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ABSTRACT. In this work, we used a finite element method for the boundary value problem governing
the ignition of a solid reactant undergoing slow oxidation in an arbitrary domain. We also investigate
the effect of various parameters on the temperature distribution profiles.

RÉSUMÉ. Dans ce travail, nous avons utilisé une méthode des éléments finis pour le problème de
la valeur limite régissant l’allumage d’un réactif solide qui subit une oxydation lente dans un domaine
quelconque. Nous étudions aussi l’effet de différents paramètres sur les profils de distribution de
température.

KEYWORDS : Finite element method, exothermic reaction, Biot number, Arrhenius kinetics.

MOTS-CLÉS : méthode des éléments finis, réaction exothermique, nombre de Biot, la cinétique
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1. Introduction
The problem of self-ignition of energetic materials is of great importance in the field

of safe use and storage of explosives and pyrotechnics. The self -ignition occurs when an
explosive substance is heated to a temperature sufficient for the decomposition process
begins to produce significant exothermic effects. Then there is a release of heat, accom-
panied by a rise in temperature and velocity of thermal decomposition. This causes a
thermal runaway generating an explosion that can sometimes produce a devastating det-
onation wave. These phenomena were first studied analytically and Frank-Kamenetskii
[1] has developed the quasi-stationary theory of thermal explosion for determining the
critical conditions for self-ignition of explosives.

Many problems of practical importance in ignition theory involve the definition and
determination of either the critical ambient temperature or the critical initial tempera-
ture. These phenomena were first subject to analytical studies and Frank-Kamenetskii [I]
developed the theory of quasi-stationary thermal explosion, which identifies the critical
conditions for self-ignition of explosive substances.

After the pioneer work of Frank-Kamenetskii [1], various aspects of these
phenomena were studied intensively by many authors, including [2-6]. The book [7]

contains a part of these investigations and a large bibliography.
When reactant consumption is neglected, the equation for the heat balance in a bounded

domain Ω, can be written as:

k∆T + C0QA exp(− E

RT
) = c

∂T

∂t
in Ω [1]

with the boundary condition

k
∂T

∂n
+H(T − Ta) = 0 on ∂Ω [2]

Where k is the thermal conductivity, c is the thermal capacity, C0 is the initial concen-
tration of the reactant species assumed constant, Q is the heat of reaction.

According to the Arrhenius law, the dependence of the rate constant on the absolute
temperature has the formA exp(− E

RT ) , whereE is the activation energy,R the universal
gas constant. Ta is the ambient temperature, H is the heat transfer coefficient. ∂T∂n is the
normal derivative of the temperature, n is the outward normal vector on the boundary .

Following Balakrishnan et al [4], we introduce the following dimensionless variables
in Eq. 1:

u = ( E
RT 2

a
)(T − Ta), ε =(RTa

E ), Bi = Ha0
k , δ =

QσAEa20
kRT 2

a
exp(− E

RTa
).

and obtain the dimensionless governing equation together with the corresponding
boundary conditions as:

∆u+ δ exp(
u

1 + εu
) = 0 on Ω [3]



∂u

∂n
+Biu = 0 on ∂Ω [4]

δ is the Frank-Kamenetskii parameter, Bi is the Biot number and a0 is some charac-
teristic length scale of the problem.

One of the commonly used formulation is the exponential approximation of Frank-
Kamenetskii, in which ε is supposed so small to be neglected. So the problem (3-4) is
reduced to the following nonlinear eigenvalue problem:{

∆u+ δ exp(u) = 0 x ∈ Ω
∂u
∂n +Biu = 0 x ∈ ∂Ω

[5]

The problem (5) have been studied both analytically and numerically, for simple class
A geometries (infinite cylinder, infinite slab, and a sphere) and also for some non class A
geometries [4]. Thermal ignition in all these geometries can be formulated using a single
variable [1, 4, 8-9].

Thermal stability analysis in the theory of thermal ignition, with or without considera-
tion of consumption and diffusion of the reactant, has generally been performed using the
Frank-Kamenetskii number as a parameter of bifurcation, ε is kept fixed. But this num-
ber dissimulates the role of the most practically significant control variable, namely the
ambient temperature. Several authors [10-13] have assessed thermal ignition models with
regard to multiplicity and stability of these steady states using the dimensionless ambient
temperature.

In terms of the following dimensionless quantities:

u = RT
E , U = RTa

E , λ =
Ra20QC0A

KE

the governing steady state of heat balance are reduced to:{
∆u+ λ exp(− 1

u ) = 0 x ∈ Ω
∂u
∂n +Bi(u− U) = 0 x ∈ ∂Ω

[6]

The aim is to determine the critical value of U , say Ucrit, beyond which multiple
solutions of the problem (6) occur.

In this paper we first show how to use the finite element method to find an approxi-
mation of the solution of the problem (6). This can be done using a fixed point iteration
method that we will describe below. Then, we deal with the study of the stability and
bifurcation using the block Lanczos algorithm.

2. Computational method

2.1. Variational Formulation :
In this section we first derive a variational formulation of the boundary value problem

(6) subject to Robin boundary condition.



We multiply the equation (6.1) by a test function v ε H1(Ω) multiply, integrate and
use Green’s formula to obtain:∫

Ω

∇u∇v dx+Bi

∫
∂Ω

uvdS+

∫
Ω

λ exp(− 1

u
) vdx = BiU

∫
∂Ω

vdS , ∀v ∈ H1(Ω)[7]

It is obvious that the left term of this expression is not a bilinear form. Therefore the
Lax-Milgram theorem cannot be applied here.

To solve this problem, we must linearize the problem in order to bring the solution
to a series of linear problem converging to the solution of the initial nonlinear problem.
We have several approaches to deal with such problems in particular Picard method or
Newton method.

2.2. Picard’s method :

We briefly recall the principle of Picard’s method (or successive iterations), which is
a variant of the fixed-point method.

Let the matrix system:

Ku = f [8]

as a result of the finite element discretization of a non-linear problem, where K is the
stiffness matrix, u the unknown vector and f the ‘load vector’. K may be linear or not.

The residue R, which is defined by: R = f −Ku is a measure of the distance from
the solution.

The methods of solving nonlinear systems are all iterative. At every step, they calcu-
late du , the solution increment defined by: du = ui+1 − ui , where i is the index of the
iteration.

One seeks the convergence of the system by successive approximations. This conver-
gence can be measured by a standard of the increment or a norm of R. du residue, the
solution increment can also be seen as a descent direction, down to the zero residue, i.e.
to the solution.

The method of Picard is a fixed point method [14]. It is defined by:

K(ui)ui+1 = f(ui) given u0 [9]

which can also be written as:

K(ui)du = R(ui)

for the solution increment du.
an accuracy of ε is required the process may be terminated by setting a criterion:

max ‖ui+ − ui‖ ≺ ε

With ‖ . ‖ is the Euclidian norm.
Rather than being recalculated at each iteration, the matrix K can be maintained con-

stant over a number of sub-iterations.



At convergence, and if the solution exists, then it satisfies (8). The advantage of this
method lies in the existence of a large enough radius of convergence that allows us not to
worry too much about the initial approximation. In return, its convergence rate remains
often too slow for practical applications of interest. We can then use a relaxation method
speeding a little bit the scheme (9). The latter is defined as follows:{

K(ui)u∗ = f(ui) , u0given
ui+1 = αui+1 + (1− α)u∗ , 0 ≤ α ≤ 1

[10]

2.3. Method of solution

After the choice of appropriate finite elements by a method adapted from discretization
in space, the system of nonlinear equations resulting system (7) is solved using techniques
such as Newton’s method or the method of Picard.

The discrete problem arises as usual by restricting V = H1(Ω) to a discrete space
Vh according to some mesh with some element type. Similarly, we let ud be the discrete
solution, so the discrete nonlinear problem is then written as: find ud such that:

F (ud, v) = L(v).

with ud =
∑N
j=1 αjΦj . Since F is a nonlinear function of ud, the variational state-

ment gives rise to a system of nonlinear algebraic equations. Picard’s method can be used
in alternative way for solving a nonlinear PDE problem.

We simply use a known, previous solution in the nonlinear terms so that these terms
become linear in the unknown ud.For our particular problem, we use a known, previous
solution in the coefficient e−

1
u .

More precisely, given a solution uk from iteration k, we seek a new (hopefully im-
proved) solution uk+1 in iteration k + 1 such that uk+1 solves the linear problem,{

∆uk+1 + λ exp(− 1
uk ) = 0 x ∈ Ω

∂uk+1

∂n +Bi(uk+1 − U) = 0 x ∈ ∂Ω
[11]

The iterations require an initial guess u0. The hope is that uk −→ ud as k → ∞, and
that uk+1 is sufficiently close to the exact solution ud of the discrete problem after just a
few iterations.

We can easily formulate a variational problem for uk+1 from the last equation. Equiv-
alently, we can approximate e−

1
u to obtain the same linear variational problem. Therefore,

the problem consists of seeking uk+1εVh such that :

a(uk+1, v) = L(v) , ∀v ∈ Vh [12]
whith :

a(uk+1, v) =
∫

Ω
∇uk+1∇v dx+Bi

∫
∂Ω

uk+1vdS
L(v) = BiU

∫
∂Ω
vdS − λ

∫
Ω
v exp(− 1

uk ) dx



The iterations can be stopped when ε =‖ uk+1 − uk ‖≺ tol where tol is a small
tolerance, or when the number of iterations exceed some critical limit. The latter case will
pick up divergence of the method or unacceptable slow convergence.

Note that the existence and uniqueness of the solution of problem (12) is established
through the Lax-Milgram theorem [15].

Thus, Picard’s linearization reads as follows:
Find uk+1 such that :

∫
Ω
∇uk+1∇v dx+Bi

∫
∂Ω

uk+1 vdS = BiU
∫
∂Ω
vdS − λ

∫
Ω
v exp( − 1

uk ) dx ,
given u0

2.4. Numerical results

In this section we first present the spatial discretization using finite element method
with P1 continuous piecewise linear functions. Then we develop all the steps of the
FreeFem++ code to solve the problem by using the technique of mesh adaptation and
at the end we present some numerical results.

To discretize (12), let Th denote a regular, quasi uniform triangulation of Ω with trian-
gles of maximum size h ≺ 1. Let Vh =

{
vh ∈ C0(_Ω), vh/T ∈ P1(T ),∀T ∈ Th

}
denote

a finite dimensional subspace of H1(Ω) where P1 is the set of polynomials of degrees
≤ 1 .

Let Ω be the rectangle [0, 1] × [0, 1] , the triangulation Th of Ω is automatically gen-
erated by using a FreeFem command (Figure1) .

Figure 1 : mesh Th.

In Figures 2-4, we present the evolution of the temperature profiles according to dif-
ferent parameters (λ, U , Bi).



Figure 2 : Temperature distribution profile for λ = 1, U = 1, Bi = 1.

Figure 3 : Temperature distribution profile for λ =10, U = 10, Bi = 1000.

Figure 4 : Temperature distribution profile for λ= 9, U = 1, Bi = 1.

These solutions are in agreement with those obtaind by Balakrishnan et al. [4] by
means of the shape factor method based on finite difference approximation.



3. Conclusion

Analysis has been carried out for steady state of exothermic chemical reaction of com-
bustible material, in an arbitrary domain, with convective boundary conditions. The non-
linear PDE governing the problem are solved numerically using a FEM approach based
on Picard’s method. We have presented a numerical approach with FreeFem software, and
we established the adequacy of the chosen finite element discretization by comparing the
results with those of Balakrishnan et al. [4]. Thermal stability of such problems remains to
be investigated. This can be undertaken using methods such as block Lanczos algorithm
or Hermite-Padé approximations.
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