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We present a new approach for the lithosphere-asthenosphere interaction in subduction zones.

The lithosphere is modeled as a Maxwell viscoelastic body sinking in the viscous asthenosphere. Both domains are discretized by the finite element method, and we use a staggered coupling method. The interaction is provided by a nonmatching interface method called the fictitious domain method. We describe a simplified formulation of this numerical technique and present 2-D examples and benchrnarks. We aim at studying the effect of mantle viscosity on the cy dicity of slab folding at the 660 km depth transition zone. Such cyclicity has previously been shown to occur depending on the kinematics of both the overriding and subducting plates, in analog and numerical models that approximate the 660 km depth transition zone as an impenetra ble barrier. Here we applied far-field plate velocities corresponding to those of the South-American and Nazca plates at present. Our models show that the viscosity of the asthenosphere impacts on folding cyclidty and conseq uently on the slab's dip as well as the stress regime of the overriding plate. Values of the mantle viscos ity between 3 and 5 X 10 20 Pa s are found to produce cycles similar to those reported for the Andes, which are of the order of 30-40 Myr (based on magmatism and sedimentological records). Moreover, we discuss the episodic development of horizontal subduction induced by cyclic folding and, hence, propose a new explana tion for episodes of fiat subduction under the South-American plate.

Introduction

Seismic tomography provides a present-day image of subducting plate geometries throughout the Earth's mantle [Rubie and Van der Hifst, 2001;Fukao and Obayash i, 2013). Analytical studies have unraveled the primary driving forces and parameters that contrai such geometries [e.g., [START_REF] Forsyth | On the relative importance of the driving forces of plate motion[END_REF], yet many variations remain unexplained. ln order to fully understand the dynamics of subduction zones, their temporal evolution can only be tackled with numerical, analog, and statistical approaches. Current subduction zone data such as plates velocity, trench motion, back-arc deforrnation, and slab dip were gathered in order to reveal statistical correlations between these parameters [Jaffard, 1986;[START_REF] Heuret | Plate motions, slab dynamics and back arc deformation[END_REF][START_REF] Lallemand | On the relationships between slab dip, back arc stress, upper plate absolute motion, and crustal nature in subduction zones[END_REF].

Heuret and Lallemand (2005) found a general relationship between upper-plate velocity and back-arc deforma tion. Nevertheless, they pointed out a potential role of mantle flow in the relative motions between subducting and overriding plates, and the forces acting on them. Asthenospheric flow data being pooriy constrained, mod eling studies complement our understanding of asthenosphere-lithosphere interactions in subduction zones.

Without disregarding the importance of analog models, we focus here on numerical models. Such models are numerous and can be classified according to their main assumptions. Sorne consider a mantle convection approach, whereby the dynamic system is mainly controlled by slab-pull, which drives the sin king of the sub ducted slab deeper into the mantle [START_REF] Stegman | Influence of trench width on subduction hinge retreat rates in 3 D models of slab rollback[END_REF][START_REF] Morra | A coupled solid fluid method for modell ing subduction[END_REF]Capitanio et al., 201 O;Stegman et al., 201 O;[START_REF] Li | Dynamics of free subduction from 3 D boundary element modeling[END_REF]. Others consider a plate tectonic approach, whereby kinetic condi tions constrain lithospheric displacements [START_REF] Christensen | The influence of trench migration on slab penetration into the lower mande[END_REF]Shemenda, 1993;Cizkova et al., 2002;[START_REF] Zlotnik | Numerical modelling of tectonic plates subduction using x FEM[END_REF][START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF]. Our approach for modeling the dynamics of subduction zones belongs to this second class and is similar to that of [START_REF] Hassani | Study of plate deformation and stress in subduction processes using two dimensional numerical models[END_REF] and [START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF]. Boundary kinematic conditions are imposed at the far edges of the plates, and a density contrast between the lithosphere and the underneath mantle generates the slab-pull. The interaction between the subducting and the overriding plates is modeled, as well as the interaction with an impenetra ble discontinuity at 660 km depth separating the upper and lower mantle. Nonetheless, [START_REF] Hassani | Study of plate deformation and stress in subduction processes using two dimensional numerical models[END_REF] and [START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF] have not taken into account the mantle viscous drag because of the numerical difficulties in coupling the physics of two rheologically different deform able bodies. The present study was motivated by the aim to test the role of mantle viscosity on their results. Subduction dynamics, like other geodynamic problems, can be viewed as a competent body embedded in a more deformable medium. From a mechanical point of view, modeling this solid-fluid interaction requires coupling of two physically distinct domains. Usually this kind of problem, which is widespread in many fields (industry, biomedical research, civil engineering, etc.), is solved with common discretization methods, such as the Finite Element Method (FEM), Finite Differences, or Finîtes Volumes, which allow to salve partial differential equations (PDE) in an approximated form. lntuitively, we could consider the exact discretization of both domains in order to salve the interaction problem, i.e., we have to fit as well as possible the shape of the interface between the two domains. This strategy was used in Bonnardot et al. [2008a) for the lithosphere-asthenosphere interaction, where the fluid and the solid domains are exactly meshed and their joined discrete problem is solved with FEM. As a conse quence, the solid's displacements (and deformation) lead to fluid mesh distortion, and a remeshing tech nique is needed. This last procedure is computationally expensive. Moreover, in a subduction context, the lithosphere is submitted to large deformation and can acquire a complex geometry [e.g., [START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF].

To alleviate the precise meshing of complex geometries, numerical modelers have developed the so-called Fictitious Domain Methods (FDM), also known as "domain embedding methods,' whose name was intro duced by [START_REF] Saul'ev | On solution of some boundary value problems on high performance computers by fictitious domain method[END_REF]. The first application of these methods in fluid-solids problems was credited to [START_REF] Peskin | Flow patterns around heart valves: A numerical method[END_REF] who modeled heart blood flow. The main idea is to extend the initial problem to a bigger (and simpler) domain, aiming for a simpler mesh to salve the given PDE discretized problem. Generally, the initial domain is "embedded" in a Cartesian grid. Many FDM have been developed to salve ail types of phys ical problems. ln fluid modeling (Stokes or Navier-Stokes), one can quote the immersed boundary method [START_REF] Peskin | Flow patterns around heart valves: A numerical method[END_REF][START_REF] Lai | An immersed boundary method with formai second order accuracy and reduced numerical viscosity[END_REF], the immersed interface method [LeVeque and [START_REF] Li | The immersed interface method for elliptic equations with discontinuous coefficients and singular sources[END_REF], the fat boundary method [A.1aury, 2001), the Lagrange multiplier fictitious domain [START_REF] Glowinski | A Lagrange multiplier/fictitious domain method for the Dirichlet problem generalization to some flow problems[END_REF], and the distributed Lagrange multiplier method [START_REF] Glowinski | A distributed Lagrange multiplier/lictitious domain method for particulate flows, /nt[END_REF]. To our knowledge, these kinds of solid-fluid coupling methods have not yet been used in geodynamics. Thus, starting from the Lagrange multiplier fictitious domain, we propose here a simple formulation of a nonmatching interface method.

We developed this new fluid-solid coupling method, using the finite element code ADELI for the solid prob lem [START_REF] Hassani | Study of plate deformation and stress in subduction processes using two dimensional numerical models[END_REF]Chéry et al., 2001) and another standard FEM solver for viscous flow, in order to explore the influence of mantle viscosity on subduction cyclicity. Such cyclicity was revealed by numerical [START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF] and analog [Heuret et al., 2007) models to depend on a specific relationship between plate kinematics, e.g., far-field velocities of the overriding and subducting plates. Other analog and numeri cal models simulating freely sinking plates have also produced slab folding on the 660 discontinuity, depending on plate-mantle viscosity and thickness ratios [START_REF] Schellart | Kinematics and flow patterns in deep mantle and upper mantle subduction models: Influence of the mantle depth and slab to mantle viscosity ratio[END_REF] or on the Stokes buoyancy and effective viscous rigidity of plates [START_REF] Stegman | A regime diagram for subduction styles from 3 D numerical models of free subduction[END_REF]. ln the present study, we only aim at validating our method and at testing the effect of mantle viscosity on the results obtained by [START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF], for a given set of plate density, rheology, and thickness. The assessment of ail rheological parameters and bound ary conditions that contrai the dynamics of subduction zones remains out of our present scope. This paper is structured as follows. First we recall the mechanical and numerical formulations of both the sol id and the flui d modeling approaches. We detail in section 3 the coupling problem in continuous and discrete terms and present our new simplified fictitious domain method. ln section 4, we present some benchmarks and examples. Then, in section 5, we present our parametric study of the effect of mantle viscosity on subduc tion cyclicity taking as example the kinematic conditions corresponding to the Andes. ln section 6, we briefly discuss our results with respect to •tree subduction" scaling analyses. We propose that subduction cyclicity may explain repeated episodes of flat subduction observed along the Andes and how it may also potentially retroact on far-field plate motion. Finally, we present our condusions and prospects for future work.

Mechanical Modeling and Numerical Formulation

As in Moffa and [START_REF] Morra | A coupled solid fluid method for modell ing subduction[END_REF] and Bonnardot et al. [2008b), the lithosphere-asthenosphere system is viewed as a solid-fluid interaction problem where, for reasonable viscosity contrasts, the lithospheric plates behave as sol id bodies which are partially or totally immersed in a viscous fluid, namely, the asthenospheric mantle. ln this first section, we provide the governing equations which are used to mode) the mechanical evolution of each solid and fluid domain and how both interact. We will further detail the fluid-solid interaction in section 3, which is the technical novelty of the present paper.

Governing Equations 2.1.1. Solid Lithospheric Plates

The governing equations for the quasistatic evolution of lithospheric plates occupying a physical domain Q c 11?

2 are { diva+p 1 g=O in Q,, � ; =M(a,d) in n,, (1) 
where <J is the Cauchy stress field, gis the vector of gravity acceleration,

p 1 is lithospheric density, d ½ (v'li+ v'li r )
is the Eulerian strain rate tensor, and li the velocity field. Da/ Dt stands for an objective time derivative and M rep resents a general constitutive law. We assume in this study a simp le elastic or viscoelastic Maxwell behavior

G M(a,d)=2Gd+ltrdl -deva (2) 
,.,

where tr and dev are, respectively, the trace and deviatoric parts of a second-order tensor, / is the identity tensor, À. and Gare the Lamé parameters, and 17 is the viscosity coefficient.

Moreover, plate-plate and plate-rigid foundation interactions are modeled with the following conditions:

{ ôÙn $ 0, /Jn $ 0, ôÙn<Jn l11rl :::; µ11" if oùr o ôÙt • • <J r 1111 n lôùrl i f ôUr / 0 0 on r,, on r,, on r,, (3) 
where ôÜn and Our are, respectively, the normal and tangential components of the relative velocity between two points in contact and µ is the friction coefficient. The normal components on the contact interface r, are computed according to the outward normal vector. The first line of the equation (3) corresponds to the Signorini relations (no interpenetration, no attraction, and complementary condition ) while the two remain ing lines describe the Coulomb friction law. ln addition, boundary conditions are imposed as velocity or stress components on parts of the solid domain boundary ôQ 1 • Figure 1 summarizes the solid model.

Fluid Asthenospheric Mantle

The stationary Stokes problem

{ div� Vp+p 0 g=O in no, divv = O in no, (4) 
is used to compute, at a given time t, the velocity field v, the pressure p, and the viscous stress -r 11 a C'vv+ 'vv T ) in the fluid domain n.,, knowing the viscosity 'l a, the density Pa, and a set of boundary conditions. The latter are expressed as velocity or stress components on a portion of the boundary of the fluid domain ôil.,.

Solid-Fluid Interaction

The continuity of the traction vector is required (action-reaction principle), on the interface r,a shared by the solid (lithosphere) and by the fluid (asthenosphere). Because of the viscosity, the fluid and the solid are perfectly glued to each other, which also implies the continuity of the velocity field on r,a

{V= U on r,a, (-r pl) • n =a• n on r,a, (5) 
The application of our physical mode) to subduction systems presents the following restrictions, which are planned to be tackled in future work:

Viscosity and density remain constant in time, since thermal effects are ignored (as well as phase transi tions). Consequently, our targeted applications are at the moment only valid for subductions zones that are fast enough compared to their thermal diffusion time scale. Viscosity and density also remain constant or piecewise constant in space since matter is not advected.

The upper-lower mantle interface at 660 km depth is modeled as an impenetrable barrier. The mechanism of slab penetration into the lower mantle is thus ignored.

Numerical Formulation 2.2.1. Solid Lithospheric Plates

An approximate solution to the continuous problem (1-3) is computed using the Galerkin finite element code ADELI. ADELI has been used in numerous geodynamical applications, for processes at the crustal scale [e.g., Huc et al., 1998;[START_REF] Got | Deformation and rupture of the oceanic crust may control growth of Hawai ian volcanoes[END_REF] as well as at the lithospheric scale [e.g., [START_REF] Hassani | Study of plate deformation and stress in subduction processes using two dimensional numerical models[END_REF][START_REF] Ché Ry | An integrated mechanical model of the San Andreas Fault in central and northem California[END_REF]Bonnardot et al., 2008b]. This code belongs to the FLAC family of codes [Cundall and Board, 1988;[START_REF] Poliakov | Diapirism and topography[END_REF] and is based on the dynamic relaxation method.

ln order to describe in section 3, our strategy to mode) the solid-fluid interaction, here we recall the time discretization of the equilibrium equation (1) used in ADELI. More details about this code, in two and in three dimensions, can be found in Hass ani et al. [1997] and Ché ry et al. [2001].

The finite element approximation of the quasistatic equilibrium equation (1) leads to a set of algebraic non linear equations of the form

F; nr(Ù q s, t) +Fexr(Ù q s , t)=O (6)
where Finr, F exr, and Ù q s, vectors in IR 2N ' (with N 1 the number of nodes in the mesh of�), are internai forces, external forces, and nodal velocities, respectively. ln the dynamic relaxation method [e.g., [START_REF] Underwood | Dynamic relaxation (in structural transient analysis)[END_REF]Cundall and Board, 1988], the quasistatic solution Ù q s is approximated by the solution Ù of a pseudodynamic problem by introducing a user-defined mass matrix M, an acceleration vector Ü, and a damping force vector

C. The discrete problem becomes

F; nr(Ù, t )+Fexr(Ù, t)=MÜ+C [START_REF] Saul'ev | On solution of some boundary value problems on high performance computers by fictitious domain method[END_REF] Thus, when the acceleration and the damping force become negligible compared to the extemal and the internai forces, the quasistatic solution is reached [Cundal/, 1988]. ln addition, this method is coupled with an explicit time marching scheme

Ù n+1/2= Ù n 1/2 +tltÜ n +1 V' +l =V'+tl tÙ n+l/2 (8)
where Ü 0+1 and V'+1 are the nodal acceleration and displacement vectors at time t 0+1 t°+tlt, respec tively, tlt is the time step, M 1 is the inverse mass matrix, Ff n r and F':xr are, respectively, the internai and external forces computed at f', and Ù0+1 1 2 is the nodal velocities vector evaluated at time rn +1 1 2 t 0 + ½ tlt.

The term C damps the dynamic solution and enforces the convergence toward the quasistatic solution. lt is chosen proportional to the out-of-forces balance, and it must thus vanish at the quasistatic equilibrium (9)

for j 1, 2 

Fluid Asthenospheric Mantle

With regards to the classical stationary Stokes problem ( 4), the Galerkin finite element method with equal order interpolant for both velocity and pressure is used. Hence, a stabilized technique based on polynomial pressure projections [START_REF] Dohrmann | A stabilized finite element method for the stokes problem based on polynomial pressure projec tions, /nt[END_REF][START_REF] Burstedde | Parallel scalable adjoint based adaptive solution of variable viscosity sto kes flow problems[END_REF] is needed. The fluid domain n., is covered by a triangular or quadrilateral mesh of N 0 nodes. The resulting discrete system is of the form (10)

with V E IR 2N • the nodal velocities vector, P E !R N • the nodal pressures vector, F E IR 2N • the nodal external forces, and A a symmetric 3N 0 X3N 0 matrix. Referring to subsequent sections, we can formally express the nodal velocities vector as the solution of a linear system of the type KV=Fo,

(11)

Solid-Fluid Coupling: A Fictitious Domain Method

Modeling the interaction of a deformable structure moving in a fluid presents a number of challenging numerical problems. Among them is the way in which to follow the interface r, 0 which separates the solid and the fluid domains, and the resulting change in geometry of the fluid domain.

A first option consists in remeshing the fluid domain and was adopted by Bonnardot et al. [2008a]. However, this approach is arduous to implement, computationally time consuming, and laborious to deal with when the shape of the fluid domain becomes complex, especially in three dimensions. To alleviate meshing or remeshing efforts of complex domains, the Fictitious Domain Method (FDM) has been implemented in many fields for solving the interaction between two bodies of different physical behavior. FDM had initially been developed for the application of boundary conditions on geometrically complex boundaries [Saul' ev, 1963], and in our case, this type of method is also useful to solve the fluid problem on a Cartesian grid.

ln the first of the two following subsections, we describe the general formulation of a simplified variation of FDM that we implemented. Then, we detail the numerical strategy adopted to interlock fluid and solid cal culations in a stable manner.

General Formulation

To describe the Fictitious Domain Method (FDM), let us consider a simple linear problem where a scalar physical field vis sought in a domain !2 0 presenting a hole or an inclusion Q 1 of any shape (below we will also name it an obstacle). We name r, 0 the boundary of the hole and r the external boundary ofil., (see Figure 2a). Assuming that the value of vis prescribed on r, 0 and r, C is a given linear differential operator, and fis a known function, the linear problem is written

{ C(v) = f in n.,, v = vo on r, v = v,a on r i, . (12) 
ln the standard finite element approach, the boundary condition on r, 0 requires to define a mesh of n., that matches as best as possible the shape of the obstacle. The main idea of the fictitious domain method is to extend the problem into a geometrically Jess complex domain Q n., u 0/ and to enforce the Dirichlet condition v via on r, 0 by introducing some source terms in (12) (see Figure 2b). ln the absence of the obstacle�. the corresponding discrete finite element expression of the problem takes the form

r:l'Q V b 1 1 1 1 1--+---+-Û = Ûa U Ûa-- Xl ..... . . •"••• . . 'e . r •••• .. ••••••
KV=Fo (13)
where VE IR N is the vector of nodal unknowns, F 0 E IR N is the vector of nodal loads including the Dirichlet boundary condition on r, N is the number of nodes belonging to the mesh of Q, and K is the N X N matrix of rigidity (we suppose K symmetric and invertible).

Now let xk E IR 2 (k 1, • • • , n 10 )
be a given set of n 10 points forming an independent mesh of the immersed boundary r, 0 • The finite element approximation of vat each point xk reads

v(xk) = L <P;(xk)V; = (Cl>V) k (14) i•l
where <f,; is the interpolation function at node i, V; is the ith component of V, and Cl> is the n,aXN matrix whose entries are the <P;(Xk) values. To ensure v(xk) is close to v,a (Xk) (in a given sense), a source term is added on the right-hand side of ( 13)

KV=Fo+F(q) ( 15 
)
where q is an unknown source function defined on r, 0 • Since any given v 10 distribution may not be consistent with the problem (12) (for instance, in our case the linear problem ( 12) is the incompressible Stokes problem and v 10 corresponds to the velocity of the sol id boundary which, generally, does not conform with the incompressibility constraint), we proceed with a least squares method

n• minimize J(q) : = L(v(xk) v, a (xk)) 2 =llcI>V v,all 2 (16) k•l
where Vis given by ( 15) and v, 0 (v, 0 ( x, ), • • •, v, 0 (x n ,.)).

The last step consists of choosing the parametrization of the source function q. The simplest way is to define a ponctuai distribution at the n 10 contrai points xk: q(x) I:k q kô (x xk), where ô is the Dirac func tion. ln this case, the assembled vector F(q) is simply given by where q=(q,, • • •, q ,,., ).

Solving the least squares problem (16) for q gives the nb xn,a linear system kq=v, 0 Vo with k Cl>K 1 Cl> r and v 0 Cl>K 1 F 0 (which corresponds to the solution of the n 10 contrai points in the absence of the obstacle).

(

) (18) 17 
We can make the following remarks:

1. When applied to the fluid-solid coupling problem, the physical field vis the fluid velocity vector and q corresponds to the distributed drag force acting on the immersed sol id boundary r, 0 • Moreover, if the con trai points xk form a subset of the sol id mesh nodes, then the qk values determined by ( 18) are the corre sponding nodal forces.

2. Other parametrizations for q are possible but lead to a slightly more complex implementation. If we choose for example q to take the form q(x) I: k qkV'k (x), where V'k are the interpolation functions on the mesh ofr, 0 , then the resulting nodal source term has to be computed as F(q) 'l' r q, where 'l'k; fr .. r/J;(x)ifl k (x)dx. Thus, intersections between the mesh of r, 0 and the mesh of Q must be computed beforehand at each time. With this variant, our FDM is closely akin to the Lagrange multiplier fictitious domain of [START_REF] Glowinski | A Lagrange multiplier/fictitious domain method for the Dirichlet problem generalization to some flow problems[END_REF].

Numerical Strategy for lmplementing Solid-Fluid Coupling

Severa) approaches exist to tackle problems of fluid-structure interaction [START_REF] Felippa | Partitioned analysis of coupled mechanical systems[END_REF], ranging from the monolitic ones (in which the solid and fluid subproblems are solved simultaneously as they are formu lated in a unique problem) to the staggered ones (in which the subproblems are solved separately and coupled at specific discrete time steps). The second approaches are more flexible since they allow the use of two separate codes and facilitate the use of nonmatching meshes. Our formulation belongs to this sec ond kind and uses a semi-implicit time marching scheme for a stability purpose.

We recall that the solid domain Q 1 is discretized with a finite element mesh containing N 1 nodes (with n 10 nodes on its immersed boundary r, 0 ), while the mesh of the fictitious fluid domain Q Q,, u Q 1 is discretized with N nodes. At a given time t" +1 , the solid state is calculated according to (8), in which the force balance is modified to account for the fluid reaction F 10 that acts on the n 10 nodes of the immersed solid boundary r, 0 • ln a purely explicit coupling procedure, this reaction is evaluated at the previous time step t", but unfortunately this easier scheme often tums out to be numerically unstable. The implicit variant improves stability but introduces the unknown reaction Ff/ 1 at time t" +1 • A predictor-corrector-type algorithm is thus used, as follows. First, the solid nodal velocities vector can be expressed by where u;: e 1 1 2 is the predicted nodal velocities vector in the absence of viscous fluid drag where lc1' +1 cJ> 0+1 K 1 cJ>0 +1r . Let us recall that this system is "small" regarding to the whole grid size, since it involves only the contrai nodes of the solid's boundary.

lnserting ( 23) and ( 22) into ( 21), we obtain the corrected velocities by solving the linear system (24)

where mis the nodal mass matrix of the n 10 nodes (recall that M is diagonal).

Our coupling fluid-solid procedure can be summarized by the following flowchart:

1. lnitialization: define the meshes of the initial sol id domain n? and of the fictitious (fixed) domain Q, define the initial sol id state (U 0 , ü 0 , u 0 ) and the initial fluid state (V 0 , , f 0).

2. Assemble and factorize the Stokes matrix K of the fictitious problem.

3. New time step: t" +1 t"+M.

4. Prediction stage: compute the predicted solid velocities u;; e 1 1 2 from (20). 5. Extract the predicted velocities 11�, : 1 1 2 at the n 10 sol id boundary nodes of r, 0 •

6. Compute the matrix lc" +1 and the source terms at the n 10 contrai points from (23) using the predicted

1 • • _.JJ+l/2
ve ocitIes ufree

Compute the fluid velocities (if desired) by solving the Stokes problem

Kvn+l =Fo+Cl>n+lT q"+l.

8. Correction stage: correct the velocities and positions of the n 10 nodes by solving (24). 9. Update the stress c,0 +1 of the solid and assemble the new internai and external forces Ff 0 ; 1 , F'::; 1 , as well as the fluid-solid interaction by ( 22).

1 O. n f-n+ 1 and go to 3.

To resume, the main advantages of the FDM are:

1. To avoid repetitive remeshing in the fluid domain (calculations on a fixed mesh).

2. To handle complex geometries and still be able to use a Cartesian mesh, since the fluid domain has a sim ple shape.

3. The user can define which points on the solid boundary are coupled with the fluid. "One-way coupling• or ''two-way coupling" is easy to handle. For instance in our applications, the top boundaries of solid plates are chosen to remain as free surfaces. This is an important advantage of our coupling method.

However, FDM also has the following disadvantages:

1. As we will see below, our variant of this method is only first-order accurate.

2. The fictitious domain method is only used for the fluid domain. Thus, the L.agrangian description used to resolve the evolution of solid plates still needs a remeshing technique for very large deformation.

3. For each contrai point in our coupling procedure, we need to compute the product of K 1 cJ> r , leading to a large number of linear systems to solve if their number is important.

Benchmarks and Examples

We shall now demonstrate the potential of our new coupling method with a few benchmarks and valida tions, in two dimensions. We emphasize that our FDM was also implemented in the finite element analysis program Dynaflow ™ [START_REF] Prevost | DYNA FLOW: A nonlinear transient finite el ement analysis program[END_REF], and some of the following examples were performed and compared with the two codes. We start with the benchmark of an analytical solution for a rigid solid immersed in a fluid (section 4. 1) and then move on to problems considering a deformable solid, for which we compare our solution with other numerical solutions (sections 4.2 and 4.3). Then in section 4.4, we tackle the ana log subduction experiment by [START_REF] Guillaume | Variations of slab dip and overriding plate tectonics during subduction: lnsights from ana logue modelling[END_REF] which was also used as a benchmark in [START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF] and conclude in section 4.5 with a comparison with the community benchmark proposed by [START_REF] Schmeling | A benchmark comparison of spontaneous subduction models Towards a free sur face[END_REF].

An Analytical Stationary Solution: The Wannier Flow

As a first validation of our FDM in a 2D stationary case, we consider an analytical solution of Stokes flow problem called the Wannier flow [Wannier, 1950;Ye et al., 1999). lt considers the viscous flow around a rigid cylinder rotating with an angular velocity OJ near a wall in translation (see Figure 3a). The velocity and the pressure fields are resolved as with

yî -�---•/ oh : X id u ,oo -1---�-�-�-......_--�---��---''-----, e ( 
ux = U 2(A+Fy) [ s : y + 5 /] Fin i 8 [ s+ 2y 2y(s+y) 2 ] ex ex 2 C [ s p 2y + 2y( � / ) 2 ] uy=2x [( A + F y)( .!. .!.) s9 (s + y ) cy (s y)] ex p ex 2 p2 p = 11x [ B s+y +c 5 Y + 4 F sy ] (K+ys) 2 (K ys ) 2 K 2 y 2 s 2 s = ✓d 2 r 2 , y = (d+s)/(d s), , = wr 2 / 2s, A = d(F + ,), 8=2(d+s)(F+,), C = 2(d s)(F+,), F = U/lny, y=y+d, ex = x2+(s+y) 2 , P=x 2 +(s y) 2 , K(x 2 +y 2 +s 2 )/2
where x and y are the Cartesian coordinates in the plane, 17 is the viscosity of fluid, and other geometrical parameters can be viewed in Figure 3a.

The fluid domain is a square of edge length 1.5 m and is discretized by a regular mesh of size equal to h. We placed at distance intervals h ep a certain amount of contrai points on the boundary of the cylinder which is placed at the center of the domain. We impose on the fluid domain boundaries the analytical solution that simulates an infinite medium and we impose the mean pressure to be equal to O.

We produce a convergence diagram (Figure 3b) in which the analytical and numerical solutions for our ficti tious domain method are compared, by computing the L 2 discrete error for each field. These results are close to those obtained with other nonmatching interface methods [e.g., Ye et al., 1999).

We have performed a number of experiments with different mesh sizes varying the distance hep between contrai points, and we have identified an optimum distance that ranges between 1 and 2 times the grid mesh size. This range is also known in Lagrange multiplier fictitious domain methods [START_REF] Glowinski | A Lagrange multiplier/fictitious domain method for the Dirichlet problem generalization to some flow problems[END_REF].

Sinking of a Competent Block lnto a Viscous Medium

We consider here the coupling case of two deformable media found in Gerya and Yuen [2003), in which a competent block of density P s 3300 kg .m 3 sinks into a viscous medium of density Pr 3200 kg .m 3 and of viscosity IJ r 10 21 Pa .s. The viscous medium is a square domain with edge lengths equal to 500 km, and its boundaries are set free-slip. The competent block is a smaller square with edge lengths equal to 100 km, initially placed at a distance of 50 km below the upper edge of the vis cous domain.

The sol id solver ADELI is used for the competent block, whereas another finite element direct solver is used to compute the Stokes flow for the surrounding fluid. The block is viscoelastic with a Young modulus equal to 10 11 Pa , and three different viscosity values are tested (1J 5 102 2 Pa .s, 10 23 Pa .s, and 102 4 Pa .s). The Max well relaxation time is consequently less than 0.43 Myrs, and the elastic behavior of the block is thus negligible.

Results are displayed in Figure 4. The smaller the viscosity of the block, the more its deformation is impor tant The viscoelastic sol id sinks faster at low viscosities because of the "aerodynamic" shape that it adopts. After 1 S and 20 Myr, the height and shape of the block are similar to those displayed by [START_REF] Gerya | Characteristics based marker in cell method with conservative finite differences schemes for modeling geological flows with strongly variable transport properties[END_REF] for different viscosities.

Bending of an Elastic Plate

We perform the numerical experiment proposed by Bonnardot et al. [2008a) in order to compare their results obtained with a remeshing coupling technique, with our results obtained with the fictitious domain method. ln Bonnardot et al. [2008a), both the solid and the fluid domains were discretized with unstructured meshes that match exactly at their interface. Periodic remeshing of the fluid domain was needed during the evolu tion due to the solid motion. The solid's boundary velocity was imposed as a Dirichlet condition to the fluid mesh.

We display in Figure Sa the pressure field when the static solution is reached. The bent plate is represented in gray and some of its intermediate positions are drawn in dashed gray line. For comparison, we show in Figure Sb the evolution of the displacements of the bottom-left corner of the plate obtained with our cou pling using the fictitious method (solid line) and those obtained with a remeshing technique. Results are similar.

A Laboratory Test of Subduction by Guillaume et al. [2009]

Numerous analog models have been developed in order to understand different aspects of subduction dynamics. We can class laboratory subduction studies into three classes. The first class considers freely sub ducting plate dynamics [START_REF] Schellart | Kinematics of subduction and subduction induced flow in the upper mantle[END_REF]Belfahsen et al., 2005), i.e., the system is only driven by the slab-pull force. ln the second class, a kinematic condition is imposed to the far edge of the subducted plate [Funidello et al., 2004), but the upper plate is absent A third class of laboratory experiments includes the application of a plate velocity and also takes into account the upper plate [Heuret et al., 2007;[START_REF] Espurt | Flat subduction dynamics and deformation of the South American Plate: lnsights from analog modeling[END_REF]Guil laume et al., 2009). This last category is the one that we consider with our numerical approach.

ln this section, we aim at reproducing, at the laboratory scale, the reference model of [START_REF] Guillaume | Variations of slab dip and overriding plate tectonics during subduction: lnsights from ana logue modelling[END_REF], as did [START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF]. Although in [START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF] the numerical results were close to those obtained in the laboratory experiment, minor differences had been attributed to the absence of a viscous mantle. With the coupling method presented here, we are able to test the effect of an underiying viscous material.

ln the laboratory experiment, a viscoelastic silicone material was ta ken to simulate tectonic plates. These plates were placed above glucose syrup (mantle) inside a Plexiglas tank. A rigid piston pushed the sub ducted plate on the far edge, while the upper plate was held fixed. The bottom of the tank represented the 660 km depth boundary. Parameters are summarized in Table 1. Note that the coefficient of friction between the plates and between silicone and plexiglass are difficult to quantify precisely in analog models, whereas one must always provide them in the numerical models.

The Figure 6d displays the result obtained with a greater value of the ana log mantle viscosity, equal to 500 Pa s, which corresponds to a mantle viscosity of 10 21 Pa .s at the natural scale. With this viscosity, the modeled subducted plate does not fold but rather bends smoothly backward. The viscous drag a long the plate is stronger. Consequently, penetration of the subducted plate is harder and the far-field kinematic boundary condition is accommodated by greater internai deformation than in the analog model. Moreover, the experiment produces a huge arc bulge, unrealistic at the natural scale. Actually, this bulge results from our choice of an arbitrarily high plate interface friction coefficientµ 0.4, which allows to match the internai deformation of the numerical and the ana log models. This value is obvious ly unrealistic for a subduction interface, and in the following models, we have chosen friction values Jess than 0.1, consistent with those reported in the literature [Cottin et al., 1997;[START_REF] Lamb | Shear stresses on megathrusts: Implications for mountain building behind subduction zones[END_REF].

This experiment with an extreme mantle viscosity of 500 Pa s shows the drastic effect of the underlying mantle viscosity on the subducting plate geometry. The shape of folds is modified and at least, delayed in time. Overriding plate deformation (shortening or extension) is also affected. We will mainly focus on these points in section 5 when studying real scale subduction zones.

Community Benchmark by Schmeling et al. [2008]

We perform the benchmark test proposed in [START_REF] Schmeling | A benchmark comparison of spontaneous subduction models Towards a free sur face[END_REF]. lt allows to compare our results with those obtained with several others types of codes (finite differences or finite elements, Lagrangian or Euler ian). This 2D benchmark consists in the sinking of a competent and dense body (simplified L-shaped plate with a horizontal length of 2000 km) driven only by internai forces into a viscous mantle down to 700 km depth. We consider a viscoelastic material for the modeled slab. We assume a Young modulus of 184 GPa and a Poisson ratio of 0.244 corresponding to the values used in the Lapex-2D code (details in Schmeling et al. (2008]). The relaxation time (about 40 Kyr) is very small in comparison to the time of the experiment, and thus the effect of slab elasticity is negligible.

The top surface of the plate is free surface and its right-edge is fixed. The other edges of the plate are coupled with the fluid. To avoid big mesh dis tortions in the solid, its remeshing is prescribed every 10 Myr. For the fluid domain, the bottom and edges are set free-slip, but for the top boundary we explore four types of conditions (see scheme Figure 7). Type 1 is top-open. ln type 2, the top boundary is free-slip. ln the other two types we add a zero'1ensity layer with a viscosity equal to that of the mantle (type 3) or equal to 10 19 Pa .s (type 4).

ln Figure 8 our results are compared with those obtained with codes assuming a free-surface in Schmeling et al. (2008] (sol id lines). The vertical position of the slab tip in time is similar for ail four types of boundary conditions tested for the fluid domain (dashed lines). They follow the same slope as experiments using codes LAPEX 2D and LaMEM (coarse meshes) until 45 Myr. These results are obtained, in our case, with the upper-left corner of the slab never sinking into the mantle (similar in its effect to the "numerical-locking" of the wedge described by Schmeling et al. (2008]).

We perform an additional experiment in which we couple the points at the plate's top-surface with the fluid, so that the plate can sink below a threshold depth (Figure 8, purple line with circles). Then, the slope of the sinking slab, from about 30 Myr onward, becomes similar to that obtained without •numerical lock ing" at the wedge and with the viscous code FEMS-2D. However, the change in slope always remains more abrupt with our solution. Nevertheless, one must realize that when modeling a realistic subduction zone, this problem is not relevant since an overriding plate is present ln Figure 8, we note negligible differences in cases with (types 3 and 4) and without (types 1 and 2) the additional zero-density low-viscosity layer. The flow in this layer has no effect on the bulk flow of the man tle, and thus on the evolution of the solid domain. Consequently, in our subduction models, we shall incor porate this layer only to consistently deal with both the free-slip boundary condition on the fluid and the free top surface condition on plates (also considered when benchmarking the laboratory experiment).

S. Effects of Mantle Viscosity on Subduction Cyclicity

Evidences for episodic development of the Andean orogeny have been noted for decades. Steinmann et al. (1929] and Mégard (1984 ] reported episodes of continental shortening separated by periods of relative quiescence. Recently, Folguera and Ramos (2011] identified three fiat slab domains since Cretaceous times in the Southern Andes. ln the Central Andes, a compilation of isotopie and geo chronological data by Haschke et al. (2006] showed that arc magmatism migrated every 30-40 Myr since about 100 Myr, leading the authors to propose a link with cyclic episodes of fiat subduction (the latter marking magmatic gaps). Martinod et al. (201 O] also proposed a link between compres sional events during the Cenozoic, with periods of increasing plate convergence and fiat subduction in specific areas along the margin. in [START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF] and [START_REF] Gerbault | Continental margin deformation along the Andean subduction zone: Thermo mechanical models[END_REF]) and with statistics on subducting ridges carried out world wide [Skinner and Oayton, 2013).

Here similarly to the previous numerical study by [START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF], we explore another cause for slab dip evolution. lndeed, depending on far-field plate kinematics, the development of slab folding, as it deposits on the 660 km depth boundary, may periodically flatten the slab. If v, p and v 0 P refer, respectively, to the sub ducting and overriding plate velocities, counted positive toward the trench, cyclic folding was found to occur when lv op l < v 0 p +v .,,, [Gibert et al., 2012). These cycles span about 20 Ma, less than the 30-40 Myr cycles reported for the Andes. Here we aim at testing the effect of mantle viscosity on subduction geometry and periodicity.

Model Assumptions

Our physical model described in section 2 (and similar to that of [START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF]) is valid under both con ditions that thermal effects are negligible and that rheology is time independent. Dynamics of subduction Type 1 Type2 Type 3 and 4 :...: can remain uncoupled from thermal effects if advection dominates overdiffusion, which is described by the Péclet number
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Hurn Vs

Pe=ex

(25)
where H um 660km is the system's characteristic length, Vs its velocity, and ex the thermal diffusivity. Ta king for the Andes Vs � 7cm .yr 1 , the subduction velocity, and ex� 8.6.10 7 m2 s 1 according to [START_REF] Sobolev | What drives orogeny in the Andes?[END_REF], we obtain Pe > 10 3 » 1, which justifies that we neglect thermal effects in our dynamic model.

We define the mode) setup described in Figure 1 with terrestrial scale mechanical parameters given in Table 2. The fluid is a rectangular domain of size 9000 km X 685 km. We impose the following Dirichlet con ditions: the bottom of this fluid tank is closed and its velocities are set to zero. The lateral edges are open, and the top is set free-slip. As described above, we separate this domain in two subdomains, first one between depth 660 km and 35 km corresponding to the viscous mantle, and another one between 35 km and 25 km with a very low viscosity ( 10 10 Pa .s) and a density equal to O. The top surfaces of both solid plates are still free-surfaces.

The far-field kinematic boundary conditions are set so that the velocity of the overriding plate is v op 4.3cm .yr 1 and that of the subducted plate is v .,,, 2.9cm .yr 1 (i.e., Vs 7.2cm .yr 1 according to evaluations for the South American and Nazca plates [START_REF] Somoza | Convergencia en el margen occidental de américa del sur durante el cenozoico: Subduccin de las placas de nazca, faralln y aluk[END_REF]). The total time of the experiment is 127 Myr.

Results

We define a reference experiment with a mantle viscosity of 1 û20Pa .s. The resulting evolution in time is shown in Figure 9, which displays plates geometry and deviatoric stress 1 2 ( eï'p), together with the velocity and dynamic pressure fields within the mantle.

Folds form successively through time. During this periodic folding, note that the dip of the subducting plate varies at shallow-depth depending on the stage of fold development As a fold forms, the slab dip decreases and moves close to the base of the over riding plate. When the fold ends, the dip of the slab increases back to a maximum of nearly 60 0 .

The velocity field in the fluid also changes during fold development The upper image shows a rela tively unidirectional velocity field that follows the direction of the slab roll back. Then, with the begin ning of fold formation, the velocity field ahead of the subducted plate moves forward (leftward). Below this subducting plate, there is a 'circulation zone," but the magnitude of velocities remains low. The last figure represents the stage at which the recently formed fold entrains the fluid down with its deposition. ln this last stage, the magnitude of velocities regains that of subduction (or the reference veloc ity). This fourth image is similar to the first stage (slab rollback). Note that during fold development, in the mantle, a large zone of relatively high dynamic pressure develops in between the overriding plate and the flattening slab. Yet with the present mantle viscosity, pressure never exceeds 10 MPa. On the other hand, within a plate, high deviatoric stresses (> 1 GPa) occur in its most bent parts. Values greater than 2 GPa are achieved from about 400 to 660 km depth within the bottom fold on the transition zone. These high values of 1 2 (eï' p ) within the plate are not induced by the mantle flow nor drag but by its own folding.

The next numerical experiments aim at studying the effect of varying mantle viscosity with respect to the reference experiment above as well as with an experiment with an inviscid mantle. Figure 10 displays five cases with different mantle viscosities after 126.8 Myr of subduction. We represent the final geometries of plates, and their intermediate geometries are displayed with black lines for different times. Two independ ent col or scales are used to describe the second invariant of the deviatoric stresses in the plates 1 2 ( eï' p ) and in the mantle 12 ( eï' m ) . [START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF]). Experiments with mantle viscosities lower than 10 20 Pa s do not show any effect on the period nor on the size of slab folds. A shift in time (and space) of the formation of the first fold is detected at best. Mantle viscosity needs to be greater than 1û20Pa .s in order to generate an increase in the folding period (Figure 1 Ob). For mantle viscos ities up to s.ox1û20Pa .s (Figures 1 Oc and 1 0d), the folds' width and height both increase with increasing viscosity, because the viscous fluid under the fold prevents the plate from falling and folding. As a conse quence, the time spent in folding is longer. Comparing Figure 1 0a with Figure 1 0d, we note that du ring folding, the amplitude of the curved part of the subducted plate is greater, thus the resulting fold is bigger.

Figure 10 (top) displays the result without a viscous mantle (as in

Both cases in Figures 1 0a and 1 0d display a stage at which the subducting plate adopts a horizontal increas ing shape in between 100 and 200 km depth. Actually, this behavior occurs for ail viscosities lower than s.ox1û20Pa .s.

For greater viscosities (8.0X 1 a2°Pa .s and 10 21 Pa .s, Figures 1 0e and1 Of), we denote a change in the regime of fold formation. Fluid escape under the subducting plate becomes difficult. Thus, fold deposition is slower and bumps form. These "bumps" rise to nearly 250 km of depth, which seems unrealistic (no tomography has reported such a geometry). Furthermore, the slab cannot flatten in the upper 200 km depth, because material between the overriding plate and the top of the subducting plate is too viscous.

The 1 2 ( a'p) stress field in the mantle increases in magnitude with increasing mantle viscosity. Wh ile, for a mantle viscosity of 1 û20Pa .s, the deviatoric stress never exceeds 10 MPa (d., Figure 9), for a larger viscosity of 1 a2 1 Pa .s it is at least twice (Figure 1 Of).

On the other hand, maximum values of 1 2 ( eï' p ) in plates are not proportional to an increase in mantle viscos ity. For low mantle viscosities, more than 2 GPa are achieved within the fold hinges below 400 km depth (Figures 1 0b-1 0d). ln contrast for high mantle viscosities (::::: 8.0X 10 20 Pa .s), slab deposition occurs with lit tle curvature, e.g., the plate is Jess bent and consequently l 2 (eï' p ) rarely exceeds 1 GPa.

Other numerical studies that account for a self-consistent temperature-dependent viscosity consider a lower or similar maximum slab strength (1 GPa) [e.g., CizkovéI et al., 2002;[START_REF] Bilien | Slab dynamics in the transition zone[END_REF], which sets a lower .. ---
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. li mit to the upholding of the slab's coherency. Laboratory experiments on olivine samples produce similar values for temperatures around 1000 0 ( and high pressure [START_REF] Weidner | Subduction zone rheology[END_REF], while others obtained plas tic yielding above 2.5 GPa [START_REF] Schubnel | Deep focus earthquake analogs recorded at high pressure and temperature in the laboratory[END_REF]. Our modeled slabs exceed 2 GPa rather locally in the sharp bends of folds at 400-660 km depth, which gives us confidence that the slab's mechanical coherency is pre served (even though brittle failure and nonlinear flow mechanisms obviously occur during slab folding). And if the slab does 'break' completely, the remnant upper part of the slab will still pile up over its previ ously deposited slice, leading to a similar geometry at the large scale. A future step of our study is obviously to account for more complex and self-consistent rheology.

Effect on Slab Dip and Overriding Plate Stress Regime

Figure 11 a shows temporal variations in the slab dip angle averaged between depths of 100 and 160 km. The 'folding period: corresponding to the time-span between two lowest slab dips, is close to 20 Myr for l'/a ::; 10 20 Pa .s and reaches 30 and 40 Myr if l'/a 3.0Xl 020and 5.0X10 20 Pa .s, respectively. Slab dip ampli tudes span a range from about 5 ° to 45 °, oscillating Jess with increasing mantle viscosity. The minimum dip attained by the slab also reduces with increasing mantle viscosity. This minimum value actually corresponds to a very fiat slab extending over a length of nearly 500 km at about 150 km depth (see the geometry evolution of the top of the subducted plates in Figure 10). Note also that this depth may be reduced if one uses thinner viscoelastic plates (here we assumed 90 km; Table 2). These numbers compare with observa tions of the present-clay fiat slab in Central Chi le, extending for about 350 km eastward at about 110 km depth [START_REF] Marot | A double zone in the subducting Juan Fernandez Ridge of the Nazca Plate (32"S), central Chile[END_REF]. compressional regime. With a mantle viscosity of 1 û20Pa .s, tensile and compressional periods alternate, sim ilar to the inviscid case shown by [START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF]. With mantle viscosities equal to 3.0X 1 a 2°P a .s and higher, the state of stress remains always compressional. Yet variations of about 100 MPa occur in ail cases, which should still produce significant variations in tectonic structures.

Comparing the temporal evolution of the horizontal stress and the slab dip in Figure 11, we note that the slab dip that corresponds to the transition between compressional and tensile regimes is located a round 40 °. This value is in agreement with the conclusions drawn from the statistical study by [START_REF] Lallemand | On the relationships between slab dip, back arc stress, upper plate absolute motion, and crustal nature in subduction zones[END_REF].

A Mantle With Two Viscosity-Layers

Rheological studies showed that the viscosity in the mantle varies with depth due to mineralogical phase transfonnations (olivine, spinel, wadsleyite, ringwoodite [e.g., [START_REF] Karato | Rheology of the upper mantle: A synthesis[END_REF]) including the 660 km depth transition zone which constitutes a major jump in viscosity and density. However, it is not clear whether this jump is sharp or progressive, and it seems to vary worldwide. The results described above were obtained with an isoviscous upper mantle. We now perform numerical experiments in which the upper mantle is divided into two layers above and below 200 km depth, according to the approximate limit of low seismic shear waves (also called the Lehmann discontinuity zone).

Results are displayed in Figures 12. The weak upper mantle layer is assigned a viscosity of 1.0Xl û20Pa .s in the cases of Figures 12a and12b. The more viscous layer underneath is assigned a viscosity equal to S.0X 1 û20Pa .s (Figure 12a) and 1.0X 1 a 21 Pa .s (Figure 12b). A third case is presented in Figure 12c, in which the viscosity of the weak layer is set to 1.0X 10 19 Pa .s whereas the layer below has a viscosity of 1.0X 1 a2 1 Pa .s. slab and the overriding plate is evacuated with difficulty; here, the weak upper mantle layer allows plate rising du ring folding. Nevertheless, we see that the folds are bigger when 11 1 a2 1 Pa .s (cases of Figures 12b and12c), a behavior that is linked with the facility of the fluid to evacuate under the folded subducting plate.

These bilayered models indicate that the folding length periods are controlled by the average viscosity of the mantle. Let us evaluate both the arithmetic and the geometric weighted means (respectively, IJa,i and 11 geal of the viscosity, in which the weight corresponds to the lay ers' thicknesses under the lithosphere. We obtain IJ a ,i 6.99X10 21l Pa .s and IJ geo 4.64X10 21l Pa .s. Comparing qualitatively Figure 10 and Figure 12c for an isoviscous mantle mode), we observe that the bilayered case is an intermediate case between a uniform viscosity of 3.0X 10 21l Pa .s (F igure 1 Oc) and S .OX 1 oWPa .s (Figure 1 Od). Therefore, a constant mantle viscosity corresponding to the geometric mean appears to be an appropriate approximation of the mantle's behavior (without questioning the necessity to consider realistic properties). the slab's dip. ln contrast, in our models, the mean dip reduces with increasing mantle viscosity (r, 0 , i.e., low y), and the slab folds in all cases. These contrasting results are explained by fundamental differences in our modeling assumptions. lndeed, while in free-subduction models the trench's displacements are only con strained by the slabs' properties, in our models the kinematic condition on the overriding plate plays a first order role and consequently also contrais the slab's mode of deposition [Heuret et al., 2007;[START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF].

General Discussion and Geodynamic Application

With numerical models of free-subduction, Stegman et al. [201 O] determined five •subduction" modes (which include the four previous deposition modes of [START_REF] Schellart | Kinematics and flow patterns in deep mantle and upper mantle subduction models: Influence of the mantle depth and slab to mantle viscosity ratio[END_REF]), occurring within a range of about 4 orders of magnitude of a Stokes buoyancy (B s tlpge/r, 0 ) and an effective flexural stiffness (defined as o• y/ p 3 ). From their diagram, one can see for instance that upon decreasing the viscosity of the upper mantle, both 8 5 and D" increase, and trench retreat is facilitated (regimes 1, Il, and IV). With our choices of parameters (see Table 2), our range of mantle viscosities provide a Stokes buoyancy 8 5 comprised between S X 10 14 s 1 and SX 10 1 3 s 1 , so that our models stand well out of the diagram of [START_REF] Stegman | A regime diagram for subduction styles from 3 D numerical models of free subduction[END_REF] (limited to 8 5 2: 10 12 ). Yet our trench always retreats and the slab always folds (which corresponds to the style 1 a of Gibert et al. [20121). ln addition, Stegman et al. [201 O] linked their slab deposition modes with an effective radius of curvature, which expression remains explicitly independent from the mantle's viscosity (their equation ( 10)). However, our results indicate that mantle viscosity exerts a first-order contrai on both the slab dip and the folding periodicity.

A more detailed comparison is hindered by our fundamentally different approach, all the more that it is not our aim here to vary the plates rigidity nor density (yet). ln fact, [START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF] showed (in agreement with Heuret et al. [2007]) that kinematic conditions alone also deterrnine four styles of slab deposition, yet with the abovementioned dimensionless numbers remaining fixed.

The folding cyclicity obtained with our models may appropriately be compared with scaling analyses of a viscous sheet falling in a viscous fluid [START_REF] Ribe | Periodic folding of viscous sheets[END_REF]. First, [START_REF] Ribe | Periodic folding of viscous sheets[END_REF] provided a scaling law that distin guishes a •tree folding• mode from a ''forced folding• mode depending on the dimensionless number 11

11=H -( tlpg )

1/4 11Vh2 ' (26) 
where His the effective fa)) height, tlpg the sheet buoyancy, '1 its viscosity, Vits velocity, and h its thickness.

If 11 < 3.9, then gravity can be neglected and slab folding belongs to the ''forced mode." ln our models, parameters are as follows: '1 IJp , V Vs 7.2cm .yr 1 , H (H um e )/sin (0), where 0 is the slab dip and h e is the plate thickness. The only parameter that is not constrained is the slab dip, which changes through time except for mantle viscosities >8X 10 2°P a .s. But the scalings laws of Ribe (2003) were defined val id only when the surrounding fluid has negligible effects. ln our models, we find that the mantle viscosity has negli gible effects for '1a :S 10 2°P a .s. We calculate that the minimum dip for which folding would be dominated by gravity is � 20 °, and we note that it is only episodically reached. On the other hand, the mean dip that we mode) for a mantle viscosity of 10 2°P a .s reaches about 30 °, which gives 11 2.6. Therefore, we are in the ''forced folding" mode. One would need to increase tlp to 250kg .m 3 or reduce Vs to 1.4cm .yr 1 in order to have the system evolve to a ''free-folding• mode.

Note that the Andean subduction zone might be a good example of a ''forced-subduction: since the age of the Nazca plate from Northern Peru to Southern Chile is about 40 Myr on average, indicating that its buoy ancy stands only slightly above neutral with respect to the upper mantle [START_REF] Afonso | Density structure and buoyancy of the oceanic lithosphere revisited[END_REF][START_REF] Gerbault | Continental margin deformation along the Andean subduction zone: Thermo mechanical models[END_REF]. Therefore, it is unlikely that the slab-pull alone drove the last ~40 Myr of subduction in the area (see Martinod et al. (2010) and [START_REF] Somoza | Convergencia en el margen occidental de américa del sur durante el cenozoico: Subduccin de las placas de nazca, faralln y aluk[END_REF] for plate ages and reconstructions). Yet meanwhile, the second largest mountain belt in the worid (the Altiplano) was built.

Having identified that our models stand in the •forced-folding" mode, we can now calculate the predicted amplitude (ô b ) and period (t b ) of viscous bukling according to [START_REF] Ribe | Periodic folding of viscous sheets[END_REF] 1.218H

tb = - V -.
lnserting our parameters given above and with a mean slab dip equal to 30 0 , we obtain ôb 570km and tb 19.3Myrs . These predicted values are found consistent with our results, since our modeled folding period is close to 20 Myr for '1 a :S 102 °Pa .s, and our modeled fold width is about 500 km (Figure 9). ( 27) [START_REF] Lee | Dynamic buckling of subducting slabs reconciles geological and geophysical observations[END_REF] and CizkovéI and Bina (2013) obtained similar values with numerical models accounting for temperature-dependent rheologies and either fixed or free trench motion. Although these studies have tested the effect of the slab strength and of the viscosity jump at the 660 km depth transition zone, they do not display the effect of mantle viscosity on folding cyclicity.

Further quantification of the controlling parameters on the dynamics of subduction, and more specifically the role of far-field boundary conditions with respect to the slab's relative viscosity and density, remains the subject of an upcoming study.

The Evolution of Slab Dip in the Andes

The Wadati-Benioff zone of the subducting Nazca plate under South America is observable down to about 250 km depth. Although beneath Ecuador and Bolivia the dip of the slab is about 30 0 , beneath Peru (3 15 ° S) and Central Chile/NW Argentina (27 33 ° S) horizontal subduction was identified [START_REF] Gutscher | Geodynamics of fiat subduction: Seismicity and tomographie con straints from the Andean margin[END_REF][START_REF] Espurt | Flat subduction dynamics and deformation of the South American Plate: lnsights from analog modeling[END_REF][START_REF] Marot | A double zone in the subducting Juan Fernandez Ridge of the Nazca Plate (32"S), central Chile[END_REF], in association with a Jack in Quaternary volcanism. Compi lation studies of the distribution of igneous rocks, as well as geochemical, isotopie, and tectonic structures a long the margin, reveal cyclic patterns of about 30-40 Myr, which have been linked with repeated slab flat tening events [e.g., [START_REF] Ramos | Anatomy and global conte x t of the Andes: Main geologic features and the Andean orogenic cycle, in Bad<bone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision[END_REF][START_REF] Haschke | Central and southern Andean tectonic evo lution inferred from arc magmatism[END_REF]Martinod et al., 2010). ln turn, several mechanisms have been proposed to cause fiat subduction:

1. Subduction of buoyant ridges or oceanic plateaus which seem to correlate with present-day zones of fiat slabs [START_REF] Gutscher | Geodynamics of fiat subduction: Seismicity and tomographie con straints from the Andean margin[END_REF][START_REF] Espurt | Flat subduction dynamics and deformation of the South American Plate: lnsights from analog modeling[END_REF]. However, numerical studies by [START_REF] Van Hunen | The impact of the South American plate motion and the Nazca Ridge subduction on the fiat subduction below South Peru[END_REF] and [START_REF] Gerya | Dynamic effects of aseismic ridge subduction: Numerical modelling[END_REF] show that buoyant anomalies are not sufficient to form horizontal Moreover, many observed subducting ridges around the Pacifie ring do not display fiat slab segments [START_REF] Skinner | The l ack of correlation between fiat slabs and bathymetric impactors in South America[END_REF].

2. Periodic slab break-off due to rheological weakening [e.g., [START_REF] Bilien | Slab dynamics in the transition zone[END_REF], leading to an upward rebound of the remaining slab [START_REF] Haschke | Central and southern Andean tectonic evo lution inferred from arc magmatism[END_REF]]. Yet this scenario remains problematic as the Nazca slab becomes younger toward the South where no fiat subduction is reported. An alternative is to consider a weak slab still submitted to slab-pull, which deforms by viscous stretching below the overriding plate [START_REF] Gerbault | Continental margin deformation along the Andean subduction zone: Thermo mechanical models[END_REF].

3. Corner flow in the asthenospheric wedge, by suction, would pull the subducted part of the plate up toward the base of the overriding plate. Recently, this hypothesis was fed by the modeling of cratonic roots beneath continents under which past segments of horizontal subduction are suspected [START_REF] O'driscoll | Nazca South America interactions and the late Eocenelate Oligocene fiat slab episode in the central Andes[END_REF].

4. Metastability of the continental crust in the eclogite stability field [e.g., [START_REF] Kay | Delami nation and delamination magmatism[END_REF][START_REF] Le Pichon | Kinematics, topography, shor tening, and extrusion in the lndia Eurasia collision[END_REF][START_REF] Decelles | Cyclicity in cordilleran orogenic systems[END_REF]. The catastrophic delamination of accumulated eclogitic material below an Andean magmatic arc has to be replaced either by warm incoming asthenosphere (as proposed by [START_REF] Kay | Delami nation and delamination magmatism[END_REF] for the Puna) or by the slab itself [START_REF] Ramos | Anatomy and global conte x t of the Andes: Main geologic features and the Andean orogenic cycle, in Bad<bone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision[END_REF][START_REF] Decelles | Cyclicity in cordilleran orogenic systems[END_REF].

Without disregarding these mechanisms, here we argue for another scenario for shallow plate subduction, which is consistent with tomographie images in which subducted plates seem to lie on the 660 km depth transition zone [e.g., Fukao and Obayashi, 2013]. lt also presents the advantage of tackling a large period of time. [START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF] proposed that slab folding over the 660 km depth discontinuity leads to periods of fiat subduction. Nonetheless, their models produced shorter periods than those identified for the Andes. ln the present work, we modeled cyclic periods consistent with those recorded in Andes, when using upper mantle viscosities in between 3.1 a2°Pa .s and 5.1 a2°Pa .s. They correspond to values commonly found in the literature [START_REF] Karato | Rheology of the upper mantle: A synthesis[END_REF]Bilien, 201 O] but remain below other estimations [e.g., Forte and Mitrov ica, 2001].

Our bilayered mantle viscosity models, in section 5.4, shows the effect of a lower viscosity layer from 90 to 200 km depth, producing similar results to those with an appropriate single viscosity. Thus, a sufficient tem perature increase in the mantle can affect folding cycles and diminish slab dip. This is consistent with regional mantle hydration being able to diminish the viscosity and trigger horizontal subduction [START_REF] Manea | Chilean fiat slab subduction controlled � overriding plate thickness and trench roll back[END_REF]. We may also speculate that in earlier times, when the Earth was generally hotter, fiat slabs would have been shorter, but more frequent.

How Slab Folding May Affect Convergence Rates in the Andes

Severa) authors have pointed out variations in the kinematics of the South American and Nazca plates. Both plates motions varied over the last 80 Myr [Pardo-C,asas and Molnar, 1987;[START_REF] Sdrolias | Contrais on back arc basin formation[END_REF] with a peak in the convergence velocity about 25 Myr ago (at 1 S cm/yr), which has been decreasing since [START_REF] Sdrolias | Contrais on back arc basin formation[END_REF][START_REF] Somoza | Convergencia en el margen occidental de américa del sur durante el cenozoico: Subduccin de las placas de nazca, faralln y aluk[END_REF]. Severa) interpretations have been proposed. One of them is the rupture of the Farallon plate [START_REF] Pardo Casas | Relative motion of the Nazca (Farallon) and South American Pl ates since late Cretaceous time[END_REF]. But this hypothesis has not yet been sup ported by a numerical model.

Variations in the subduction velocity have been related by Tetzlaffand [START_REF] Tetzlaff | Time dependent interaction between subduction dynamics and phase transition kinetics[END_REF] to major phase transformations that occur as a slab goes through 410 and 660 km depths. However, the 'parachute'-effect of metastable olivine in their thermal convection mode) leads to a time period of the order of 3-4 Myr, which is an order of magnitude Jess than the timing reported for the Andes. Recently, [START_REF] Lee | Dynamic buckling of subducting slabs reconciles geological and geophysical observations[END_REF] and Cizkova and Bina (2013] modeled buckling of stagnant slabs at the 660 km depth transition zone, accounting for the 410 km exothermic and 660 km endothermic phases transitions, and succeeded in gen erating variations in slab rollback velocity over periods of 20-40 Myr.

Quinteros and [START_REF] Quintero S | Why has the Nazca Plate slowed since the Neogene?[END_REF] developed numerical models assuming that a slab break-off had occurred prior to 25 Myr, so that their mode) begins with subduction initiation. These authors first a pp lied a far-field plate convergence of 1 Sem .yr 1 , which they released as the slab progressively sank into the mantle, the slab being then only submitted to its own weight and mantellic resistance. This mode) fits well the data of decreasing plate convergence since 25 Myr (e.g., compiled by Sdro lias and Müller (2006]). 0 -+-r"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T"T .. Although this scenario is elegant, it relies on the primary assumption of a slab break-off that enables "reset ting" of the subduction from 25 Myr. However, we are not aware of field evidences indicating a broad scale slab break-off ail a long the Central and South Andean margin at 25 Myr. We therefore propose altematively, to look for an explanation of variations in the subduction velocity over a longer time period than 25 Myr (Andean subduction has been active for more than 100 Myr). Although our numerical approach accounts for much simpler assumptions than those of Quinteros and Sobolev (2013) (no temperature-dependent rhe ology, no phase transformation), our modeled process of cyclic slab folding every 30-40 Myr may provide a suitable explanation.

We cannot directly look at a self-consistent evolution of far-field plate motions, since we imposed them as constant during ail the time duration of our models. However, we can follow the evolution of relative plate convergence W e l by looking at the speed of subduction at the trench. Figure 13 displays the temporal evo lution of V e for different mantle viscosities. Note that the first fold initiates between 50 and 70 Myr. For man tle viscosities lower than SXl û20Pa .s, the maximum Ve decreases with time and displays cycles of the order of several cm/yr. However, for a given far-field plate convergence of 7cm .yr 1 , the maximum of 1 Sem. yr 1 reported for the Andean margin is never reached [START_REF] Pardo Casas | Relative motion of the Nazca (Farallon) and South American Pl ates since late Cretaceous time[END_REF][START_REF] Sdrolias | Contrais on back arc basin formation[END_REF]. An alternative might be to increase the applied far-field convergence rate to more than 7cm .yr 1 •

The driving force associated with far-field plate velocities competes with the resistance of the upper mantle to slab penetration on the long term. The higher the viscosity jump at the 660 km depth transition zone, the more it acts as a brake to continuous plate subduction, as demonstrated by Quinteros and Sobolev (2013). The facts that (i) driving forces in play are limited by lithospheric strength and its ability to concen trate deformation and (ii) that stresses can efficiently transfer from 660 km depth to the top surface as shown here ail together hint at the complex interplay between cyclic patterns in subduction dynamics and the evolution of far-field plate motions. Larger-scale models involving self-consistent mantle convection and yielding plates should better evidence this relationship in a near future [e.g., [START_REF] Rolf | Linking continental drift, plate tectonics and the thermal state of the earth's mantle[END_REF]Gerault et al., 2012).

Here we have shown on purpose the stress field within plates, and we note that this information is generally absent in other subduction modeling studies. The stresses involved in our 90 km thick visco-elastic plates implicate driving forces in the upper limit of those evaluated for the Earth (integration of 200 MPa from Fig ure 11 provides 1.8 X 10 13 N.m). These boundary forces would be reduced by a factor four if plates were modeled half thinner (especially the oceanic plate) and half as strong. However, similarly high driving forces have been involved in the building of the Himalayas and the Altiplano since 30-40 Myr, which thus testifies of their importance in producing the Earth's tectonic structures. The other extreme point of view consisting grateful to the Editor T. Becker whose advice greatly helped improving this rnanuscript M. Marot is thanked for her careful checking of the English grammar. The numerical simulations were run on the University of Nice Sophia Antipolis CICADA cluster.

in accounting for weak plates and free plate boundaries (e.g., free-subduction) would not generate such sig nificant mountain belts. Here we did not aim at testing the rheology of plates (elastic, viscous, and plastic) nor their thickness, for sake of paper length. However, [START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF] showed the effect of plate viscos ity on folding cyclicity.

Conclusion and Prospects

We performed 2-D numerical experiments in which we proposed an alternative scenario for subduction cyclicity in the Andes, following [START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF]. However, [START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF] did not ac cou nt for a vis cous mantle, and a lower period of cycles was obtained in comparison to geological data a long the Andes (20 Myr versus 40 Myr). Here we have developed a numerical solid-fluid coupling method which allows us to account for upper mantle viscosities within the commonly accepted range, and we obtained the consist ent timing for a viscosity range of 3 5Xlû20Pa .s.

Slab fol ding is associated with periodic flattening around 100-150 km depth and extends over several hun dreds of kilometers, and we propose that this scenario may apply to Central Ch ile. Yet a more specific para metric study is necessary.

Differences in periods of cycles and slab dip might be explained by changes in upper mantle viscosity. The arrivai of a thermal plume might affect the tectonics of a large region [e.g., [START_REF] Burov | Plume headlithosphere interactions near intra continental plate boundaries[END_REF], and the sub duction of buoyant oceanic plateaus may also play a role [START_REF] Martinod | Effect of aseismic ridge subduction on slab geometry and overriding plate deformation: lnsights from analogue modeling[END_REF], but it was not the objective of the present study to explore such effects. Variations in plate rheology and in far-field plate motion were also kept aside, since a number of combinations are possible and rely on data from a specific area. lt remains necessary to combine kinematic boundary conditions with the rheological properties of the entire system in order to better assess the modes of slab deposition on the 660 km depth transition zone. Yet complementary and precise seismic tomography is also required. This study is restricted to two dimensions and we believe that three-dimensional effects such as toroïdal flow must be ta ken into account [e.g., [START_REF] Morra | A coupled solid fluid method for modell ing subduction[END_REF][START_REF] Schellart | Kinematics of subduction and subduction induced flow in the upper mantle[END_REF], especially in the con text of the 5000 km long Andean margin. Fol ding periodicity might vary if the fluid is able to escape from the sides of the subducting panel. ln addition, convergence between the Nazca and South American plates has been oblique for most of the time since 100 Ma [START_REF] Somoza | Convergencia en el margen occidental de américa del sur durante el cenozoico: Subduccin de las placas de nazca, faralln y aluk[END_REF]. Obliquity cannot be grasped by a two-dimensional model. ln order to tackle these mechanisms, the original method of fluid solid coupling presented here is currently being implemented in three dimensions.

Figure 1 .

 1 Figure 1. Physical model at initial time with boundary conditions on the sol id. The upper mantle lower mande boundary is modeled as an impermeable barrier on which the slab will anchor with a sufficiently high friction. Plate boundary velocities are expressed in reference to this bottom boundary, and positive values of v .., and V sp correspond to trenchward motion.
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Figure 2 .

 2 Figure 2. (a) Scheme of the continuous fluid problem with an 'obstacle.' (b) Scheme of the discrete fictitious domain problem.

  can obviously be rewritten for the n 10 nodes of r, 0 en].

,

  and Lis a n,axN, Boolean matrix (extraction matrix). The viscous fluid forces Ft 1 acting on the solid mesh are given by (22)where qn+ 1 (the source terms) are, according to (18), solution of the linear system(23) 

Figure 3

 3 Figure 3. (a) Scheme of the Wannier flow [Wannier, 1950). (b) L 2 discrete errors of velocity and pressure numerical field as a function of the mesh size h. The slope a of the lines repre sents the order of convergence for both the velocity and the pressure. The linear convergence is satisfactory regarding the Ql elements used for the finite element discretization.

  This two-dimensional numerical experiment consists of an elastic plate of length I 3 m and thickness e 0.2 m immersed in a fluid channel of width L 6 m. A fluid of viscosity IJ 10 5 Pa sis injected in the channel with a prescribed horizontal velocity v 60 m/s. The duration of the experiment is T 1 s. The plate bends until it reaches equilibrium. Figure Sa displays the final pressure and velocity vectors in the fluid.
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Figure 4 .

 4 Figure 4. Sinking block benchmark [from Ge,ya and Yuen, 2003). Results for three viscosity ratios •1./•1,: 10, 100, and 1000.

  Dirichlet conditions on the boundary of the fluid domain in the numerical experiment are chosen as fol lows: normal and tangential velocities at the bottom and edges boundaries are equal to zero. Because there can be vertical motion of the solid, we cannot assume a free-slip top boundary of the fluid domain at the same depth level as for the solid (problem of consistency of the contrai points' velocities and this boundary condition). Thus, we immerse the solid well below the top boundary of the fluid, in order to safely set the fluid top boundary as free-slip. Consequently the fluid domain is divided into two. The first main domain defines the area located in between the bottom of the tank and depth S mm and has the viscosity of the glycose syrup. The second domain extending from depth S mm to +3 mm (the plates' domain is initially set between O and depth 13 mm) has a weaker viscosity of 10 6 Pa .s and a density equal to O. Note that we do not account for the viscous drag exerted on the upper boundary points of the solid plates, so that the latter remain free-surfaces ('one-way coupling').

Figure 6

 6 Figure6displays the comparison between the numerical results and the laboratory test by[START_REF] Guillaume | Variations of slab dip and overriding plate tectonics during subduction: lnsights from ana logue modelling[END_REF]. The first column shows the results obtained with an inviscid fluid (no coupling with the fluid solver, similarly to[START_REF] Gibert | Dependency of slab geometry on absolute velocities and conditions for cyclicity: lnsights from numerical modelling[END_REF]). The second col umn displays the result accounting for a fluid of viscosity 82 Pa s equal to that of the glucose syrup used in the laboratory experiment by Gui/laume et al.(2009] (third column). Despite the need to assume an arbitrary friction coefficient in the mechanical models, the numeri cal result confirms that the viscous fluid in this experiment has a negligible effect on the slab evolution.

  Figure S. (a) Pressure and velocity fields for the experiment of an elastic plate bent by a viscous flow. (b) Displacement of the bottom left corner of the plate over time.

  of parameters marked with • are not evaluated in Guillaume et al. (2009] and have been arbitrarily chosen in order to reproduce as best as possible the laboratory res ults.

Figure 6 .

 6 Figure 6. Comparison between (a, b, d) numerical models and (c) the laboratory result of Guillaume et al. (2009) for different values of the mande viscosity.

Figure 7 .Figure 8 .

 78 Figure 7. Free surface benchmark in Schmeling et al. (2008). Four different boundary conditions on our fluid domain are tested, whereas the solid plate (represented by the dashed line) remains a free surface.

Figure 9 .

 9 Figure 9. Reference model with a mantle viscosity of 1Cl20Pa .s. Geometry of plates, second invariant of the deviatoric stresses in the plates, dynamic pressure and velocity fields in the mantle at different stages.

Figure

  Figure 11 b shows that the far-field horizontal stress of the overriding plate changes also depending on mantle viscosity. Positive values correspond to a tensile regime while negative values correspond to a

Figures 12b and 1 Figure 11 .

 111 Figures 12b and 1 0d show a strong similarity, indicating that the viscosity directly under the overriding plate plays a first-order role in the formation of folds. Whereas in the isoviscous case, the fluid between the

6. 1 .Figure 12 .

 112 Figure 12. Final configurations for a double layer mande.

  ................................................................................................ . Temporal evolution of the convergence velocity for models with different viscosities of the isoviscous mantle, and for an applied far field convergence of 7 cm/yr.

  , • • •, 2N 1 and ocd E]O, 1]. ln practice, ocd 0.5 or ocd 0.8 appear to be suitable values [see Cundall, 1988].

Table 1 . Mechanical Parameters for the Test Described in Section 4.4• Parameters Plate thickness, e Density contrast, tJ.p=p, Pm

 1 

	Plates viscosity ,,,
	Subducting plate
	Overriding plate
	Young modulus, E
	POÎsson ratio, v
	Friction coefficient,µ
	Plates interface
	Plate/660 km discontinuity
	Fluid viscosity, •la

Table 2 . Mechanical Parameters for the Subduction Model in Section 5 Parameters Plates e Plates density, p 1 Plates viscosity ,,, Young modulus, E Poisson ratio, v Friction coefficient,µ Plate interface Plate/660 km discontinuity Mande density, Po Mande viscosity, ,, 0 Gravity, g

 2 

	Values
	90km 3200 kg.m-3
	10 24 Pas
	10 11 Pa
	0.25
	0.015
	02 31 50 kg.m -3
	o 10 21 Pa s
	9.81 m.s-2
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