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Voronoi based decentralized coverage problem: from optimal control to
Model Predictive Control

Minh Tri Nguyen, Cristina Stoica Maniu

Abstract— This paper presents a novel decentralized frame-
work for the Multi-Agent dynamical coverage problem subject
to anti-collision constraints. The control objective is to authorize
each agent operating strictly in its safety zone and then enhance
the coverage. These zones are the result of a spatial Voronoi
partition of the common working space of the Multi-Agent
system based on the current positions of the agents. Each zone
provides the local information to design the control policies that
make each agent converging to a fixed point inside its Voronoi
cell. The performance/effectiveness of the proposed techniques
will be demonstrated via numerical examples.

Index Terms— Multi-agent dynamical systems, set-theoretic
tools, decentralized control, Voronoi partition, coverage prob-
lem, optimal control, Model Predictive Control.

I. INTRODUCTION

Multi-Agent System (MAS) recently received considerable
attention due to the need to manage a group of relatively
independent sub-systems for the purpose of achieving a
common goal in the same environment. One of the most
attractive research field of MAS applications is the collision
avoidance (e.g. [1], [2]), because the collisions with obstacles
or with other agents are considered as typical faults in
most of MAS applications such as traffic control, spacecraft
formation flight, etc.

In the last decade, set-theoretic and optimization tools
have been employed widely to design the control for MAS
subject to anti-collision constraints, notable [3], [4], [5]. In
these works, the constraints are described such that the sets
characterizing each agent/obstacle do not overlap, therefore
the nature of such constraints is non-convex. The design of
linear feedback control subject to such constraints using set-
theoretic methods is introduced in [3].

Traditionally, most of the MAS problems can be solved
via a centralized approach. However, because of the limited
computation efficiency, decentralized approaches (e.g. [6],
[7], [8]) become more appropriate. Paper [8] proposes a
set-based decentralized feedback control strategy for MAS,
which keeps each agent operating strictly in its safe func-
tioning zone, offering collision avoidance guarantees.

Furthermore, in several Multi-Agent deployment applica-
tions, such as rescue operations or surveillance (e.g. [9]), a
group of agents have to obtain an optimal coverage over a
bounded region w.r.t given constraints.
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In this context, the main contribution of the present paper
is to revisit the coverage control problem subject to the anti-
collision constraints. These safety constraints can be satisfied
by keeping each agent strictly inside a region called function-
ing zone. These zones are the results of a real time partition
step based on the current state (e.g. position) information of
the agents. The Voronoi algorithm is employed in this step
to decompose the working space into an union of Voronoi
cells. After, each agent is associated with one cell which
will provide the vertices used to design the control action
in order to make each agent converging to a fixed point
inside its Voronoi cell. This control design step (based on
both the agent’s position and the vertices of its Voronoi cell
containing the agent) by using the classical framework of
optimal control and Model Predictive Control (MPC) is the
main contribution of the present paper.

This paper is organized as follows. Section II presents
some useful preliminaries and formulates the problem. The
local control design for one agent with its associated convex
polyhedral functioning zone will be detailed in Section III. In
Section IV, we reformulate the previous control in terms of
MPC standards. Finally, numerical simulation results are il-
lustrated and discussed in Section V, followed by concluding
remarks and perspectives in Section VI.

Notations: In the sequel, we use ||Q|| =
√
Q>Q to

denote the Euclidean norm of the given vector Q. Here,
In ∈ Rn×n denotes the unitary matrix. The notation 1n ∈ Rn

is used for the column vector whose elements are 1. Given
a set V , then |V| denotes its cardinality. We use furthermore
Q = [Qij ],∀i ∈ {1 . . . , n}, j ∈ {1 . . . ,m} to denote

Q =

Q11 . . . Q1m

...
. . .

...
Qn1 . . . Qnm


We use σ(Q) to denote the sum of all elements of the matrix
Q. Moreover, Q � 0 (or Q � 0) means that Q is a strictly
(semi-) positive definite matrix. Similarly, Q ≺ 0 (or Q � 0)
means that Q is a strictly (semi-) negative definite matrix.
The notation A⊗B is used for the Kronecker product of the
two matrices A and B.

II. PROBLEM FORMULATION

A. Main assumptions

Assumption 1. Considering a Multi-Agent System Σ com-
posed of N agents, the indices set is N = {1, . . . , N}. Each
agent has its own linear discretized dynamics

xi(k + 1) = Aixi(k) +Biui(k), i ∈ N (1)



with xi ∈ Rn, ui ∈ Rm.

Assumption 2. The agents are sharing a common working
space. The position coordinates of each agent are denoted
by xi ∈ Rn. It is assumed that for any point xei ∈ Rn there
exists a corresponding pair (xei , u

e
i ) such that (xei , u

e
i ) is a

fixed point (an equilibrium point) of (1). This implies that
the matrix Bi has to be a full row rank matrix.

Assumption 3. The common working space X ⊂ Rn is a
convex bounded polyhedron.

B. Main steps of the proposed approach

At each time-instant k, two main steps are considered to
compute the control ui(k) of the ith agent:
• STEP 1 (Partition step): Based on the avail-

able measurement of xi(k), a Voronoi partition1

V(x1(k), . . . , xN (k)) will be computed.
• STEP 2 (Control step): In order to lead each agent to a

fixed point (contained into its Voronoi cell), compute for
each cell Vi(k) the control input ui = fi(xi, xj), ∀j ∈
Ni. The set Ni contains the indices of the neighbors
whose Voronoi cells have a common facet with Vi(k).

The computation of this proposed decentralized control
will be detailed in the next sections. We will start by
presenting the control design based on the optimal control
approach, and then extend the result by employing MPC.

III. VORONOI-BASED OPTIMAL CONTROL DESIGN

In this section, we propose a revisited decentralized control
based on the optimal control approach, using the agent’s state
and the vertices of the corresponding Voronoi cell received
after the partition step. Firstly, the explicit computation of
the optimal solution is presented, then the stability proof is
detailed by means of a resulting positive decreasing value
function. In the sequel, the agent’s index is neglected to
simplify the notation. Let us consider an agent having its
dynamics equation

x(k + 1) = Ax(k) +Bu(k) (2)

The matrix B is full row rank, according to Assumption 2.
The Voronoi cell of the agent x is denoted by V, with V and
NV representing respectively the set of its vertices vi and
the indices set of these vertices.

A. Optimal control solution

The optimal control of (2) is the solution of the following
optimization control problem

min
u

∞∑
k=0

L(x(k), u(k)) s.t.: x(k + 1) = Ax(k) +Bu(k)

(3)

1Denote by V the Voronoi partition of a considered working space (in

the Euclidian space) into n cells Vi, with i = 1, . . . , n and V =
n⋃

i=1
Vi.

Notice that in the next sections, the index ith of each Voronoi cell will be
omitted in order to simplify the presentation.

with

L(x(k), u(k)) =
∑

i,j∈NV

(
(x(k)− vi)>Qij(x(k)− vj)

+(u(k)− wi)
>Rij(u(k)− wj)

)
(4)

indicating the running cost.

Moreover, by denoting2 v̆ =

 v1...
v|V|

 and w̆ =

 w1

...
w|V|

, we

can define the augmented state z̆ and input t̆ as follows

z̆ =

 x− v1...
x− v|V|

 = M̆x− v̆ ∈ R|V|n (5a)

t̆ =

 u− w1

...
u− w|V|

 = N̆u− w̆ ∈ R|V|m (5b)

with M̆ = 1|V| ⊗ In and N̆ = 1|V| ⊗ Im.
Then the extended dynamics can be derived

z̆(k + 1) = Ăz̆(k) + B̆t̆(k) (6)

with Ă = I|V| ⊗A and B̆ = I|V| ⊗B.
Let us denoting Q̆ = [Qij ], R̆ = [Rij ] with ∀i, j ∈ NV .

It requires that Q̆> = Q̆ � 0 and R̆> = R̆ � 0.

Theorem 1. The solution of the optimal control problem (3)
for the dynamics (6) is

θu(k) = Ğw̆ + K̆z̆(k) (7)

by considering the notations

Φ = R̆+ B̆>P̆ B̆ (8a)

θ = N̆>ΦN̆ (8b)

Ğ = N̆>Φ (8c)

K̆ = −N̆>B̆>P̆ Ă (8d)

and
V (z̆(k)) = z̆>(k)P̆ z̆(k) (9)

which is considered as the cost-to-go of (3), with P̆ = [Pij ],
∀i, j ∈ NV and P̆> = P̆ � 0.

Proof. According to the Bellman principle of optimality (see
[10]), the optimal control solution of (3) has to ensure

V (x(k)) = min
u(k)
{L(x(k), u(k)) + V (x(k + 1))} (10)

which leads to the following Bellman equation

H(x(k), u(k)) = L(x(k), u(k)) + V (x(k + 1))− V (x(k))
(11)

Using (4) and (9), it is inferred that H(z̆(k), t̆(k)) =
z̆(k)>Q̆z̆(k) + t̆(k)>R̆t̆(k) + z̆(k + 1)>P̆ z̆(k + 1) −
z̆(k)>P̆ z̆(k). Based on (5) and (6), this can be detailed as
H(z̆(k), t̆(k)) = z̆(k)>Q̆z̆(k) + (N̆u(k)− w̆)>R̆(N̆u(k)−

2The˘symbol is used to refer to all the vertices concomitantly.



w̆) + (Ăz̆(k) + B̆t̆(k))>P̆ (Ăz̆(k) + B̆t̆(k))− z̆(k)>P̆ z̆(k).
Solving ∂H

∂u = 0 leads to 2N̆>R̆N̆u(k) − 2N̆>R̆w̆ +

2N̆>B̆>P̆ B̆N̆u(k)+2N̆>B̆>P̆ (Ăz̆(k)−B̆w̆) = 0 or equiv-
alently [N̆>(R̆ + B̆>P̆ B̆)N̆ ]u(k) = N̆>(R̆ + B̆>P̆ B̆)w̆ −
N̆>B̆>P̆ Ăz̆(k). Considering the notation (8), it leads to
θu(k) = Ğw̆ + K̆z̆(k), with θ invertible.

B. Stability analysis

According to the Bellman principle of optimality, the
optimal solution (7) has to ensure H(z̆(k), t̆(k)) = 0. It
implies L(z̆(k), t̆(k)) + V (z̆(k + 1)) = V (z̆(k)). In order
to guarantee the Lyapunov stability, a sufficient condition is
V (z̆(k + 1))− V (z̆(k)) = −L(z̆(k), t̆(k)) ≤ 0.

Starting from L(z̆(k), t̆(k)) + V (z̆(k + 1)) =
z̆(k)>Q̆z̆(k) + t̆(k)>R̆t̆(k) + z̆(k + 1)>P̆ z̆(k + 1), it
can be derived that L(z̆(k), t̆(k)) + V (z̆(k + 1)) =
z̆(k)>Q̆z̆(k) + (N̆u(k) − w̆)>R̆(N̆u(k) − w̆) +
(Ăz̆(k) + B̆N̆u(k) − B̆w̆)>P̆ (Ăz̆(k) + B̆N̆u(k) − B̆w̆).
Using the notations (8a), (8b), (8c) and (8d) then
replacing u(k) from (7), with θ invertible, this
becomes L(z̆(k), t̆(k)) + V (z̆(k + 1)) = z̆>(k)(Q̆ +
Ă>P̆ Ă)z̆(k) + w̆>Φw̆ − (Ğw̆ + K̆z̆(k))>θ−>θθ−1(Ğw̆ +
K̆z̆(k)) − 2w̆>B̆>P̆ Ăz̆(k). Regrouping the terms in z̆(k)
and w̆, we obtain L(z̆(k), t̆(k)) + V (z̆(k + 1)) =
z̆>(k)(Q̆ + Ă>P̆ Ă − K̆>θ−>K̆)z̆(k) + w̆>(Φ −
Ğ>θ−>Ğ)w̆ − 2w̆>(B̆>P̆ Ă + Ğ>θ−>K̆)z̆(k). However
L(z̆(k), t̆(k))+V (z̆(k+1)) = V (z̆(k)) requires that the two
terms w̆>(Φ − Ğ>θ−>Ğ)w̆ and w̆>(B̆>P̆ Ă + Ğ>θ−>K̆)
have to vanish. For a non zero vector w̆, it is difficult
to impose w̆>(Φ − Ğ>θ−>Ğ)w̆ = 0. A lightened
condition w̆>(Φ − Ğ>θ−>Ğ)w̆ ≤ 0 together with
w̆>(B̆>P̆ Ă + Ğ>θ−>K̆) = 0 are further considered,
leading to L(z̆(k), t̆(k)) + V (z̆(k + 1)) ≤ V (z̆(k)). In
this context, the following theorem formulates sufficient
conditions.

Theorem 2. If there exists a vector w̃ such as w̃ ∈ Rm and

Ğw̆ = ĞN̆w̃ (12a)

w̆>B̆>P̆ Ă = −w̃>K̆ (12b)[
Φ Ğ>

Ğ θ

]
� 0 (12c)

then the following expressions are verified w̆>(Φ −
Ğ>θ−>Ğ)w̆ ≤ 0 and w̆>(B̆>P̆ Ă+ Ğ>θ−>K̆) = 0.

Proof. Applying the Schur complement in (12c) leads to Φ−
Ğ>θ−>Ğ � 0. Multiplying left and right by the non zero
vector w̆> and w̆ leads to w̆>(Φ− Ğ>θ−>Ğ)w̆ ≤ 0.

Using (12a), the expression w̆>(B̆>P̆ Ă +
Ğ>θ−>K̆) = w̆>B̆>P̆ Ă + w̆>Ğ>θ−>K̆ becomes
w̆>B̆>P̆ Ă+w̃>N̆>Ğ>θ−>K̆. From (8b) and (8c), it results
in ĞN̆ = θ. This allows us to obtain the following result
w̆>(B̆>P̆ Ă + Ğ>θ−>K̆) = w̆>B̆>P̆ Ă + w̃>θ>θ−>K̆.
Using (12b), this leads to w̆>(B̆>P̆ Ă+ Ğ>θ−>K̆) = 0.

Following Theorem 2, if the solution (12) is feasible then
there exists a vector w̃ to guarantee L(z̆(k), t̆(k))+V (z̆(k+
1)) ≤ V (z̆(k)). However, a feasible vector w̃ depends on the
choice of the weighting matrices P̆ , Q̆ and R̆, which will be
illustrated via the following proposition.

Proposition 1. Consider the matrices R ∈ Rm×m, P ∈
Rn×n such as R = R> � 0, P = P> � 0, and a weighting
structure matrix ∆ ∈ R|V|×|V|. Hence the matrices R̆ and P̆
can be chosen such that R̆ = ∆⊗R and P̆ = ∆⊗ P . The
matrix Q̆ can be obtained by solving a Riccati equation.

Proof. Consider a weighting structure matrix ∆ =
[∆1 . . .∆|V|], with ∆i denoting the ith column of ∆.
The equation (12a) is rewritten as N̆>Φw̆ = N̆>ΦN̆w̃.
Due to (8a), we get Φ = R̆ + B̆>P̆ B̆ = ∆ ⊗ (R +
B>PB). Hence (12a) becomes N̆>(∆⊗(R+B>PB))w̆ =
N̆>(∆ ⊗ (R + B>PB))N̆w̃. From the definition of N̆ ,
it is infered that N> = [Im . . . Im] ∈ Rm×(m|V|).
Rewriting ∆ = [δij ],∀i, j ∈ {1, . . . , |V|} and denoting

R̃ = R+B>PB leads to
[ |V|∑
j=1

δj,1R̃ . . .
|V|∑
j=1

δj,|V|R̃
]
w̆ =

[ |V|∑
j=1

δj,1R̃ . . .
|V|∑
j=1

δj,|V|R̃
] [
Im . . . Im

]>
w̃. It is pos-

sible to write
|V|∑
i=1

σ(∆i)R̃wi = σ(∆)R̃w̃, with the scalars

σ(∆i) =
|V|∑
j=1

δj,i and σ(∆) is the sum of all the elements of

∆. After symplifying R̃, we obtain
|V|∑
i=1

σ(∆i)wi = σ(∆)w̃,

which is further equivalent to w̃ =

|V|∑
i=1

(σ(∆))−1σ(∆i)wi.

Similar results will be obtained for (12b). In (12c), because
all matrices Φ, Ğ and θ depend on ∆, we can obtain a
value for ∆ by solving the feasibility problem (12c) with
the decision variable ∆. Therefore, we can conclude that all
conditions (12) are fulfilled proving a choice for w̃.

Using Theorem 2 with Proposition 1 ensures the closed-
loop stability of (6) with respect to the optimal control
solution (7). We can see in the sequel that it implies also
the closed-loop stability of (2) by proving the equivalence
between the Lyapunov stability conditions of these two
dynamics.

Replacing (5b) in (6) and then using (7) yields

z̆(k+ 1) = (Ă+ B̆N̆θ−1K̆)z̆(k) + B̆N̆θ−1Ğw̆− B̆w̆ (13)

with the Lyapunov stability condition

(Ă+ B̆N̆θ−1K̆)>P̆ (Ă+ B̆N̆θ−1K̆) � P̆ (14)

Furthermore, substituting (7) in the dynamics equation (2)
and using (5a) to replace z̆ by x, we get

x(k+ 1) = (A+Bθ−1K̆M̆)x(k) +Bθ−1(Ğw̆− K̆v̆) (15)



which leads to the Lyapunov stability condition of (2)

(A+Bθ−1K̆M̆)>P (A+Bθ−1K̆M̆) � P (16)

Now consider the two dynamics equation (2) and (6)
with the stability conditions (16) and (14), respectively. The
following theorem shows the equivalence of the stability of
these two dynamics.

Theorem 3. The expression (16) is verified if and only if
(14) is verified.

Proof. Consider (14). Left and right multiplying (14)
respectively with the matrix M̆> and M̆ , we ob-
tain M̆>(Ă + B̆N̆θ−1K̆)>P̆ (Ă + B̆N̆θ−1K̆)M̆ �
M̆>P̆ M̆ . From the definitions of Ă and M̆ it is in-
ferred that ĂM̆ = M̆A and B̆N̆ = M̆B. Thus
we get M̆>(Ă + B̆N̆θ−1K̆)>P̆ (Ă + B̆N̆θ−1K̆)M̆ =
(A + Bθ−1K̆M̆)>M̆>P̆ M̆(A + Bθ−1K̆M̆), thus (A +
Bθ−1K̆M̆)>M̆>P̆ M̆(A + Bθ−1K̆M̆) � M̆>P̆ M̆ . By
choosing a matrix P = M̆>P̆ M̆ , we get the condition (16).

Considering (16) in order to prove (14) can be done in a
similar way.

The previuos theorem illustrated the equivalence between
the stability of systems (2) and (6). The next step is to find
the equilibrium point the agent’s state x(k) converges to. The
following theorem is used to determine this point.

Proposition 2. If the dynamics equation (2) is stabilized w.r.t
the control (7), x(k) and u(k) of (2) converge asymptotically
towards an equilibrium point (x̄, ū) determined as:

(I −A−Bθ−1K̆M̆)x̄ = Bθ−1(Ğw̆ − K̆v̆) (17a)
(I −A)x̄ = Bū (17b)

In fact, finding the equilibrium points for the systems (2)
and (15) leads to expressions (17).

We prove above that the stability of (2) is equivalent to
the stability of (6), additionally it is certain that the agent’s
state and input converge to the equilibrium point (x̄, ū)
determined via (17). However until now the role of the vector
w̃ introduced in Theorem 2 is still not clarified. We need to
know if there exist some relations between the equilibrium
point (x̄, ū) and the vector w̃.

Remark 1. By using (12a), the right-hand side of (17a)
becomes Bθ−1ĞN̆w̃−Bθ−1K̆v̆. Using (8b) and (8c) leads
to θ = ĞN̆ , thus (I −A−Bθ−1K̆M̆)x̄ = Bw̃−Bθ−1K̆v̆.
Substituting (17b) in the left-hand side of (17a) leads to
Bū − Bθ−1K̆M̆x̄ = Bw̃ − Bθ−1K̆v̆. After term by term
identification on the two sides of this result, we find

K̆M̆x̄ = K̆v̆ (18a)
ū = w̃ (18b)

The following proposition illustrates the location of the
fixed point (x̄, ū) of the agent relative to its Voronoi cell V.

Proposition 3. (x̄,ū) determined by solving (17) belongs to
the interior of V, depending on the choice of ∆.

Proof. Replacing the notation (8d) into (18a) yields
N̆>B̆>P̆ ĂM̆ x̄ = N̆>B̆>P̆ Ăv̆. Using Proposition 1, one
has B̆>P̆ Ă = ∆⊗(B>PA) thus N̆>(∆⊗(B>PA))M̆x̄ =
N̆>(∆ ⊗ (B>PA))v̆. Silimar to the proof of Propo-

sition 1, we get σ(∆)x̄ =

|V|∑
i=1

σ(∆i)vi then x̄ =

|V|∑
i=1

(σ(∆))−1σ(∆i)vi. Due to
|V|∑
i=1

σ(∆i) = σ(∆), we obtain

|V|∑
i=1

(σ(∆))−1σ(∆i) = 1 and finally we get x̄ ∈ int(V).

To conclude, the stability of (2) w.r.t the control (7) is
proved. This control ensures the convergence of the agent’s
state x towards the fixed point x̄ inside its Voronoi cell V,
according to Proposition 3. These results will be extended
next within the Model Predictive Control context.

IV. VORONOI-BASED MPC CONTROL DESIGN

The results above can be extended over a finite horizon Np.
Solving an unconstrained MPC problem is similar to solving
an optimal control problem over a finite horizon (see [11]).
We will show in this section the explicit solution of this
control problem and then prove that the convergence can be
built similarly as the optimal control approach. For brevity,
we use k = 0 to denote the current instant time.

A. Explicit control solution

The decentralized MPC framework is

u(0) = arg min
u(k)

Np−1∑
k=0

L(x(k), u(k)) + V (x(Np))

s.t: x(k + 1) = Ax(k) +Bu(k)

(19)

The cost function in the MPC framework (19) is J =
Np−1∑
k=0

L(x(k), u(k))+V (x(Np)). Notice that the running cost

L(x(k), u(k)) and the terminal cost function V (x(k)) are
defined similar to (4) and (9) respectively. Here, V (x(Np))
denotes the final state penalty expected to be reached at the
end of the prediction horizon.

By reusing the notations P̆ , Q̆, R̆, Ă, B̆, M̆ , N̆ , v̆, w̆ and
the extended dynamics equation (6) of the previous section,
we can derive the following result by a recurrent construction
over the prediction horizon Np

z = Az̆(0) + B(NU−w) (20)

with z =

 z̆(1)
...

z̆(Np)

, U =

 u(0)
...

u(Np − 1)

, w =

w̆...
w̆

, A =

 Ă
...

ĂNp

, B =

 B̆
...

. . .
ĂNp−1B̆ . . . B̆

, N =

N̆ . . .
N̆

.



Then the cost function is rewritten as

J = z̆(0)>Q̆z̆(0)
+(Az̆(0) + BNU−Bw)>P(Az̆(0) + BNU−Bw)
+U>N>RNU− 2U>N>Rw + w>Rw

(21)

with P =


Q̆

. . .
Q̆

P̆

, R =

R̆ . . .
R̆

.

In order to simplify the presentation, consider the notation

Φ = R + B>PB (22a)

Θ = N>ΦN (22b)

G = N>Φ (22c)

K = −N>B>PA (22d)

Theorem 4. Consider the optimization control problem (19).
The optimal control solution over the prediction horizon Np

of this problem is

ΘU = Gw + Kz̆(0) (23)

Proof. The proof is identical to the optimal control case (see
the proof of Theorem 1)

B. Stability analysis

Replacing (23) in (21), we get J = z̆(0)>(Q̆+ A>PA−
K>Θ−>K)z̆(0)
+w>(Φ−G>Θ−>G)w−2w>(B>PA+G>Θ−>K)z̆(0) .
Similar to optimal control approach, the control (23) guaran-
tees J ≤ J∗, with J∗ = z̆(0)>P̆ z̆(0) if and only if w>(Φ−
G>Θ−>G)w ≤ 0 and w>(B>PA + G>Θ−>K) = 0.
This result is further formulated via the Theorem 5.

Theorem 5. If there exists a vector w ∈ RmNp which
respects the conditions

Gw = GNw̃ (24a)

w>B>PA = −w̃>K (24b)[
Φ G>

G Θ

]
� 0 (24c)

then the following expressions are verified w>(Φ −
G>Θ−>G)w ≤ 0 and w>(B>PA + G>Θ−>K) = 0.

Proof. The proof is identical to the optimal control case (see
Theorem 2).

Applying Theorem 5 helps us to keep J ≤ J∗ and there-
fore the stability is guaranteed at the end of the prediction

horizon, i.e.
Np−1∑
k=0

L(x(k), u(k)) + V (x(Np)) ≤ V (x(0))

leads to V (x(Np)) − V (x(0)) ≤ −
Np−1∑
k=0

L(x(k), u(k)). In

the following, we will use the weighting matrices P̆ , Q̆, R̆

from the previous section in order to guarantee V (x(k +
1)) − V (x(k)) ≤ −L(x(k), u(k)). Rewriting this over the
prediction horizon Np, we derive that

V (x(1))− V (x(0)) ≤ −L(x(0), u(0))
V (x(2))− V (x(1)) ≤ −L(x(1), u(1))

...
V (x(Np))− V (x(Np − 1)) ≤ −L(x(Np − 1), u(Np − 1))

By taking the sum of these inequalities above, we get

V (x(Np)) − V (x(0)) ≤ −
Np−1∑
k=0

L(x(k), u(k)). In other

words, the stability of the MPC problem (19) is covered by
the stability of the optimal control problem (3).

V. SIMULATION RESULTS

Two simulation scenarios will be presented. The consid-
ered MAS Σ contains Na = 15 homogeneous agents. The
agent dynamics is

xi(k + 1) = xi(k) + Tsui(k), i ∈ N (25)

with Ts = 0.1 and xi, ui ∈ R2 being the position
and the speed. The steady-state equation of (25) is (I −
I)xi = Tsui, hence all positions in R2 can be a fixed
point of (25) if the speed is zero. The working region
is X = Conv{(−20,−20), (20,−20), (20, 20), (−20, 20)}.
These choices of the dynamics equation and X satisfy all
the Assumptions 1, 2 and 3. We will study respectively
the performance of the control design (3) and (19) via
the movement of the agents over X and also the tracking
distance ||xi − x̄i||. In Figs. 1 and 3, we use red colored
circles, green colored stars and blue colored circle-lines to
denote respectively the initial positions xi(0), the evolution
of fixed point x̄i(k) and xi(k). The next step consists in
finding the matrices P , Q, R. We can choose for instance

R =

[
0.2 0.1
0.1 0.1

]
. The matrix P =

[
9.84 1.24
1.24 8.74

]
is found

such that (I + TsK)>P (I + TsK) � P , with the feedback
gain K obtained by pole placement techniques (with 0.8 and

0.5 as stable poles). The matrix Q =

[
2.74 −0.26
−0.26 4.06

]
is

computed by substituting P and R in a Riccati equation.
From P , Q, R, the matrices Q̆, R̆ and P̆ are obtained and
are further used in the optimal control problem (3). Here we
choose ∆ = I|V|.

In the first scenario, the decentralized optimal control (3)
is used. The results are illustrated in Fig. 1. All the agents
from their initial positions deploy X and quickly obtain the
optimal coverage. This is shown in Fig. 2 where the tracking
errors ||xi − x̄i|| drop to zero after a certain time.

We get similar results in the second scenario (see Figs. 3-
4), using the unconstrained MPC control (19). In this case,
we use the same matrices P , Q, R and ∆ of the first scenario.
The prediction horizon is Np = 3.



Fig. 1. Coverage by using optimal control approach.

Fig. 2. Coverage criteria by using optimal control approach.

VI. CONCLUSION

This paper revisits the decentralized coverage problem by
addressing respectively the optimal control approach and
MPC approach. The main idea consists of providing the
decentralized control policies to enhance the coverage of
a group of cooperative homogeneous mobile agents over a
bounded region. The classical Voronoi algorithm is employed
to partition the whole region in real time. This partition step
is based on the positions of the agents and subsequently
gives the necessary information to design the decentralized
control action for each agent. Both proposed approaches use
the current state of the agent and the vertices of its Voronoi
cell to compute the decentralized control. The constrained
MPC case as well as the robustness analysis with respect to
different uncertainties will be considered in future work.
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