
HAL Id: hal-01390486
https://hal.science/hal-01390486v1

Submitted on 2 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Memory Allocation Technique for
Synchronous Dataflow Graphs

Karol Desnos, Maxime Pelcat, Jean-François Nezan, Slaheddine Aridhi

To cite this version:
Karol Desnos, Maxime Pelcat, Jean-François Nezan, Slaheddine Aridhi. Distributed Memory Allo-
cation Technique for Synchronous Dataflow Graphs. 2016 IEEE International Workshop on Signal
Processing Systems, IEEE; IEEE Signal Processing Society; IEEE CAS, Oct 2016, Dallas, TX, United
States. �10.1109/SiPS.2016.16�. �hal-01390486�

https://hal.science/hal-01390486v1
https://hal.archives-ouvertes.fr

Distributed Memory Allocation Technique
for Synchronous Dataflow Graphs

Karol Desnos, Maxime Pelcat, Jean-François Nezan
IETR, INSA Rennes, CNRS UMR 6164, UBL
email: kdesnos, mpelcat, jnezan@insa-rennes.fr

Slaheddine Aridhi
Texas Instruments France

email: saridhi@ti.com

Abstract—This paper introduces a new distributed memory allocation
technique for applications modeled with Synchronous Dataflow (SDF)
graphs. This technique builds on a State-of-the-Art shared memory
allocation technique based on a weighted graph, called Memory Exclusion
Graph (MEG). A MEG captures the memory reuse opportunities between
memory objects that must be allocated before the execution of an SDF
graph. The algorithms detailed in this paper enable a single MEG to be
split into separate MEGs, each of which is associated with a memory bank
accessible only by one core of the architecture. The proposed technique is
implemented within a rapid prototyping framework and is evaluated by
deploying real computer vision applications on a Multiprocessor System-
on-Chip (MPSoC). Results show a systematic performance improvement
due to better memory usage, with application speedups ranging from 2%
up to 380%.

I. INTRODUCTION

In 1995, Wulf and McKee [17] introduced the “memory wall”
problem which identifies the low rate of improvement in memory
bandwidth as a major concern for developers of embedded systems.
Since then, industrial efforts to keep up with Moore’s Law has led
to the evolution of architectures that are increasingly more parallel
with soon thousands of processing elements embedded into a single
chip [15]. As a result of this multi- and manycore trend, distributed
memory architecture has been widely adopted by processor manu-
facturers to avoid hitting the memory wall.

An application specified with a dataflow graph [8] consists of a
set of processing entities, named actors, connected by a set of First-
In First-Out queues (FIFOs) transmitting data quanta, named data-
tokens, between actors. An actor starts its preemption-free execution
(that is, it fires) when its input FIFOs contain enough data-tokens.
When deploying an application specified with a dataflow graph on
a multicore architecture, the primary task of memory allocation is
to assign an address range of memory to store each data token that
transit through the FIFOs of the dataflow graph.

The contribution of this paper is a novel compile-time memory
allocation technique for dataflow graphs which supports distributed
memory architectures, shared memory architectures, and architecture
combining both shared and distributed memory resources. This mem-
ory allocation technique builds on memory minimization techniques
for shared memory architectures published in [5], [4]. From these
shared memory techniques, the new technique inherits memory reuse
capabilities at graph level [4], compatibility with buffer merging for
memory reuse between different FIFOs at actor level [5], and code
generation supporting cache incoherent architectures [4].

The context of this work is presented in Section II. Section III
contains a set of memory reuse techniques used as a basis for
the new distributed memory allocation technique, which is then
detailed in Section IV. Finally, an experimental comparison of shared
and distributed allocation techniques for the deployment of two
image processing applications on an Multiprocessor System-on-Chip
(MPSoC) is presented in Section V.

II. RELATED WORK

A. Synchronous Dataflow (SDF)

1) The Semantics of the SDF Model of Computation (MoC):
The SDF Model of Computation (MoC) chosen for this study is
among the most commonly used dataflow MoCs. The SDF MoC
is a specialization of the dataflow MoC where token production and
consumption rates of actors set by actor firing rules are fixed scalars
and are known at compile-time [7]. This property makes it possible
to analyze SDF graphs during their compilation. Static analysis can
be used to check consistency and schedulability properties that imply
deadlock-free execution and bounded FIFO memory needs. If an SDF
graph is consistent and schedulable, a fixed sequence of actor firings,
called iteration, can be repeated indefinitely to execute the graph [8].

Formally, an SDF graph G = 〈A,F 〉 is a directed graph containing
a set of actors A that are interconnected by a set of FIFOs F . prod(f)
and cons(f) denote the actors in A producing and consuming tokens
respectively on a FIFO f . For each FIFO f ∈ F connected to an actor
a ∈ A, a data rate is specified by the function rate : A× F → N∗.

On the SDF graph presented in Figure 1, expressions displayed
adjacent to the data ports are token production and consumption rates
on the connected FIFO. Expressions depend on static parameters w
and h, the image width and height respectively, and on n, the number
of slices into which the image is split to provide parallel processing.

2) Memory Footprint Minimization in the Literature: Minimiza-
tion of the memory footprint allocated for the deployment of SDF
graphs has been the subject of many publications, both for mono-
core [11], [16] and multicore architectures [4], [9]. Minimizing
the memory footprint of dataflow applications is usually achieved
by using FIFO dimensioning techniques [1], [11], [12], [16]. FIFO

dimensioning consist of finding an execution order of the graph actor,
called a schedule, that minimizes the memory space allocated to
each FIFO of the SDF graph. A disadvantage of these techniques is
that memory reuse between FIFOs is not considered [1], [12], [16],
or only single-core architectures are considered [11]. The proposed
distributed memory minimization technique is based on a memory
allocation model that fosters memory reuse between several FIFOs.

Some publications tackle the issue of memory allocation of SDF
graphs in a distributed memory context [2], [6], [9]. The technique
presented in [6] analyzes the scheduling of inter-processor com-
munications in order to allocate buffers of communications which
occur simultaneously in different memory banks, thus constituting a
shared memory space. Although this technique targets shared memory
architectures, its consideration of several memory banks makes it
similar to an approach for distributed memory. In [2], a FIFO sizing
technique is applied in a distributed memory context with limited
memory resources. This allows FIFO sizing to be used as a buffering
technique for inter-processor communications. The results published
in the study focus on application latency and throughput under

w*(h+10*n)
w*h

w*(h/n+8)
w*(h/n+8) w*(h/n+4)

w*(h/n+4) w*h/n
w*(h/n+10)w*h

w*h
Sobel ErosionDilation DisplaySplitRead

frame

Fig. 1. Synchronous Dataflow (SDF) graph of the Sobel application

368*w

368*w

364*w

364*w

360*w

360*w

370*w

370*w
720*w

Sobel

Sobel

Erosion

Erosion

Dilation

Dilation

DisplaySplitRead
frame

a

c

f
h

ige

db

Core2 Schedule
Core1 Schedule

Fig. 2. Single-rate SDF graph of the Sobel application from Figure 1 for a 720p resolution (h = 720, w = 1280, and n = 2).
Blue and red arrows depict a schedule of the SDF graph on an architecture with two cores.

memory constraints. In [9], authors introduce a mapping technique
for SDF actors on a distributed memory architecture with constrained
memory resources. The memory-constrained mapping problem is
then formulated as an integer linear program of polynomial com-
plexity. The commonality of all these techniques is that none consider
memory reuse between different FIFOs. Memory reuse is the rationale
behind the proposed study.

III. EXISTING MEMORY REUSE FRAMEWORK

The distributed memory allocation technique used in this paper
consists of the following steps, of which Step 5 (Section IV)
constitutes the novelty of this paper:
1) Convert the original SDF graph to single-rate SDF graph.
2) Build a Memory Exclusion Graph (MEG) (Section III-A).
3) Update the MEG with scheduling information [4].
4) Apply buffer merging to the MEG. (Section III-B)
5) Create a specific MEG for each memory component.
6) Allocate each specific MEGs to its memory component.
7) Generate code with explicit cache management [3], [4].

A. Memory Exclusion Graph (MEG)

Before allocating an SDF graph in distributed memory, transforma-
tions are applied to reveal its parallelism and memory characteristics.

The first step of the proposed technique is the transformation of
the original SDF graph into an equivalent single-rate SDF graph
where each original FIFO is replaced with one or several single-rate
FIFOs whose consumption and production rates are all identical [14].
Assuming that executions of successive graph iterations never over-
lap, each single-rate FIFO is thus a buffer of fixed size accessed
by two actors. Figure 2 presents the single-rate SDF graph derived
from the original SDF graph from Figure 1. Replacing original multi-
rate FIFOs with single-rate buffers yields many advantages [3]: FIFO

management overhead is removed; actor code does not require push
or pop primitives as pointers to single-rate buffers are sufficient; and
lifetimes of single-rate buffers span from the start of their producer
actor execution, to the completion of their consumer actor.

The second step of the proposed technique consists of building an
undirected graph, called Memory Exclusion Graph (MEG), whose
weighted vertices are the memory objects that must be allocated in
memory to support the execution of the application [4]. Memory
object is a term used variously to designate a single-rate buffer,
an initial token, or a working memory used by an actor during its
execution. In a MEG, two memory objects are connected with an edge
called exclusion if they can not be allocated in overlapping memory
ranges. An exclusion is added between two memory objects if they

may store valid data simultaneously. An algorithm which constructs
a MEG from a single-rate SDF graph can be found in [4].

Formally, a Memory Exclusion Graph (MEG) is an undirected
weighted graph denoted by MEG = 〈M,E,w〉 where: M is the
set of memory objects. m(f) ∈M and m(a) ∈M are the memory
objects associated with the single-rate FIFO f ∈ F , and the working
memory of actor a ∈ A, respectively. E is the set of memory
exclusions. w : M → N∗ is a function where w(m) is the size
(in bytes) of a memory object m.

a
720w

i
360w

g
364w

e
368w

c
370w

h
360w

f
364w

d
368w

b
370w

(a) Memory Exclusion Graph (MEG)

ih

gf

edcb

a
1476w

800w400w 1600w1200w0

M
em
or
y

(b) Memory Allocation

Fig. 3. MEG derived from the SDF graph of Figure 2

Figure 3a shows the MEG corresponding to the single-rate buffers
contained in the SDF graph of Figure 2. Working memory of actors
has been omitted for conciseness. Figure 3b presents a valid memory
allocation derived from the MEG of Figure 3a.The horizontal axis
represents addresses of shared memory, and vertical axis is used to
denote reuse of memory ranges to store several memory objects.

B. Buffer Merging

The memory reuse opportunities modeled in MEGs result from
a graph-level analysis of the data dependencies between single-
rate buffers. Hence, MEGs are unable to capture memory reuse
opportunities between input and output buffers of an actor, resulting
from internal data dependencies.

Figure 4a illustrates the internal data dependencies of the Split
actor. The purpose of this actor is to copy two overlapping slices
from its input buffer to its output buffers. Hence, memory can be
saved by merging the output buffers of the actor directly within their
corresponding ranges of the input buffer. Figure 4b presents the MEG
obtained by merging buffers a, b, and c into a single memory object
of weight 730w. To specify that the memory allocated for the new
abc buffer can be partially reused to allocate buffers f , h, g, and i,

Split
720*w 2*370*w

0

365w

355w

720w

370w

365w

0

5w

output
buffers

input
buffer

copy

copy b

c

a

(a) Merging opportunity

abc
730w

i
360w

g
364w

e
368w

h
360w

f
364w

d
368w

[360w, 730w[

[0, 370w[

(b) Merging a, b, and c buffers. Dotpoint
edges represent partial exclusions.

ih

gf ed

abc
1474w

800w400w 1600w1200w0

M
em
or
y

(c) Memory Allocation

Fig. 4. Buffer merging opportunity for Split actor

partial exclusions, depicted with dotpoint edges and excluded ranges
from abc, were added to the MEG. Memory allocation resulting from
the MEG of Figure 4b is presented in Figure 4c.

The following notation is used for MEG = 〈M,E,w〉:
Mmerged ⊂ M is the set of buffers that result from the merging of
several memory objects of the original graph. mmerged ∈ Mmerged

is a set of the pair {〈mk, off k〉}, where mk is a merged memory
object from the original MEG on which the buffer merging technique
was applied, and off k ∈ N is the start offset in bytes of mk within
mmerged. f(m) ∈ F is used to denote the single-rate FIFO associated
with a memory object m ∈M , assuming that this memory object is
not associated with the working memory of an actor. This is always
true for buffers in Mmerged.

IV. PROPOSED DISTRIBUTED MEMORY ALLOCATION

TECHNIQUE

A. Memory Architectures

The three memory architectures depicted in Figure 5 have been
chosen to assess the distributed memory allocation technique. With
shared memory, all cores of the architecture access a unique memory
space that is used to share data among them. With distributed
memory, each core of the architecture is associated with a memory
component accessible only by this core. With heterogeneous memory,
Each core can access both a private memory component accessible
only to this core, and a shared memory space.

Shared Memory

Core2

Mem2

CoreN

MemN

Core1

Mem1

Distributed

Heterogeneous

Shared

{
{

Fig. 5. Memory architectures

Using MEGs (Section III) to perform memory allocation for
shared memory architectures, all memory objects allocated in shared
memory will be accessible to all cores. Hence, shared memory is
used for both storing buffers accessed by actors mapped on a single
core and for storing buffers used for inter-processor communication.

When deploying an SDF graph on a distributed architecture, special
care must be taken to ensure that a memory object allocated in
a distributed memory component will be accessible to all cores
executing actors accessing this memory object.

ALGORITHM 1: Split MEG into memory-specific MEGs
Input: G = 〈A,F 〉 a single-rate SDF graph

MEG0 = 〈M,E,w〉 the original MEG derived from G
C = {ci, i = 1..n} the set of cores of an architecture
map : A→ C the mapping actors A on cores C

Output: {MEGi, i = 1..n} the memory-specific MEGs associated
to ci ∈ C

MEGS the MEG associated to shared memory
1 if HETEROGENEOUS MEMORY then
2 MEGS ←MEG0

3 for each a ∈ A do MEGS .M ←MEGS .M \m(a) endfor
4 else
5 MEGS ← ∅
6 endif
7 for each ci ∈ C do
8 MEGi ←MEG0

9 for each a ∈ A do
10 if map(a) 6= ci then
11 MEGi.M ←MEGi.M \m(a)
12 endif
13 endfor
14 Call Algorithm 2 for ci, MEGi, and MEGS

15 for each f ∈ F with m(f) /∈Mmerged do
16 if DISTRIBUTED MEMORY then
17 if map(prod(f)) 6= ci and map(cons(f)) 6= ci then
18 MEGi.M ←MEGi.M \ {m(f)}
19 endif
20 else if HETEROGENEOUS MEMORY then
21 if map(prod(f)) = map(cons(f)) = ci then
22 MEGS .M ←MEGS .M \ {m(f)}
23 else
24 MEGi.M ←MEGi.M \ {m(f)}
25 endif
26 endif
27 endfor
28 endfor

B. Memory-Specific MEG: No Buffer Merge

To benefit from both the memory reuse opportunities captured by
the MEG of an application, and the performance due to distributed
memory, it is necessary to identify which memory can be used to
allocate each memory object of the MEG. The simplest solution is to
use actor mapping information of an application and split its original
MEG into several MEGs, each associated with a specific memory
component. The algorithm used to split the MEG into memory-
specific MEGs is presented in Algorithm 1. This algorithm is compat-
ible both with distributed and heterogeneous memory organizations.

Algorithm 1 iterates over the cores of the targeted architecture,
and verifies whether the memory object m(f) of each single-rate
graph FIFO f is made accessible to the actors using it when m(f)
is allocated in the memory component associated with the current
core. Hence, the algorithm outputs as many memory-specific MEGs
MEGi as there are memory components in the targeted architecture.

Line 8 of the algorithm initializes each output memory-specific
MEG MEGi with a copy of the original MEG: MEG0. The purpose
of the final portion of the algorithm is to remove the memory objects
that are not allocated in a memory component from the corresponding
MEGi. Lines 9 to 13 of the algorithm deal with the working memory
of each actor: the corresponding memory object is removed from all
MEGi, except if this actor is mapped. The processing of memory
objects corresponding to single-rate FIFO depends on the targeted
architecture.

The following sections describe MEG splitting methods for dis-
tributed memory and heterogeneous memory.

1) Splitting an original MEG for Distributed Memory: The heart
of the algorithm for distributed memories (lines 16 to 19) checks if
neither prod(f) nor cons(f), the producer and consumer actors of
a FIFO f , are mapped to the current core ci. Meeting this condition
means that m(f), the memory object associated with single-rate FIFO

f , is never accessed by ci and can be removed from MEGi.

a
720w

h
360w

c
370w

f
364w

d
368w

b
370w

(a) Core 1 MEG

i
360w

g
364w

e
368w

h
360w

c
370w

(b) Core 2 MEG

Fig. 6. Memory-specific MEGs: Distributed scenario

Figures 6a and 6b show the memory-specific MEGs obtained when
Algorithm 1 is applied to the MEG from Figure 3a with the mapping
from Figure 2, and assuming a distributed memory architecture. A
memory object is duplicated in two memory-specific MEGs if its
producer and consumer actors are mapped on two different cores.
Inter-core communications ensures that coherent data is available in
the memory allocated to memory components h and c.

2) Splitting an original MEG for Heterogeneous Memory: The
heterogeneous memory portion of the algorithm (lines 20 to 25)
checks if both prod(f) and cons(f), the producer and consumer
actors of FIFO f , are mapped to core ci. Meeting this condition means
that m(f), the memory object associated with single-rate FIFO f , is
only accessed by core ci and can be removed from MEGS , i.e. the
memory-specific MEG associated with shared memory. Otherwise,
m(f) is removed from MEGi as it is accessed by other core(s)
and should be allocated either in shared memory or in the memory
associated with a core distinct from the current core ci.

a
720w

f
364w

d
368w

b
370w

(a) Core 1 MEG

g
364w

e
368w

i
360w

(b) Core 2 MEG

c
370w

h
360w

(c) Shared MEG

Fig. 7. Memory-specific MEGs: Heterogeneous scenario

Figure 7 illustrates the memory-specific MEGs obtained when
applying Algorithm 1 to the original MEG from Figure 3a with
the mapping from Figure 2, and assuming a heterogeneous memory
architecture. Memory objects accessed by several cores are not
duplicated as they are allocated in the shared memory supporting
inter-core communication.

C. Memory-Specific MEG: With Buffer Merging

Since a memory object resulting from the merge of several buffers
does not have a unique producer and consumer actor, it is necessary
to include the call for Algorithm 2 in Line 14. Algorithm 2 pro-
cesses each buffer resulting from a buffer merge. The behavior of
Algorithm 2 differs depending on the targeted memory organization,
as described in following sections.

ALGORITHM 2: Preprocess merged buffers
Input: ci a core of the architecture

MEGi the MEG associated with ci
MEGS the MEG associated with shared memory

Output: Updated MEGi and MEGS

1 for each mmerged ∈MEGi.Mmerged do
2 if DISTRIBUTED MEMORY then
3 R← ∅ // byte ranges of mmerged accessed by

ci
4 Maccessed ← ∅
5 for each mk ∈ mmerged do
6 if map(prod(f(mk))) = ci or map(cons(f(mk))) = ci then
7 Maccessed ←Maccessed ∪ {mk}
8 R← R ∪ [off k, off k + w(mk)[

9 endif
10 endfor
11 MEGi.M ←MEGi.M \mmerged

12 for each range r ∈ R do
13 mnew ← new memory object of size r.length

14 for each mk ∈Maccessed with [off k, off k + w(mk)[∩r 6= ∅
do

15 Merge mk within mnew with offset (off k − r.start)

16 endfor
17 MEGi.M ←MEGi.M ∪ {mnew}
18 endfor
19 else if HETEROGENEOUS MEMORY then
20 if ∀mk ∈ mmerged,
21 map(prod(f(mk))) = map(cons(f(mk))) = ci then
22 MEGS .M ←MEGS .M \ {mmerged}
23 else
24 MEGi.M ←MEGi.M \ {mmerged}
25 endif
26 endif
27 endfor

1) Merged Buffers and Distributed Memory: When targeting dis-
tributed memory, Lines 3 to 10 of Algorithm 2 are used to identify
which ranges of bytes R of the current buffer mmerged ∈Mmerged

are accessed by actors mapped on core ci. At the end of this loop, R
may contain zero, one or several non-contiguous ranges of bytes of
mmerged accessed by ci, and Maccessed contains the set of buffers
merged within mmerged that are accessed by ci.

Lines 12 to 18 of Algorithm 2 create a new memory object mnew

for each non-contiguous range of bytes r ∈ R accessed by core ci.
All buffers in Maccessed whose offset off k in mmerged overlaps with
the current range of bytes r are merged within the new memory object
at Line 22. Only new memory objects mnew are kept in MEGi, the
processed buffer mmerged is removed from MEGi at Line 11.

abc
730w

h
360w

f
364w

d
368w

[360w, 730w[

(a) Core 1 MEG

i
360w

g
364w

e
368w

h
360w

c
370w

(b) Core 2 MEG

Fig. 8. Merged buffers: Distributed scenario

Figure 8 illustrates the memory-specific MEGs obtained when
applying Algorithms 1 and 2 to the original MEG from Figure 4b with
the mapping from Figure 2, and assuming a distributed memory archi-
tecture. All three merged buffers, a, b, and c, from the original MEG

are accessed by core 1. Consequently, buffer abc is completely copied
in the memory-specific MEG associated with core 1 (Figure 8a), thus
decreasing the allocated memory footprint to 1102w bytes.

2) Merged Buffers and Heterogeneous Memory: When targeting
heterogeneous memory, Lines 19 to 25 of Algorithm 2 are used to
check whether a buffer mmerged resulting from a merging operation
should be allocated in a distributed memory component or in shared
memory. A buffer mmerged resulting from a merging operation will
be allocated in the private memory component of a core ci if all
actors accessing merged buffers mk ∈ mmerged are mapped on ci.

This strategy was adopted to favor memory reuse opportunities
offered by buffer merging over allocation of memory objects in
distributed memory components. Indeed, buffer merging removes
many memory copy operations (memcpy() in C language) between
merged buffers, which improves performance more than allocating
mergeable memory objects in distributed memory components [5].

f
364w

d
368w

(a) Core 1 MEG

g
364w

e
368w

i
360w

(b) Core 2 MEG

abc
730w

h
360w

[360w, 730w[

(c) Shared MEG

Fig. 9. Merged buffers: Heterogeneous scenario

Figure 9 shows memory-specific MEGs and allocations obtained
when applying Algorithms 1 and 2 to the MEG from Figure 4b with
the mapping from Figure 2 assuming heterogeneous memory. In this
example, one of the merged buffers, buffer c, is accessed by more than
one core, resulting in the allocation in shared memory of the whole
buffer produced by the merge of buffers a, b, and c (Figures 9c).

V. EXPERIMENTS

The distributed memory allocation technique proposed in this paper
is implemented within the open-source rapid prototyping framework
PREESM [13]. This implementation is used to assess the behavior
and impact of the proposed technique on real applications, both
theoretically and practically, by generating code for an MPSoC.

A. Experimental context

1) Applications: Two applications are used to assess the proposed
memory allocation technique: Sobel, an image processing application
and Stereo, a computer vision application. The properties of these
applications are presented in Table I. For each application, the number
of actors |A| and FIFOs |F | of the original and single-rate SDF graphs
are presented as well as the number of memory objects |M | and the
number of exclusions |E| of the original MEG.

SDF graph Single-rate MEG
Application |A| |F | |A| |F | = |M | |E|

Sobel 6 7 29 36 524
Stereo 28 42 320 1067 310230

TABLE I
PROPERTIES OF THE TEST GRAPHS

The Sobel application is the original SDF graph presented in
Figure 1 with parameters h = 720, w = 1280, and n = 8. The
purpose of this application is to apply several commonly used 2D
image filters in order to detect the edges of the processed image.
The Stereo-matching application is a State-of-the-Art computer vision

algorithm whose purpose is to extract 3D information from a pair of
2D images [10]. The large number of actors, FIFOs and exclusions
of this application make it an interesting test case for the proposed
allocation technique. These two applications are chosen from an
open-source repository of PREESM applications (https://github.com/
preesm/preesm-apps), to allow these experiments to be reproduced.

2) Target Architecture: : The TMS320C6678 is an MPSoC man-
ufactured by Texas Instruments. This MPSoC contains eight C66x
Digital Signal Processors (DSPs). In these experiments, a heteroge-
neous memory organization is used on the C6678 with 512 Mbytes
of external shared memory, and 512 kBytes of L2 private memory
for each core. The TMS320C6678 has no hardware cache coherence
mechanism between the private L1 32 kBytes caches of the 8 cores.

B. Memory Footprint Study

Using the technique introduced in Section IV, memory allocation
of applications presented in Table I is performed for each memory
organization presented in Figure 5. Memory footprints resulting from
the allocation of the two applications are plotted in Figures 10 and 11.

Memory

0 MB 1 MB 2 MB 3 MB 4 MB 5 MB

Shared

Distributed

Heterogeneous

Fig. 10. Sobel application memory footprints

Memory

0 MB 7 MB 14 MB 21 MB 28 MB 35 MB

Shared

Distributed

Heterogeneous

Memory

0 MB 7 MB

Shared

Distributed

Heterogeneous

Fig. 11. Stereo application memory footprints

In Figures 10 and 11, for all memory organizations, a green
rectangle represents the footprint allocated in shared memory, and
red rectangles represent the total footprint allocated in the private
memory component of all the cores. In Figure 11, an enlarged view
of the 0-7MB portion of the plot is presented below the overall graph,
clarifying details between the Shared and Heterogeneous scenarios.

As shown in these results, memory footprints allocated for dis-
tributed and heterogeneous memory organizations are larger than
for shared memory organization. This increase of footprint has
two causes. First, splitting the original MEG of an application
into memory-specific MEGs removes memory reuse opportunities
between memory objects allocated in separate memory components.
Second, when generating memory-specific MEGs for distributed
memory organization, memory objects accessed by two cores are
duplicated in their respective MEGs.

In these experiments, the heuristic algorithm responsible for map-
ping and scheduling SDF actors on cores of the targeted architecture
does not consider memory. Instead, latency-oriented optimizations
may result in application mappings where most memory objects are

accessed by several cores, and which may undermine the efficiency
of the proposed memory distribution technique [13].

In the heterogeneous scenario, approximately 2/3 of the memory
objects of Sobel, representing 44% of the memory footprint, and 1/3
of the memory objects of Stereo, representing 28% of the memory
footprint, can be allocated in private memory components. Memory
footprints allocated in the heterogeneous scenario are only slightly
larger than memory footprints allocated in the shared scenario;
footprints are only 15% larger for Sobel, and 23% larger for Stereo.

In the distributed scenario, memory footprints are 51% larger for
Sobel and 606% larger for Stereo when compared with those of the
shared scenario. The large memory footprint of the Stereo application
is caused by the duplication of large memory objects corresponding
to the pair of input images processed by the application, and accessed
by actors mapped on all cores. A finer modeling of the Stereo appli-
cation, where the input image is sliced instead of being duplicated,
would decrease the memory footprint in the distributed scenario.

The results using heterogeneous memory show the efficiency of
the proposed allocation technique. To further increase the efficiency
of the proposed method, a memory-aware mapping technique such
as that proposed in [9] will be considered in future work.

C. Performance Study

Using PREESM, code was generated for the C6678 architecture
for the two applications. Because the current code generation only
supports shared memory-based communications, no code was gen-
erated for the distributed memory organization. Table II shows the
resulting performance of the Sobel and Stereo applications. In this
table, performance is expressed as the number of frames per second
(fps) processed by the applications. Columns No cache and L1 cache
give the performance of applications when the private L1 caches are
deactivated and activated, respectively.

Performance
Application Archi. Caches off Caches on
Sobel Shared 1.08 fps 12.39 fps

Hetero 5.18 fps 12.66 fps
Stereo Shared 0.40 fps 2.50 fps

Hetero 0.54 fps 2.97 fps
TABLE II

APPLICATION PERFORMANCE

The performance of the Sobel application with deactivated caches
is increased by 380% for the heterogeneous scenario compared to
the shared scenario. The better result is due to the performance gap
between memory accesses in shared L3 memory, and in private L2
memory components. This example shows that application perfor-
mance can be dramatically increased with only 44% of the memory
allocated in the private memory of the cores. The performance of the
Sobel application when L1 caches are activated is only 2% higher
for the heterogeneous scenario than for the shared scenario. The
near equivalence of performance between the two scenarios is due to
the efficiency of the caching mechanism thus masking the majority
of differences in access times between shared and private memory
components.

The performance of the Stereo application for the heterogeneous
scenario is 35% better than for the shared scenario, when the caches
are deactivated. When L1 caches are activated, the performance
in the heterogeneous scenario remains 19% higher than for the
shared scenario. In the Stereo application, large memory objects are
accessed by the application, thus decreasing the efficiency of the
caching mechanism while preserving the benefits of the distributed

memory allocation technique. These results show that the memory
distribution technique proposed in this paper has a positive impact
on the performance of applications executed on a real off-the-shelf
MPSoC.

VI. CONCLUSION

This paper introduced a new memory allocation technique for
the deployment of applications modeled with dataflow graphs on
multicore architectures with distributed memory components. The
proposed technique builds on a State-of-the-Art memory allocation
technique for shared memory architectures. While providing alloca-
tion of dataflow applications in distributed memory components, the
proposed technique preserves memory reuse opportunities between
the application buffers, including memory reuse specified using a
State-of-the-Art buffer merging technique. Experiments show that
using the proposed technique when deploying a real image processing
application on an off-the-shelf MPSoC leads to better application
performance. Future work on this topic includes predicting time per-
formances related to memory allocation and combining the proposed
memory allocation technique with a memory-aware mapping and
scheduling algorithm.

REFERENCES

[1] M. Benazouz, O. Marchetti, A. Munier-Kordon, and P. Urard, “A new
approach for minimizing buffer capacities with throughput constraint for
embedded system design,” in AICCSA. IEEE, 2010, pp. 1–8.

[2] P. M. Carpenter, A. Ramirez, and E. Ayguadé, HiPEAC. Springer, 2010,
ch. Buffer Sizing for Self-timed Stream Programs on Heterogeneous
Distributed Memory Multiprocessors, pp. 96–110.

[3] L. Cudennec, P. Dubrulle, F. Galea, T. Goubier, and R. Sirdey, “Gen-
erating code and memory buffers to reorganize data on many-core
architectures,” Procedia Computer Science, vol. 29, pp. 1123–1133,
2014.

[4] K. Desnos, M. Pelcat, J.-F. Nezan, and S. Aridhi, “Memory analysis
and optimized allocation of dataflow applications on shared-memory
mpsocs,” JSPS, Springer, vol. 80, no. 1, pp. 19–37, 2014.

[5] K. Desnos, M. Pelcat, J.-F. Nezan, and S. Aridhi, “On memory reuse
between inputs and outputs of dataflow actors,” ACM TECS, vol. 15,
no. 30, p. 25, January 2016.

[6] D. Lee, S. S. Bhattacharyya, and W. Wolf, “High-performance buffer
mapping to exploit DRAM concurrency in multiprocessor DSP systems,”
in RSP. IEEE, 2009, pp. 137–144.

[7] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235 – 1245, sept. 1987.

[8] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings
of the IEEE, vol. 83, no. 5, pp. 773–801, 1995.

[9] Y. Lesparre, A. Munier-Kordon, and J.-M. Delosme, “Compile-time
mapping of dataflow applications with buffer minimization,” in IDEA,
2015, pp. 9–12.

[10] A. Mercat, J.-F. Nezan, D. Menard, and J. Zhang, “Implementation of
a Stereo Matching Algorithm Onto a Manycore Embedded System,” in
ISCAS. IEEE, 2014, pp. 1296–1299.

[11] P. Murthy and S. Bhattacharyya, “Shared memory implementations of
synchronous dataflow specifications,” in DATE. ACM, 2000.

[12] T. M. Parks, “Bounded scheduling of process networks,” Ph.D. disser-
tation, University of California, 1995.

[13] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi,
“PREESM: A Dataflow-Based Rapid Prototyping Framework for Simpli-
fying Multicore DSP Programming,” in EDERC. IEEE, Sep. 2014.

[14] J. Pino, S. Bhattacharyya, and E. Lee, “A hierarchical multiprocessor
scheduling framework for synchronous dataflow graphs,” University of
California, Tech. Rep., 1995.

[15] Semiconductor Industry Association, “International Technology
Roadmap for Semiconductors (ITRS): System Drivers,” 2011.

[16] S. Stuijk, M. Geilen, and T. Basten, “Exploring trade-offs in buffer re-
quirements and throughput constraints for synchronous dataflow graphs,”
in DAC. ACM, 2006, pp. 899–904.

[17] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications
of the obvious,” ACM SIGARCH, vol. 23, no. 1, pp. 20–24, 1995.

