
HAL Id: hal-01390457
https://hal.science/hal-01390457v1

Submitted on 2 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Numerical implementation of two nonconforming finite
element methods for unilateral contact

Patrick Hild

To cite this version:
Patrick Hild. Numerical implementation of two nonconforming finite element methods for unilateral
contact. Computer Methods in Applied Mechanics and Engineering, 2000, 184 (1), pp.99 - 123.
�10.1016/S0045-7825(99)00096-1�. �hal-01390457�

https://hal.science/hal-01390457v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Numerical implementation of two nonconforming ®nite
element methods for unilateral contact

Patrick Hild

Mathe�matiques pour l'Industrie et la Physique, Unite� Mixte de Recherches CNRS UPS INSAT (U.M.R. 5640), Universite� Paul 
Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France

We consider the ®nite element approximation of the unilateral contact problem between elastic bodies. We are interested in a

practical problem which often occurs in ®nite element computations concerning two independently discretized bodies in unilateral

contact. It follows that the nodes of both bodies located on the contact surface do not ®t together. We present two di�erent approaches

in order to de®ne unilateral contact on nonmatching meshes. The ®rst is an extension of the mortar ®nite element method to variational

inequalities that de®nes the contact in a global way. On the contrary, the second one expresses local node on segment contact con

ditions. In both cases, the theoretical approximation properties are given. Then, we implement and compare the two methods. Ó 2000

Elsevier Science S.A. All rights reserved.
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1. Introduction and notations

In ®nite element procedures solving unilateral contact problems between deformable bodies, each solid is
often discretized independently of the other. So, a ®nite element mesh does not coincide with the other one
on the contact zone. For instance, constitutive or geometrical nonlinearities lead to the use of an incre-
mental scheme and, at each step, the updated ®nite element meshes cannot ®t together on the contact zone.
In other respects, mesh adaptivity procedures used in a contact context generally lead to nonmatching
meshes. So the question is to de®ne a convenient discrete contact condition for nonmatching meshes.

On the one hand, the mathematical framework associated with the ®nite element approximation for
contact problems can be found in [16]. In this reference, Haslinger et al. consider the case of matching
meshes on the contact zone.

On the other hand, the mortar element domain decomposition method, introduced by Bernardi et al. [8],
allows the handling of nonmatching meshes. This technique has been studied for many problems governed
by variational equalities.

The ®rst extension of the mortar ®nite element method to a variational inequality has been made for the
unilateral contact problem by Ben Belgacem et al. [5]. In this reference, the authors also extend the ®nite
element analysis of contact problems to nonmatching meshes.
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The main aim of this paper is to carry out the ®rst numerical experiments associated with the theoretical
results already obtained. The paper is organized as follows. First, we introduce the model describing the
unilateral contact without friction between two deformable elastic bodies. The associated weak formulation
is exhibited.

In Section 3 we consider two ®nite element methods in order to solve the problem with independent
meshes. The ®rst approach is of global type and corresponds to an extension of the mortar domain de-
composition method. The second approximation is of local type and uses classical node-on-segment contact
conditions. We recall the most signi®cant approximation properties obtained in previous papers and we
establish new results proving the optimal convergence of the global approach and the convergence of the
local approach.

In Section 4 we obtain the corresponding matrix formulations and we mention the algorithm contained
in the ®nite element code CASTEM 2000. Section 5 is devoted to the studies in which the contact conditions
are compared from a numerical point of view.

2. Setting of the problem

We consider two elastic bodies occupying in the initial con®guration two subsets X
`

of R2, ` � 1; 2. The
boundary oX` of the domain X` is assumed to be ``smooth'' and consists of three nonoverlapping parts C`

u,
C`

g and C`
c. The unit outward normal on oX` is denoted n`. The body is submitted to volume forces f` on X`

and to surface forces g` on C`
g. On C`

u, the displacements U` are prescribed. In the initial con®guration, both
bodies have a common portion Cc � C1

c � C2
c which will be considered as the candidate contact surface for

the sake of simplicity.
The unilateral contact problem consists of ®nding the displacement ®eld u � �u1; u2�, where u` � ujX` and

the stress tensor ®eld r � �r1; r2�, (r` � rjX`) satisfying the following conditions (2.1) (2.5) for ` � 1; 2:

div r`�u`� � f` � 0 in X`;

r`�u`�n` � g` on C`
g; �2:1�

u` � U` on C`
u:

The symbol div denotes the divergence operator de®ned by div r � �orij=oxj�i, where the summation
convention of repeated indices is adopted.

We will consider small strains hypothesis so that the strain tensor e�v� induced by a displacement ®eld v

is e�v� � �rv�t rv�=2. The stress tensor ®eld r` is linked to the displacement ®eld u` by the constitutive law
of linear elasticity

r`�u`� � C`e�u`�; �2:2�
where C` � �c`ij;kh�16 i;j;k;h6 2 is a fourth order tensor satisfying c`ij;kh � c`ji;kh � c`kh;ij. We assume that there
exists constants a` > 0 verifying

c`ij;kheijekh P a`eijeij 8eij � eji:

The conditions on the contact zone Cc are as follows:

�r1�u1�n1� � n1 � �r2�u2�n2� � n2 � rn�u�; �2:3�
u1 � n1 � u2 � n26 0; rn�u�6 0; rn�u��u1 � n1 � u2 � n2� � 0; �2:4�
r1

T�u1� � r2
T�u2� � 0; �2:5�

where

r`T�u`� � r`�u`�n` ÿ rn�u�n`; 16 `6 2:

Relations (2.3) represent the action and the reaction principle. Conditions (2.4) express unilateral contact
between the two bodies and ®nally (2.5) states a contact without friction.

2



In order to obtain the variational formulation of the problem, we introduce the spaces V�X`� �` � 1; 2�
V�X`� � v 2 H 1�X`�ÿ �2

; v
n

� U` on C`
u

o
;

where H 1�X`� is the classical Sobolev space (see [1]). A vector ®eld v 2 V�X1� � V�X2� is denoted
v � �v1; v2�. Endowed with the standard inner product

�u; v� � �u1; v1��H1�X1��2 � �u2; v2��H1�X2��2 ;

V�X1� � V�X2� is a Hilbert space and the corresponding energy norm is denoted k � k.
We de®ne the bilinear form

a�u; v� �
X2

` 1

Z
X`

C`e�u`� � e�v`� dX`

for all u; v 2 V�X1� � V�X2�. Next, we denote L��� the linear form which corresponds to the external loads:

L�v� �
X2

` 1

Z
X`

f` � v` dX`

0B@ �
Z

C`g

g` � v` dC`

1CA�
The closed convex set K of admissible displacements is the subset of V�X1� � V�X2� which contains the

displacement ®elds satisfying the nonpenetration condition:

K � v � �v1; v2� 2 V�X1� � V�X2�; v1 � n1 � v2 � n26 0 on Cc

	
:

The variational inequality associated with the unilateral contact problem (2.1) (2.5) consists of ®nding u

such that (see [13,16,21]):

u 2 K; a�u; vÿ u�P L�vÿ u� 8v 2 K: �2:6�
Using Stampacchia's theorem, we conclude that problem (2.6) has only one solution when (for example)

C`
u; ` � 1; 2, is of positive measure. Other conditions leading to existence and uniqueness results can be

found in [16].

Remark 2.1. The more general and technical study involving an initial gap and the corresponding results are
given in [16], Chapter 3, Sections 5 and 6.

3. The ®nite element approximation for nonmatching meshes

3.1. The global and the local contact conditions

We suppose that X1 and X2 are domains with polygonal boundaries and we assume that Cc is a straight
line segment to simplify. Let the approximation parameter h � �h1; h2� be a given pair of real positive
numbers that will decay to 0. With each subdomain X`, we then associate a family of triangulations T `

h ,
made of triangles denoted j, the diameter of which does not exceed h`. Therefore, we can write

X
` �

[
j2T `h

j:

The extreme points c1 and c2 of the contact part Cc are supposed to belong to both meshes associated with
T 1

h and T 2
h . The contact zone Cc inherits two independent families of discretizations arising from T 1

h and T 2
h .

The mesh T`
c;h on Cc is de®ned as the set of all the edges of j 2 T `

h on the contact zone. The set of the nodes
associated with T`

c;h is denoted n`h. In general n1
h and n2

h are not identical on account of the nonmatching
meshes.
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The space of the polynomials on j whose global degree is lower or equal to q; �q nonnegative integer� is
denoted Pq�j�. The ®nite element space used in X` is then de®ned as (see [11]):

Vh�X`� � v`h 2 �C�X
`��2 8j 2 T `

h ; v`h jj2 �P1�j��2; v`h jC`u
n

� U`
h

o
;

where C�X`� denotes the space of continuous functions on X
`

and U`
h is a ®nite element approximation of U`.

In order to express the contact constraints (2.4) on Cc, we need to introduce some functional spaces. Let
W `

h �Cc� be the range of Vh�X`� by the normal trace operator on Cc:

W `
h �Cc� � uh

� � v`h jCc
�n`; v`h 2 Vh�X`�	: �3:1�

Next, we introduce the space of the Lagrange multipliers that will be useful to de®ne a projection operator:

M `
h�Cc� � wh 2 W `

h �Cc�; wh jT2 P0�T � 8T 2T`
c;h; such that c1 or c2 2 T

n o
:

The notation p`h stands for the projection operator on W `
h �Cc� de®ned for any function u 2 C�Cc� as

p`hu 2 W `
h �Cc�; �p`hu��ci� � u�ci� for i � 1 and 2;

Z
Cc

�uÿ p`hu�wh dC � 0 8wh 2 M `
h�Cc�:

�3:2�
The condition �p`hu��ci� � u�ci�; i � 1; 2; has been introduced in order to handle more general problems in
a domain decomposition context (see [8]). It is easy to check that the classical L2 projection operator on
W `

h �Cc� does not satisfy such a condition. The approximation properties of p`h are enumerated in Ben
Belgacem, [4].

By using this projection operator (of global character), we are in a position to de®ne the discrete
admissibility convex cone Kglo

h :

K
glo
h � vh

� � �v1
h; v

2
h� 2 Vh�X1� � Vh�X2�; v1

h � n1 � p1
h�v2

h � n2�6 0 on Cc

	� �3:3�
Let us notice that the condition incorporated in Kglo

h is expressed in the space W 1
h �Cc�. Following the ter-

minology of Bernardi et al. [8], W 2
h �Cc� stands for the mortar space.

Remark 3.1. Of course, it is possible to give a symmetrical definition of the convex by choosing as mortar
space W 1

h �Cc� and using the projection operator p2
h.

Let I`
h denote the Lagrange interpolation operator ranging in W `

h �Cc�. Then, we de®ne the admissibility
convex cone Kloc

h by using the interpolation operator of local character:

Kloc
h � vh

� � �v1
h; v

2
h� 2 Vh�X1� � Vh�X2�; v1

h � n1 �I1
h�v2

h � n2�6 0 on Cc

	
: �3:4�

The discrete local contact conditions inserted in the de®nition of Kloc
h are similar to the classical node-on-

segment conditions.

Remark 3.2. There are other possibilities of defining unilateral contact with nonmatching meshes (see
[7,12,17]).

In addition, it is straightforward to check that Kglo
h 6�K and Kloc

h 6�K. Therefore, both approximations are
not ``Hodge'' conforming (see [11]). When matching meshes are used, the discrete unilateral constraints can
be expressed in both cases merely by the natural node-on-node condition v1

h � n1 � v2
h � n26 0 and the ap-

proximation becomes conforming �Kglo
h � Kloc

h � K�. This situation was extensively studied by Haslinger
and Hlav�a�cek [15] and Haslinger et al. [16].

The ®nite element problem issued from (2.6) is the following variational inequality: find uh such that

uh 2 Kh; a�uh; vh ÿ uh�P L�vh ÿ uh�; 8vh 2 Kh; �3:5�
where Kh � Kglo

h or Kh � Kloc
h .
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Using again Stamppacchia's theorem, we conclude that problem (3.5) admits a unique solution under the
assumptions mentioned in the previous section.

Remark 3.3. The finite element approximation in the general case of an initial gap between the bodies (with
matching meshes) and the associated error estimations can be found in [16], chapter 3, Section 8.

3.2. Error estimation

We intend to give in the present part an estimate of the error committed on the exact solution by the
global and the local ®nite element approximations.

In the next theorems, we adopt regularity assumptions which have been introduced by Brezzi et al. [9] for
a Signorini problem, and used by Haslinger et al. [16] for the unilateral contact problem with matching
meshes on the contact zone.

For technical reasons, we assume that the family of triangulations T `
h is regular (see [11]) and that h1=h2 is

bounded. Moreover, we suppose that the measure of C`
u does not vanish and that U` � 0; ` � 1; 2. We will

make use of the standard Lebesgue and Sobolev spaces L1;W 1;1; �H s�s2R� ; the detailed presentation of
these spaces can be found in [1].

The approximation result associated with the global contact case is given in the following theorem.

Theorem 3.1. Suppose that the solution u of the continuous problem (2.6) is such that u1 2 �H 2�X1��2,
u2 2 �H 2�X2��2, u1 � n1 2 W 1;1�Cc�, u2 � n2 2 W 1;1�Cc� and rn�u� 2 L1�Cc�. Suppose that the set of points of
Cc in which the change from u1 � n1 � u2 � n2 < 0 to u1 � n1 � u2 � n2 � 0 occurs is finite. Let uh be the solution of
the problem (3.5) with Kh � Kglo

h . Then

kuÿ uhk6C�u��h1 � h2�;

where C�u� is independent of h.

Proof. The starting point of the proof consists of a result in [6] which is the following:

kuÿ uhk26C2�u��h2
1 � h2

2� � C
Z

Cc

rn�u��I1
h�u � n� ÿ �u � n�� dC� C�u�h1�kuÿ uhk � C�u�h2�;

where �u � n� � u1 � n1 � u2 � n2. Then, by writing 2h1h26 h2
1 � h2

2 and

2C�u�h1kuÿ uhk6 bkuÿ uhk2 � 1

b
C2�u�h2

1

for any positive b, it comes out that

kuÿ uhk26C2�u��h2
1 � h2

2� � C
Z

Cc

rn�u��I1
h�u � n� ÿ �u � n�� dC �3:6�

if b is chosen small enough.
Using the condition rn�u��u1 � n1 � u2 � n2� � 0 on Cc, and writing the integral term as a sum of integrals

on the segments t1
h de®ned by the mesh of X1, we obtainZ

Cc

rn�u��I1
h�u � n� ÿ �u � n�� dC �

Z
Cc

rn�u��I1
h�u � n�� dC �

X
t1
h2T1

c;h

Z
t1h

rn�u��I1
h�u � n�� dC:

It is obvious that the integrals which do not involve points of Cc in which the change from
u1 � n1 � u2 � n2 < 0 to u1 � n1 � u2 � n2 � 0 occurs are equal to zero. Therefore, it remains a ®nite number
(independent de h) of integral terms which are bounded by using the regularity assumptions on the exact
solution. This yields
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Z
Cc

rn�u��I1
h�u � n� ÿ �u � n�� dC �

X
finite

Z
t1h

rn�u��I1
h�u � n�� dC

6Ch1krn�u�kL1�Cc�kI1
h�u � n�kL1�Cc�

6Ch2
1krn�u�kL1�Cc��ku1 � n1kW 1;1�Cc� � ku2 � n2kW 1;1�Cc��:

That concludes the proof. �

This theorem extends the result by Haslinger et al. established for matching meshes (see [16], Theorem
8.1).

Remark 3.4. The smoothness conditions u` � n` 2 W 1;1�Cc�; ` � 1; 2; rn�u� 2 L1�Cc� as well as the condition
on the finite number of points can be avoided. Indeed, under H 2 � H 2 assumptions on the displacements, the
convergence rate of the method is of the order h3=4

1 � h2 (see [5]) as in the matching case (see [16]). The latter
regularity assumptions can be again weakened, and under H m � H m�3=2 < m6 2� assumptions, we obtain a
convergence rate of order h�m=2�ÿ�1=4�

1 � hmÿ1
2 (see [6]).

Remark 3.5. It can be proved with a counterexample that the integral term of (3.6) cannot be bounded below
h3=2

1 under H 2 � H 2 regularity assumptions (see [19]).

In the local contact case, we can only obtain the following convergence rate, which is suboptimal in the
®nite element sense.

Theorem 3.2. Let the assumptions of the previous theorem on u be fulfilled. Let uh be the solution of problem
(3.5) with Kh � Kloc

h . Then

kuÿ uhk6C�u� h1

p�
� h2

�
;

where C�u� is independent of h.

Proof. By using an analogous estimate with that established in [6], we write

kuÿ uhk26C2�u��h2
1 � h2

2� � C
Z

Cc

rn�u��I1
h�u � n� ÿ �u � n�� dC� C�u� h1

p
�kuÿ uhk � C�u�h2��

Using the same arguments as in the previous theorem yields the result. �

Remark 3.6. The convergence rate of order h1

p � h2 comes from the poor approximation properties of the
Lagrange interpolation operator in dual Sobolev spaces (see the counterexample in [19]) and therefore it has
been proved that the estimates obtained in the analysis are optimal. Of course, one could dream that the
analysis is inappropriate. The latter question seems to be open.

4. Matrix formulations

When solving the discretized unilateral contact problem, we use the ®nite element code CASTEM 2000
and a saddle-point formulation in which the multipliers are continuous functions on the contact zone and
piecewise linear on the mesh of X1. A minimization type formulation for frictional contact problems can be
found e.g. in [23]; for an augmented Lagrangian approach with nonmatching grids in linear elasticity, see
[22]. A saddle-point formulation in which the multipliers are piecewise constant functions on the contact
zone can be found in [16,25].
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4.1. Preliminaries

At ®rst, we intend to de®ne the closed convex cone Mh of the discrete Lagrange multipliers. We set

Mh � kh 2 W 1
h �Cc�;

Z
Cc

khuh dC

8<: 6 0 8uh 2 W 1
h �Cc�; uh P 0

9=;; �4:1�

where W 1
h �Cc� is a space of continuous and piecewise linear functions de®ned in (3.1).

Remark 4.1. A function belonging to Mh is not necessarily nonpositive on Cc.

The following lemma is the tool used in order to bear out the choice of the Lagrange multipliers convex
cone Mh.

Lemma 4.1. Let uh 2 W 1
h �Cc�. Then

uh6 0 if and only if
Z

Cc

uhwh dC P 0 8wh 2Mh: �4:2�

Proof. Let us notice that the bilinear form A de®ned on W 1
h �Cc� by

A�hh; qh� �
Z

Cc

hhqh dC

is an inner product on W 1
h �Cc�. Set

Nh � uh 2 W 1
h �Cc�; uh

�
6 0
	
;

which is a closed convex cone. Then, we consider the polar cone of Nh, denoted N0
h, and de®ned as follows

(see [20]):

No
h � wh 2 W 1

h �Cc�;
Z

Cc

whuh dC

8<: 6 0 8uh 2Nh

9=;:
The de®nition of Mh in (4.1) yields N0

h � ÿMh. Using the property that the bipolar cone of a closed
convex cone is the same convex cone, we deduce

Nh � �N0
h�0 � uh 2 W 1

h �Cc�;
Z

Cc

uhwh dC

8<: 6 0 8uh 2N0
h

9=;;
� uh 2 W 1

h �Cc�;
Z

Cc

uhwh dC

8<: P 0 8uh 2Mh

9=;:
Hence the lemma. �

4.2. The global contact case �Kh � Kglo
h �

Setting Vh � Vh�X1� � Vh�X2�, we consider the saddle-point problem on Vh �Mh associated with the
following Lagrangian Lglo:

Lglo�vh; lh� �
1

2
a�vh; vh� ÿ L�vh� ÿ

Z
Cc

lh v1
h � n1 � p1

h�v2
h � n2�ÿ �

dC: �4:3�
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It is easy to verify that there exists a unique saddle-point �uh; kh� on Vh �Mh and, using (4.2), it comes
out that uh is the unique solution of the variational problem (3.5) with Kh � Kglo

h . Moreover, it can be also
proved that the multiplier kh tends towards rn�u� if h � �h1; h2� decays to zero; this convergence result is
beyond the scope of this paper and it will be established in a forthcoming study.

Denoting by V and U the vectors corresponding to the nodal values of vh and uh, respectively, and by M
and K the vectors corresponding to the nodal values of lh and kh, respectively, the saddle-point problem
(4.3) consists of ®nding �U;K� solution to

max
A1M 6 0

min
V

1

2
tVKV

�
ÿ tVF ÿ t�BV�A1M

�
; �4:4�

where K is the stiffness matrix, F is a generalized load vector and A1 is the mass matrix associated with the
mesh of X1 on Cc. This means that A1 is a m-by-m matrix, where m is the number of nodes of the mesh of X1

on Cc, and satisfying

�A1�i;j �
Z

Cc

wiwj dC; 16 i; j6m; �4:5�

where wi 2 W 1
h �Cc� is equal to one on node number i and to zero on the other nodes.

The matrix B expresses the contact condition and requires the calculation of the projection operator p1
h

mapping W 2
h �Cc� into W 1

h �Cc� (see (3.2)). In order to determine B, we need to give the matrix formulation of
the condition v1

h � n1 � p1
h�v2

h � n2� incorporated in (3.3) and (4.3). Denoting by n the number of nodes of X2

on Cc and by Im the m-by-m identity matrix, we have to ®nd the m-by-�m� n� matrix:

Im jP1
h

ÿ �
; �4:6�

where P1
h is the m-by-n projection operator matrix. We denote by uj 2 W 2

h �Cc�; 16 j6 n, the function equal
to one on node number j and to zero on the other nodes. Then, we de®ne hk 2 W 1

h �Cc�; 26 j6mÿ 1, as
follows:

h2 � w1 � w2; hk � wk; 36 k6mÿ 2; hmÿ1 � wmÿ1 � wm:

Using (3.2), we deduce P1
h � Cÿ1D where C is the following m-by-m matrix:

C1;1 � 1;

C1;j � 0; 26 j6m;

Ci;j �
Z

Cc

hiwj dC; 26 i6mÿ 1; 16 j6m;

Cm;j � 0; 16 j6mÿ 1;

Cm;m � 1;

and D is the m-by-n matrix verifying

D1;1 � 1;

D1;j � 0; 26 j6 n;

Di;j �
Z

Cc

hiuj dC; 26 i6mÿ 1; 16 j6 n;

Dm;j � 0; 16 j6 nÿ 1;

Dm;n � 1:

In order to compute Di;j; 26 i6mÿ 1; 16 j6 n, we denote by nh the set of the nodes located on Cc

such that nh � �n1
h [ n2

h� n �n1
h \ n2

h�. Denoting by p the number of nodes in nh (one has
max�m; n�6 p6m� nÿ 2), we introduce the functions �vk�16 k6 p. The function vk is continuous on Cc,
piecewise linear on the mesh de®ned by nh, equal to one on node number k and to zero on the other nodes
of nh. As a result, we write
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Di;j �
Z

Cc

hiuj dC �
Z

Cc

Xp

k 1

�ai�kvk

 ! Xp

k 1

�bj�kvk

 !
dC �

Xp

k 1

Xp

k0 1

�ai�k�bj�k0
Z

Cc

vkvk0 dC:

The determination of the �ai�k and the �bj�k0 is done by taking the values of hi and uj at the nodes of nh. The
m-by-n projection matrix Cÿ1D is then computed once for all. In the current bidimensional context, with the
examples we consider (see the numerical studies), the computation of Cÿ1D is not expensive. Nevertheless, if
we want to adapt and extend to the three-dimensional case this global contact procedure, it will certainly be
necessary to avoid the complete construction of Cÿ1D.

The solution �U;K� of (4.4) satis®es the relation KUÿ tBA1K � F . So, setting U � A1M , the saddle-point
problem (4.4) can be rewritten as a minimization problem of a quadratic functional with linear inequality
constraints:

min
U6 0

1

2
tUBKÿ1t

BU

�
� tUBKÿ1F � 1

2
tFKÿ1F

�
: �4:7�

Since m is the rank of B and K is symmetric and positive de®nite, it comes out that the matrix BKÿ1t
B is

symmetric and positive de®nite. If U0 is the solution of the minimization problem (4.7), then K � �A1�ÿ1U0

and the calculation of U � Kÿ1�F � tBU0� is straightforward.
As already noticed in Remark 4.1, the components of the vector K (representing rn�u�) are not neces-

sarily nonpositive. In a a posteriori error estimation (see [12]), this ``lack of nonpositiveness'' must be added
to the error.

The ®nite element code CASTEM 2000 solves the minimization problem (4.7) by using the iterative
Frank and Wolfe algorithm (see [14]) which we recall hereafter.

Consider the problem of minimizing the functional J : Rn ! R under linear constraints

min
U6 0

J�U�: �4:8�

The method of Frank and Wolfe is iterative and generates a sequence of points U0;U1; . . . ;Uk, where 8k,
Uk�1 is de®ned by using Uk as follows : solve the linear programming problem

�LP �Uk�� min
U6 0

t�rJ�Uk�� � U: �4:9�
Let yk be an extremal point of X � fU 2 Rn;C6U6 0g (where jCj is chosen large enough such that X
contains a solution of (4.8)) and optimal solution to �LP �Uk��. Then Uk�1 is given by

J�Uk�1� � min
U2�Uk ;yk �

J�U�:

If J is continuously differentiable and if J�U� ! 1 as kUkRn !1, then for every U0 2 X , the method
converges towards a local minimum of J�U�; U 2 X (see [24]). Notice that for convex problems, the linear
subproblem (4.9) provides a lower bound on the optimal objective value. The upper bound on the objective
value is updated at each step and the algorithm is terminated when the relative difference between the
bounds is smaller then a a priori set parameter. The theoretical convergence rate of the algorithm is
arithmetic (see [26,10]).

4.3. The local contact case �Kh � Kloc
h �

In this case, we consider the saddle-point problem on Vh �Mh associated with the Lagrangian Lloc:

Lloc�vh; lh� �
1

2
a�vh; vh� ÿ L�vh� ÿ

Z
Cc

lh�v1
h � n1 �I1

h�v2
h � n2�� dC: �4:10�

As in the global contact case, there exists a unique saddle-point �uh; kh� on Vh �Mh and, using (4.2), we
conclude that uh is the unique solution of (3.5) with Kh � Kloc

h . The study of the convergence of kh towards
rn�u� will be proposed in a following study.
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The problem (4.10) consists then of solving the minimization problem

min
U6 0

1

2
tUB0Kÿ1t

B0U
�

� tUB0Kÿ1F � 1

2
tFKÿ1F

�
; �4:11�

where the matrix B0 involves now the local contact conditions. In fact, we need only to determine the matrix
formulation of the Lagrange interpolation operator I1

h mapping W 2
h �Cc� into W 1

h �Cc�. This is done with the
following m-by-n matrix denoted I1

h :

�I1
h �i;j � �I1

huj��ai�; 16 i6m; 16 j6 n; �4:12�
where uj 2 W 2

h �Cc� is equal to one on the node number j and to zero on the others, and ai denotes node
number i on the mesh of X1 on Cc.

Problem (4.11) is solved in the ®nite element code like problem (4.7).

Remark 4.2. In the case where the bodies are supposed to come into contact after deformation, we must take
into account of the initial gap. So, we replace in (4.7) and (4.11), BV and B0V by BVÿ G and B0Vÿ G, re-
spectively, where G is the m-vector whose components are the distances between the nodes of X1 on the
candidate contact zone and the boundary of X2.

Remark 4.3. In order to show concretely the differences between the global contact conditions and the local
node-on-segment conditions, we propose to illustrate their characteristics with the simple example depicted in
Fig. 1. There are 7 equidistant nodes of X1 and 5 equidistant nodes of X2 on the contact zone. It is easy to see
that the interpolation matrix I1

h defined in (4.12) is given by

I1
h �

1:0000 0:0000 0:0000 0:0000 0:0000
0:3333 0:6666 0:0000 0:0000 0:0000
0:0000 0:6666 0:3333 0:0000 0:0000
0:0000 0:0000 1:0000 0:0000 0:0000
0:0000 0:0000 0:3333 0:6666 0:0000
0:0000 0:0000 0:0000 0:6666 0:3333
0:0000 0:0000 0:0000 0:0000 1:0000

0BBBBBBBB@

1CCCCCCCCA
;

whereas the projection matrix P1
h introduced in (4.6) is as follows:

P1
h �

1:0000 0:0000 0:0000 0:0000 0:0000
0:2947 0:7440 ÿ 0:0379 ÿ 0:0016 0:0008
ÿ0:0566 0:7799 0:2727 0:0080 ÿ 0:0040
0:0152 ÿ 0:0303 1:0303 ÿ 0:0303 0:0152
ÿ0:0040 0:0080 0:2727 0:7799 ÿ 0:0566
0:0008 ÿ 0:0016 ÿ 0:0379 0:7740 0:2947
0:0000 0:0000 0:0000 0:0000 1:0000

0BBBBBBBBBB@

1CCCCCCCCCCA
:

Of course, the terms of the matrices I1
h and P1

h are rounded numbers. The local character of the inter-
polation operator is given by the numerous terms (outside of the ``diagonal '') of the matrix I1

h which are

Fig. 1. A simple example of nonmatching meshes.
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equal to zero. That merely means that the nodes which are distant do not interact in the definition of the
node-on-segment conditions. On the contrary, the global character of the projection operator is shown by
the nonzero terms of the matrix P1

h. The terms which are near to 1 represent strong interaction between
close nodes of both bodies whereas the terms near to zero correspond to little interaction between distant
nodes.

5. Numerical studies

In this section, we report numerical studies on several problems dealing with global and local contact
conditions. The numerical experiments have been made at the Laboratoire de Math�ematiques pour l'In-
dustrie et la Physique of the Universit�e de Toulouse, at the Laboratoire de M�ecanique et Technologie of the
Ecole Normale Sup�erieure de Cachan and more recently at the Laboratoire de Math�ematiques of the Uni-
versit�e de Savoie. In all three cases, we used the ®nite element code CASTEM 2000.

In accordance with the previous notations of Sections 3 and 4, we adopt this convention: the upper body
always stands for X1.

5.1. Test 1: comparison of convergence rates for global, local and node-on-node conditions

In a previous section, we have considered the theoretical convergence rates of the discretized solutions
towards the solution u of the continuous problem (2.6). This test consists of comparing these convergence
rates in a numerical context.

Contact problems generally do not admit an analytical solution. Therefore, we must have a solution with
®nely discretized bodies at our disposal, which is a reference solution (denoted uhref

) for error estimates. In
order to obtain the convergence curve of the error, we build a family of nested meshes. This family is
obtained by an algorithm which divides the triangles: we begin with a very coarse mesh and the following
mesh is obtained by the natural subdivision of each triangle in four triangles. We then compute the ®nite
element solution uh on each mesh. As previously noticed, the error kuÿ uhk is approximated by kuhref

ÿ uhk.
The latter expression is estimated by krh��Ihuhref

� ÿ uh�k� where Ih denotes the Lagrange interpolation
operator, rh��Ihuhref

� ÿ uh� is the stress tensor ®eld associated with �Ihuhref
� ÿ uh and k � k� stands for the

standard L2�X1 [ X2�-norm de®ned on the space of tensor ®elds. The most re®ned mesh is the reference
mesh. For obvious reasons, the error can not be estimated by taking uh � uhref

and we choose the most
re®ned mesh for error computations such that h � 4href . We are interested in the rate of convergence de-
noted a such that kuhref

ÿ uhk=kuhref
k � Cha

1, where the notation h1 represents the discretization parameter of
the upper body.
· Comparison between matching and nonmatching meshes with global contact: We consider the contact

problem of Fig. 2. In order to avoid singularities of Dirichlet Neumann type, we adopt symmetry
conditions.

The length of the edges of the bodies in Fig. 2 is 1 mm and plane strain conditions are assumed. We
choose a Poisson's ratio of 0:2 for both solids and Young's modulus E1 � 13 000 Mpa and
E2 � 30 000 Mpa for the upper and the lower body, respectively. The applied loads on the two parts
of the boundary of the upper body are 100 daN/mm2.
In the matching case with node-on-node contact conditions, the reference solution is obtained with
meshes corresponding to 66 564 d.f. and 65 536 triangular elements. The contact zone comprises
128 matching meshes and we use the node-on-node contact condition. The relative normal displace-
ment on the contact zone for the reference problem is represented in Fig. 3. The error is estimated by
using 5 nested meshes and the most re®ned comprises 32 matching meshes on the contact zone.
In the nonmatching case with global contact conditions, the reference solution is obtained with meshes
corresponding to 28 804 d.f. and 28 160 triangular elements. The reference mesh contains 65 nodes of
the upper body and 97 nodes of the lower body on the contact zone. The curve of the error is obtained
with 4 nested meshes, the most re®ned having on the contact zone 17 nodes of the upper mesh and 25
of the lower mesh.

11



Fig. 4 depicts the convergence rate of the relative error (in the energy norm) as a function of the dis-
cretization parameter h1 of the upper body. The mean value of the convergence rate is a � 1:21 in the
matching case and a � 1:26 in the nonmatching case. Let us notice that the study of the convergence
in the L2-norm of the error instead of the H 1-norm, yields the following mean values of the
convergence rates: a � 1:75 in the matching case and a � 1:69 in the nonmatching case. The two dot-
ted curves of Fig. 5 show the relative error in the energy norm as a function of the number of d.f.
On this example, the convergence rates are not weakened when nonmatching meshes and global con-
tact conditions are used, as already proved in a theoretical context.

· Comparison between global and local contact conditions: Now, we intend to compare the numerical con-
vergence rates corresponding to global and local contact conditions.

Let us consider the problem of Fig. 2. Henceforward, we lay emphasis on the case of nonmatching
meshes. We choose a nonmatching reference mesh corresponding to 64388 d.f. and 63488 triangular
elements. On the contact zone, there are 65 nodes of the upper body and 161 nodes of the lower
body.
For both contact conditions, the computation of the error is done with 4 nested meshes and the
most re®ned mesh comprises 17 nodes of the upper solid and 41 nodes of the lower solid on the

Fig. 3. The relative normal displacement on the contact zone for the reference problem.

Fig. 2. Reference problem.
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contact zone. Notice that the calculation using the two contact conditions is achieved with the same
meshes.
The mean value of the convergence rate of the error (in the energy norm) as a function of the discret-
ization parameter h1 of the upper body is a � 1:26 in the global case and a � 0:98 in the local case.
The convergence rates in the L2-norm are as follows: a � 1:69 with global contact and a � 1:53 with
local contact.

Fig. 4. The convergence curves for matching meshes with node on node contact condition (o) and for nonmatching meshes with global

contact condition (�).

Fig. 5. The convergence curves for node on node (+), global (o) and local (�) contact conditions (the two dotted lines correspond to

the curves of Fig. 4).
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The two full curves in Fig. 5 represent the convergence rates of the error (in the energy norm) as a
function of the number of d.f. associated with the nested meshes.
Owing to the test, it seems that the behaviour of the error is better in the global case than in the local
case.

5.2. Test 2: a qualitative comparison between global and local contacts

The geometry of the problem and the ®nite element meshes are shown in Fig. 6. The geometrical and
material characteristics of both bodies are the same as in the ®rst test and we apply a uniform load of
100 daN/mm2 on the top of the upper body.

We consider the discretization with nonmatching meshes depicted in Fig. 6 and we compare the two
di�erent contact conditions (global and local) with this con®guration.

The di�erence between the solutions of global and local type is considerable. Using the same number of
inequalities (13) corresponding to the number of nodes of the upper body on the contact zone, the global
contact approach yields a very satisfactory solution in Fig. 7 (with an undetectable interpenetration and a
straight contact zone), whereas the local contact approach shows a quite unacceptable solution (with an
important interpenetration of the bodies) in Fig. 8.

Then, we consider the stress ®elds rglo and rloc (obtained from the displacement ®elds with the con-
stitutive law). We intend to compare the component rglo

yy of rglo with the component rloc
yy of rloc, where y

denotes the vertical. The exact solution for this problem is a uniform ryy ®eld of value ÿ100.
In the case of global contact, the obtained rglo

yy ®eld is quasi-uniform (minimum value � ÿ100:00008;
maximum value � ÿ99:99990) as shown in Fig. 9. On the contrary, the local contact approach yields a ®eld
rloc

yy which is not at all uniform (minimum value � ÿ233, maximum value � ÿ5), particularly near the
contact zone (see Fig. 10).

Finally, Fig. 11 shows the Lagrange multipliers equal to �A1�ÿ1U0. The mass matrix A1 has been in-
troduced in (4.5) and U0 is the solution of the minimization problem (4.7) in the global case and of (4.11) in
the local case. These multipliers, de®ned on the contact zone, express the normal stresses (exact value �

Fig. 6. The reference problem and the meshes.
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ÿ100). Once again, we notice the quite good value of the global contact multiplier and the important
irregularities of the multiplier obtained when using local contact conditions.

If we choose the symmetrical de®nition of the contact condition (3.3) (see Remark 3.1) and the sym-
metrical de®nition of the contact condition (3.4), we obtain the deformed con®gurations of Figs. 12 and 13.
In this case, the di�erence between the global and the local contact conditions is obviously less signi®cant
than in the previous comparison but the global solution remains a bit better.

As in the symmetrical case, we consider the stress ®elds rglo and rloc. In the case of global contact, the
obtained rglo

yy ®eld is still quasi-uniform (minimum value � ÿ100:0032; maximum value � ÿ99:9965) as
shown in Fig. 14. Notice that the local approach gives a suitable ®eld rloc

yy (minimum
value � ÿ101:86; maximum value � ÿ95:935, see Fig. 15). Concerning the Lagrange multipliers depicted
in Fig. 16, we can still notice the very good results given by the global approach and the satisfactory
solution yielded by the local conditions.

Fig. 7. Deformed con®guration with global contact (ampli®cation: 100).

Fig. 8. Deformed con®guration with local contact (ampli®cation: 100).
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From this test, it becomes manifest that the local contact approach must be avoided, especially when
de®ning the constraints on the coarser grid. Let us remark that the meshes have been chosen precisely to
show a great di�erence between the two results. Talking of that, we notice that 13 inequalities of local type
(or of node-on-segment type) describe in a very poor way the contact, whereas the 13 inequalities of global
type are quite representative. This also explains the spectacular superiority of the global contact approach.

When de®ning the contact conditions on the ®ner grid, the di�erence between the two approaches is less
signi®cant but the global technique still leads to better results.

Fig. 9. The rglo
yy ®eld obtained with global contact (minimum value 100:00008; maximum value 99:99990).

Fig. 10. The rloc
yy ®eld obtained with local contact (minimum value 233:77; maximum value 5:42).
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5.3. Test 3: A case with an initial gap

Fig. 17 shows the contact problem between an elastic half-disc and an elastic support. The aim of this
example is to try to adapt the global contact procedure to a more general context than the previous ones.

In such a con®guration, we have to consider nonmatching meshes, on account of the geometries of the
bodies. Moreover, there is an initial gap and consequently, there are points of the boundaries initially not in
contact which will come into contact after deformation. So, we de®ne the contact by introducing an ex-
tended global condition which takes into account of the initial gap (see Remark 4.2). We choose end points

Fig. 11. Lagrange multipliers corresponding to global (o) and local (x) conditions.

Fig. 12. Deformed con®guration with the symmetrical de®nition of global contact (ampli®cation: 100).
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c1 � �xc1
; yc1
�; c2 � �xc2

; yc2
� on oX1 and d1 � �xd1

; yd1
�; d2 � �xd2

; yd2
� on oX2 satisfying xc1

� xd1
and

xc2
� xd2

. The latter construction is achieved in order to have a common interface Cc � �d1; d2�, where we
can project (in the vertical direction) the nodes of the arc of the circle �c1; c2� and de®ne the global contact
conditions.

The half-disc is 20 mm in diameter and the length of an edge of the support is 40 mm. A Poisson's ratio
of 0.2 for both solids, Young's modulus E1 � 25 000 Mpa for the upper body and E2 � 15 000 Mpa for the
lower body are assumed. The applied loads on the top are 500 daN/mm2.

Fig. 13. Deformed con®guration with the symmetrical de®nition of local contact (ampli®cation: 100).

Fig. 14. The rglo
yy ®eld obtained with the symmetrical de®nition of global contact (minimum value 100:0032; maximum

value 99:9965).
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The initial and the deformed con®gurations are depicted in Fig. 18. Fig. 19 represents the initial and the
deformed meshes near the contact zone, and we observe a deformed con®guration which seems quite
satisfactory, particularly on the contact part.

Fig. 15. The rloc
yy ®eld obtained with the symmetrical de®nition of local contact (minimum value 101:86, maximum value

95:935).

Fig. 16. Lagrange multipliers corresponding to symmetrical global (o) and symmetrical local (�) conditions.
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Fig. 17. Reference problem.

Fig. 18. The initial and the deformed con®gurations.
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The contact pressure (given by the Lagrange multiplier) on the arc of the circle �c1; c2� on oX1 is depicted
in Fig. 20. By using the generalized load vectors on the nodes of �d1; d2� on oX2, it becomes possible to
obtain the contact pressure on �d1; d2� as shown in Fig. 21.

Fig. 19. The initial and the deformed meshes near the contact zone.

Fig. 20. The contact pressure on the arc of the circle �c1; c2� on oX1.
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5.4. Test 4: Taking into account quasi-matching meshes and strong variations of the contact pressure

The purpose of this last example is to show how the global contact conditions can take into account
quasi-matching meshes and strong variations of the contact pressure.

Let us consider the contact problem of Fig. 22. The dimensions of X1 and X2 are 1� 0:05 mm. A
Poisson's ratio of 0:2 for both solids, Young's modulus E1 � 25 000 Mpa for the upper body and
E2 � 15 000 Mpa for the lower body are assumed. The applied loads are 100 daN/mm2. The mesh of X1

divides Cc into 120 identical segments and the mesh of X2 divides Cc into 121 identical segments as
suggested in Fig. 23. The deformed meshes are shown in Fig. 24 and the generalized loads at the nodes of
X1 on Cc are depicted in Fig. 25. Finally, the multiplier, representing the contact pressure is obtained
by using the latter loads (see Fig. 26). As already noticed in Remark 4.1, the multiplier is not always
nonpositive.

As a result, this example shows that the global contact procedure takes into account strong variations of
the contact pressure (and meshes which seem di�cult to handle) in a satisfactory way.

Fig. 22. Setting of the problem.

Fig. 21. The contact pressure on the segment �d1; d2� on oX2.
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Fig. 26. The multiplier representing the contact pressure.

Fig. 23. The meshes (left part of the structure).

Fig. 24. The deformed con®guration.

Fig. 25. The generalized loads at the nodes of X1 on Cc.
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6. Conclusion and perspectives

In order to solve the unilateral contact problem between two elastic bodies, we have considered two ®nite
element approximations (one global, one local) of order one using nonmatching meshes on the contact
zone.

We have proved that the global approximation extends in an optimal way the results of Haslinger et al.
[16], established in the case of matching meshes and we have obtained a convergence result in the case of the
local approach. The methods have been compared and we come to the conclusion that the global approach
could be a promising technique.

For frictional contact, the global contact condition can also be used, and the ®rst theoretical studies can
be found in [3,18]. In other respects, it would be interesting to use other minimization algorithms, in
particular Newton like minimization techniques (see [2]). Finally, the extension of such a global contact
technique to three dimensional problems by using the results of [4] is the following study which should be
investigated.
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