive force), the product of which is a
power (see [23] Table 1.1). This follows the bond-graph modeling approach [28,29], on which the PHS formalism
is built (see [23] §1.6 and 2.1). The treatment of multiphysical audio systems in the PHS formalism can be found
in [30] (electromechanical piano that includes mechanical, electrical, and magnetic phenomena) and [31] (§III.B)
(modulated air flow for musical acoustics applications that includes mechanical and acoustical phenomena).

2.2. Example

Consider the resistor-inductor-capacitor (RLC) circuit in Figure 1, with nS = 2, nD = 1, and
nP = 2, described as follows. For the linear inductance L, the state and the positive definite function
can be the magnetic flux x1 = φ and h1(φ) = φ2/(2L), so that vL = dh1/dx1 and iL = dx1

dt . For the
capacitance and the resitance, quantities are defined with x2 = q and w = [iR]. Port variables are
arranged as input u = [v1, v2]

ᵀ and output y = [−i1,−i2]ᵀ (edges receiver convention).

vR

iR

vC

iC

q
vL

iLϕ

v
1

i
1

v
2

i
2R L C

Port 1 Port 2

Figure 1. Resistor-inductor-capacitor (RLC) circuit (notations and orientations).

Applying Kirchhoff’s laws to this simple serial circuit yields
vL
iC
iR

i1
i2

 =


0 −1 −1 −1 +1

+1 0 0 0 0
+1 0 0 0 0
+1 0 0 0 0
−1 0 0 0 0

 ·


iL
vC

vR

v1

v2

 .

From the constitutive laws of components, this equation restores the form (5) exactly, block
by block. It provides the algebraic-differential equations that govern the system with input u and
output y.

This work aims at simulating such passive systems by firstly generating Equation (5) associated
to a given circuit, and secondly by deriving its numerical version so that a discrete power balance
is satisfied.

Remark 2 (Reduction). The system (5) can be reduced by decomposing function z into its linear and nonlinear
parts. See Appendix A for details.

3. Generation of Equations

This section provides a method to translate the description of a circuit (components and
interconnections) from a netlist in a Spice-style [32] to the Formulation (5). Compared to standard
methods that express all the currents as a function of all the voltages (see [18,27,32]), Formulation (5)
expresses vector b of selected power variables (voltage or current) as a function of the vector a
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of complementary power variables (if [b]n is a voltage of a branch, [a]n is the associated current
with receiver convention). To derive the matrix J that relates the voltages and the currents arranged in
vectors a and b according to Kirchhoff’s laws (as in example §2.2), we propose a two-step method:

Step 1 : from a netlist (L) to a graph (G) that represents the Kirchhoff’s laws for a chosen
orientation (convention);

Step 2 : from (G) to the skew-symmetric matrix J in (5).

Step 1 is standard. The presentation focuses on convention choices and details our procedure.
In step 2, we propose an algorithm that analyzes if Formulation (2) is available (that is, the circuit
is realizable into the PHS formalism) and delivers the matrix J in this case. Otherwise, the circuit
corresponds to an implicit formulation that is not addressed in this paper. In practice, such cases
appear for serial(/parallel) connection of voltage(/current)-controlled components. In this case,
port-Hamiltonian Formulation (5) requires extension (see [22,23]).

3.1. Graph Encoding

3.1.1. Netlists

Each line of a netlist describes an element of the corresponding schematic, with: identification
label, list of connection nodes, type of element, and list of parameters. We divide netlists into two
blocks: internal components (dissipative and storage) and external ports (supplies and ground). In the
first block (components), each line includes a reference to the appropriate entry in the dictionary and
a list of the parameters for the corresponding model. Each line of the second block (external ports)
provides the label of the externalized node, the type of supply (voltage or current), and the symbol∼if
the supply is modulated (typically, the input signal), or a value if constant (typically, a battery).

As an example, the netlist corresponding to the circuit in Figure 2 is given in Table 1. Here, the
components are given lines `1 to `3 (gray). The first two lines describe dipoles: a linear capacitor
between N1 and N2 with label C1 and capacitance value 20e−9 F; and a resistor between N3 and N4

with label R1 and resistance value 1.5e3 Ω. The third line describes a npn bipolar-junction transistor.
From the dictionary (Appendix B), the base terminal appears to be connected to the circuit’s node N2,
the emitter terminal to N3, and the collector terminal to N5. For this component, the list of parameters
is: forward and reverse common emitter current gain, reverse saturation current, and thermal voltage.
External ports are given lines `4 to `7. Line `4 describes a constant 9 V voltage supply (labeled Vcc) on
the circuit’s node N4. `5 describes a modulated voltage supply (here considered as the input signal) on
N4. `6 describes a constant 0 A current supply on node N3; this permits the recovery of the voltage
on that node N3 as an output to the circuit. `7 describes the connection of the circuit’s node N5 to
the ground.

Figure 2. Schematic and corresponding graph of a simple bipolar-junction transistor (BJT) amplifier
with feedback. The grey part corresponds to the components, and the outer elements correspond to the
external ports, or sources (as in Table 1).
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Table 1. Example of a netlist corresponding to the circuit in Figure 2. The grey part corresponds to the
components, and the other elements correspond to the external ports, or sources (as in figure 2).

Line Label Node List Type Parameters

`1 C1 N1, N2 CapaLin 20e−9

`2 R1 N3, N4 Resistor 1.5e3

`3 Q1 N2, N3, N5 NPN_ Type1 List of parameters
`4 Vcc N4 Voltage 9
`5 IN N1 Voltage ∼
`6 OUT N3 Current 0
`7 GRD N5 Voltage 0

3.1.2. Graph

A graph G = {N,B} is defined by two lists of nodes N (also called vertices) and branches B

(also called edges), with B ⊂ N2 (each element of B is an object defined on two elements of N, see [33]
for details). The dictionary (Appendix B) encodes the graph of each elementary component. The
branches of such an elementary graph contain the constitutive laws of the corresponding component:

• Dipoles are made of two nodes and a single branch, defining a single couple of state x and
storage function h(x) (storage component), or dissipative variable w and scalar relation z(w)

(dissipative components).
• More generally, n-ports multipole are made of n nodes and at least n− 1 branches, defining n− 1

couples of variables and functions. Typically, the graph for the bipolar junction is made of two
branches (base-emitter and base-collector).

The graph corresponding to a given circuit is derived from its netlist description in two steps:

1. build the internal graph by connecting the elementary graph of the components from the first
block of the netlist,

2. introduce a reference node N0 (or datum, see [27] §10) to define the external branches from the
second block.

Typically, N0 corresponds to the ground or any local electrostatic potential which does not impact
the currents nor voltages. Then, N is built from the list of nodes appearing at least once in the netlist,
plus the reference node N , [N0, N1, · · · , NnN ]. According to Section 2, the set of branches is organized
as B = {BS,BD,BP}, with BS the nS energy storage branches, BD the nD dissipative branches, and BP
the nP sources.

As an example, the construction of the graph in Figure 2 from its netlist 1 is as follows. Firstly, the
internal graph is built. It is made of nN = 5 nodes {N1, · · · ,N5} and four branches BS = {C1}
and BD = {R1, Q1,bc, Q1,be}. Secondly, we introduce the (virtual) reference node N0 to define the
four branches corresponding to the external ports BP = {IN, Vcc, OUT, GRD}.

3.1.3. Kirchhoff’s Laws on Graphs

We assign to each branch b both a voltage vb and a current ib in receiver convention, the direction
of the branch indicating the direction of the current. Note that the power supplied to the system
on port p is the power emitted by the port branch Sp = up · yp = −vp · ip. For a circuit made of
nN + 1 nodes and nB = nS + nD + nP branches, we define: the set of electrostatic potentials on the
nodes e = (e1 · · · enN )

ᵀ, the set of voltages v = (v1 · · · vnB)
ᵀ, and the set of currents i = (i1 · · · inB)

ᵀ.
The orientation of an entire graph is encoded in its incidence matrix Γ ∈ R(nN+1)×nB , defined
below [27] (§9).
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[Γ]n,b =


−1 if branch b is outgoing node n,
1 if branch b is ingoing node n,
0 otherwise.

(6)

As an example, the incidence matrix for the circuit described in Table 1 is given equation below
(0 are replaced by dots). Notice the grey columns correspond to the components, and the other columns
correspond to the external ports, or sources (as in Table 1 and Figure 2).

Γ =

C1 R1 Q1,bc Q1,be Vcc IN OUT GRD



...
...

...
... 1 1 1 1 N0

1
...

...
...

... −1
...

... N1

−1
... 1 1

...
...

...
... N2

... 1 −1
...

...
... −1

... N3
... −1

...
... −1

...
...

... N4
...

...
... −1

...
...

... −1 N5

. (7)

Since the reference potential e0 does not influence the voltages nor the currents, it is not taken into
account in the Kirchhoff’s laws, and we define the reduced incidence matrix Γ̂ ∈ RnN×nB obtained by
deleting the row corresponding to the datum N0 in Γ. This leads to the following matrix formulation
of Kirchhoff’s Voltage Law (KVL) and Kirchhoff’s Current Law (KCL) [27] (§10), from which the
structure (5) is derived. {

Γ̂ᵀ · e = v, (KVL)
Γ̂ · i = 0. (KCL)

(8)

3.2. Realizability Analysis

The PHS structure (5) relies on (i) an arrangement of currents i and voltages v in two vectors a
and b and (ii) a set of linear relations encoded in the skew-symmetric matrix J that corresponds to the
conservation laws (8) applied on (i, v). For storage and sources components, step (i) is straightforward
with the constraints given in Table 2. For dissipative components, this step is achieved by selecting
each component as voltage-controlled or current-controlled in order to satisfy a criterion on the matrix
description of the interconnection scheme. This realizability criterion is given in Section 3.2.1, assuming
the control type of every edge is known. A method of choosing the control type of dissipative edges
so as to satisfy the realizability criterion is addressed in Section 3.2.2. This leads to Algorithm 1,
which solves (i) and (ii).

Table 2. Sorting components according to their realizability.

Component type
Current-Controlled Voltage-Controlled

[a]b = ib [a]b = vb
[b]b = vb [b]b = ib

storages capacitor inductor
resistors resistance conductance

nonlinear diodes, transistors
sources voltage source current source
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3.2.1. A Criterion for Realizability

In Section 3.1, the set of edges B has been partitioned based on the differentiation between internal
edges (or component edges {BS,BD}, grey) and external edges (or ports edges BP, white), in order to
build the complete graph from the netlist. In this section, we are interested in the PHS Formulation (5)
associated to a given complete graph. To that end, we leave out from here the differentiation between
internal and external edges in order to focus on the differentiation between voltage-controlled and
current-controlled edges.

Suppose the control type of every edge is known, and the set of edges is split according to
B = {B1,B2}, with B1 the set of n1 voltage-controlled edges and B2 the set of n2 current-controlled edges
(see Table 2). Correspondingly, the sets of power variables are split as v = (v1, v2)

ᵀ and i = (i1, i2)
ᵀ,

and we define ã = (v1, i2)
ᵀ and b̃ = (i1, v2)

ᵀ. Since the reference potential e0 defined on node N0 does
not influence the voltages nor the currents, it is not considered in the sequel, and the incidence matrix
splits as follows:

Γ =

 γ0

γ1 γ2

 , with γ0 ∈ R1×nB , γ1 ∈ RnN×n1 , γ2 ∈ RnN×n2 .

This leads to a rewrite of the Kirchhoff laws (8) as:

(γ1, γ2)
ᵀ e = v, (9)

(γ1, γ2) i = 0. (10)

Proposition 1 (Realizability). If γ2 is invertible, then the port-Hamiltonian structure (5) provides a
realization of the graph G = {N, (B1,B2)}.

Proof. From the relation on the voltages in (9), we get v1 = γᵀ
1 e and v2 = γᵀ

2 e. From the relation on
the currents (10), we get γ2 i2 = −γ1 i1. Now, if γ2 is invertible, we denote γ = γ−1

2 γ1 and(
v1

i2

)
︸ ︷︷ ︸

ã

=

(
0 γᵀ

−γ 0

)
︸ ︷︷ ︸

J̃

(
i1

v2

)
︸ ︷︷ ︸

b̃

. (11)

The PHS (5) is obtained by rearranging the edges according to their role with respect to the power
balance, according to the permutation of vector elements Π(ã) =

(
dx
dt , w, y

)ᵀ
= a (and correspondingly

Π(b̃) = (∇H, z, u)ᵀ = b), which is also applied on rows and columns of J̃ to yield a = J b.
From the invertibility condition on γ2 in Proposition 1, we state the following remark, which is

used in the sequel to derive the realizability analysis algorithm.

Remark 3 (Necessary condition for realizability). A necessary condition for the graph G to be realizable
as a PHS (5) is that it includes as many current-controlled edges as nodes nN , with γ2 ∈ RnN×nN .

3.2.2. Algorithm

This section introduces an algorithm that selects the appropriate control type for each dissipative
edge so that the partition B = {B1,B2} satisfies Proposition 1. From Remark 3, the total number n2

of current-controlled edges should be exactly equal to the number of nodes nN . From the special
structure of the incidence matrix Γ, this in turn ensures that the potential on each node is uniquely
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defined by a linear combination of the voltages v2 (elements in a associated to current-controlled
edges); i.e., γ2 is invertible.

Consider the current-controlled edge b from node i to node j in Figure 3. If the potential on
node j is known, the remaining potential is obtained from ei = vb ± ej, where the sign depends on
the orientation. In this case, we say edge b imposes the potential on node i. Now, the objective is to
perform this analysis globally so that e is a linear combination of v2 with e = (γᵀ

2 )
−1 · v2. To that end,

we introduce the realizability matrix Λ defined element-wise as follows

[Λ]n,b =

{
1 if branch b imposes potential on node n,
0 else,

(12)

Λ =

 λ0

λ1 λ2

 , with λ0 ∈ R1×nB , λ1 ∈ RnN×n1 λ2 ∈ RnN×n2 . (13)

vb

ib

v p

i p

L

vL

iL
ϕ v p

i p

iC

q

C

vR

iR

R vR R

iR

vC

ei e j

i j

Figure 3. Definitions and orientations for a single current-controlled edge b from node i to node j, with
nodes potentials ei and ej, respectively. The knowledge of the potential ej is transferred to node i with
ei = vb + ej.

Then, a given graph is realizable if the type of each resistor can be selected so that the following
set of constraints is fulfilled.

(C1) The potential on each node n ∈ [1, · · · , nN ] is uniquely defined so that ∑nB
b=1[Λ]n,b = 1.

(C2) Each Current-controlled edge b ∈ [n1 + 1, · · · , nN ] propagates the knowledge of the potential on
one node to the other, so that ∑nN

n=1[Λ]n,b = 1.
(C3) No edge imposes the reference potential e0 so that λ0 = 01×nB .
(C4) No voltage-controlled edge b ∈ [1, · · · , n1] imposes any potential so that λ1 = 0nN×n2 .

Constraints (C1–C2) ensure that γ2 is invertible, so that e = (γᵀ
2 )
−1 · v2. Constraint (C3) ensures

that the reference potential on datum does not contribute to the system’s dynamics. Constraint (C4)
ensures that inputs of voltages-controlled edges are explicitly given by a linear combination of the
nodes potentials so that v1 = γᵀ

1 e = (γ−1
2 · γ1)

ᵀ · v2. To build and analyze the matrix Λ, we start from
the adjacency matrix A of the graph, defined as follows:

[A]b,n =

{
1 if branch b is connected to node n,
0 else.

Then the non-zero elements in A are analyzed to cope with the realizability constraints (C1–C4).
This yields Algorithm 1. The PHS (5) is finally recovered as discussed in the proof of Property 1.
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Algorithm 1: Analysis of realizability. If successfully complete, the resulting PHS structure is
given by the procedure in the proof of Proposition 1

Input: A graph G = {N, (Bx,Bw,By)} corresponding to the interconnection of storage,
dissipative, and source edges.

Output: Sets of voltage-controlled edges B1 and current-controlled edges B2.
Λ← adjacency matrix of G
B1,B2 ← ∅, ∅
foreach b ∈ (Bx,By) // See Table 2
do

if b is voltage-controlled then
B1 ← B1 ∪ b

end
if b is current-controlled then

B2 ← B2 ∪ b
end

end
Bi ← Bw
Λ(N0, :)← 0
foreach b ∈ B1 // See constraint (C4)
do

Λ(:, b)← 0
end
repeat

Λ∗ ← Λ
foreach b ∈ B2 // See constraint (C2)
do

if ∑ Λ(:, b) = 0 then
break: G is not realizable

end
else if ∑ Λ(:, b) = 1 then

n← {n s.t. Λ(n, b) = 1}
Λ(n, : \b)← 0

end
end
foreach b ∈ Bi do

if ∑ Λ(:, b) = 0 // See constraint (C2)
then

B1 ← B1 ∪ b
Bi ← Bi \ b

end
else if ∑ Λ(:, b) = 1 // See constraint (C4)
then

n← {n s.t. Λ(n, b) = 1}
Λ(n, : \b)← 0
B2 ← B2 ∪ b
Bi ← Bi \ b

end
end
foreach n ∈ N \N0 // See constraint (C1)
do

if ∑ Λ(n, :) = 0 then
break: G is not realizable

end
end

until Λ = Λ∗
if Bi 6= ∅ then

b← first edge in Bi
B1 ← B1 ∪ b
Bi ← Bi \ b
go to 10

end
return B1 and B2
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3.2.3. Example

As an example, the realizability analysis for the system in Figure 2 with the choice of
inputs/outputs in Table 1 is as follows. In step 1, the realizability matrix Λ is initialized with the
adjacency matrix A, which is built by taking the absolute value of incidence matrix [A]n,b = abs

(
[Γ]n,b

)
:

Λ = A =

C1 R1 Q1,bc Q1,be Vcc IN OUT GRD



...
...

...
... 1 1 1 1 N0

1
...

...
...

... 1
...

... N1

1
... 1 1

...
...

...
... N2

... 1 1
...

...
... 1

... N3
... 1

...
... 1

...
...

... N4
...

...
... 1

...
...

... 1 N5

. (14)

In steps 3–7, the set of edges B = {C1, R1, Q1,bc, Q1,be, IN, Vcc, OUT, GRD} is split as
B = {B1,Bi,B2} according to the definition of components with voltage-controlled edges
B1 = {Q1,bc, Q1,be, OUT}, current-controlled edges B2 = {C1, Vcc, IN, GRD}, and indeterminate
edge Bi = {R1}:

Λ =

Q1,bc Q1,be OUT R1 C1 Vcc IN GRD



...
... 1

...
... 1 1 1 N0

...
...

...
... 1

... 1
... N1

1 1
...

... 1
...

...
... N2

1
... 1 1

...
...

...
... N3

...
...

... 1
... 1

...
... N4

... 1
...

...
...

...
... 1 N5

. (15)

The realizability matrix after step 11 in Algorithm 1 is

Λ =

Q1,bc Q1,be OUT R1 C1 Vcc IN GRD



...
...

...
...

...
...

...
... N0

...
...

...
... 1

... 1
... N1

...
...

...
... 1

...
...

... N2
...

...
... 1

...
...

...
... N3

...
...

... 1
... 1

...
... N4

...
...

...
...

...
...

... 1 N5

. (16)

After step 19, the algorithm concludes that the potential on node N1 is imposed by edge BIN so
that the potential on node N2 is imposed by the capacitor BC1. After step 28, the algorithm concludes
that the potential on node N4 is imposed by the edge BVcc so that the resistor is current-controlled
(so as to impose the potential on node N3).
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Λ =

Q1,bc Q1,be OUT R1 C1 Vcc IN GRD



...
...

...
...

...
...

...
... N0

...
...

...
...

...
... 1

... N1
...

...
...

... 1
...

...
... N2

...
...

... 1
...

...
...

... N3
...

...
...

...
... 1

...
... N4

...
...

...
...

...
...

... 1 N5

. (17)

This concludes the realizability analysis. To recover the associated port-Hamiltonian structure,
we return to the incidence matrix Γ. With the new edges ordering B = {B1,B2} prescribed by the
above analysis, it is rewritten as

Γ =

Q1,bc Q1,be OUT R1 C1 Vcc IN GRD



...
... 1

...
... 1 1 1 N0

...
...

...
... 1

... −1
... N1

1 1
...

... −1
...

...
... N2

−1
... −1 1

...
...

...
... N3

...
...

... −1
... −1

...
... N4

... −1
...

...
...

...
... −1 N5

. (18)

Finally, the structure (5) is recovered by computing the matrix γ = γ−1
2 · γ1 in (11) with

γ1 =


0 0 0
1 1 0
−1 0 −1

0 0 0
0 −1 0

 ; γ2 =


0 1 0 −1 0
0 −1 0 0 0
1 0 0 0 0
−1 0 −1 0 0

0 0 0 0 −1

 . (19)

4. Guaranteed-Passive Simulation

This section is devoted to the discrete-time simulation of the algebraic-differential system (5); that
is, the computation of x(k) ≡ x(k · T) from u(k) ≡ u(k · T), with k ∈ N, for the constant sampling
frequency fs = 1/T.

First, we present the design of a numerical scheme that properly transposes the power balance (1)
to the discrete time domain: this choice makes the passivity property preserved, from which stability
issues stem. Second, a numerical method is used to solve the implicit equations due to the numerical
scheme (on x) and the algebraic equations (on w).

4.1. Numerical Scheme

To ensure the stable simulation of stable dynamical system dx
dt = f(x), many numerical schemes

focus on the approximation quality of the time derivative (or integration), combined with operation of
the vector field f. Here, we adopt an alternate point of view, by transposing the power balance (1) into
the discrete time-domain to preserve passivity. This is achieved by numerical schemes that provide
a discrete version of the chain rule for computing the derivative of the composite function E = H(x).
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This is the case of the forward difference scheme, for which first order approximation of the
differential applications dx(t, dt) = dx

dt (t) · dt and dH(x, dx) = ∇H(x)ᵀ · dx on the sample grid
t ≡ kT, k ∈ Z are given by

δx(k, T) = x(k + 1)− x(k), (20)

δH
(
x(k), δx(k, T)

)
= H

(
x(k) + δx(k, T)

)
−H

(
x(k)

)
(21)

= ∇dH
(
x(k), x(k) + δx(k, T)

)ᵀ · δx(k, T).

where, for mono-variate energy storing components (H(x) = ∑nS
n=1 hn(xn)), the n-th coordinate is

given by

[∇dH
(
x, x + δx

)
]n =

 hn
(

xn+δxn
)
−hn
(

xn
)

δxn
if δxn 6= 0,

h′n(xn) otherwise.
(22)

A discrete chain rule is indeed recovered

δE(k, T)
T

= ∇dH
(
x(k), x(k + 1)

)ᵀ · δx(k, T)
T

(23)

so that the following substitution in (5)

dx
dt (t) →

δx(k,T)
T

∇H(x) → ∇dH
(
x(k), x(k + 1)

) (24)

leads to
0 = b(k)ᵀ · J · b(k) = b(k)ᵀ · a(k)

=

[
∇dHᵀ · δx

δt

]
(k)︸ ︷︷ ︸

δE(k,T)
T

+ z(w(k))ᵀ ·w(k)︸ ︷︷ ︸
D(k)

− u(k)ᵀ · y(k)︸ ︷︷ ︸
S(k)

. (25)

Remark 4 (Multi-variate components). The case of mono-variate energy storing components covers most
of the applications in electronics. Additionally, a generalization of the discrete gradient for multi-variate
Hamiltonians such that Equations (20) and (21) are satisfied is given in Appendix C.

In this paper, we consider the class of the PHS composed of a collection of linear energy storing

components, with quadratic Hamiltonian hn(xn) =
x2

n
2Cn

(Cn is a capacitance or an inductance and we
define Q = diag(C1 · · ·CnS)

−1). Then the discrete gradient (22) reads

∇dH
(
x, x + δx

)
= Q

(
x(k) + δx(k)

2

)
, (26)

which restores the midpoint rule that coincides in this case with the trapezoidal rule. For nonlinear
cases, (22) leads to another numerical scheme depending on the nonlinearity, still preserving passivity
(see (25) and §4.3).

4.2. Solving the Implicit Equations

Injecting the numerical scheme (26) in (5) and solving for the quantity δx(k) = x(k + 1)− x(k)
leads to the following energy-preserving numerical system: δx(k)

w(k)
y(k)

 =

 Ax Bx Cx

Aw Bw Cw

Ay By Cy

 ·
 x(k)

z
(
w(k)

)
u(k)

 , (27)
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where matrices are related to J in (5) as follows.

D =
(

Id
T −

Jx ·Q
2

)
,−1 Aw = 1

2 Kᵀ ·Q · (2Id + Ax),

Ax = D · Jx ·Q, Bw = Jw + 1
2 Kᵀ ·Q · Bx,

Bx = −D ·K, Cw = −Gw + 1
2 Kᵀ ·Q · Cx,

Cx = −D ·Gx, Ay = 1
2 Gx

ᵀ ·Q · (2Id + Ax),
By = Gw

ᵀ + 1
2 Gx

ᵀ ·Q · Bx,
Cy = Jy +

1
2 Gx

ᵀ ·Q · Cx.

Given u(k), the solution of (27) is obtained from the solution of the static nonlinear implicit
function f(w(k)) = p

(
x(k), u(k)

)
, with

f
(
w(k)

)
= w(k)− Bw · z

(
w(k)

)
,

p
(
x(k), u(k)

)
= Aw · x(k) + Cw · u(k).

(28)

Remark 5 (Explicit mapping). From the global inverse function theorem (see [34]), there exists an explicit
mapping w(k) = f−1(p(x(k), u(k)

))
provided the Jacobian matrix Jf(w(k)) = Id − (Jw − 1

2 Kᵀ ·Q ·D ·
K) · Jz(w(k)) is invertible for all w(k), connecting the proposed method to the K method [18,19]. This is true
since Q, D and the Jacobian of z (for the components of the dictionary in Table B1) prove positive definite, and
Jw is skew-symmetric.

In this paper, we use the Newton–Raphson algorithm, which iteratively approximates
the nearest root of function r : w(k) ∈ RnD → r

(
w(k)

)
∈ RnD with the following update

rule: wn+1(k) = wn(k)−J r(wn(k))−1. r
(
wn(k)

)
, where J r(w) is the Jacobian matrix of

r
(
w(k)

)
= f
(
w(k)

)
− p(k). Once a solution w(k) to the implicit equation is available, the output

and state updates are given by:

y(k) = Ay · x(k) + By · z
(
w(k)

)
+ Cy · u(k),

δx(k) = Ax · x(k) + Bx · z
(
w(k)

)
+ Cx · u(k),

x(k + 1) = x(k) + δx(k).

Finally, denoting by nt the number of time-steps and nNR the number of Newton–Raphson
iterations per time-step, the simulation is performed according to Algorithm 2.

Algorithm 2: Simulation, with nt the number of time-steps and nNR the (fixed) number of
Newton–Raphson iterations.

x1 ← 0
w0 ← 0
for k = 1 to nt do

wk,0 ← wk−1
pk ← Aw · xk + Cw.uk
for n = 0 to nNR − 1 do

rn ← wk,n − Bw.z(wk,n)− pk
Jn ← Id − Bw.Jz(wk,n)

wk,n+1 ← wk,n −J −1
n · rn

end
wk ← wk,nNR

yk ← Ay · xk + By · z(wk) + Cy · uk
δxk ← Ax · xk + Bx · z(wk) + Cx · uk
xk+1 ← xk + δxk

end
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4.3. Comparison with Standard Methods

In this section, the proposed approach (PHS structure combined with the discrete gradient
method) is compared with two standard methods: the trapezoidal rule (average of the vector field at
x(k) and x(k + 1), used in the WDF approach [7]) and the midpoint rule (evaluation of the vector field at
x(k)+x(k+1)

2 , suitable for any differential-algebraic system of equations). Both are known to preserve the
passivity of linear undamped systems (see [35] for a detailed analysis). The updates associated with
these three methods are given in Table 3. These methods are applied on the same conservative system
dx
dt = Jx · ∇H(x), the power balance of which is given by dE

dt = 0 (with D = S = 0). The comparison

measure is then the relative error on energy ε(k) =

∣∣∣H(x(k+1)
)
−H
(

x(k)
)∣∣∣

H
(

x(0)
) for k ≥ 0.

Table 3. Updates for the three methods considered in §4.3. PHS stands for port-Hamiltonian system.

Method Update

Trapezoidal rule x(k + 1) = x(k) + T · Jx ·
∇H
(

x(k)
)
+∇H

(
x(k+1)

)
2

Midpoint rule x(k + 1) = x(k) + T · Jx · ∇H
(

x(k)+x(k+1)
2

)
PHS with discrete gradient x(k + 1) = x(k) + T · Jx · ∇dH

(
x(k), x(k + 1)

)
First, notice that for quadratic Hamiltonian H(x) = xᵀ·Q·x

2 with linear gradient ∇H(x) = Q · x,
the three methods yield the same update:

x(k + 1) = x(k) + T · Jx ·Q
(

x(k) +
δx(k)

2

)
. (29)

As a consequence, these three methods induce the same frequency warping (see [36] for the
analysis of the bilinear transform derived from the trapezoidal rule).

We focus on the nonlinear case. For comparison, we choose a simple nonlinear conservative
system with state x = (x1, x2)

ᵀ, non-quadratic Hamiltonian

H(x) = 10 log
(

cosh(x1)
)
+
(

cosh(x2)− 1
)

, (30)

and canonical skew-symmetric matrix Jx =

(
0 −1
1 0

)
.
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x
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(b)

Figure 4. Cont.
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Figure 4. Simulation results and comparison of the methods in Table 3, for a nonlinear conservative
system dx

dt = Jx · ∇H(x) with H(x) given in (30): (a) Trapezoidal rule; (b) Midpoint rule; (c) PHS
combined with discrete gradient; (d) Relative error on energy balance.The comparison measure is the

relative error on the power balance defined by ε(k) =

∣∣∣H(x(k+1)
)
−H
(

x(k)
)∣∣∣

H
(

x(0)
) . We see from Figure 4d that

the error associated with the proposed method (PHS approach combined with the discrete gradient
method) is low compared to the two other methods (with machine precision'10−16). The accumulation
of these errors is responsible for the apparently unstable behavior of the trapezoidal rule.

In each case, the resulting implicit equations are solved by Python iterative solver (see [37]).
The Python code is available at the url given in [38]. In order to exhibit the behavior of each method in
the worst case, simulations are performed with an especially low sample rate of fs = 10 Hz. The results
for each method are given in Figure 4, with comparison in Figure 4d. We see that the error of the
proposed method is low (close to machine precision '10−16) compared to standard methods.

5. Applications

This section is devoted to the simulation of three analog audio circuits by the application of
Algorithms 1 and 2. Those circuits are a diode clipper, a common-emitter BJT audio amplifier, and a
wah-pedal as a full device. Results obtained with (i) the method in Section 4 and (ii) with the offline
circuit simulator LT-Spice [32] are compared.

5.1. Diode Clipper

Diode clipper circuits can be found in several audio-distortion devices. They are made of one
resistor and two diodes (nS = 0, nD = 3) connected to the ground in reversed bias (see Figure 5a).
The external ports are the input/output and the ground (nP = 3). The resistor is current-controlled
and the ground is removed. The vectors (a, b) and the structure J returned by Algorithm 1 are:

iR
vD1
vD2
iIN
vOUT


︸ ︷︷ ︸

a

=


0 −1 1 0 −1
1 0 0 1 0
−1 0 0 −1 0

0 −1 1 0 −1
1 0 0 1 0


︸ ︷︷ ︸

J

·


vR
iD1
iD2
vIN
iOUT


︸ ︷︷ ︸

b

.

The simulation is performed according to Algorithm 2 at the sample rate fs = 96 kHz, with
three Newton–Raphson iterations (shown to be enough to converge in practice). We apply a linearly
increasing 1 kHz sinusoidal excitation uIN = −vIN during 10 ms with maximum amplitude 2 V
(iOUT = 0 A, vGRD = 0 V). The output yOUT = −vOUT is given in Figure 5b. We see the signal is
clamped between ±0.6 V, in accordance with LT-Spice results.
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Figure 5. Simulation (Figure 5b) of a dissipative diode clipper (Figure 5a) at the sample rate fs = 96 kHz,
with three Newton–Raphson iterations, for a 10 ms sinusoidal excitation at 1 kHz with linearly
increasing amplitude between 0 V and 2 V. (a) Diode clipper schematic; (b) Simulation of the diode
clipper of Figure 5a.

5.2. Common-Emitter BJT Audio Amplifier

Common-emitter bipolar-junction transistor (BJT) amplifiers are widely used as amplification
stages in analog audio processing. They are made of two capacitors (nS = 2), two resistors, and one
NPN transistor which is made of two nonlinear dissipative branches (nD = 4, see Figure 6a and the
dictionary in Table B1). The external ports are the input/output signals, the 9 V supply, and the ground
(nP = 4). Note that the ground is removed. The resistor Rc is current-controlled, and the resistor
Rf is voltage-controlled. The vectors (a, b) and the structure J returned by Algorithm 1 are given in
Equations (31) and (32).

a = (iCi, iCo|vRf, iRc, vBc, vBe|iIN, vOUT, iVCC)

b = (vCi, vCo|iRf, vRc, iBc, iBe|vIN, iOUT, vVCC)
(31)

J =



0 0 1 0 −1 1 0 0 0
0 0 0 0 0 0 0 −1 0
−1 0 0 −1 0 0 −1 0 1

0 0 1 0 −1 0 0 1 0
1 0 0 1 0 0 1 0 −1
−1 0 0 0 0 0 −1 0 0

0 0 1 0 −1 1 0 0 0
0 1 0 −1 0 0 0 0 1
0 0 −1 0 1 0 0 −1 0


(32)

The system is reduced according to Appendix A, and the simulation is performed according
to Algorithm 2 at the sample rate fs = 384 kHz, with 10 Newton–Raphson iterations. The reason
for increasing the sample-rate and the number of Newton–Raphson iterations is twofold. Firstly,
it attenuates the effect of aliasing for input signals limited to the audio range (see [39] for details).
Secondly, it ensures that the iterative solver converges, which is difficult due to the numerical stiffness
of the problem; that is, the Lipschitz constant associated to the inital Cauchy problem is very high,
see [40]. At first, we turn the supply vVCC = −9 V on, and we wait 0.3 s for the system to reach
its steady state. Then, we apply a 10 ms sinusoidal excitation uIN = −vIN at 1 kHz with linearly
increasing amplitude between 0 V and 0.2 V (iOUT = 0 A). The resulting output yOUT = −vOUT is
given in Figure 6b. We see that the signal is amplified between 0 V and 9 V, with a strong asymmetrical
saturation, in accordance with LT-Spice results. Additionally, spectrograms obtained for an exponential
chirp on the audio range are given in Figure 7 (see Figure 16 in [39] for comparison).
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Figure 6. Simulation (Figure 6b) of the common-emitter bipolar-junction transistor (BJT) amplifier with
feedback (Figure 6a) at the sample rate fs = 384 kHz, with 10 Newton–Raphson iterations, for a 10 ms
sinusoidal excitation at 1 kHz with linearly increasing amplitude between 0 V and 0.2 V. (a) Schematic
of a common-emitter BJT amplifier with feedback; (b) Simulation of the BJT amplifier in Figure 6a.

(a) (b)

Figure 7. Results for the common-emitter BJT amplifier with feedback (Figure 6a). The input voltage
signal is a 4 s exponential chirp on the audio range (20 Hz–20 kHz) with amplitude 0.05 V (logarithmic
frequency scale). Simulation starts at 0.3 s (after the switching transient). (a) Spectrogram of output
vOUT obtained with the proposed method; (b) Spectrogram of output vOUT obtained with LT-Spice.

5.3. Wah Pedal

This section addresses the simulation of a full device (namely the Dunlop Cry-Baby wah pedal) to
be used in real time. The circuit is given in Figure 9. It provides a continuously varying characteristic
wah filtering of the input signal. This circuit has been treated with the nodal discrete K-method
in [41] and with the PHS framework in [42]. It is composed of nS = 7 storage branches (6 capacitors
and 1 inductor), nD = 18 dissipative branches (11 resistors, 1 PN diode, 2 NPN transistors and
a potentiometer), and nP = 3 ports (input/output signals and battery, discarding the 5 grounds). The
wah parameter is the potentiometer’s coefficient α. Notice this circuit includes several edges that do
not contribute to the device input-to-output behavior, as analyzed in [41]. In this work, we consider
the complete original schematic. From Algorithm 1, the resistors R1, R6 · · · R9 and R11 are considered
as conductances, and the others as resistances. The structure J is not shown here. The sets of PHS
variables are:

ẋ = [iC1, · · · , iC6 , vL1 ]
ᵀ,

∇H(x) = [vC1, · · · , vC6 , iL1 ]
ᵀ,
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w = [wR|vd|vBC1 , vBE1 |vBC2 , vBE2 |vp1, ip2]
ᵀ,

z(w) = [zR|id|iBC1 , iBE1 |iBC2 , iBE2 |ip1, vp2]
ᵀ,

where wR is the set of dissipative states and zR the set of characteristics according to each resistor’s
type, and

Inputs u = [vin, iout, vcc]ᵀ,
Outputs y = [iin, vout, icc]ᵀ.

The system is reduced according to Appendix A (with potentiometer’s time varying resitors kept
in w, z). Firstly, we realize an offline simulation (in Python) with Algorithm 2 for the sampling rate
fs = 96 kHz, and three Newton–Raphson iterations. We apply a white noise normalised to 1 V on
the input uIN = −vIN (iOUT = 0 A). The magnitudes of transfer functions obtained from fast Fourier
transform are given in Figure 8 for the two extreme positions of the pedal. These results are in
accordance with LT-Spice.

(a) (b)

Figure 8. Simulations of the Cry-Baby’s circuit of Figure 9, for the potentiometer parameter
α = 0 (a) and α = 1 (b) in the frequency domain, compared with LT-Spice simulations on the audio
range 20 Hz–20 kHz.

Figure 9. Schematic of the Cry-Baby wah pedal. Note the IN/OUT terminals and the 9 V supply.
The potentiometer P controls the effect.

Secondly, a VST plugin [43] to simulate the Cry-Baby in real-time is made from Algorithm 2.
First, a C++ code is automatically generated; Second, this code is encapsulated in a Juce template to
compile the audio plugin (see [44]). The sample rate fs is imposed by the host digital audio workstation
(here Ableton Live!), and we force five Newton–Raphson iterations. The simulation performed well
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(audio examples are available at the url [45]). The CPU load on a laptop (Macbook 2.9 GHz Intel Core
i7 with 8Go RAM) is 37% for fs = 96 kHz, and 20% for fs = 48 kHz.

Remark 6 (Time-varying stability). The use of the Newton–Raphson method can hamper the stability of the
numerical solution for time-varying systems, especially in the case of fast variations (here, of the potentiometer)
for which the Jacobian matrix of the implicit Function (28) can be ill-conditioned. For linear storage components,
a solution is to use the K-method instead (see Remark 5).

6. Conclusions

We have established a method to automatically recast an analog audio circuit into PHS formalism,
which guarantees passivity of the continuous time model. The generation of the PHS from a given
schematic lies on two points:

1. the graph theory to describe the interconnection network of a given circuit’s schematic,
2. a dictionary of elementary components which are conformable with PHS formalism.

Then, we transposed this physical principle to the digital domain by properly defining the
discrete gradient of the Hamiltonian, such that a discrete time version of the power balance is satisfied.
The resulting stable numerical scheme is of second order (restoring the midpoint rule for linear
systems). It has been shown that the K-method is always applicable to PHS (providing efficient
implementations of the implicit relation due to the proposed numerical scheme).

Offline simulations are consistent with LT-Spice results. The whole method allows the automatic
generation of C++ simulation code to be used in the core of a real-time VST audio plug-insimulating
the Dunlop Cry-Baby wah pedal.

A first perspective on this work is to consider higher-order numerical schemes (namely, the class
of Runge–Kutta schemes). Moreover, it would be possible to symmetrize the roles of the voltages
and the currents at the interconnection by applying the Cayley transform to the PHS structure, thus
adopting wave variables, with possible connection with the WDF formalism. Additionally, an automated
analysis of the original schematic could be developed, so as to identify the unimportant or degenerate
states and to reduce the dimensionality of the system. Finally, it could be possible to exploit the
compatibility of the proposed method with the K-method to alleviate the numerical cost due to
Newton–Raphson iterations.
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Appendix A. Reduction

The dimension of system (5) can be reduced, considering the following decomposition of variable
w and function z:

w=

(
wL

wN

)
, z(w)=

(
zL ·wL

zN(wN)

)
,
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with zL a diagonal matrix whose elements are the resistance or conductance of linear dissipative
components, and zN a collection of the nonlinear dissipative relations. Correspondingly, the structure
matrices are decomposed as

K=

(
KL

KN

)
, Gw =

(
GL

GN

)
, Jw =

(
JLL −KLN

KLN
ᵀ JNN

)
.

Defining L=(KL
ᵀ,−KLN,−GL), and M=

(
zL
−1− JLL

)−1 a positive definite matrix, the system (5) is
reduced to 

dx
dt

wN

−y


︸ ︷︷ ︸

bN

=
(
J̃− R

)
·

 ∇H(x)
zN(wN)

u


︸ ︷︷ ︸

aN

(A1)

with J̃ a skew-symmetric matrix given by

J̃ =

 Jx −KN −Gx

KN
ᵀ JNN −GN

Gx
ᵀ GN

ᵀ Jy

− 1
2 Lᵀ · (M−Mᵀ) · L

and R is a symmetric positive definite matrix given by

R =


Rx Rxn Rxy

Rxn
ᵀ Rn Rny

Rxy
ᵀ Rny

ᵀ Ry

 = 1
2 Lᵀ · (M + Mᵀ) · L.

Indeed, matrix J̃ (respectively R) corresponds to the conservative (respectively resistive)
interconnection of dynamical storage components, nonlinear dissipative components, and sources.

The system (A1) is simulated by Algorithm 2, with

D̃ =
(

Id
T −

(J̃x−Rx)·Q
2

)−1

Ãx = D̃ · (J̃x − Rx),
B̃x = −D̃ · (K̃ + Rxn),
C̃x = −D̃ · (G̃x + Rxy),

Ãw = 1
2 (K̃− Rxn)ᵀ ·Q · (2Id + Ãx),

B̃w = J̃w − Rn + 1
2 (K̃− Rxn)ᵀ ·Q · B̃x,

C̃w = −G̃w − Rny +
1
2 (K̃− Rxn)ᵀ ·Q · C̃x,

Ãy = 1
2 (G̃x − Rxy)ᵀ ·Q · (2Id + Ãx),

B̃y = (G̃w − Rny)ᵀ +
1
2 (G̃x − Rxy)ᵀ ·Q · B̃x,

C̃y = J̃y − Ry +
1
2 (G̃x − Rxy)ᵀ ·Q · C̃x,

(A2)

Remark A1 (Reduced explicit mapping). From the global inverse function theorem (see [34]), there exists
an explicit mapping wN(k) = f−1(p(x(k), u(k)

))
provided

det
(
(K̃− Rxn)

ᵀ ·Q · D̃ · (K̃ + Rxn)
)
> 0.
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Appendix B. Dictionary of Elementary Components

The dictionary is given in Table B1. We choose variables x and w so that matrices of the PHS (5)
are canonical, that is, they do not involve any physical constants.

Table B1. Dictionary of elementary components.

2-Ports

Storage Diagram x Stored Energy E = h(x) Voltage v Current i

Inductance φ
φ2

2L
dφ
dt

dh
dφ

Capacitance q q2

2C
dh
dq

dq
dt

Dissipative Diagram w Dissipated Power D(w) = w.z(w) Voltage v Current i

Resistance i R.i2 z(w) w

Conductance v v2/R w z(w)

PN Diode v v.IS

(
exp

(
v

µv0

)
− 1
)
+ v2.Gmin w z(w)

3-Ports

Dissipative Diagram w z(w)

NPN
Transistor

(
vBC
vBE

) (
iBC
iBE

)
=
(

αR −1
−1 αF

)
.
(

IS
(
evBC/vt − 1

)
+ vBC .Gmin

IS
(
evBE/vt − 1

)
+ vBE.Gmin

)

Potentiometer
(

vp1
ip2

) (
ip1
vp2

)
=
(

vp1/(1 + α.Rp)
ip2.(1 + (1− α).Rp)

)

Appendix B.1. Storage Components

Such components are defined by their storage function h associated with the constitutive laws of
Table B1. In this paper, all storage components are linear dipoles. However, nonlinear components can
also be considered if appropriate state and corresponding energy function can be found.

Appendix B.2. Linear Dissipative Components

The characteristics of dissipative components are algebraic relations on w. Potentiometers are
modeled as two time-varying resistors, the sum of which is Rp. To avoid 0 value of the resistors, 1
Ω have been added to those characteristics. The modulation parameter is α ∈ [0, 1]. As an example,
in Table B1, we choose a conductance between N1 and N2, and a resistance between N2 and N3,
so that wP = [vp1, ip2]

ᵀ.

Appendix B.3. Nonlinear Dissipative Components

PN junctions are modeled as voltage-controlled components by the Shockley equation:

zD(wD) = iD = IS

(
e

vD
µv0 − 1

)
, where IS is the saturation current, µ is an ideality factor, and v0

the reference voltage, specified for each diode type. Note that the passivity property is fulfilled
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(zD(wD)
ᵀ.wD ≥ 0). As in LT-Spice simulators, a minimal conductance Gmin is added in Table B1.

This helps convergence in the simulation process.
NPN junctions are passive 3-ports, with dissipated power DQ = vB · iB + vC · iC + vE · iE ≥ 0. Here

we use the Ebers–Moll model, which preserves this passivity property. IS is the saturation current,
βR and βF are respectively the reverse and forward common emitter current gains, and vt is the
thermal voltage. The corresponding voltage-controlled dissipative characteristic zQ(wQ) = [iBC, iBE]

ᵀ

is given in Table B1, denoting αR = βR+1
βR

, αF = βF+1
βF

, and including minimal conductances. Note that
DQ = zQ(wQ)

ᵀ.wQ ≥ 0. In our final simulations, some resistors are added to model the resistance of
contacts in the nonlinear components, choosing the same values as in LT-Spice models.

Appendix B.4. Incidence Matrices Γ

Incidence matrices for 2-ports, potentiometer P, and transistor Q with conventions of Table B1.

Γ2-port =

B( )
1 N1

−1 N2
, ΓP =

Bp1 Bp2 1 0 N1

−1 1 N2

0 −1 N3

, ΓQ =

BBC BBE 1 1 NB
−1 0 NC
0 −1 NE

. (B1)

Appendix C. Discrete Gradient for Multi-Variate Hamiltonian

A generalization of the discrete gradient for multi-variate Hamiltonians such that Equations (20)
and (21) are satisfied is given by replacing definition (22) by (see [46]):

[∇dH
(
x, x + δx

)
]n =

∆nH(x, x + δx)
δxn

. (C1)

with
∆nH(x, x̃) = H(x̃1, . . . , x̃n−1, x̃n, xn+1, . . . , xnS)

−H(x̃1, . . . , x̃n−1, xn, xn+1, . . . , xnS).
(C2)

For mono-variate components, (22) and (C1) coincide and yield (discrete) constitutive
laws that are insensible to the ordering of the state variables. For multi-variate
components, this last property is lost, but can be restored by replacing (C2) by the averaged
operator: ∆nH(x, x̃) = 1

nS ! ∑π∈P(nS)
∆nHπ(xπ , x̃π), where for all permutation π ∈ P(nS),

xπ = (xπ(1), . . . , xπ(nS)
)ᵀ, andHπ(xπ) = H(x).
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