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In this paper, the Restricted additive Schwarz (RAS) method is applied to solve a nonlinear partial differential equations (PDEs). To accelerate the RAS iterations, we propose to apply vector ε-algorithm. Some convergence analysis of the proposed method is presented, and applied succeffully to Bratu problem. The obtained results show the efficiency of the proposed approach. Moreover, the algorithm yields much faster convergence than the classical Schwarz iterations.

RÉSUMÉ.

Dans ce papier, on applique la méthode de Schwarz additif restreint (RAS), pour résoudre un problème aux limites non linéaire. On applique ensuite une méthode d'accélération des itérations de Schwarz basée sur l'epsilon algorithme vectoriel (ε-algorithme). Nous présentons par la suite une analyse de la convergence de la méthode que nous validons sur l'exemple du problème non linéaire de Bratu. Les résultats obtenus montrent l'efficacité de l'approche proposée, de plus ces résultats montrent également que l'algorithme converge plus rapidement que la méthode de Schwarz classique.

Introduction

In scientific computing, the domain decomposition methods are now commonly used when solving large linear or nonlinear systems arising from the discretization of partial differential equations PDEs [START_REF] Quarteroni | Domain decomposition methods for PDEs[END_REF][START_REF] Smith | Domain decomposition: parallel multilevel methods for elliptic partial differential equations[END_REF][START_REF] Jacques | Introduction au méthodes de décomposition de domaine[END_REF]. The first models of these methods have been established by H.A.Schwarz, the idea is to decompose a large problem into a series of smaller sub-problems, and therefore more easily resolved. There are several variant of the Schwarz method, for example additive Schwarz method (AS), and the restricted additive schwarz method (RAS) [START_REF] Formmer | An algebraic convergence theory for restricted additive schwarz methods using weighted max norms[END_REF][START_REF] Cai | A restricted additive Schwarz preconditioner for general sparse linear systems[END_REF][START_REF] Efstathiou | Why restricted additive Schwarz converges faster than additive Schwarz[END_REF][START_REF] Nabben | Convergence theory of restricted multiplicative Schwarz methods[END_REF].

In numerical analysis, the ε-algorithm is a nonlinear algorithm for accelerating the convergence of numerical sequences. This algorithm was proposed by Peter Wynn to calculate the Shanks transformation [START_REF] Brezinski | Variations on Richardson's method and acceleration[END_REF][START_REF] Brezinski | Accélération de la convergence en analyse numérique[END_REF]. There are different variants of the ε-algorithm that can be used with vector sequences (vector ε-algorithm, topological or scalar applied to each component of the vector) [START_REF] Salam | On the vector εalgorithm for solving linear systems of equations, Numerical Algorithms[END_REF][START_REF] Brezinski | Méthodes d'accélération de la convergence en analyse numérique[END_REF][START_REF] Brezinski | Variations on Richardson's method and acceleration[END_REF][START_REF] Brezinski | Accélération de la convergence en analyse numérique[END_REF][START_REF] Roland | Méthodes d'accélération de convergence en analyse numérique et en statistique[END_REF].

In litterature, there exist several works in which we apply the acceleration method to Schwarz iterations, for example, in [START_REF] Duminil | Nonlinear Schwarz iterations with reduced rank extrapolation[END_REF], the authors propose an algorithm based on polynomial methods especially the reduced rank extrapolation method (RRE), in [START_REF] Linel | Méthodes de décomposition de domaine en temps et en espace pour la résolution de systèmes d'EDOs non-linéaires[END_REF], the authors accelerate Schwarz iterations for the ordinary differential equations ODEs, using epsilon algorithm. There exist many other authors that have proposed different ideas for accelerating domain decomposition methods [START_REF] Lube | Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems[END_REF]24,[START_REF] Garbey | Acceleration of the Schwarz method for elliptic problems[END_REF][START_REF] Garbey | On some Aitken-like acceleration of the Schwarz method[END_REF][START_REF] Linel | TROMEUR-DERVOUT " Aitken-schwarz and schur complement methods for time domain decomposition[END_REF]. The purpose of this paper is to accelerate the nonlinear iterative Schwarz, using the vector ε-algorithm for PDEs. In particular we treat the nonlinear reaction diffusion problems. We apply this algorithm to the sequences of vectors produced by AS, and RAS methods, and we show experimentally that the proposed algorithm can provide faster convergence measured both in number of iterations and in CPU Times

Iterative Schwarz Methods

Linear Schwarz iterations

We consider the following problem

L(u) = f in Ω Bu = g on ∂Ω [1]
where L is a linear operator, B is a boundary operator and Ω is a bounded domain of

R d (d = 1, 2, ..).
H.A.Schwarz proposed an iterative method for the solution of classical boundary value problems. There are several variants of Schwarz algorithms, additive, multiplicative, and several hybrid types, a number of them are discussed in detail in [START_REF] Dryja | Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions[END_REF][START_REF] Lottes | Hybrid multigrid/Schwarz algorithms for the spectral element method[END_REF].

In the present work, we have considered the additive Schwarz method .

Let consider these notations, Ω as a union of nonoverlapping domains Ω j , j = 1, .., p and

Γ j = ∂Ω j ∩ ∂Ω, Γ ij = ∂Ω i ∩ Ω j . τ is the Richardson parameter (0 < τ ≤ 1/p).
The additive Schwarz algorithm in the Richardson version is written as follows:

F or n = 0, ...

F or each j = 1, ..., p solve    L(v n+1,j ) = f in Ω j Bv n+1,j = g on ∂Γ j v n+1,j = u n on ∂Ω j \Γ j Compute w n+1 = v n+1,1 + ... + v n+1,p U pdate u n+1 = (1 -pτ )u n + τ w n+1
The discretization of problem 1 leads to a linear system of equations of the form

Au = f [2]
where A is the discretization matrix by a numerical methods (Finite element, Finite Difference , or finite volume). We use the same notation f after discretization. a stationary iterative method for 2 is given by

u n+1 = u n + M -1 (f -Au n ) [3]
with a given initial approximation u 0 to the solution of 2. Algebraic domain decomposition methods group the unknowns into subsets, u j = R j u, j = 1, ..., p, where R j are rectangular restriction matrices. Coefficient matrices for subdomain problems are defined by A j = R j AR T j . The additive Schwarz (AS) preconditioner , and the restricted additive Schwarz (RAS) preconditioner are defined by:

M -1 AS = p j=1 R T j A -1 j R j , C M -1 RAS = p j=1 RT j A -1 j R j [4]
where the RT j correspond to a non-overlapping decomposition, and it consists of zeroes and ones, in such a way that p j=1

RT j R j = I.
The additive Schwarz method constructs the sequence of approximations {u n } n∈N by setting :

u n+1 = u n + p j=1 R T j A -1 j R j (f -Au n ) n = 0, 1, ... [5]
The restricted additive Schwarz (RAS) algorithm is given by :

u n+1 = u n + p j=1 RT j A -1 j R j (f -Au n ) n = 0, 1, ... [6]

Nonlinear Schwarz iterations

Consider now the problem 1 with a nonlinear operator L. After discretization, we obtain an algebric non linear system

F (u) = 0 [7]
we transform this problem to a fixed point form

G(u) = u [8]
where F and G are two mappings from R n → R n . using the same notation as before, we define G on each subdomain Ω j , j = 1, 2, ..., p, as follows :

G j (X) = R j G( R T j (X)) [9]
the corresponding nonlinear restricted Schwarz method is defined by

u n+1 = u n + p j=1 RT j G j (R j (u n ))n = 0, 1, ..., [10] 
we also consider for the solution of 5 the Schwarz-Newton methods, where in each subdomain, the non linear problem is solved by a Newton, see [START_REF] Oana | Résolution des équations d'Euler[END_REF][START_REF] Cai | Inexact Newton methods with restricted additive Schwarz based nonlinear elimination for problems with high local nonlinearity[END_REF].

The Vector ε-Algorithm

Definitions and properties

The εalgorithm is a nonlinear extrapolation method for accelerating the convergence of sequences, one can say also that this is a generalization of Aitken method [START_REF] Brezinski | Méthodes d'accélération de la convergence en analyse numérique[END_REF][START_REF] Brezinski | Accélération de la convergence en analyse numérique[END_REF]. There exist several versions of the epsilon algorithm( topological, scalar, and vector epsilon algorithm) [START_REF] Salam | On the vector εalgorithm for solving linear systems of equations, Numerical Algorithms[END_REF][START_REF] Brezinski | Méthodes d'accélération de la convergence en analyse numérique[END_REF][START_REF] Brezinski | Accélération de la convergence en analyse numérique[END_REF].

In this work, we are only interested in the vector form. We consider thereafter the fundamental algebraic results in the theory of the vector ε-algorithm.

Before that, we recall some results concerning the Aitken's process.

Definition 3.1 Let U = (u n ) n∈N be a sequence of real numbers, the ∆ 2 Aitken process consists to transform the sequence

(u n ) in a new sequence ε (n)
2 defined by :

ε n 2 = u n+2 u n -u 2 n+1 ∆ 2 u n Theorem 3.1 If the sequence U = (u n ) n∈N satisfies the condition lim n→∞ (u n+1 -u)/(u n -u) = lim n→∞ ∆u n+1 /∆u n = ρ = 1
then the sequence ε n 2 converges to u faster than u n+1 . Proof. see for example [START_REF] Brezinski | Accélération de la convergence en analyse numérique[END_REF].

Writing ε

(n)
2 based on determinants:

ε (n) 2 = u n u n+1 ∆u n ∆u n+1 1 1 ∆u n ∆u n+1
we seek the conditions on (u n ) that verifies ε

(n) 2
= u for n > N (N is a given rank), therefore, we have the following theorems Theorem 3.2 A necessary and sufficient condition to have ε

(n) 2 = u ∀n > N , is that the sequence (u n ) verifies a 0 (u n -u) + a 1 (u n+1 -u) = 0 ∀n > N ,with a 0 + a 1 = 0
This theorem can be generalized to high order using a non-linear acceleration method, the Shanks transformation [START_REF] Salam | On the vector εalgorithm for solving linear systems of equations, Numerical Algorithms[END_REF][START_REF] Brezinski | Accélération de la convergence en analyse numérique[END_REF].

This transformation called e n k (U ) is built such that e n k (U ) = u ∀n > N, and it consists in computing the quantities e n k (U ) as follows

e n k (U ) = k i=0 a (n,k) i u n+i ∀n > N with k i=0 a (n,k) i = 1
from these equations, it is easy to obtain a determinantal formula for e n k (U )

e n k (U ) = u n ... u n+k ∆u n ... ∆u n+k . . . . . . ∆u n+k-1 ∆u n+2k-1 1 ... 1 ∆u n ... ∆u n+k . . . . . . ∆u n+k-1 ∆u n+2k-1 with k i=0 a (n,k) i = 1
where ∆ is the difference operator ∆u n = u n+1 -u n .

the previous results leads to the following theorem.

Theorem 3.3 If for a fixed k, the sequence U is such that there exists u ∈ R and a 0 , ..., a k ∈ R with

k i=0 a i = 0 satisfying k i=0 a i (u n+i -u) = 0 ∀n > N then e n k (U ) = ε (n) 2k = u ∀n > N.
The proof of Theorem 3.2 and Theorem 3.3 are given for example in [START_REF] Salam | On the vector εalgorithm for solving linear systems of equations, Numerical Algorithms[END_REF][START_REF] Brezinski | Accélération de la convergence en analyse numérique[END_REF][START_REF] Roland | Méthodes d'accélération de convergence en analyse numérique et en statistique[END_REF].

Remark 1 A recursive rule for computing the quantities e n k (U ) of shanks transformation has been given by Wynn [START_REF] Brezinski | Variations on Richardson's method and acceleration[END_REF][START_REF] Brezinski | Accélération de la convergence en analyse numérique[END_REF]. These quantities can be computed by the following ε-algorithm:

ε (n) -1 = 0 ε (n) 0 = U n n = 0, 1, ... ε (n) k+1 = ε (n+1) k-1 + (∆ε (n) k ) -1
n, k = 0, 1, ... where the inverse of a vector y is defined by:

y -1 = y y 2 2
.

using the theorem 3.3, Gekeler [START_REF] Gekeler | On the solution of systems of equations by the epsilon algorithm of Wynn[END_REF] has proved that vector epsilon algorithm provides a direct method for solving the linear systems of equations.

Theorem 3.4 If we apply the vector ε-algorithm to the sequence {u n } produced by

u n+1 = Au n + b
with a given u 0 and A is a real square matrix such that I -A is invertible, then we have

ε (n) 2m = u f or n = 0, 1, ...
where u = (I -A) -1 b and m is the degree of minimal polynomial of A for the vector u 0 -u.

Proof Let p(t) = m i=0 a i t i the minimal polynomial of A for the vector u 0 -u, the definition of the minimal polynomial of a matrix for a vector is

m i=0 (a i A i ) (u 0 -u) = 0 the matrix I -A is invertible, therefore p(1) = m i=0 a i = 0 on the other hand, we have u = Au + b so u n+1 -u = A(u n -u) and u k -u = A k (u 0 -u) ∀k0
replacing in p(t) we have

A n m i=0 a i (u i -u) = m i=0 a i (u n+i -u) = 0 ∀n so using Theorem 3.3 we prove that ε (n) 2m = u ∀n ≥ 0

Vector ε-algorithm applied to AS/RAS for linear systems

We consider the following problem :

L(u) = f inΩ Bu = g on∂Ω [11]
In the case where the operator L is linear, a discretization of the equation 11 leads to a linear system of equations of the form

Au = f [12]
The additive Schwarz methods allows to compute the sequence of approximations {u n } n∈N by setting :

u n+1 = u n + M -1 AS (f -Au n ) [13] with M -1 AS = p j=1 R T j A -1 j R j i.e.,         u n+1,1 u n+1,2 . . . u n+1,p         =         u n,1 u n,2 . . . u n,p         +         A 11 A 22 0 . 0 . . A pp         -1         r n,1 r n,2 . . . r n,p        
we can write

u n+1 = B u n + F [14]
where

B = I -M -1 AS A Theorem 3.5 Suppose A and M -1
AS a real square matrices that have the same size such that C = M -1 AS A is non singular. If we apply the vector ε-algorithm to the adiitive Schwarz sequence 14, then ε n 2m = u, where u is the solution of the linear system Cu = F, where m the degree of the minimal polynomial of B .

Proof The solution u is a fixed point of the operator

u → u + M -1 AS (f -Au)
Let P = M AS -A is the difference between A and M AS when 13 converge, it converges to the solution of the preconditioned system

M -1 AS Au = M -1 AS f
by setting y n = u n -u we obtain

u n+1 = u n + M -1 AS (f -Au n ) = (I -M -1 AS (M AS -P ))u n + M -1 AS f = M -1 AS P u n + M -1 AS Au = M -1 AS P u n + M -1 AS (M AS -P )u = u + M -1 AS P (u n -u)
the equivalent system becomes y n+1 = M -1 AS P y n = By n using theorem 3.4, we have ε n 2m = u,where m is the degree of the minimal polynomial of B and we have

P m (B)(u 0 -u) = k n=0 γ n B n (u 0 -u) = k n=0 γ n (u n -u) = 0
where γ n are the coefficients of the polynomial P d such that P d (1) = 1.

Vector ε-algorithm applied to AS/RAS for nonlinear systems

We consider now the nonlinear reaction diffusion problem defined by:

Lu -f (u) = g in Ω [15]
We can write Lu = G(u) in the sense of D (Ω) [START_REF] Dinca | A fixed point method for the p(.)-Laplacien[END_REF] The corresponding discretized problem can be written as follows:

AU = G(U ) ∈ R p [17]
where A is the matrix of the discretized operator L, obtained by the finite elements on a regular grid, G : R p -→ R p is the nonlinear function, and U is the vector containing the approximation of the solution of the continuous problem to grid points. We remark , that if we put F = A -1 G(.), then the problem 17 is equivalent to U = F (U ).

Let solve the following problem:

f ind x ∈ R p such that x = F (x) [18] 
where F : R p -→ R p is differentiable in the sense of Frechet, in a neighborhood of x, m is the degree of minimal polynomial of F (x) for the vector x n -x and r is the multiplicity of the root (λ = 0) for this minimal polynomial.

Knowing x 0 we set u 0 = x n and we solve for k = 1, ..., 2m-r the following iterative problem u k = F (u k-1 ).

To calculate ε (r) 2(m-r) we apply the ε-algorithm to the vectors u 0 , ..., u 2m-r . then we take

x n+1 = ε (r) 2(m-r) .
The application of the epsilon algorithm to the nonlinear RAS provides a method of resolution with quadratic convergence, see [START_REF] Brezinski | Accélération de la convergence en analyse numérique[END_REF].

Theorem 3.6 Let u n+1 = u n + p j=1 RT j F j (R j (u n )) n = 0, 1, ..., [19] 
where F : R p -→ R p is defined on each subdomain

F j (X) = R j F ( R T j (X)) [20]
and

G(u) := F(u) -u = p j=1 RT j F j (u) -u = 0 [21]
If F is differentiable in the sense of Frechet in a neighborhood of u, and I -F (u) is invertible, then there exists a neighborhood V of u such that

∀ x 0 ∈ V x n+1 -u = o( x n -u 2 ) n = 0, 1, ...
Proof If F is differentiable in the sense of Frechet in a neighborhood of u, we have :

u k+1 -u = F (u)(u k -u) + o( u k -u 2 )
Let p(t) = m i=0 a i t i the minimal polynomial of F (u) for the vector u n -u.

Since I -F (u) is invertible, we have p(1) = m i=0 a i = 0. We have : 

u 1 -u = F (u)(u 0 -u) + o( u 0 -u 2 ) and u k -u = [F (u)] k (u 0 -u) + o( u 0 -u 2 ) Replacing in the minimal polynomial m i=0 a i [F (u)] i (x n -u) = m i=0 a i (u i -u) + o( u 0 -u 2 ) = 0 therefore u 0 = x n ,

The algorithm (Epsilon-RAS)

In case of convergence , lim n-→∞ u n = u.

1) choose a starting approximation x 0.

2) set u 0 = x n at the iteration n, and

u k+1 = u k + p j=1 k = 0, ....2m -r.
3) apply the epsilon algorithm to the vectors u 0 , ..., u 2m-r to calculate ε (r) 2(m-r) . 4) compute x n+1 such that

x n+1 = ε (r) 2(m-r) (r = 0 if the partial Frechet derivative of F is invertible)

Numerical Experiments

In this section, we compare the performance of Schwarz iterations with those accelerated with the vector epsilon algorithm in terms of number of iterations and CPU time.

We treat two different applications, the first one in the linear case and the second one in the nonlinear case.

We have implemented the finite element discretization in two spatial dimensions and use the software freefem++ to compute numerical results.

Application to the Bratu problem

We consider now the following nonlinear reaction diffusion problem

-∆u + λe u = f [22]
The domain is the unit square Ω = [0, 1] × [0, 1] decomposed uniformly into p non overlapping subdomains.

Using a finite element discretization, we obtain the following nonlinear system of equations

AX + λe X -b = 0 in Ω [23]
Using FreeFem++, the solution of the problem on all the domain Ω is presented in Fig .1 Let p the number of subdomains, Fig. 2 shows the solution for p=4. The following results reported in Table 1 and in Fig. 3, show the L ∞ Error between the approximate solution and the exact solution of the nonlinear problem for each algorithm. The RAS algorithm reaches the precision 10 -7 for p=36, while the Epsilon-RAS algorithm reaches the same precision only for p=25.

When we compare CPU-Time, it can be observed that additive nonlinear Schwarz and restricted nonlinear Schwarz take too long to converge than their accelerated forms. This shows that the Epsilon-algorithm performs very well for accelerate Schwarz method. The results are reported in Table2 and in Fig. 4 Subdomains(P ) CPU-TimeAS CPU-TimeEpsilon -AS CPU-TimeRAS CPU- 

Conclusion

We have proposed an accelerated form of Schwarz iterations for nonlinear problems (AS-RAS) using the vector epsilon algorithm .

Comparing CPU-Time and the error, we show that this accelerated method is fast and it has a better accuracy than the direct classical Schwarz method.

As perspective of the present work, we can generalize the acceleration method for non stationary PDEs, and apply it to a real modelling case.

  using theorems 3.2 and 3.3 we get ε (r) 2(m-r) = u + o( x n -u 2 ) .
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 2 Fig 2 : Bratu problem: Solution for p=4
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 3 Fig 3 : Bratu problem: Convergence for different number of subdomains p
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 4 Fig 4 : Bratu problem: Convergence for different number of subdomains p

Table 1 .

 1 Bratu problem: Error norm versus p

Table 2 .

 2 Bratu problem. CPU-Time versus p

	TimeEpsilon -RAS