
HAL Id: hal-01390467
https://hal.science/hal-01390467v1

Submitted on 2 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Noise-aided gradient descent bit-flipping decoders
approaching maximum likelihood decoding

D Declercq, C Winstead, B Vasic, F Ghaffari, P Ivanis, E Boutillon

To cite this version:
D Declercq, C Winstead, B Vasic, F Ghaffari, P Ivanis, et al.. Noise-aided gradient descent
bit-flipping decoders approaching maximum likelihood decoding. 9th International Symposium on
Turbo Codes and Iterative Information Processing (ISTC), Sep 2016, Brest, France. pp.300 - 304,
�10.1109/ISTC.2016.7593125�. �hal-01390467�

https://hal.science/hal-01390467v1
https://hal.archives-ouvertes.fr

1

Noise-Aided Gradient Descent Bit-Flipping Decoders
approaching Maximum Likelihood Decoding

D. Declercq, C. Winstead, B. Vasic, F. Ghaffari, P. Ivanis and E. Boutillon

Abstract—In the recent literature, the study of iterative LDPC decoders
implemented on faulty-hardware has led to the counter-intuitive
conclusion that noisy decoders could perform better than their noiseless
version. This peculiar behavior has been observed in the finite codeword
length regime, where the noise perturbating the decoder dynamics help
to escape the attraction of fixed points such as trapping sets.
In this paper, we will study two recently introduced LDPC decoders
derived from noisy versions of the gradient descent bit-flipping decoder
(GDBF). Although the GDBF is known to be a simple decoder with
limited error correction capability compared to more powerful soft-
decision decoders, it has been shown that the introduction of a random
perturbation in the decoder could greatly improve the performance
results, approaching and even surpassing belief propagation or min-sum
based decoders.
For both decoders, we evaluate the probability of escaping from a
Trapping set, and relate this probability to the parameters of the injected
noise distribution, using a Markovian model of the decoder transitions
in the state space of errors localized on isolated trapping sets.
In a second part of the paper, we present a modified scheduling of our
algorithms for the binary symmetric channel, which allows to approach
maximum likelihood decoding (MLD) at the cost of a very large number
of iterations.

Index Terms—LDPC codes, noisy iterative decoding, probabilistic GDBF,
noisy GDBF, MLD performance.

I. INTRODUCTION

Recently, there has been a growing interest in studying the robustness
of LDPC iterative message passing decoders, with the objective
of making these algorithms tolerant to faulty gates defects. The
main objective which was pursued has been to measure and predict
the performance loss of iterative decoding when the algorithms are
implemented with faulty hardware [1, 2, 3, 4].
Contrary to the intuitive conclusion that faulty hardware errors,
modeled as transient additional noise in the algorithm, would degrade
the error correction performance, it was observed that the contribution
of randomness in the decoder can indeed be beneficial instead of
degrading the performance. This effect has been observed mainly in
the error floor region, where deterministic decoders can be stuck by
the presence of trapping sets (TS), while noisy versions of the same
decoders could escape from the TS attraction.
This observation has led to a new approach in LDPC decoder design.
Indeed, the strength of an iterative message passing decoder has
always been tackled at the local message updates, with the classical
tradeoff between complexity and performance: error correction
capability could be improved when more computational efforts are

D. Declercq and F. Ghaffari are with ETIS, ENSEA/University of Cergy-
Pontoise/CNRS, 95014 Cergy-Pontoise, France (email: {declercq}@ensea.fr),
C. Winstead is with Utah State University, Department of Electrical
and Computer Engineering, UMC 4120, Logan, UT 84322, USA (email:
chris.winstead@usu.edu), B. Vasic is with the Department of Electrical
and Computer Engineering, University of Arizona, Tucson, USA (email:
vasic@ece.arizona.edu), P. Ivanis is with School of Electrical Engineering,
University of Belgrade, Serbia (email: predrag.ivanis@etf.rs), E. Boutillon
is with Lab-STICC, UMR 6285, Université de Bretagne Sud, Centre de
Recherche BP 92116, Lorient 56321 (email: emmanuel.boutillon@univ-
ubs.fr)

This work has been funded in part by the ANR under grants ANR-
15-CE25-0006-01 (NAND) and ANR-UEFISCDI joint research programme
(DIAMOND), and the NSF under grants CCF-1314147 and ECCS-1500170

allocated at the variable node and check node updates. However, there
is another solution to improve error correction capabililty, without
changing the decoder update equations, which is by introducing
noisy versions of the update equations. As a consequence, powerful
iterative decoders can be implemented from very simple noisy update
rules, instead of relying on heavy computations. Capitalizing on the
hardware noise to espace from local attractors is tightly linked to the
concept of stochastic resonnance [], and has been also observed in
other contexts, i.e. for neural networks [8].
We will discuss in this work the case of the simplest and least
complex iterative decoders, based on modifications of the bit-flipping
(BF) algorithm [5], and study to which extend the introduction of
random components in the update equations can turn them into more
powerful decoders, which could compete with higher complexity
decoders such as belief propagation (BP) or min-sum (MS).
Of particular interest is the gradient descent BF (GDBF) decoder [9],
from which noisy versions have been derived in the recent literature
[10, 11], showing strong evidence that randomness can greatly
improve the performance of BF decoders. The noisy gradient descent
BF (NGDBF) decoder [11], has been proposed specifically for the
additive white Gaussian noise (AWGN) channel, and the probabilistic
gradient descent BF decoder (PGDBF) has been proposed for the
binary symmetric channel (BSC) in [10]. Through Monte Carlo
simulations, it has been observed that the two noisy GDBF decoders
perform much better than standard GDBF decoders, both in the
waterfall and in the error floor regions, and that the extra noise
can even make them compete with soft-decision message passing
decoders.
In this paper, we will study in more details those two algorithms,
and propose modifications on the iterative scheduling that takes
advantage of the introduced randomness to greatly improve decoding
performance. Since it is clear that the main interest of the extra noise
is to break the attraction of fixed point of the noiseless decoders,
we will focus on the simplest cases of these attractors, namely the
trapping sets of the LDPC codes. We will analyse the probability of
a noisy decoder to escape the attraction of a TS, when the noiseless
version of the decoder is stuck. This probability of escaping a TS
can serve to optimize the parameters of the random perturbation
distribution. Using the outcomes of this study, we will also equip
the PGDBF with a modified scheduling in order to improve the
decoding performance. We show by Monte Carlo simulations that the
PGDBF using the modified scheduling can surpass the most powerful
noiseless decoders (BP, MS), and approach MLD performance, when
a large number of decoding iterations is considered.

II. NOISE-AIDED GRADIENT DESCENT BIT-FLIPPING DECODERS

A. Basic Notations for LDPC codes and BF Decoders

An LDPC code is defined by a sparse parity-check matrix H
with size (M,N), where N > M . A codeword is a vector
x = (x1, x2, . . . xN) ∈ {0, 1}N which satisfies H.xT = 0. We
denote by y = {y1, y2, . . . , yN} the output of a noisy channel,
in which the bits of the transmitted codeword are perturbed by an
additive memoryless noise. In this paper, we will consider the binary

symmetric channel, and the additive white Gaussian noise channel.
The graphical representation of an LDPC code is a bipartite graph
called Tanner graph composed of 2 types of nodes, the VNs vn,
n = 1 . . . N and the CNs cm, m = 1 . . .M . In the Tanner graph, a
VN vn is connected to a CN cm if H(m,n) = 1. Let us also denote
N (vn) the set of CNs connected to the VN vn, with connection
degree dvn = |N (vn)|, and denote N (cm) the set of VNs connected
to the CN cm, with connection degree dcm = |N (cm)|.
The vector of variable node values at l-th iteration v(l) =
(v

(l)
1 , v

(l)
2 , . . . , v

(l)
N), is referred to as a decoder state in l-th iteration.

If v(l) = x, we say that the decoder has converged to the codeword x
in l-th iteration. A BF decoder is defined as a iterative update of the
variable node values over the decoding iterations. We denote in this
paper by v(l)n the value of the variable node at the l-th iteration. We
correspondingly denote by c(l)m the binary value of the parity checks at
iteration l. For each variable node vn, we also associate an intrinsic
channel value L(yn)(l) which serves in the variable nodes update
equations at each iteration l. The definition of L(yn)(l) depends on
the channel model. For the BSC channel, we have

L(yn)(l) = yn ⊕ v(l)n [BSC]

with ⊕ is the modulo-2 addition, while for the AWGN channel, it is
defined from the log-likelihood ratio:

L(yn)(l) = (1− 2 v(l)n) log

(
prob(yn|vn = 0)

prob(yn|vn = 1)

)
[AWGN]

The value L(yn)(l) can also be used at the initialization step, in
which case the first values of the VNs v(0)n are simple copies of
L(yn)(0), with the convention that v(0)n = 0 ∀n.

In all variants of BF algorithms, the CN calculation can be written
as

c(l)m =
⊕

vn∈N (cm)
v(l)n (1)

In the case of GDBF algorithms, an energy function E(l)
vn is defined

for each VN based on the neighboring CN, and used to evaluate
whether the value v(l)n should be flipped or not. The definition of the
energy function depends on the channel model.

E(l)
vn = L(yn)(l) +

∑
cm∈N (vn)

c(l)m [BSC] (2)

E(l)
vn = L(yn)(l) + w

∑
cm∈N (vn)

(1− 2 c(l)m) [AWGN] (3)

where w is a real valued weighting factor.
With definition (3), the real valued energy function is minimized for
the bits having the lowest reliability. In [9], two modes for the bit-
flipping rule at iteration l are proposed: either only the bit having
lowest energy function is flipped (single flip), or a group of bits
having energy function less than a predefined threshold θ are flipped
(multiple flips).
For the BSC channel, the energy function is an integer and varies
from 0 to dvn + 1. Let b(l) denotes the maximum energy at the
l-th iteration, i.e., b(l) = max

1≤n≤N
(E

(l)
vn). The bits which have the

maximum energy value are flipped. Due to the integer representation
of energy function, many bits are likely to have the same maximum
energy function, leading to the multiple flips mode. The fact that the
number of bits to be flipped cannot be precisely controled induces a
negative impact on the convergence of the GDBF algorithm for the
BSC channel.

Let us further introduce the notion of flipping set F (l), which
represents the set of indices for the bits that are flipped at iteration
l.

F (l) =
{
n ∈ {1, N} ; E(l)

vn = b(l)
}

[BSC] (4)

F (l) =
{
n ∈ {1, N} ; E(l)

vn ≤ θ
}

[AWGN] (5)

Using the flipping set notations, the GDBF algorithms for both
the BSC and the AWGN channel can be described concisely as in
algorithm 1. The algorithm is stopped when all the PCs are satisfied,
or the maximum number of iterations L is reached.

Algorithm 1 Gradient Descent Bit-Flipping : [iteration l]
[Step 1] Compute CNs values

c
(l)
m , ∀m = 1, . . . ,M , using (1),

[Step 2] Compute Energy functions at VNs
E

(l)
vn , using (2)-(3),

[Step 3] Compute the flipping sets
F (l), using (4)-(5),

[Step 4] Bit flipping
∀n ∈ F (l) v

(l+1)
n = v

(l)
n

∀n /∈ F (l) v
(l+1)
n = v

(l)
n

B. Noise Aided GDBF decoders

The principle behind the noise-aided GDBF proposed in the literature
[10, 11] is to perturb the dynamics of the decoder by using
randomly modified flipping sets F̃ (l). In this paper, we name those
modifications noise aided GDBF decoders (NA-GDBF).
In [10], the proposed modification is mainly analysed on the BSC
channel. Based on the observation that flipping all bits that have
the maximum energy could lead to a very large number of decoder
failures (see section III for an example), the authors have proposed
to flip only a smaller proportion of those bits, chosen at random in
F (l). The main parameter of the modification in the PGDBF is p0,
the probability that a bit flip with maximum energy is indeed realized.
The randomly modified flipping set F̃ (l)

PGDBF is defined as:

F̃ (l)
PGDBF =

{
n ∈ F (l) ; ε(l)n < p0

}
[PGDBF] (6)

where ε
(l)
n is a realization of a uniform random variable over the

interval [0, 1]. The PGDBF modification could be applied to both the
BSC and the AWGN channel using either equation (4) or (5), since
the effect is simply to diminish the number of indices to be flipped.
In [11], the authors have proposed to perturb the dynamic of the
GDBF using a random shift of the threshold θ by a value ε(l) drawn
at each iteration from a Gaussian distribution N (0, σ2

p). The variance
of the random shift depends on the AWGN channel variance σ: σp =

η σ. As a consequence, the randomly modified flipping set F̃ (l)
NGDBF

becomes:

F̃ (l)
NGDBF

{
n ∈ [1, N] ; E(l)

vn ≤ θ + ε(l)
}

[NGDBF] (7)

Finally, the NA-GDBF are simply implemented by replacing the
flipping sets F (l) in algorithm 1 by the randomly modified flipping
sets F̃ (l).

III. BREAKING TRAPPING SETS ATTRACTION WITH NA-GDBGF

In this section, we provide specific illustrations to show that added
random perturbations could help avoiding the attraction of local
minima of the GDBF algorithm. The theory and detailed analysis

of the approach cannot be described in this paper for lack of space,
and will bre reported in a future publication. Unless said otherwise,
the all-zero codeword will be assumed for the analysis and the
simulations.

A. Trapping sets of noiseless decoders

In deterministic BF algorithms including the GDBF, the sequence of
decoder states {v(l)}1≤l≤L is completely determined by the update
rule and the channel vector y. For some channel vectors y the decoder
does not converge to a codeword. The corresponding error pattern e
is referred to as uncorrectable. In the error floor regime, the error
performance is dominated by low weight uncorrectable error patterns,
which are typically located in trapping sets []. In the next example,
we illustrate such behavior.
In figure 1, we show a trapping set TS(5, 3) composed of five variable
nodes, which is the smallest structure (apart from cycles) that can
appear in regular LDPC codes with girth g = 8 and dv = 3. We
consider the case where only 3 errors occur on variables v1, v3 and
v5, while v2 and v4 are error free. The channel values in y are
indicated as 0 or 1 beside the circles.
Ignoring the messages from the rest of the graph (the isolation
assumption described in [6]), the GDBF decoder oscillates between
the two states shown in figures 1(a) and 1(b). In this figure,
white/black circles represent correct/erroneous variable nodes, while
white/black squares denote satisfied/unsatisfied check nodes. At the
first iteration, variable nodes v1, v2, v3 and v4 (dashed-circled) have
the maximum energy b(0) = 2, and are flipped. At the second
iteration, the maximum energy is b(1) = 4, and is associated with the
same variable nodes. Thus the same set of nodes is flipped in every
iteration, leading to a decoder fixed point. The above error pattern is
thus uncorrectable by the GDBF algorithm.

0

0

1

1

1

(a)

0

0

1

1

1

(b)

Figure 1: A trapping set (oscillating behavior) of a GDBF decoder :
a) Iteration l. b) Iteration l + 1.

It is convenient to analyse such behavior using a state space
representation. Let S = (v1, v2, v3, v4, v5)2 be the state vector of the
five bits composing the TS(5, 3). Using the example of figure 1, the
GDBF decoder oscillates indefinitely between S21 = (1, 0, 1, 0, 1)2
and S26 = (0, 1, 0, 1, 1)2. Let us now illustrate how PGDBF and
NGDBF can be analyzed on such state space representation.

B. PGDBF probability of escaping a TS

Using the example of the previous section, we can build the state
space of the PGDBF decoder, with state Se = S21 as root node. In
principle, with a five bits state vector, the size of the state space is
25 = 32 states. However, due to the particular VN and CN update
equation of the PGDBF, the state space with initial state S21 has only
20 achievable states. Fortunately, the desired correct state S0 is one
of them.
In figure 2, we show the state space and draw the allowed transitions
between the states. Each transition corresponds to a particular

realization of the random noise sequence ε(l) = (ε1, ε2, ε3, ε4, ε5).
Amongst the 20 achievable states, we highlighted S21 which is the
initial error state, S26 which is the oscillating state of the GDBF
algorithm, S0 which is the correct state, and S16 which is the state
corresponding to the shortest path from S21 to S0.
This shortest path is unique, and is realized using the following
noise sequences ε(1) = (0, 1, 0, 1,×) and ε(2) = (×,×,×,×, 1)
(the × symbol means that the noise can be indifferently 0 or 1).
Due to independence, the occurrence probabilities of these two
configurations are prob{ε(1)} = p20(1 − p0)2 and prob{ε(2)} = p0.
The probability of correcting the 3-error pattern of figure 1 is thus
prob{ε(1)}prob{ε(2)} = p30(1 − p0)2. Note that other sequences of
flipping configurations may lead to the successful decoding in more
than two iterations, but their probability of occurence will be smaller.
The maximum probability of correcting this 3-error pattern is equal
to 0.0346, obtained for the optimum value p0 = 0.6.
The approach can be generalized to other TS and possibly averaged
over all the TS present in a given LDPC codes, in order to find
the best value for the parameter p0, and predict the error correction
performance of PGDBF in the error floor.

6

6

13

138

Error

Correct

Optimum
GDBF
State

State

State

PGDBF
State

21S

26S16S

0S

Figure 2: State space of the PGDBF decoder for the TS(5, 3).

C. NGDBF probability of escaping a TS

The NGDBF algorithm applies real valued perturbations directly in
the energy function at each VN, hence the space of allowed decoder
state transitions is much larger than for PGDBF. In particular, for
the example of the TS(5, 3) all 32 states are achievable. Let us
present how to compute the transition probabilities under the isolation
assumption.
The initial errors for the AWGN channel are associated with negative
channel likelihoods L(0)(yn) < 0. Let us assume that only the VN
(v1, v2, v3, v4, v5) are initially in error, while the rest of the VNs are
correct.
Using the notations of section II, and the NGDBF flipping condition
of (7), the probability of flipping the bit vn, having energy Evn is
expressed as:

F (Evn , θ, σp) =
1√

2πσp

∫ θ−Evn

−∞
e
− x2

2 σ2p dx, (8)

Since the added noise samples ε(l) sample are independent, it is
possible to compute the transition probability Λ(S, S′) between two
states, S the current state before flipping and S′ the state after the
bit flips:

Λ(S, S′) =
∏

n∈T (S,S′)

F (Evn , θ, σp)
∏

n 6∈T (S,S′)

(1−F (Evn , θ, σp)),

(9)

where T (S, S′) is the subset of indices n of {1, 2, 3, 4, 5} where
S(n) and S′(n) differ.
Using definition (9) for the transition probabilities in the state space,
and for a given realisation of the received channel samples {y(n) <
0}n=1...5, it is then possible to compute the probability of correcting
the TS errors from the structure of the transition matrix Λ and the
Perron-Frobenius theorem. More details will be given in a future
publication.
Fig. 3 shows the probability that the TS(5, 3) stays in error, as a
function of the iteration l, and for different values of the random
perturbation variance σp (the value of σp is given as a function of
a virtual signal to noise ratio SNRp as σp =

√
10SNRp/10/2).

This figure shows that the higher SNRp, the lower the probability of
error but also the slower the convergence. There is clearly a tradeoff
between speed and error correction probability. In the same way as
for the PGDBF case, this approach can be generalized to any TS (or
a collection of them), and averaging these results over the channel
noise realizations {L(yn)} provide optimum values for the threshold
θ and the random perturbation variance σp.

0 50 100 150 200 250 300 350 400
10

−3

10
−2

10
−1

10
0

iteration number

P
ro

b
a

b
ili

ty
 o

f
E

rr
o

r

SNR
p
 = −3 dB

SNR
p
 = −1 dB

SNR
p
 = 1 dB

SNR
p
 = 3 dB

SNR
p
 = 5 dB

Figure 3: Probability of TS error as a function of the iteration index
for several value of injected noise.

IV. PGDBF WITH MODIFIED SCHEDULING

In this section, we further improve the performance of the PGDBF on
the BSC channel by adaptively changing the scheduling in order to
perturb even more the dynamics of the decoder, and avoid unwanted
local attractors that are not solved by the PGDBF alone. The rationale
behind the proposed modification is that some error events are still
not corrected using PGDBF, i.e. there is no path in the state space
that goes from the error state Se to the correct state S0. Our goal
is to get rid of all unwanted attraction, and get performance close
to maximum likelihood decoding (MLD), at the cost of a very large
number of decoding iterations.

A. DDS-PGDBF with Previously Computed Threshold

The new scheduling for the PGDBF algorithm is based on using
the maximum energy value computed at the previous iteration (l −
1) to perform the bit flips of the current iteration l. We call this
modified scheduling decoder-dynamic shift PGDBF (DDS-PGDBF).
The new algorithm is described in Algorithm 2 for the BSC channel.
The modification can be implemented using a modified definition of
the flipping set, which uses the maximum value determined at the
previous iteration b(l−1):

F̃ (l)
DDS-PGDBF =

{
n ∈ {1, N} ; E(l)

vn ≥ b
(l−1) and ε < p0

}
(10)

Therefore, the computation of the maximum energy at the current
iteration b(l) is no longer implemented in the flipping set computation,
but at the end of the decoding iteration, in Step 6 of the DDS-
PGDBF. Note also that the condition on the energy is changed from
the PGDBF as the bits considered for flipping have energy greater
or equal the threshold value b(l−1).

Algorithm 2 DDS-PGDBF : [iteration l]
[Step 1] Compute CNs values

c
(l)
m , ∀m = 1, . . . ,M , using (1),

[Step 2] Compute energy values at VNs
E

(l)
vn , using (2)

[Step 3] Compute the modified flipping set
F̃ (l)

DDS-PGDBF using (10),
[Step 4] Bit flipping
∀n ∈ F̃ (l)

DDS-PGDBF v
(l+1)
n = v

(l)
n

∀n /∈ F̃ (l)
DDS-PGDBF v

(l+1)
n = v

(l)
n

[Step 5] Update energy values at VNs
E

(l)
vn = E

(l)
vn − yn ⊕ v

(l)
n + yn ⊕ v(l+1)

n .
[Step 6] Compute new maximum energy

b(l) = max
1≤n≤N

(E
(l)
vn)

The algorithm differs from PGDBF in that the flipping operation is
performed before computing the current maximum b(l) and b(l) is
found before considering the new CNs values. After flipping, the
local energies E(l)

vn are revised at the flipped symbol locations to
account for the immediate changes due to bit flipping. The next flip
threshold is then found from amongst the revised Ẽ(l)

v .
This modified scheduling allows to jump in the state space of the
decoder whenever it is stuck in a local minima, therefore shifting the
decoder-dynamic to another trajectory. However, the jumps are not
controlled in the sense that the candidate bits that form the flipping
set F̃ (l)

DDS-PGDBF cannot be localized. As a consequence, the probability
to escape a strong local minimum is very small, and a very large
number of iterations is needed to escape from them and reach MLD
performance.
Note that a similar perturbation in the value of the b(l) for PGDBF
has been proposed in [12], where the authors proposed to decrease
periodically the maximum value b(l) to b(l))−1 in order to perform the
large jumps in the state space, and avoid the trapping set attraction.
With the DDS-PGDBF, the jumps are not periodic, and follow the
dynamics of the decoder.

B. Performance of DDS-PGDBF

Simulations were performed on the Tanner (N = 155, K =
64, Dmin = 20) LDPC code. Fig. 4 shows the comparative frame
error rate (FER) performance of DDS-PGDBF alongside the original
GDBF and PGDBF algorithms, on the BSC channel with crossover
probability α. For this code, the original PGDBF algorithm achieves
its best performance at about 100 iterations and no longer improves
with more iterations. For a maximum of 300 iterations, DDS-
PGDBF shows significantly better performance. When the algorithm
is allowed a very large number of iterations L, its performance
improves incrementally until it approaches the MLD limit. By
comparison, the classic belief propagation (BP) algorithm reaches
a suboptimal performance limit after about 100 iterations. Among
previously reported iterative decoders, we also plot the results of
FAID decoders, which approach MLD performance by exploiting
decoder diversity [7].
DDS-PGDBF is able to achieve the same result by just modifying
a very simple BF decoder. It is important to note that, on average,

DDS-PGDBF terminates in a very small number of iterations due the
early stopping condition, even when L is large. The average number
of iterations is only 16.8 when α = 0.03, and 4.9 when α = 0.02,
which indicates that “hard frames” that require all L iterations are
very rare. Another feature of the DDS-PGDBF using a very large (or
unlimited) number of iterations is that it highly likely to halt on a
codeword, which is either the transmitted codeword, or an undetected
error.
These performance and behaviors have been observed on other LDPC
codes with various rates and lengths.

0.01 0.02 0.04 0.06
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Channel Crossover Probability

FE
R

GDBF (300)

PGDBF (100)

PGDBF (300)

DDS -PGDBF (300)

DDS -PGDBF (108)

FAID

BP

ML

Figure 4: Frame error rate performance of different decoders on the
(N = 155, K = 64, Dmin = 20) Tanner code.

V. CONCLUSION

In this paper, we have studied two noise-aided GDBF algorithms,
and demonstrated that the random perturbations allow to escape the
attraction of fixed points of the GDBF algorithms, located on trapping
sets. We have also proposed a modification of the iterative scheduling
that takes advantage of the introduced randomness to greatly improve
decoding performance, and eventually get close to MLD performance.
We believe that that this new paradigm of noise-aided hard decision
LDPC decoder could become serious competitors to soft decision
decoders (MS, BP), when the issue of slow convergence is solved.

REFERENCES

[1] L. Varshney, “Performance of LDPC codes under faulty iterative
decoding,” IEEE Transactions on Information Theory, vol. 57, no. 7,
pp. 4427–4444, July 2011.

[2] S. Yazdi, H. Cho, and L. Dolecek, “Gallager B decoder on noisy
hardware," IEEE Transactions on Communications, vol. 61, no. 5, pp.
1660–1673, May 2013.

[3] A. Balatsoukas-Stimming and A. Burg, “Density evolution for min-
sum decoding of LDPC codes under unreliable message storage,” IEEE
Communications Letters, vol. 18, no. 5, pp. 849–852, May 2014.

[4] C. Kameni Ngassa, V. Savin, D. Declercq and E. Dupraz, “Density
Evolution and Functional Threshold for the Noisy Min-Sum Decoder",
in IEEE Trans. Commun., vol. 63, issue 5, pp. 1497–1509, May 2015.

[5] N. Miladinovic and M. Fossorier, “Improved bit-flipping decoding of
low-density parity-check codes,” IEEE Transactions on Information
Theory, vol. 51, no. 4, pp. 1594–1606, 2005.

[6] S.K. Planjery, D. Declercq, L. Danjean and B. Vasic, “Finite Alphabet
Iterative Decoders, Part I: Decoding Beyond Belief Propagation on the
BSC”, in IEEE Trans. Commun., vol. 61, issue 10, pp. 4033–4045,
October 2013.

[7] D. Declercq, B. Vasic, S. Planjery and E. Li, "Finite alphabet iterative
decoders approaching maximum likelihood performance on the binary
symmetric channel", in the proc. of ITA workshop (invited paper), San
Diego, CA, USA, February 2012.

[8] A. Karbasi, A. Salavati, A. Shokrollahi and L. Varshney, “Noise
Facilitation in Associative Memories of Exponential Capacity”, in Neural
Computation, vol. 26, no. 11, pp. 2493–2526, November 2014.

[9] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and
I. Takumi, “Gradient descent bit flipping algorithms for decoding ldpc
codes," IEEE Transactions on Communications, vol. 58, no. 6, pp. 1610–
1614, 2010.

[10] O. A. Rasheed, P. Ivanis, and B. Vasic, “Fault-tolerant probabilistic
gradient-descent bit flipping decoder," IEEE Communications Letters,
vol. 18, no. 9, pp. 1487–1490, Sept 2014.

[11] G. Sundararajan, C. Winstead, and E. Boutillon, “Noisy gradient
descent bit-flip decoding for ldpc codes," IEEE Transactions on
Communications, vol. 62, no. 10, pp. 3385–3400, Oct 2014.

[12] B. Vasić and P. Ivaniš, ”Error Errore Eicitur: A stochastic resonance
paradigm for reliable storage of information on unreliable media,” IEEE
Transactions on Communications (submitted).

[13] P. Ivaniš, O. A. Rasheed, and B. Vasić, “MUDRI: A fault-tolerant
decoding algorithm,” Proc. IEEE Int. Comm. Conf. (ICC 2015), London,
UK, Jun. 8–12 2015, pp. 4291 - 4296.

