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Abstract. This article analyzes the performance of the Continuous Basis Pursuit

(C-BP) method for sparse super-resolution. The C-BP has been recently proposed

by Ekanadham, Tranchina and Simoncelli as a refined discretization scheme for the

recovery of spikes in inverse problems regularization. One of the most well known

discretization scheme, the Basis Pursuit (BP, also known as Lasso) makes use of a

finite dimensional `1 norm on a grid. In contrast, the C-BP uses a linear interpolation

of the spikes positions to enable the recovery of spikes between grid points. When

the sought-after solution is constrained to be positive, a remarkable feature of this

approach is that it retains the convexity of the initial `1 problem. The present paper

shows how the C-BP is able to recover the spikes locations with sub-grid accuracy in

the favorable case. We also prove that this regime generally breaks when the grid is too

thin, and we describe precisely the artifacts that appear: each spike is approximated

by a pair of Dirac masses. We show numerical illustrations of these phenomena, and

evaluate numerically the validity of the technical assumptions of our analysis.

1. Introduction

This article studies a specific convex optimization approach, the Continuous Basis-

Pursuit (C-BP) for sparse super-resolution. A detailed review of the literature on super-

resolution, and in particular variational regularization technics, can be found in the

companion paper [12], which is dedicated to the Basis Pursuit (BP, or Lasso) method.

In the following, we focus for simplicity on the compact 1-D domain T = R/Z (i.e.

an interval with periodic boundary conditions), but the algorithms considered (Lasso

and C-BP) can be extended to higher dimensional settings (see Section 1.6).

1.1. Super-resolution

We formalize the sparse super-resolution problem mathematically as the question

of recovering an unknown Radon measure m0 ∈ M(T) defined on the torus T = R/Z
from noisy linear observations in a separable Hilbert space H, which we write as

y = Φ(m0) + w ∈ H (1)
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where w ∈ H is some measurement noise. The terminology “super-resolution” refers

here to the fact that Φ : M(T) → H is a bounded linear map defined through the

integration against a continuous kernel function ϕ : T→ H

∀x ∈ T, Φ(m) =

∫
T
ϕ(x)dm(x). (2)

The continuity of ϕ is crucial, since it allows one to pose the problem over the space of

measures, and thus enables the possible recovery of highly localized solutions (e.g. sums

of Dirac masses). In order to avoid unnecessary technicalities, we only consider smooth

impulse responses (typically ϕ ∈ C 5(T,H)).

A typical class of such problems are the so-called deconvolution problems, when

the operator Φ is translation invariant. This corresponds to using H = L2(T),

ϕ(x) : x′ 7→ ϕ̃(x′ − x) for some smooth kernel ϕ̃ defined on T. This deconvolution

setup is equivalent to computing the measurements over the Fourier domain. When

the highest measured frequency fc is finite, this corresponds to using H = C2fc+1 and

ϕ(x) = (ϕ̂ke
2ikxπ)fck=−fc for some weights ϕ̂k ∈ C which are the Fourier coefficients of ϕ̃.

1.2. Sparse Regularization

Since Φ is usually ill-posed, a regularization scheme is needed to perform its

inversion. Following several recent works (see for instance [4, 9, 6]), we study here

sparse regularizations induced by the total variation of the measure (i.e. the total

absolute mass)

|m|(T)
def.
= sup

{∫
T
ψ(x)dm(x) ; ψ ∈ C (T), ‖ψ‖∞ 6 1

}
. (3)

For discrete measures defined on a finite grid

G def.
= {zi ; i ∈ J0, G− 1K} ⊂ T (4)

of points, which take the form

ma,G
def.
=

G−1∑
i=0

aiδzi ∈M(T),

the total variation is equal to the usual discrete `1 norm

|ma,G|(T) = ‖a‖1 =
∑
i

|ai|,

which is at the heart of the celebrated Basis Pursuit [7] method (also known as the

Lasso [22]). The total variation is thus the natural way to extend these intrinsically

discrete and finite-dimensional methods to the infinite-dimensional class of Radon

measures, to enable a grid-free regularization.
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This total variation is used as a regularizer to define the Beurling LASSO

(BLasso) [9]

min
m∈M(T)

1

2
‖y − Φ(m)‖2

H + λ|m|(T). (5)

which is an infinite dimensional convex optimization problem. In the noiseless setting,

w = 0, taking the limit λ→ 0 leads to the following constrained problem

min
m∈M(T)

{|m|(T) ; Φ(m) = Φ(m0)} . (6)

1.3. From BP to C-BP

The simplest way to compute approximate solutions to (3) is to restrict the solution

to live in the finite dimensional sub-space of measures supported on the grid G defined

in (4). This is exactly equivalent to computing the weights a of the measure by solving

the BP problem

min
a∈RG

1

2
‖y − ΦGa‖2

H + λ ‖a‖1 (7)

where we defined the restriction of Φ to the discretization grid as

ΦGa
def.
= Φ(ma,G) =

G−1∑
i=0

aiϕ(zi) (8)

To obtain a better approximation of the infinite dimensional problem, [14] proposes

to perform a first order approximation of the kernel,

G−1∑
i=0

aiϕ(zi + si) ≈
G−1∑
i=0

aiϕ(zi) +
G−1∑
i=0

aisiϕ
′(zi). (9)

We introduce the derivative operator restricted to the sampling grid

Φ′Gb
def.
= Φ′(mb,G) =

G−1∑
i=0

biϕ
′(zi), (10)

and to ease the exposition, we consider a uniform grid G def.
= {i/G ; i ∈ J0, G− 1K} of G

points, so that the grid size is h
def.
= 1/G. The C-BP method of [14] assumes that the

unknown measure is nonnegative, and, after a change of variables, solves

min
(a,b)∈RG×RG

1

2

∥∥y − ΦGa− Φ′Gb
∥∥2

H + λ ‖a‖1 subject to |b| 6 h

2
a, (11)

where the inequality should be understood component-wise. Note also that the obtained

a is always nonnegative, hence the C-BP method is tailored for the recovery of

nonnegative measures. This is a convex optimization problem, which can be solved using

traditional conic optimization methods. As detailed in Section 2.2, this problem can

also be re-cast as a Lasso in dimension 2G with positivity constraints (see Section 2.2).
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Hence it can be solved using a large variety of first order proximal method, the most

simple one being the Forward-Backward, see [3] and the references therein.

If (a?, b?) are solutions of (11), one recovers an output discrete measure defined by

m? =
∑
a?i 6=0

a?i δx?i where x?i
def.
= ih+

b?i
a?i
, (12)

where we set
b?i
a?i

= 0 whenever a?i = 0. The rationale behind (11) is to perform a

first order Taylor approximation of the operator Φ, where the variable τi
def.
= bi/ai ∈

[−h/2, h/2] encodes the horizontal shift of the Dirac location with respect to the grid

sample ih. The landmark idea introduced in [14] is that, while the optimization is

non-convex with respect to the pair (a, τ), it is convex with respect to the pair (a, b).

1.4. Previous Works

There is a large body of literature on the study of the recovery performance of

the Lasso problem (7). We refer to the companion paper [12] for a detailed overview.

Let us however insist on the fact that only a small part of these previous works tackles

the super-resolution case where the operator Φ is highly “correlated”, which can be

informally understood as cases associated to a continuous underlying kernel ϕ. As

highlighted above, these cases are naturally paired with a continuous infinite dimensional

problem (5). The theoretical analysis of this setting is recent, and we refer in particular

to the works [6] which showed that some minimal separation between the spikes (the

so-called “Rayleigh limit”) is necessary and sufficient to achieve exact recovery in the

absence of noise, for deconvolution problems. Several related works have studied the

impact of noise on this recovery, see for instance [4, 5, 15, 1]. In two recent papers,

including the initial work [11] and the companion paper [12], we have shown how to

transfer support stability properties of the infinite dimensional BLasso (5) to the

discretized Lasso problem (7). Most notably, these results show that solutions of

the discrete Lasso problem estimate in general twice the number of spikes of the input

measure. It is important to note that in the special case where m0 is a nonnegative

measure (which is the setup considered by the C-BP method) and Φ is a convolution

with a typical kernel such as Dirichlet or Gauss, m0 is always a solution to (6) (see for

instance [9, 20] and [10] for a refined analysis of the stability to noise in this special

case).

1.5. Contributions and organization of the paper

The main purpose of this paper is to evaluate the behavior of the C-BP and its

reconstruction artifacts, in the same spirit as the results in the companion paper [12]

for the basic Lasso.

First of all, Section 2 shows that the C-BP problem (11) can be recast as

a Lasso under positivity constraints. It proposes an abstract analysis of support
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stability properties of such a class of problems, under a non-degeneracy condition

(hypothesis (34)), see Theorem 1. The framework is general, and the results hold when

ΦG, Φ′G are replaced with any linear operator A and B.

In Section 3, we turn to the C-BP problem as a method for solving continuous

inverse problems (e.g. deconvolution) with the help of a grid. First, we highlight a

regime in which the C-BP recovers the spikes locations with sub-grid accuracy. This is

the ideal situation. But we notice that this regime generally breaks if the grid is too thin.

The rest of the paper is devoted to describe the situation in that less favorable setting.

We show the Γ-convergence of Problem (11), as the grid gets thinner and thinner,

towards the BLasso (5) with positivity constraints: the solutions of (11) converge in

the weak* topology towards solutions of (5).

Section 4 is devoted to a fine analysis of the support of the solutions using thin

grids. First, for fixed λ > 0 and under a mild assumption, we prove that each spike

of the solution to (5) is approximated with one or two consecutive spikes, and those

spikes are “blocked” at half-grid points. It is remarkable that, although the situation

is a priori considerably richer than with the Lasso (see Table 1), the C-BP yields a

similar behavior in practice.

One may object that those artifacts are due to too large values of λ or the noise

level. We study the low noise regime (λ and ‖w‖H small, i.e. of order O(h3)) associated

with those thin grids, and we show that, under some non-degeneracy condition (the

“Twice Non-Degenerate Source Condition”, see Definition 5), the recovered spikes still

appear in pairs (see Theorem 3), one of them being “free”

mλ =
N∑
ν=1

(
α

(1)
λ,νδxν+tν + α

(2)
λ,νδxν+ενh/2

)
where

{
εν ∈ {−1,+1},
−h/2 < tν < h/2,

and we provide a closed form expression for ε, which depends on some corresponding

natural shift intrinsic to the measure. The corresponding low noise regime is

characterized by
‖w‖H
λ

= O(1) and λ = O(h3), which should be compared with the

one for the Lasso:
‖w‖H
λ

= O(1) and λ = O(h). Let us mention that this result holds

for unknown spikes that are not necessarily on the grid, but in its neighborhood (i.e.

at distance at most O(h3/2) from some point of the grid), that is a situation which is a

priori favorable to C-BP (as the Taylor expansion (9) is a good approximation).

Let us also stress the fact that the results of Section 4 do not follow from the study

in the companion paper [12], as they crucially depend on the structure of the operator

(ΦG Φ′G) and the cone constraint. As a result, the conditions for the low noise regime

and the quantities involved in the natural shift are different from the Lasso. Moreover,

those results crucially depend on the structure of the C-BP (two operators, the latter

being the derivative of the former).

Eventually, we illustrate in Section 5 these theoretical results with numerical

experiments comparing Lasso and C-BP. We first highlight in Section 5.1 the

improvements brought by C-BP over Lasso for spikes that are isolated and that fall off-

the-grid. Then, we explore the validity of the Twice Non-Degenerate Source Condition,
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and we highlight the doubling phenomenon. We display the evolution of the solution

path λ 7→ aλ (a solution of (7)) and λ 7→ (aλ, bλ) (a solution of (11)). These paths

are piecewise-affine, and our contributions (Theorem 3) precisely characterize the first

affine segment of these paths, which perfectly matches the numerical observations.

To summarize, this paper shows how the C-BP is able to reach sub-grid accuracy

in favorable situation, outperforming the Lasso. It also proves, however, that there is

a regime where artifacts appear. A natural question is whether those artifacts appear

on the typical grids used by practitioners. Our numerical experiments suggest that

their appearance depends not only on the grid size, but also on the complexity of the

measure to recover (are the spikes well separated or densely clustered?). For simple

input measures (i.e. not densely clustered), the phenomenon only appears on very thin

grids, so that the practitioner usually obtains the correct number of spikes, with a fairly

precise estimation of the locations. However, if the measure has dense clusters, the

phenomenon is likely to appear even on grids that are not so thin, preventing a faithful

estimation of the support.

The limitation of the Lasso and C-BP are due to the polyhedral nature of the

finite-dimensional approximation functional (related to the `1 norm). Improving support

recovery requires to use more advanced approximation, for instance SDP relaxation as

introduced in [9, 6, 11]. These methods are truly off-the-grid, and thus do not perform

a polyhedral approximation of the continuous problem. They suffer however from other

difficulties (large computational cost, difficult analysis of support recovery in more than

1 dimension, . . . ).

1.6. Extensions

While we restrict here the exposition to 1-D problems, the C-BP formulation (11)

can be extended to cope with measures in arbitrary dimension d > 1, i.e. to consider

m0 ∈M(Td). This requires to define at each sampling grid point indexed by i a vector

bi = (bi,k)
d
k=1 ∈ Rd together with the constraint ‖bi‖∞ 6 h

2
ai, and also to use a matrix

Φ′G defined as

Φ′Gb
def.
=
∑
i∈G

d∑
k=1

bi,k∂kϕ(xi) ∈ H

where ∂k denote the differential operator with respect to the kth direction in Rd. The

optimality conditions stated in this paper should readily extend to this setting, but the

fine analysis of the support seems nontrivial to adapt.

The paper [14] also proposes other interpolation schemes than a first order Taylor

expansion at the grid points. In particular, they develop a “polar” interpolation which

makes use of two adjacent grid points. This method seems to outperform the linear

interpolation in practice, and has been employed to perform spikes sorting in neuronal

recordings [13].

Extending the results we propose in the present paper to these higher dimensional

settings and alternative interpolation schemes is an interesting avenue for future work.
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Let us also mention that an important problem is to extend the C-BP method (12)

to measures with arbitrary signs and that can even be complex-valued. Unfortunately,

the corresponding constraint |b| 6 |a| is then non-convex, which makes the mathematical

analysis apparently much more involved. A non-convex and non-smooth optimization

solver is proposed for this problem in [16], and shows promising practical performance

for spectrum estimation.

1.7. Notations and preliminaries

The set of Radon measures (resp. nonnegative Radon measures) is denoted by

M(T) (resp. M+(T)). Endowed with the total variation norm (3), M(T) is a Banach

space. Another useful topology onM(T) is the weak* topology: a sequence of measures

(mn)n∈N weakly* converges towards m ∈ M(T) if and only if for all ψ ∈ C (T),

limn→+∞
∫
T ψdmn =

∫
T ψdm. Any bounded subset of M(T) (for the total variation) is

relatively sequentially compact for the weak* topology. Moreover the topology induced

by the total variation is stronger than the weak* topology, and the total variation is

sequentially lower semi-continuous for the weak* topology. Throughout the paper, given

α ∈ RN and x0 ∈ TN , the notation mα,x0
def.
=
∑N

ν=1 ανδx0,ν hints that αν 6= 0 for all ν

(contrary to the notation ma,G), and that the x0,ν ’s are pairwise distinct.

The space H denotes a separable Hilbert space. As explained in the companion

paper [12, Lemma 1], the operator Φ : M(T) → H defined in (2) is weak-* to weak

continuous, and so are the operators involving the derivatives, for k ∈ N,

∀m ∈M(T), Φ(k)(m) =

∫
T
ϕ(k)(x)dm(x).

Their respective adjoint operators, Φ(k),∗ : H → C (T), are given by (Φ(k),∗q)(t) =

〈q, ϕ(k)(t)〉 for all q ∈ H, t ∈ T. Moreover, Φ(k),∗q has the regularity of ϕ and
dk

dtk
(Φ∗q)(t) = (Φ(k),∗q)(t). The ∞,H-operator norm of Φ∗ : H → C (T) is defined

as ‖Φ∗‖∞,H
def.
= sup {‖Φ∗w‖∞ ; w ∈ H, ‖w‖H 6 1} (and the ∞,H operator norm of a

matrix is defined similarly). Given a vector x0 ∈ TN , Φx0 refers to the linear operator

RN → H, with

∀α ∈ RN , Φx0α
def.
= Φ(mα,x0) =

N∑
ν=1

ανϕ(x0,ν).

It may also be seen as the restriction of Φ to measures supported on the set

{x0,ν ; ν ∈ J1, NK}. A similar notation is adopted for Φ′x0 , resp. Φ
(k)
x0 (replacing ϕ(x0,ν)

with ϕ′(x0,ν), resp. ϕ(k)(x0,ν)). The concatenation of Φx0 and Φ′x0 is denoted by

Γx0
def.
=
(

Φx0 Φ′x0

)
.

We rely on the notion of set convergence. Given a sequence (Cn)n∈N of subsets of
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T, we define

lim sup
n→+∞

Cn =

{
x ∈ T ; lim inf

n→+∞
d(x,Cn) = 0

}
(13)

lim inf
n→+∞

Cn =

{
x ∈ T ; lim sup

n→+∞
d(x,Cn) = 0

}
(14)

where d is defined by d(x,C) = infx′∈C |x′−x| and |x−x′| refers to the distance between

x and x′ on the torus. If both sets are equal, let C be the corresponding set (then C is

necessarily closed), we write

lim
n→+∞

Cn = C. (15)

If the sequence (Cn)n∈N is nondecreasing (Cn ⊂ Cn+1), then limn→∞Cn =
⋃
n∈NCn, and

if it is nonincreasing (Cn ⊃ Cn+1) then limn→∞Cn =
⋂
n∈NCn (where C denotes the

closure of C). We refer the reader to [19] for more detail about set convergence. We

shall also use this notion in Hilbert spaces, with obvious adaptations.

2. Abstract analysis of the Lasso with cone constraint

This section studies a simple variant of the Lasso with cone constraint in an

abstract setting. The results stated here shall be useful in Section 3, since this variant

turns out to be the Continuous Basis-Pursuit when the degradation operator is the

integration of an impulse response and its derivative.

2.1. Notations

Given a parameter h > 0, we consider the convex cone generated by the vectors

(1, h
2
) and (1,−h

2
),

Ch
def.
=

{
(c, d) ∈ R× R ; c > 0 and − ch

2
+ |d| 6 0

}
. (16)

We also define the cone CGh as the set of vectors (a, b) ∈ RG × RG such that for all

k ∈ J0, G− 1K (ak, bk) ∈ Ch.
Now, given a vector (a0, b0) ∈ CGh (i.e. ∀k ∈ J0, G− 1K, a0,k > 2

h
|b0,k|), we observe

y0
def.
= Aa0 +Bb0, where A : RG → H and B : RG → H are linear operators, or its noisy

version y = y0 + w where w ∈ H. To recover (a0, b0) from y or y0, we consider the

following reconstruction problems:

min
(a,b)∈CGh

1

2
‖y − Aa−Bb‖2

H + λ ‖a‖1 , (Qλ(y))

and for λ = 0,

min
(a,b)∈CGh

‖a‖1 such that Aa+Bb = y0. (Q0(y0))
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Our main focus is on the support recovery properties of (Qλ(y)). Precisely, we split

the “support” of (a, b) ∈ CGh into several parts:

I
def.
= supp(a)

def.
= {i ∈ J0, G− 1K ; ai > 0} (17)

= I(r) ∪ I(l) (18)

where I(r) def.
=

{
i ∈ I ; ai +

2

h
bi > 0

}
, I(l) def.

=

{
i ∈ I ; ai −

2

h
bi > 0

}
. (19)

In general I(r) ∩ I(l) 6= ∅. If (aλ, bλ) is a solution of (Qλ(y)), we say that we have exact

support recovery provided that I(r)(aλ, bλ) = I(r)(a0, b0) and I(l)(aλ, bλ) = I(l)(a0, b0).

Remark 1. The notation I(r), I(l) shall become clearer in the next section. When

considering the Continuous Basis-Pursuit on a grid with stepsize h > 0, points i in

I(r) correspond to Dirac masses which “tend to be on the right”, that is they do not

coincide with the left half-grid point ih− h
2
. Similarly, points in I(l) correspond to Dirac

masses which “tend to be on the left”, as they do not coincide with the right half-grid

point ih+ h
2
. In fact, if i ∈ I(r)\I(l), it corresponds to a Dirac mass at the right half-grid

point: δih+h
2
, and if i ∈ I(l) \ I(r), it corresponds to a Dirac mass at the left half-grid

point: δih−h
2
. If i ∈ I(r) ∩ I(l), it corresponds to a Dirac mass which may belong “freely”

to the interval (ih− h
2
, ih+ h

2
) (see Figure 1).

2.2. Parametrization as a positive Lasso

To characterize the solutions of (Qλ(y)) and (Q0(y0)), it is convenient to

reparametrize the problem as a Lasso with positivity constraint, writing for all

i ∈ J0, G− 1K,(
ai
bi

)
def.
=

(
1 1
h
2
−h

2

)(
ri
li

)
or

(
ri
li

)
=

(
1
2

1
h

1
2
− 1
h

)(
ai
bi

)
(20)

In the following, we define the linear map

Hh :

(
r

l

)
7−→

(
a

b

)
(21)

Observe that (ai, bi) ∈ Ch if and only if ri > 0 and li > 0. Moreover, given

(a, b) ∈ CGh ,

Ic = {i ∈ J0, G− 1K ; (ri, li) = (0, 0)} ,
I(r) = {i ∈ J0, G− 1K ; ri > 0} , and I(l) = {i ∈ J0, G− 1K ; li > 0} .

Therefore, Problems (Qλ(y)) and (Q0(y0)) are respectively equivalent to the Lasso

and Basis Pursuit with positivity constraint:

min
(r,l)∈(R+)G×(R+)G

λ
∣∣∣∣∣∣(r

l

)∣∣∣∣∣∣
1

+
1

2

∥∥∥∥∥y −Ah
(
r

l

)∥∥∥∥∥
2

H

(Q̃λ(y))
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(i− 1)h ih (i+ 1)h

i ∈ I(l) \ I(r)

(i− 1)h ih (i+ 1)h

i ∈ I(r) \ I(l)

(i− 1)h ih (i+ 1)h

i ∈ I(r) ∩ I(l)

Figure 1: Depending on i being in I(r) or I(l), the spikes of the solutions to (11) are

supported on half-grid points or in the interval ((i− 1/2)h, (i+ 1/2)h).

and min
(r,l)∈(R+)G×(R+)G

∣∣∣∣∣∣(r
l

)∣∣∣∣∣∣
1

such that Ah

(
r

l

)
= y0, (Q̃0(y0))

where Ah
def.
=
(
A+ h

2
B A− h

2
B
)

: R2G → H.

The “support recovery” of (a0, b0) through (Qλ(y)) is equivalent to the support

recovery of (r0, l0) through (Q̃λ(y)). As described below, the characterization

of minimizers and the support recovery properties of the Lasso with positivity

constraint (Q̃λ(y)) are quite similar to those of the classical Lasso described in the

companion paper [12, Section 2].

Since the regularization term is of the form

F (r, l)
def.
=

G−1∑
i=0

f(ri) +
G−1∑
i=0

f(li), with f(x)
def.
= sup {qx ; q 6 1} =

{
x if x > 0,

+∞ otherwise,

its subdifferential is the product of the subdifferentials ∂f(ri) and ∂f(li) for 1 6 i 6
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G− 1, where

∂f(x) =

{
{1} if x > 0,

(−∞, 1] if x = 0.

That is similar to the subdifferential of | · | at x ∈ R which is −1, [−1, 1] or 1 if x < 0,

x = 0 or x > 0 respectively. Hence, one may adapt the standard results for the Lasso

to the Lasso with positivity constraint, simply by replacing the conditions ‖η‖∞ 6 1

with max η 6 1 (and similarly for strict inequalities) wherever they appear. We leave

the detail to the reader, and in the following, we use those results freely to derive the

properties of the Lasso with cone constraint (Qλ(y)).

2.3. Optimality conditions

The optimality conditions for (Q̃λ(y)) and (Q̃0(y0)), written in terms of (aλ, bλ),

yield the following results.

Proposition 1. Let y ∈ H, (aλ, bλ) ∈ CGh , and I = I(aλ, bλ). Then (aλ, bλ) is a solution

to (Qλ(y)) if and only if there exists pλ ∈ H such that

max

(
(A∗ +

h

2
B∗)pλ

)
6 1, and max

(
(A∗ − h

2
B∗)pλ

)
6 1, (22)

(A∗I(r) +
h

2
B∗I(r))pλ = 1I(r) , and (A∗I(l) −

h

2
B∗I(l))pλ = 1I(l) , (23)

λ

(
A∗

B∗

)
pλ +

(
A∗

B∗

)
(Aaλ +Bbλ − y) = 0. (24)

Similarly, (a0, b0) ∈ CGh is a solution to (Q0(y0)) if and only if Aa0 +Bb0 = y0 and there

exists p ∈ H such that

max

(
(A∗ +

h

2
B∗)p

)
6 1, and max

(
(A∗ − h

2
B∗)p

)
6 1, (25)

(A∗I(r) +
h

2
B∗I(r))p = 1I(r) , and (A∗I(l) −

h

2
B∗I(l))p = 1I(l) , (26)

where I = I(a0, b0).

If the inequalities outside the support are strict, it is possible to ensure the

uniqueness of the solution.

Proposition 2. Under the hypotheses of Proposition 1, if
(

(A+ h
2
B)I(r) (A− h

2
B)I(l)

)
has full rank and if pλ (resp. p) satisfies

∀k ∈ Ic, (A∗pλ)k +
h

2
|(B∗pλ)k| < 1, (27)

∀i ∈ I(l) \ I(r), ((A∗ +
h

2
B∗)pλ)i < 1, (28)

∀i ∈ I(r) \ I(l), ((A∗ − h

2
B∗)pλ)i < 1, (29)

then (aλ, bλ) (resp. (a0, b0)) is the unique solution to (Qλ(y)) (resp. (Q0(y0))).
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One may interpret the optimality conditions of Proposition 1 as the primal-dual

relations between the solutions of (Qλ(y)) and (Q0(y0)) with the solutions of their

respective dual problems

inf
p∈D

∥∥∥y
λ
− p
∥∥∥2

H
(Eλ(y))

sup
p∈D
〈y, p〉 (E0(y))

where D
def.
=

{
p ∈ H ; max

k∈J0, G−1K
(A∗p)k +

h

2
|(B∗p)k| 6 1

}
. (30)

Conversely, p ∈ H is a solution to (Eλ(y)) (resp. (E0(y))) if and only if p ∈ D and p

satisfies the conditions of Proposition 1.

2.4. Low noise behavior of C-BP

The theorem of Fuchs [17] for the Lasso describes an almost necessary and sufficient

condition for the support stability of the problem at low noise. Its adaptation to the

positive Lasso is straightforward. However, the criterion that it provides is not satisfied

in general, and the support at low noise is strictly larger than (I(r)(a0, b0), I(l)(a0, b0)).

We provide below a finer description of that support by studying the minimal norm

certificate.

Definition 1 (Minimal norm certificate). Let (a0, b0) ∈ CGh . Its minimal norm certificate

is η̄0
def.
=

(
A∗ + h

2
B∗

A∗ − h
2
B∗

)
p0 where p0 ∈ H is the solution to (E0(y)) with minimal norm.

The extended support is ext(rl)(a0, b0) =
(
ext(r)(a0, b0), ext(l)(a0, b0)

)
, where

ext(r)(a0, b0) =

{
j ∈ J0, G− 1K ; ((A∗ +

h

2
B∗)p0)j = 1

}
, (31)

ext(l)(a0, b0) =

{
j ∈ J0, G− 1K ; ((A∗ − h

2
B∗)p0)j = 1

}
. (32)

From the optimality conditions, if (a0, b0) is a solution of (Q0(y0)) then I(r) ⊂
ext(r)(a0, b0) and I(l) ⊂ ext(l)(a0, b0) (where I = I(a0, b0)), and p0 can be characterized

as

p0 = argmin
p∈H

{
‖p‖H ;

(
A∗ + h

2
B∗

A∗ − h
2
B∗

)
p ∈ ∂F (r0, l0)

}
. (33)

It is now possible to describe the behavior of (Qλ(y)) at low noise in the generic

case. We state the following theorem for problems of the form (Qλ(y)) and (Q0(y0)) as

it is of independent interest. But in Section 4.2 below (see Theorem 3 and Corollary 1),

we establish a more precise version of this result, which describes the constants and the

extended support, in the special case of the C-BP for a continuous inverse problem.
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Theorem 1. Let (a0, b0) ∈ CGh \{0} be an identifiable signal, (J (r), J (l))
def.
= ext(rl)(a0, b0)

such that Âh
def.
=
(

(A+ h
2
B)J(r) (A− h

2
B)J(l)

)
has full rank. Let(

uJ(r)

vJ(l)

)
def.
= −(Â∗hÂh)−1s where s

def.
= (1, . . . , 1)∗ ∈ R|J(r)|+|J(l)|,

and assume that the following non-degeneracy condition holds

∀ j ∈ J (r) \ I(r), uj > 0, and ∀ j ∈ J (l) \ I(l), vj > 0. (34)

Then, there exists constants C(1) > 0, C(2) > 0, C(3) > 0 such that for

C(1) ‖w‖H + C(2)λ 6 min
({1

2
a0,i +

1

h
b0,i ; i ∈ I(r)(a0, b0)

}
(35)

∪
{

1

2
a0,i −

1

h
b0,i ; i ∈ I(l)(a0, b0)

})
(36)

and ‖w‖H 6 C(3)λ, the solution (aλ, bλ) to (Qλ(y)) is unique, I(r)(aλ, bλ) = J (r),

I(l)(aλ, bλ) = J (l), and it reads(
aλ
bλ

)
=

(
a0

b0

)
+HhÂ+

hw − λHh(Â∗hÂh)−1s,

where Hh is defined in (21).

Some comments about the proofs of Theorem1 can be found in Appendix B.

3. Continuous-Basis Pursuit on (thin) grids

Now, we turn to the “continuous” inverse problem described in the introduction,

and we assume that each αν (1 6 ν 6 N) is positive. We aim at recovering m0 using the

Continuous Basis-Pursuit (C-BP) proposed in [14]. Given a grid G with stepsize h > 0,

the goal is to reconstruct a measure m =
∑Gn−1

i=0 aiδihn+ti where ti ∈ [−h
2
, h

2
] which

estimates m0. Applying a Taylor expansion to ϕ and setting bi = tiai, the authors

of [14] are led to solve

min
(a,b)∈CGh

1

2

∥∥y − ΦGa− Φ′Gb
∥∥2

H + λ ‖a‖1 (Qλ(y))

min
(a,b)∈CGh

‖a‖1 such that ΦGa+ Φ′Gb = y0. (Q0(y0))

which are particular instances of (Qλ(y)) and (Q0(y0)), with the choice (A,B) =

(ΦG,Φ
′
G). To study the behavior of the solutions to these problems, we shall apply

the results of the previous section, and in particular Lemma 3.
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3.1. Motivating example: the ideal regime

Let us first examine a regime in which the C-BP introduced in [14] identifies the

spikes locations with sub-grid accuracy, motivating its use for inverse problems instead

of the Lasso.

Let h > 0 be fixed, let x1, . . . , xN ∈ G be fixed points and I ∈ J0, G−1KN such that

x = (x1, . . . , xN) = Ih. Assuming that a solution

(
a

b

)
to (Qλ(y)) has support (I, I),

we deduce by restricting (24) to (I, I) that

λ

(
1N

0

)
+

(
Φ∗x
Φ′x
∗

)((
Φx Φ′x

)(aI
bI

)
− y

)
= 0. (37)

Writing Γx
def.
=
(

Φx Φ′x

)
, and assuming that Γx has full rank, we get(
aI
bI

)
= (Γ∗xΓx)

−1Γ∗xy − λ(Γ∗xΓx)
−1

(
1N

0

)
. (38)

If the input is y = Φm0 + w with m0
def.
=
∑N

ν=1 ανδx0,ν and x0,ν = xν + sν , then(
aI
bI

)
=

(
α

β

)
+ Γ+

x (Rα(s) + w)− λ(Γ∗xΓx)
−1

(
1N

0

)
, (39)

where βν = ανsν , Γ+
x = (Γ∗xΓx)

−1Γ∗x and Rα(s) = Φm0 − Γx

(
α

β

)
= O(‖α‖∞ ‖s‖

2
∞)

is the remainder of the Taylor expansion of Φm0 around x. In other words, provided

this regime holds, the C-BP is able to retrieve the positions xν + sν up to an error

O(‖α‖∞ ‖s‖
2
∞ + ‖Γ∗xw‖∞ + λ), yielding a better precision than the Lasso (which yields

a O(h) error) provided w and λ are small enough. We call that regime the ideal regime.

The existence of such a regime, i.e. when the solutions to (Qλ(y)) have support

(I, I) is discussed in the next theorem (which is proved in Appendix C.1). Before stating

it, we define ηV
def.
= Φ∗Γ+,∗

x

(
1N

0

)
provided Γx has full rank.

Theorem 2. Let x ∈ GN , such that Γx has full rank, and assume that

max
t∈G\{x1,...,xN}

(
ηV ±

h

2
ηV
′
)

(t) < 1. (ICh)

Then there exists constants C1 > 0 (which only depends on x and ϕ), C2 > 0 (which

depends on x,ϕ and h), such that for all input measure m0
def.
=
∑N

ν=1 ανδx0,ν with αν > 0

and x0,ν = xν + sν, all λ > 0, w ∈ L2(T) with

‖s‖∞ <
h

2

(
1− C1

(
‖α‖∞ ‖s‖

2
∞ + ‖Γ∗xw‖∞ + λ

minα

))
, (40)

and
‖α‖∞ ‖s‖

2
∞ + ‖w‖H
λ

< C2, (41)
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the solution to (Qλ(y)) is unique, has support (I, I), and is given by (39).

Remark 2. Condition (ICh) ensures that for all measures which have support in a small

neighborhood of x1, . . . , xN , the C-BP is able to identify the support up to a small

error. It is similar to the Non-Degenerate Source Condition (NDSC) introduced in [11]

to study the noise stability of the Beurling Lasso and which involves the vanishing

derivatives precertificate (see below). Whereas some theoretical results ensure the NDSC

for sufficiently separated measures (see [21]), it seems more challenging to ensure a priori

the validity of (ICh).

In the particular case of a single spike and a convolution operator (that is H =

L2(T), ϕ(x) : x′ 7→ ϕ̃(x′ − x)), the following result ensures the existence of the ideal

regime (see Appendix C.2 for the proof).

Proposition 3. If Φ is a convolution operator with ϕ̃ ∈ C 4(T) \ {0} such that ϕ̃ is not

T -periodic for T < 1, there exists h1 > 0 such that for all h ∈ (0, h1], any x ∈ G satisfies

the hypotheses of Theorem 2. In particular, for any input m0 = α1δx1+s1, the solution

is (
ai1
bi1

)
=

(
α1

α1s1

)
+O(α1s

2
1 + + ‖Γ∗xw‖∞ + λ)).

For measures with more Dirac masses, it seems difficult to state any general

result. Numerical experiments reported in Section 5.1 suggest that the ideal regime

exists for reasonable filters and measures with sufficiently separated spikes. But this

regime crucially depends on the stepsize h. Indeed, as a consequence of Lemma 5,

assuming (ICh) for all h small enough yields strong consequences such as ηV
(3)(xν) = 0,

which is not true in general. Therefore we conjecture that for typical signals and filters,

Condition (ICh) is only valid in some interval h0 < h < h1, where h0 > 0. As the

numerical experiments suggest, h0 and h1 depend on the repartition of x1, . . . xN : the

interval (h0, h1) is large for well separated spikes, and small for densely clustered spikes.

3.2. The Positive Beurling Lasso

As the C-BP motivation stems from a Taylor expansion (see (9)) which is only

valid for small shifts s, it is natural to expect that the performance of C-BP improves

when using medium or small stepsizes, as opposed to larger ones. The situation is in

fact more subtle. Now and for the next section, we are interested in the behavior of the

model on a thin grid Gn, n ∈ N, with stepsize hn ↘ 0+ as n→ +∞. The problems we

consider are

min
(a,b)∈CGnhn

1

2

∥∥y − ΦGna− Φ′Gnb
∥∥2

H + λ ‖a‖1 (Qnλ(y))

min
(a,b)∈CGnhn

‖a‖1 such that ΦGna+ Φ′Gnb = y0. (Qn0 (y0))
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and their dual problems are respectively equivalent to:

inf
q∈Dn

∥∥∥y
λ
− q
∥∥∥2

H
(Enλ (y))

sup
q∈Dn
〈y0, q〉 (En0 (y0))

where Dn def.
=

{
q ∈ H ; max

k∈J0, Gn−1K
(Φ∗q)(khn) +

hn
2
|(Φ∗q)′(khn)| 6 1

}
, (42)

As we explain below, a natural limit model of C-BP as n → +∞ is the positive

Beurling Lasso,

min
m∈M+(T)

1

2
‖y − Φm‖2

H + λm(T), (Q∞λ (y))

and min
m∈M+(T)

m(T) such that Φm = y0, (Q∞0 (y0))

where M+(T) refers to the space of positive Radon measures. The indicator function

of positive measures plus the total mass may be encoded in the quantity:

m(T) + ιM+(T)(m) = sup

{∫
T
ψ(t)dm(t) ; ψ ∈ C (T) and sup

t∈T
ψ(t) 6 1

}
. (43)

The characterization of optimality, the notions of minimal norm certificates and

extended support are straightfoward adaptations of those of the Beurling Lasso exposed

in the companion paper [12, Section 3]. Again, it essentially amounts to replacing

condition ‖η‖∞ 6 1 with supt∈T η(t) 6 1 where η = Φ∗p for p ∈ H. For instance, up to

the addition of a constant, the dual problems to (Q∞λ (y)) and (Q∞0 (y0)) are respectively:

inf
p∈D∞

∥∥∥y
λ
− p
∥∥∥2

H
(E∞λ (y))

sup
p∈D∞

〈y0, p〉 (E∞0 (y0))

where D∞
def.
=

{
p ∈ H ; sup

t∈T
(Φ∗p)(t) 6 1

}
. (44)

As for the Beurling Lasso, the low noise behavior of (Q∞λ (y)) is governed by the

minimal norm solution of (E∞0 (y0)) (see [12, Section 3]). That solution being difficult

to compute in general, one is led to study a “good candidate” for it, the vanishing

derivatives precertificate, which can easily be computed by solving a linear system in

the least square sense. In this paper, we are not directly interested in the low noise

behavior of (Q∞λ (y)) but we shall use this precertificate as an auxiliary quantity, hence

we may adopt the following definition.

Definition 2. Let m0 =
∑N

ν=1 α0,νδx0,ν an identifiable measure for the problem (Q∞0 (y0))

such that Γx0
def.
=
(

Φx0 Φ′x0

)
has full rank.

The vanishing derivatives precertificate is defined as

ηV,∞
def.
= Φ∗pV,∞ where pV,∞

def.
= Γ+,∗

x0

(
s

0

)
, (45)

where s = (1, . . . , 1)T ∈ RN and Γ+,∗
x0

= Γx0(Γ
∗
x0

Γx0)
−1.
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3.3. The Limit Problem for Thin Grids

Let us recall that we obtain a measure from the vector (a, b) ∈ CGnhn by setting

m =
Gn−1∑
i=0

aiδihn+bi/ai (46)

with the convention that bi/ai = 0 if ai = 0. It should be noticed that bi/ai ∈ [−hn
2
, hn

2
].

In this section we prove the Γ-convergence of (Qnλ(y)) towards (Q∞λ (y)). Since all

the solutions to (Qnλ(y)) belong to X+
def.
=
{
m ∈M+(T) ; λ|m|(T) 6 1

2
‖y‖2

H
}

, we may

restrict the problems to X+, which is metrizable for the weak* topology. Hence, we may

use the following formulation of Γ-convergence valid in metric spaces (see [8]).

Definition 3. We say that the Problem (Qnλ(y)) Γ-converges towards Problem (Q∞λ (y))

if, for all m ∈ X+, the following conditions hold

• (Liminf inequality) for any sequence of measures (mn)n∈N ∈ XN
+ of the form (46)

with (a(n), b(n)) ∈ CGnhn such that mn weakly* converges towards m,

lim inf
n→+∞

(
λ‖a(n)‖1 +

1

2

∥∥ΦGna
(n) + Φ′Gnb

(n) − y
∥∥2

H

)
> λm(T) +

1

2
‖Φm− y‖2

H .

• (Limsup inequality) there exists a sequence of measures (mn)n∈N ∈ XN
+ of the

form (46) with (a(n), b(n)) ∈ CGnhn such that mn weakly* converges towards m and

lim sup
n→+∞

(
λ‖a(n)‖1 +

1

2

∥∥ΦGna
(n) + Φ′Gnb

(n) − y
∥∥2

H

)
6 λm(T) +

1

2
‖Φm− y‖2

H .

The following proposition, which is proved in Appendix C.3, states the Γ-

convergence of the model and its consequences.

Proposition 4. The Problem (Qnλ(y)) Γ-converges towards (Q∞λ (y)), and

lim
n→+∞

(inf (Qnλ(y))) = inf (Q∞λ (y)). (47)

Each sequence (mλ,n)n∈N such that mλ,n is a minimizer of (Qnλ(y)) has accumulation

points (for the weak*) topology, and each of these accumulation points is a minimizer

of (Q∞λ (y)).

In particular, if the solution mλ,∞ to (Q∞λ (y)) is unique, the whole sequence

(mλ,n)n∈N converges towards mλ,∞.

4. Convergence of the support

Though Proposition 4 states the convergence of the solutions of (Qnλ(y)) towards

those of (Q∞λ (y)), it does not describe the supports of the solutions. We now study

the convergence of those supports using dual certificates and the optimality conditions
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(Proposition 1). In this continuous context, a dual certificate is determined by a function

η = Φ∗p ∈ C (T) where p ∈ H, and if (a, b) is a solution to (Qnλ(y)),

I(r) =

{
i ∈ J0, Gn − 1K ; bi > −

hn
2
ai

}
⊂
{
i ∈ J0, Gn − 1K ;

(
η +

hn
2
η′
)

(ihn) = 1

}
,

I(l) =

{
i ∈ J0, Gn − 1K ; bi <

hn
2
ai

}
⊂
{
i ∈ J0, Gn − 1K ;

(
η − hn

2
η′
)

(ihn) = 1

}
.

To sum up, we shall exploit the following observations

• if
(
η + hn

2
η′
)

(ihn) = 1 but
(
η − hn

2
η′
)

(ihn) < 1, a spike may appear at ihn + hn
2

,

• if
(
η − hn

2
η′
)

(ihn) = 1 but
(
η + hn

2
η′
)

(ihn) < 1, a spike may appear at ihn − hn
2

,

• if
(
η + hn

2
η′
)

(ihn) = 1 and
(
η − hn

2
η′
)

(ihn) = 1, a spike may appear anywhere in

the interval [ihn − hn
2
, ihn + hn

2
].

In the next two paragraphs, we describe the behavior of the support. Those results

rely on auxiliary Lemmas in Appendix D.

4.1. Asymptotics of the Support for fixed λ > 0

The following proposition relies on the convergence of the dual certificates (see

Lemma 7 in Appendix). It states that in the generic case, one may observe up to

two pairs of spikes for each spike of the solution of the positive Beurling-lasso. In the

statement below, r is chosen such that 0 < r < 1
2

minν 6=ν′ |xν − xν′ |.

Proposition 5. Let λ > 0, and assume that there exists a solution mλ,∞ to (Q∞λ (y))

which is a sum of a finite number of Dirac masses, mλ,∞ =
∑N

ν=1 ανδxν where αν > 0.

Assume that ηλ,∞ satisfies |ηλ,∞(t)| < 1 for all t ∈ T \ {x1, . . . , xN}.
Then any sequence of solution mλ,n =

∑Gn−1
i=0 aλ,iδihn+bλ,i/aλ,i to (Qnλ(y)) satisfies

lim sup
n→+∞

(suppmλ,n) ⊂ {x1, . . . xN}.

If, moreover, mλ,∞ is the unique solution to (Q∞λ (y)),

lim
n→+∞

(supp(mλ,n)) = {x1, . . . xN}. (48)

If, additionally, (ηλ,∞)′′(xν) 6= 0 for some ν ∈ {1, . . . , N}, then for all n large

enough, the restriction of mλ,n to (xν − r, xν + r) is a sum of Dirac masses whose

configuration is given in Table 1, and if (ηλ,∞)(3)(xν) 6= 0, then only the cases indicated

with (∗) may appear.

Remark 3. Proposition 5 states that the support of the C-BP on thin grids actually

depends on the properties of the dual certificate ηλ,∞ of the (positive) Beurling Lasso.

The condition η′′λ,∞(xν) 6= 0 seems to be overwhelming, or generic, and it is ensured for

instance if λ is small and the Non-Degenerate Source Condition holds (see [11]). As for

the condition η
(3)
λ,∞(xν) 6= 0, it also seems to be generic (with the notable exception of
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Number

of Dirac

masses

Saturations of the
certificates

(S
(r)
n,ν/S

(l)
n,ν)

Possible Dirac Locations

One
{ihn}/∅ or ∅/{ihn} ihn + εn

hn
2

, with εn ∈ {−1, 1} (∗)

{ihn}/{ihn} ihn + ti, with −hn
2

6 ti 6
hn
2

Two

{(i− 1)hn, ihn}/∅
or

∅/{ihn, (i+ 1)hn}

(
(i− εn)hn + εn

hn
2
, ihn + εn

hn
2

)
, with εn ∈ {−1, 1} (∗)

{ihn}/{jhn}
(
ihn + hn

2
, jhn − hn

2

)
, i < j

{ihn}/{jhn, (i+ 1)hn}
or

{(i− 1)hn, ihn}/{ihn}

(
(i− εn)hn + εn

hn
2
, ihn + ti

)
, εn ∈ {−1, 1}, −hn

2
6 ti 6

hn
2

Three

{ihn}/{jhn, (j + 1)hn}
(
ihn + hn

2
, jhn − hn

2
, (j + 1)hn − hn

2

)
, with i < j

{(i− 1)hn, ihn}/{jhn}
(

(i− 1)hn + hn
2
, ihn + hn

2
, jhn − hn

2

)
, with i < j

{(i− 1)hn, ihn}/{ihn, (i+ 1)hn}
(

(i− 1)hn + hn
2
, ihn + ti, (i+ 1)hn − hn

2

)
, −hn

2
6 ti 6

hn
2

Four {(i−1)hn, ihn}/{jhn, (j+ 1)hn}
(

(i− 1)hn + hn
2
, ihn + hn

2
, jhn − hn

2
, (j + 1)hn − hn

2

)
, i < j

Table 1: Number of Dirac masses that may appear if η′′λ,∞(xν) 6= 0. For the sake of

the simplicity of the table, and since we focus on the saturations of dual certificates, we

regard sums like δihn+hn/2 + δ(i+1)hn−hn/2 as “two” Dirac masses.

single spike input measures), as there is nothing to impose η
(3)
λ,∞(xν) = 0 in the positive

Beurling Lasso. As a result, in practice, one does not observe all the configurations

given in Table 1, and only the cases indicated with (∗) appear, the case of two spikes

being again overwhelming.

This means that when approximating the positive Beurling Lasso with the

Continuous Basis-Pursuit, if the grid is too thin, one generally sees two spikes instead

of one, and those spikes are at successive half-grid points: (ih + h
2
, (i + 1)h + h

2
) or

(ih− h
2
, (i+ 1)h− h

2
).

4.2. Asymptotic of the Low Noise Support

Now, we pursue the discussion of Section 3.1, trying to describe the solutions when

h is too small for (ICh) to hold. Again, we consider measure m0
def.
=
∑N

ν=1 ανδx0,ν where

x0,ν = xν + sν , and we assume that x ∈ (Gn)N for n large enough (for the sake of

simplicity, we consider increasing grids (Gn ⊂ Gn+1 and we assume that x ∈ G0). As the

computations in Section 3.1 suggest, we may split the observation as y = y+(Rα(s)+w)

where y
def.
= Γx

(
α

β

)
and βν = ανsν for all 1 6 ν 6 N . In other words, we regard the
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remainder Rα(s) of the Taylor expansion as an additional noise term induced by the

shift s.

Whereas the previous subsection considered a fixed value of λ and w, here, to be

able to describe precisely the support based upon intrinsic properties of x, we focus our

attention on the simpler situation of a low noise regime, that is:

• the parameter λ > 0 is small,

• the noise w ∈ H is small,

• the shift s ∈ RN is small.

The bounds on λ, w and s depend on n (i.e. on hn), they will be made precise below.

In that regime, the problem (Qnλ(y)) approximates

min
(a,b)∈CGnhn

‖a‖1 such that ΦGna+ Φ′Gnb = y, (Qn0 (y))

and the support of the solutions to (Qnλ(y)) is governed by the saturations of the minimal

norm solutions of the dual problem (En0 (y)). The difficult point here is that the minimal

norm solutions of (En0 (y)) do not converge towards the minimal norm solution of (E∞0 (y)),

and we need introduce a new variational problem to carry the study further.

Definition 4 (Third derivative precertificate). Given x ∈ (G0)N , we define the third

derivative precertificate as ηT
def.
= Φ∗pT where

pT
def.
= argmin

p∈H

{
‖p‖H ; ∀ν ∈ {1, . . . , N}, (Φ∗p)(xν) = 1,

(Φ∗p)′(xν) = 0 and (Φ∗p)(3)(xν) = 0

}
, (49)

whenever the above set is not empty.

Note that pT is the solution to a quadratic minimization under linear constraint,

and can hence be computed by solving a linear system, provided
(

Φx Φ′x Φ
(3)
x

)
has

full rank,

pT =

(
Γ∗x

Φ
(3)
x

∗

)+

(
1N

0N

)
0N

 =

(
(Π

(Im Φ
(3)
x )⊥

Γx)
+

(Π(Im Γx)⊥Φ
(3)
x )+

)
(
1N

0N

)
0N

 = (Π
(Im Φ

(3)
x )⊥

Γx)
+

(
1N

0N

)
,

(50)

where Π(Im Γx)⊥ (resp. Π
(Im Φ

(3)
x )⊥

) is the orthogonal projector onto (Im Γx)
⊥ (resp.

(Im Φ
(3)
x )⊥), and Γx =

(
Φx Φ′x

)
. The third derivative precertificate is involved in

the following technical assumption.

Definition 5 (Twice Non-Degenerate Source Condition). Given x ∈ (G0)N , we say that

the Twice Non-Degenerate Source Condition (TNDSC) holds if pT in (49) is well defined

and if it satisfies, for ηT = Φ∗pT ,

∀t ∈ T \ {x1, . . . , xN}, ηT (t) < 1,

∀ν ∈ {1, . . . , N}, η′′T (xν) < 0 and η
(4)
T (xν) > 0.
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Remark 4. In view of Lemma 4 in Appendix C.2, the Twice Non-Degenerate Source

Condition ensures that there exists n1 ∈ N such that for all n > n1, pT ∈ Dn. From the

optimality conditions (Proposition 1), we deduce that for any (α, s) ∈ (R∗+)N ×RN , the

corresponding vector (a, b) ∈ RGn × RGn defined by

(ai, bi) =

{
(αν , βν) if ihn = xν

0 otherwise,
(51)

is a solution to (Qn0 (y)), where y = ΦGna+ Φ′Gnb, provided ‖s‖∞ 6 hn
2

(i.e. (a, b) ∈ Chn).

We are now in position to describe precisely the corresponding extended support,

with a prediction on the location of the neighbor. The proof of this Theorem can be

found in Appendix D.2.

Theorem 3. Let x ∈ (G0)N such that the operator
(

Φx Φ′x Φ
(3)
x

)
has full rank and

that the Twice Non Degenerate Source condition (Definition 5) holds. Moreover, assume

that all the components of the natural shift

ρ
def.
= (Φ

(3)∗
x Π(Im Γx)⊥Φ

(3)
x )−1Φ

(3)∗
x Γ+,∗

x

(
1N

0

)
(52)

are nonzero. Then, for n large enough, any vector (a, b) ∈ Chn defined by (51), with

y
def.
= ΦGna+ Φ′Gnb, is a solution to (Qn0 (y)) and its extended support has the form

ext(r)
n (a, b) = {i1, . . . , iN} ∪ {iν − 1 ; ν ∈ J1, NK and ρν > 0}

ext(l)
n (a, b) = {i1, . . . , iN} ∪ {iν + 1 ; ν ∈ J1, NK and ρν < 0} .

where iν ∈ J0, Gn − 1K is defined by iνhn = xν.

Remark 5. The extended support is locally constant: ext
(r)
n (a, b) = ext

(r)
n (a, 0) and

ext
(l)
n (a, b) = ext

(l)
n (a, 0) for all s such that ‖s‖∞ 6 hn

2
.

The next result is a specific variant of Theorem 1 which precisely describes the

low noise solutions on thin grids. It states that, at low noise, the C-BP reconstructs a

measure of the form

mλ =
N∑
ν=1

(
α

(1)
λ,νδxν+tν + α

(2)
λ,νδxν+ενh/2

)
where

{
εν ∈ {−1,+1},
−h/2 < tν < h/2.

As in the ideal regime, the model is able to recover the locations of the original spikes

(using βν = sναν) up to a small error, but two parasitic spikes appear at neighboring

half-grid points.

Corollary 1. Under the hypotheses of Theorem 3, there exists constants C(1) > 0,

C(2) > 0 and C(3) > 0 such that for any input y = Φm0 + w, with m0 =
∑N

ν=1 ανδx0,ν
and x0,ν = xν + sν, the conditions
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• C(1)
(
‖α‖∞ ‖s‖

2
∞ + ‖w‖H

)
+ C(2)λ 6 (hn)3 minα,

•
(
‖α‖∞ ‖s‖

2
∞ + ‖w‖H

)
6 C(3)λ,

imply that the solution to (Qnλ(y)) is unique. Defining the vector I by Ih
def.
= x, the

nonzero components of the solution are(
(aλ)I
(bλ)I

)
=

(
α

β

)
+ (Π

(Im Φ
(3)
x )⊥

Γx)
+w − λ(Γ∗xΠ(Im Φ

(3)
x )⊥

Γx)
−1

(
1N

0N

)
+

(
O
(

∆
h3

)
O
(

∆
h2

)) ,
(53)

where we denoted ∆
def.
= ‖w‖H + ‖α‖∞ ‖s‖

2
∞ + λ, and, letting ε

def.
= − sign (ρ) (see (52)),(

(aλ)I+ε
(bλ)I+ε

)
=

(
O
(

∆
h3

)
O
(

∆
h2

)) with (aλ)I+ε +
2

h
diag(ε)(bλ)I+ε = 0. (54)

The proof is given in Appendix D.3.

5. Numerical illustrations

In this section, we illustrate the relevance of our analysis to gain a precise

understanding of the recovery performance of `1-type methods (Lasso and C-BP) for

deconvolution. The code to reproduce these numerical experiments is available online‡.

5.1. Ideal regime for the deconvolution problem

We begin by illustrating the ideal regime highlighted in Section 3.1: C-BP can give

a better result than Lasso, and locate spikes with sub-grid accuracy, provided the grid

size is not too small.

For this purpose, we consider the deconvolution problem, that is ϕ(x) = ϕ̃(· − x),

and we assume that the input measure has the form m0
def.
=
∑N

ν=1 ανδiνh+sν where αν > 0

are positive amplitudes, iν ∈ {0, . . . , G − 1} are grid indices, and sν ∈ [0, h] indicates

a shift of the positions outside the grid. We do not specifically add noise, considering

observations y = Φm, but let us note that if the spikes do not lie on the grid, this

is somehow equivalent to adding a “structured” interpolation noise in the observation.

In the following experiments, Φ is a Gaussian filter of standard deviation 0.06, with

observations Φm ∈ RP sampled on a uniform grid of P = 1024 points.

Figure 2, compares the solution path (evolution of the solution as a function of λ)

of the Lasso (with positivity constraints) and C-BP in the case of a single input spike

N = 1. It is obtained for a grid size G = 32, but quite remarkably, for this single spike

case (and as opposed to the case N > 1 considered below), the same conclusion holds

for any grid size G. This result shows that, while the Lasso always recovers a pair

of spikes at quantized indices {i1, i1 + 1}, in sharp contrast, C-BP correctly recovers a

‡ https://github.com/gpeyre/2015-IP-lasso-cbp/

https://github.com/gpeyre/2015-IP-lasso-cbp/
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Figure 2: Lasso and C-BP paths are functions of λ (from blue to red) for a single Dirac

input measure (N = 1).

single Dirac, which approximates the input position i0 + s0 for small λ. Note however

that if λ is chosen too small, then the “structured” interpolation noise starts having an

effect, and the recovered measure becomes degenerate (blue spurious spikes).

Figure 3 shows that the situation is more intricate in the case of N = 3 input spikes

(a similar conclusion holds for larger N). This illustrates the conclusion of Section 3.1.

The behaviour of the Lasso solution is simple to understand, and is always composed

(even for very small λ) of pairs of spikes located at {iν , iν + 1} around each input spike

location iνh + sν . In contrast, for the C-BP, two situations emerge when the grid size

h = 1/G is not too small (G = 32 on the left)

If a spike location iνh + sν is sufficiently far away from the other locations (here

the leftmost spike), then C-BP performs well, and recovers a single spike, with a

location approximating very precisely the input one. For small λ however, the solution

degenerates and produces spurious spikes.

If a spike location iν + sνh is located too close from another one (the cluster of two

spikes on the right part of the domain illustrates this), then C-BP operates very

similarly to Lasso, and quantizes the positions, as already seen in Section 5.3 when

the spikes are on-the-grid.

If the grid size h = 1/G is too small (G = 64 on the right of Figure 2), the quantization

effects impacts both Lasso and C-BP, which both fails to locate spikes between grid

points, as studied in Section 4.1.

5.2. Convergence of pre-certificates

In this section and in Section 5.3, we consider the deconvolution problem again,

but ϕ̃ is an ideal filter, i.e. whose Fourier coefficients

∀ k ∈ Z, ˆ̃ϕ(k)
def.
=

∫
T
ϕ̃(t)e−2iπktdt

satisfy ˆ̃ϕ(k) = 1 if k ∈ {−fc, . . . , fc} and ˆ̃ϕ(k) = 0 otherwise. This allows us to

implement exactly the Φ operator appearing in the Lasso and C-BP problem since

Im(Φ) is a finite dimensional space of dimension Q = 2fc + 1, i.e. it can be represented
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Figure 3: Lasso and C-BP paths are functions of λ (from blue to red) for N = 3 input

Diracs.

using a matrix of size (Q,P ) when evaluated on a grid of P points. In Figures 4 and 5

we used fc = 10.

1 1

1 1

1 1

N = 2 N = 3

Figure 4: Display of ηV,∞ (red) and ηT (blue) pre-certificate for different input positive

measures m0 (showed as black dots to symbolize the position of the Diracs).
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Figure 4 illustrates for the case of two (N = 2) and three (N = 3) spikes

the behavior of the vanishing pre-certificate ηV,∞ (see Definition 2) useful to analyze

Lasso/BLasso problems and of the pre-certificate ηT (see Definition 4) useful to

analyze C-BP problems.

We first notice that for all the (positive) input measures (i.e. whatever the

spacing between the Diracs), ηV,∞ is always a non-degenerate certificate (in the sense

of Proposition 2), meaning that one actually has ηV,∞ = η0,∞ (where the minimal norm

certificate η0,∞ is the minimal norm solution of (D∞0 (y0)) in [12]). This empirical finding

is the subject of another recent work on the asymptotic of sparse recovery of positive

measures when the spacing between the Diracs tends to zero [10]. Since η0,∞ is non-

degenerate, one can thus apply [12, Theorem 2] to analyze the extended support of the

Lasso on a thin grid (see Section 5.3 below for a numerical illustration).

For the C-BP problem, the situation is however more contrasted. We observe

that when the Dirac masses are separated enough (first row) then the pre-certificate

µT is a valid certificate, meaning the the Twice Non-Degenerate Source Condition (see

Definition 5) holds. This means that Theorem 3 can be applied to analyze the extended

support of C-BP on a thin grid (see Section 5.3 below for a numerical illustration). But

when the Dirac masses are too close (second and third rows), one has ‖ηT‖∞ > 1, so

that one cannot ensure the support stability of the C-BP solution with our result.

5.3. Extended support for deconvolution on a thin grid

We still consider the case of an ideal low pass filter. Figure 5 displays the evolution,

as a function of λ (in abscissa) of the solution aλ of the Lasso (Eq. (7)) and of the

solution (aλ, bλ) of the C-BP (Qnλ(y)), on a thin grid. We consider here the case of

an input measure with two nearby Diracs (displayed as red/blue dots in the upper-left

part of the Figure). To simplify the interpretation, we set the Dirac masses on the grid

(x0,ν = xν) and we do not add noise (w = 0). Each 1-D curve (either plain or dashed)

represents the evolution of a single coefficient, e.g. (aλ)i, for some index i (only non-zero

coefficients are displayed).

The solutions path λ 7→ aλ (for Lasso) and λ 7→ (aλ, bλ) (for C-BP) are continuous

and piecewise affine, which is to be expected since the regularizations (`1 and `1 under

conic constraints) are polyhedral. The upper-left plot in the figure displays the pre-

certificate ηV,∞ (in magenta, see Definition 2) and ηT (in green, see Definition 4).

This shows graphically that these two precertificates are non-degenerate (in the sense

of [12, Proposition 3] and Definition 5) so that the conclusions of [12, Theorem 2] and

Theorem 3 hold, hence precisely describing the evolution of the solution on the extended

support when λ is small. On these graphs, this corresponds to the first segment of the

corresponding piecewise affine paths.

The behavior for BP agrees with our analysis. As predicted by [12, Corollary 1],

there exists a range of values 0 < λ < λ0 on which the solution is exactly supported on

the extended support J , which is composed of four spikes (the plain curve corresponds



Sparse Spikes Super-resolution on Thin Grids II: the Continuous Basis Pursuit 26

1

0 10
0

0.5

1

Pre-certificates ηV and µT Lasso, aλ

0 10
0

0.5

1

0 10

-0.5

0

0.5

C-BP, aλ C-BP, 2bλ
haλ

0
0

0.5

1

0

-0.5

0

0.5

C-BP, aλ (zoom) C-BP, 2bλ
haλ

(zoom)

Figure 5: Display of the evolution as a function of λ of the solutions of the Lasso

and C-BP problems. Note that dashed curved have been (artificially) slightly shifted to

avoid that they overlap with the plain curve.

to the support I and the dashed curve corresponds to J\I). Also, as predicted by [12,

Proposition 7] in the case w = 0, we verify that λ0 = O(hn) and that the Lipschitz

constant of λ 7→ aλ is of order O(1/hn).

In sharp contrast, the behavior for C-BP is less regular, since the range 0 < λ < λ0

on which the solution is supported on the extended support is shorter, as it can be clearly

seen on the zoom for very small values of λ. This is in agreement with Corollary 1 which

shows that λ0 is of the order of O(hn
3) and that the Lipschitz constant of λ 7→ (aλ, bλ)

is of order O(1/hn
3). On this range of small λ, as predicted by Theorem 3, the support

of the solutions (which correspond to the extended support J described in Theorem 3)

is composed of one pair of neighboring spikes for each original spike. For indices on

the support i ∈ I, one has |(bλ)i|/(aλ)i < h/2 (the constraint is non-saturating, and

the spike moves “freely” inside (ih− h
2
, ih+ h

2
)) while for indices on the extended part

i ∈ J\I, one has |(bλ)i|/(aλ)i = h/2 (the constraint is saturating, the spikes are fixed at

half-grid points). Another part of the path is interesting, for λ not so small (say λ > λ1),

which is in fact the prominent regime in the non-zoomed figure. For this range of λ,

there is still a pair of spikes for each original spike, but this time both spikes saturate,

on same side. This observation should be related to Proposition 5 and Remark 3 which

predict that, in the case where η
(3)
λ,∞(xλ,ν) 6= 0, the C-BP yields either one spike or a

pair of spikes with the same shift (the latter case is in fact overwhelming).
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Conclusion

In this paper, we have provided a detailed analysis of the support recovery

properties of the C-BP method. We have highlighted the existence of three different

regimes. In the first one, the model identifies the spikes locations up to a very small

error. This is the ideal situation. Unfortunately, for typical unknown signals, this

regime breaks down as the grid size becomes small, and all the sooner as the measure

has dense clusters. In the second one, for each unknown spike, the model yields two

spikes saturating at consecutive half-grid points: it holds when λ > 0 is fixed and the

grid is small. In the last one, the model identifies one free spike and an additional one

which saturates a half grid neighbor: it holds when the grid size and λ > 0 are small,

and the unknown spikes are in a neighborhood of the grid points.

These results explain how the C-BP yields better recovery performance than the

Lasso for isolated spikes falling off-the-grid. They also explain that a necessary

condition for this gain is the use of grids that are not so small. Finding precise conditions

ensuring the existence of the ideal regime is an interesting avenue for future works.
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Appendix A. Asymptotic expansion of the inverse of a Gram matrix

In this Appendix, we gather some useful lemmas on the asymptotic behavior of

inverse Gram matrices. The proof of the following lemma can be found in [12].

Lemma 1. Let A : RN → H, B : RN → RN be linear operators such that A has full

rank and B is invertible. Then (AB)+ = B−1A+.

Lemma 2. Let A,B,C,Ch : RN → H be linear operators such that Ch = C + o(1) for

h > 0, and that
(
A B C

)
has full rank. Let Γ

def.
=
(
A B

)
, Π(Im Γ)⊥ be the orthogonal

projector onto (Im Γ)⊥, and let

Mh
def.
=
(
A+ h

2
B A− h

2
B A+ h

2
B diag(ε) + h3Ch diag(ε)

)
(A.1)
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Then for h > 0 small enough, Mh has full rank and

(M∗
hMh)

−1

1N1N
1N

 = − 1

h3

diag
(
−1+ε

2

)
diag

(
1−ε

2

)
diag(ε)

 (C∗Π(Im Γ)⊥C)−1C∗Γ+,∗

(
1N

0

)
+ o

(
1

h3

)
,

(A.2)

M+
h =

1

h3

diag
(
−1+ε

2

)
diag

(
1−ε

2

)
diag(ε)

 (Π(Im Γ)⊥Ch)
+ + o

(
1

h3

)
, (A.3)

but M+,∗
h

1N1N
1N

 = Γ+,∗

(
1N

0N

)
−
(
Π(Im Γ)⊥Ch

)+,∗
C∗hΓ+,∗

(
1N

0N

)
. (A.4)

Proof. Observe that

Mh =
(

Γ Ch

)
Z, where Z

def.
=

 IN IN IN
h
2
IN −h

2
IN

h
2

diag(ε)

0 0 h3 diag(ε)

 .

We note that

Z−1 =

1
2
IN

1
h
IN

1
h3

diag
(
−1+ε

2

)
1
2
IN − 1

h
IN

1
h3

diag
(

1−ε
2

)
0 0 1

h3
diag(ε)

 .

Moreover, writing

(
a b

c d

)
def.
=

(
Γ∗Γ Γ∗Ch
C∗hΓ C∗hCh

)
, we see from the full rank assumption

that a, T
def.
= a− bd−1c and S

def.
= d− ca−1b are invertible, at least for h > 0 small enough.

The block inversion formula yields (see [18, Section 0.7.3])(
Γ∗Γ Γ∗Ch
C∗hΓ C∗hCh

)−1

=

(
T−1 −a−1bS−1

−S−1ca−1 S−1

)
=

(
T−1 −T−1bd−1

−d−1cT−1 S−1

)
with, from straightforward formulations,

T = Γ∗Π(ImCh)⊥Γ

S = C∗hΠ(Im Γ)⊥Ch

a−1bS−1 = T−1bd−1 = Γ+Ch(C
∗
hΠ(Im Γ)⊥Ch)

−1 = (Γ∗Π(ImCh)⊥Γ)−1ΓC+
h

S−1ca−1 = d−1cT−1 = (C∗hΠ(Im Γ)⊥Ch)
−1ChΓ

+ = C+
h Γ(Γ∗Π(ImCh)⊥Γ)−1

where Γ+ = (Γ∗Γ)−1Γ is the pseudo-inverse of Γ and Π(Im Γ)⊥ = IdH−Γ(Γ∗Γ)−1Γ∗ is the

orthogonal projector onto (Im Γ)⊥, and similarly for Ch. As a result,

(M∗
hMh)

−1 = Z−1

(
Γ∗Γ Γ∗Ch
C∗hΓ C∗hCh

)−1

Z∗,−1,
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Since Z∗,−1

1N1N
1N

 =

1N0N
0N

, we see that

(M∗
hMh)

−1

1N1N
1N

 = Z−1

(
T−1 −a−1bS−1

−S−1ca−1 S−1

)1N0N
0N

 (A.5)

=
1

h3

diag
(
−1+ε

2

)
diag

(
1−ε

2

)
diag(ε)

 (−S−1ca−1)

(
1N

0

)
+

1
2
IdN

1
h
IdN

1
2
IdN − 1

h
IdN

0 0

T−1

(
1N

0

)
(A.6)

which yields (A.2).

Moreover, the formula for the Moore-Penrose pseudo-inverse [2, Theorem 1] yields(
Γ Ch

)+

=

(
(Π(ImCh)⊥Γ)+

(Π(Im Γ)⊥Ch)
+

)
.

From Lemma 1, we deduce that

M+
h = Z−1

(
(Π(ImCh)⊥Γ)+

(Π(Im Γ)⊥Ch)
+

)
(A.7)

=
1

h3

diag
(
−1+ε

2

)
diag

(
1−ε

2

)
diag(ε)

 (Π(Im Γ)⊥Ch)
+ +

1
2
IdN

1
h
IdN

1
2
IdN − 1

h
IdN

0 0

 (Π(ImCh)⊥Γ)+ (A.8)

Considering its adjoint, we obtain

M+,∗
h

1N1N
1N

 = 0 + (Π(ImCh)⊥Γ)+

(
1N

0N

)
.

Appendix B. Proofs for Section 2

The proof of Theorem 1 is similar to the proofs of Theorem 3 and Corollary 1 which

are detailed below, therefore we omit it. Let us mention however that it relies on the

following fundamental Lemma (which is a simplified version of [12, Lemma 4]), which

characterizes η̄0.

Lemma 3. Let J (r), J (l) ⊂ J0, G − 1K, and (a0, b0) ∈ CGh . Assume that (I(r), I(l))
def.
=

(I(r)(a0, b0), I(l)(a0, b0)) is such that

I(r) ⊂ J (r), I(l) ⊂ J (l) and Âh
def.
=
(

(A+ h
2
B)J(r) (A− h

2
B)J(l)

)
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has full rank. Define

(
uJ(r)

vJ(l)

)
def.
= −(Â∗hÂh)−1s where s

def.
=

1
...

1

 ∈ R|J(r)|+|J(l)|. Then

(J (r), J (l)) is the extended support of (a0, b0) if and only if the following two conditions

hold:

• for all j ∈ J (r) \ I(r), uj > 0, and for all j ∈ J (l) \ I(l), vj > 0.

• max

[(
(A+ h

2
B)∗

J(r)c

(A− h
2
B)∗

J(l)c

)
Âh

(
uJ(r)

vJ(l)

)]
< 1.

Moreover, in that case, the minimal norm certificate is given by

η̄0 = −Ah∗Âh(Â∗hÂh)−1s.

Appendix C. Proofs for Section 3

Appendix C.1. Proof of Theorem 2

We study when the solutions to (Qλ(y)) have support (I, I). In view of

Proposition 1, and assuming that Γx has full rank, the vector (a, b) defined by (38)

is a solution iff

• ri > 0 and li > 0 for all i ∈ I (where (r, l) is defined from (a, b) in (20)),

• The vector

pλ
def.
=

1

λ

(
y − Γx

(
aI
bI

))
=

1

λ
Π(Im Γx)⊥y + Γ+,∗

x

(
1N

0

)
, (C.1)

where Π(Im Γx)⊥ is the orthogonal projector onto (Im Γx)
⊥, satisfies

∀ν ∈ {1, . . . , N}, (Φ∗pλ)(xν) = 1, (Φ′
∗
pλ)(xν) = 0, (C.2)

∀t ∈ G \ {x1, . . . , xN}, (Φ∗pλ)(t)±
h

2
(Φ′
∗
pλ)(t) 6 1. (C.3)

Let us deal with the first item. Let ν ∈ J1, NK and iν ∈ J0, G − 1K such that

iνh = xν . From (39) we deduce that

aiν ±
2

h
biν > αν ±

2

h
βν − C1

(
‖α‖∞ ‖s‖

2
∞ + ‖Γ∗xw‖∞ + λ

)
where C1 depends on the norms of Φ∗x,Φ

′
x
∗, (Γ∗xΓx)

−1

(
1N

0

)
and ϕ′′, but can be chosen

independent from 0 < h 6 1. Since βν = ανsν , we see that aiν ± 2
h
biν > 0 provided (40)

holds.



Sparse Spikes Super-resolution on Thin Grids II: the Continuous Basis Pursuit 31

As for the second item, we notice that (C.2) is satisfied by construction of pλ.

Moreover, setting ηV
def.
= Φ∗Γ+,∗

x

(
1N

0

)
, ξs,w

def.
= Φ∗Π(Im Γx)⊥y, we rewrite (C.3) as

(
ηV ±

h

2
ηV
′
)

(t) +
1

λ

(
ξs,w ±

h

2
ξ′s,w

)
(t) 6 1.

Since ξs,w = Φ∗Π(Im Γx)⊥(Rα(s) + w), there exists some constant C̃2 > 0 such that

maxt∈G\{x1,...,xN} ξs,w(t) 6 C̃2

(
‖α‖∞ ‖s‖

2
∞ + ‖w‖H

)
. As a result, defining

C2
def.
=

1

C̃2

(
1− max

t∈G\{x1,...,xN}

(
ηV ±

h

2
ηV
′
)

(t)

)
> 0, (C.4)

we see that (C.3) provided (41). The conclusion follows from Propositions 1 and 2.

Appendix C.2. Proof of Proposition 3

By the translation invariance of the problem, it is sufficient to prove the result for

x = (0), I = (0).

By integration by parts, we observe that for a convolution filter,

∀z ∈ T, 〈ϕ(k)(z), ϕ(j)(z)〉 = 〈ϕ(k)(0), ϕ(j)(0)〉 (C.5)

=

(−1)
j−k
2

∥∥∥ϕ( j+k2 )(0)
∥∥∥2

H
if j + k is even,

0 otherwise.
(C.6)

Incidentally, Γx has full rank, and ηV (t)
def.
= Φ∗Γ+,∗

x

(
1

0

)
(t) = 1

‖ϕ(0)‖2H
〈ϕ(t), ϕ(0)〉. From

the Cauchy-Schwarz inequality and the fact that ϕ̃ has no period smaller than 1,

ηV (t) < 1 for all t ∈ T \ 0. Moreover, from (C.6) we deduce that

ηV
′(0) = ηV

(3)(0) = 0, ηV
(2)(0) < 0 and ηV

(4)(0) > 0.

From Lemma 4 below, we deduce that there exists h1 > 0 such that for all h ∈ (0, h1],

max
t∈G\{0}

(
ηV ±

h

2
ηV
′
)

(t) < 1. (C.7)

hence, condition (ICh) holds. The claimed result follows.

The proof of Proposition 3 relies on the following Lemma which will also be helpful

for the study of the low noise support in Section 4.2.

Lemma 4. Let {x1, . . . , xN} ⊂ G, η ∈ C 4(T) such that for all t ∈ T \ {x1, . . . , xN},
η(t) < 1 and

∀ν ∈ {1, . . . , N}, η(xν) = 1, η′′(xν) 6= 0, η(3)(xν) = 0, η(4)(xν) > 0.
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t

η(4)

η(3)

η′′

η′

η

−r 0 r

+

0

0

η′′(−r) < 0η′′(−r) < 0

η′′(0)η′′(0)

η′′(r) < 0η′′(r) < 0

0

0

11

Table C1: Variations of η and its derivatives.

Then, there exists h1 > 0 such for all stepsize h ∈ (0, h1],

max
t∈G\{x1,...xN}

(
η ± h

2
η′
)

(t) < 1.

Remark 6. The condition η(3)(xν) = 0 might seem surprising, but it is in fact necessary:

if it does not hold, by Lemma 5, for all h small enough there exists t ∈ G \ {x1, . . . xN}
such that

(
η ± h

2
η′
)

(t) > 1.

Proof. Let r > 0 small enough so that the intervals (xν − r, xν + r) for ν ∈ {1, . . . , N}
are pairwise disjoint, and such that η′′(t) < 0, and η(4)(t) > 0 for all t ∈ (xν − r, xν + r).

We first prove that η(kh)+h
2
|η′(kh)| < 1 for all k such that kh ∈ (xν−r, xν+r)\{xν}.

To simplify the notation, we assume without loss of generality that xν = 0. The

variations of η and its derivatives are given in Table C1.

Let us observe that the function θ : t 7→ η(t) − t
2
η′(t) is (strictly) decreasing in

[0, r), since

∀t ∈ (0, r), θ′(t) =
1

2
(η′(t)− tη′′(t)) =

1

2

∫ t

0

(η′′(u)− η′′(t))︸ ︷︷ ︸
<0

du < 0. (C.8)

Hence, for all k such that kh ∈ (0, r),

η(kh)− h

2
η′(kh) = η(kh)− kh

2
η′(kh)︸ ︷︷ ︸

=θ(kh)<θ(0)=1

+
(k − 1)h

2
η′(kh)︸ ︷︷ ︸

<0

< 1. (C.9)

On the other hand, θ is (strictly) increasing on (−r, 0] since

∀t ∈ (−r, 0), θ′(t) =
1

2
(η′(t)− tη′′(t)) =

1

2

∫ t

0

(η′′(u)− η′′(t))︸ ︷︷ ︸
<0

du > 0. (C.10)
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As a consequence, for all k such that kh ∈ (−r, 0),

η(kh) +
h

2
η′(kh) = η(kh)− kh

2
η′(kh)︸ ︷︷ ︸

=θ(kh)<θ(0)=1

+
(k + 1)h

2
η′(kh)︸ ︷︷ ︸

60

< 1. (C.11)

Thus we see that η(kh) + h
2
|η′(kh)| < 1 for all kh ∈ (−r, r) \ {0}, and we proceed

similarly on all the intervals of the form (xν − r, xν + r).

Now, by a compactness argument, there exists a constant β < 1 such that

η(t) 6 β for all t ∈ T \
⋃N
ν=1(xν − r, xν + r). For h > 0 small enough, the inequality

h
2

(supt∈T |η′(t)|) < 1 − β holds, and we conclude that η(kh) + h
2
|η′(kh)| < 1 for all

t ∈ T \
⋃N
ν=1(xν − rν , xν + rν).

Appendix C.3. Proof of Proposition 4

We observe that our embedding of the discrete problem into the continuous one,

that is mn =
∑Gn−1

i=0 a
(n)
i δihn+bi/ai , yields ‖a(n)‖1 = |mn|(T) = mn(T). For the liminf

inequality, let (mn)n∈N be of the form (46) which weakly* converges towards m. We

notice that Φ′Gnb
(n) = Φ′(

∑Gn−1
i=0 b

(n)
i δihn), where Φ′ : m 7→

∫
T ϕ
′(x)dm(x) is continuous

from M(T) to H (in the strong topologies). Moreover,∣∣∣∣∣
Gn−1∑
i=0

b
(n)
i δihn

∣∣∣∣∣ (T) 6
hn
2

(
Gn−1∑
i=0

a
(n)
i

)
6
hn
2λ

(
1

2
‖y‖2

H + 1

)
→ 0,

so that Φ′Gnb
(n) converges strongly towards 0 in H. Additionally, ΦGna

(n) =

Φ(
∑Gn−1

i=0 a
(n)
i δihn) and for all ψ ∈ C (T),∣∣∣∣∣

〈
Gn−1∑
i=0

a
(n)
i δihn+bi/ai −

Gn−1∑
i=0

a
(n)
i δihn , ψ

〉∣∣∣∣∣ =

∣∣∣∣∣
Gn−1∑
i=0

a
(n)
i (ψ(ihn + bi/ai)− ψ(ihn))

∣∣∣∣∣
6

Gn−1∑
i=0

a
(n)
i ωψ

(
hn
2

)
→ 0

where ωψ : t 7→ sup|x′−x|6t |ψ(x)− ψ(x′)| is the modulus of continuity of ψ. As a result,∑Gn−1
i=0 a

(n)
i δihn−mn

∗
⇀ 0 so that

∑Gn−1
i=0 a

(n)
i δihn weakly* converges to m. Hence, ΦGna

(n)

weakly converges towards Φm in H. To sum up, ΦGna
(n) + Φ′Gnb

(n)− y weakly converges

towards Φm− y and we conclude by invoking the lower semi-continuity of both terms:

lim inf
n→+∞

(
λ‖a(n)‖1 +

1

2

∥∥ΦGna
(n) + Φ′Gnb

(n) − y
∥∥2

H

)
= lim inf

n→+∞

(
λ|mn|(T) +

1

2

∥∥ΦGna
(n) + Φ′Gnb

(n) − y
∥∥2

H

)
> λm(T) +

1

2
‖Φm− y‖2

H .

For the limsup inequality, we build a recovery sequence mn by choosing a
(n)
k =

m([khn, (k+ 1)hn)) and b
(n)
k = 0 for all k ∈ J0, Gn− 1K. Then, for all n, ‖a(n)‖1 = m(T)
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and ∥∥∥∥∥Φ

(
Gn−1∑
i=0

a
(n)
i δihn

)
− Φm

∥∥∥∥∥
H

6
Gn−1∑
i=0

∥∥∥∥∫
[ihn,(i+1)hn)

(ϕ(t)− ϕ(ihn))dm(t)

∥∥∥∥
H

6 m(T)ωϕ (hn)→ 0

since ϕ is uniformly continuous on T. As a result, Φmn − y strongly converges towards

Φm− y and the limsup inequality is proved.

Appendix D. Proofs of Section 4

The following lemma is central in our analysis. It studies sequences of dual

certificates (ηn)n∈N. For 0 < r < 1
2

minν 6=ν′ |xν − xν′|, ν ∈ {1, . . . , N}, it will be useful

to consider the sets:

S(r)
n,ν(r)

def.
=

{
t ∈ Gn ∩ (xν − r, xν + r) ;

(
ηn +

hn
2
ηn
′
)

(t) = 1

}
,

S(l)
n,ν(r)

def.
=

{
t ∈ Gn ∩ (xν − r, xν + r) ;

(
ηn −

hn
2
ηn
′
)

(t) = 1

}
.

Lemma 5. Let (x1, . . . , xN) ∈ TN pairwise distinct, and let {ηn}n∈N ∈ (C 3(T))N be a

sequence of functions which converges uniformly towards some η∞ (and similarly for the

derivatives) such that for all ν ∈ {1, . . . , N}, η∞(xν) = 1 and for all t ∈ T\{x1, . . . , xN},
η∞(t) < 1.

(i) Then

lim sup
n→+∞

{
t ∈ Gn ; ηn(t) +

hn
2
|ηn′(t)| = 1

}
⊂ {x1, . . . , xN}. (D.1)

In particular for r > 0 small enough, there exists n0 ∈ N such that for n > n0{
t ∈ Gn ; ηn(t) +

hn
2
|ηn′(t)| = 1

}
=

N⋃
ν=1

(
S(r)
n,ν(r) ∪ S(l)

n,ν(r)
)
⊂

N⋃
ν=1

(xν − r, xν + r).

Assume moreover that for all n ∈ N and all t ∈ Gn, ηn(t) + hn
2
|ηn′(t)| 6 1. For each

ν ∈ {1, . . . , N}:

(ii) If η′′∞(xν) 6= 0, then there exists n0 ∈ N such that for n > n0, each set S
(r)
n,ν(r) and

S
(l)
n,ν(r) is of the form ∅, {ihn}, or {ihn, (i+ 1)hn}, and if both sets are nonempty:

maxS(r)
n,ν(r) 6 minS(l)

n,ν(r).

(iii) If η
(3)
∞ (xν) 6= 0, then there exists n0 ∈ N such that for each n > n0, S

(r)
n,ν(r) = ∅ or

S
(l)
n,ν(r) = ∅.

(iv) If η
(4)
∞ (xν) 6= 0, the set of n ∈ N such that S

(r)
n,ν(r) = {(in − 1)hn, inhn} and

S
(l)
n,ν(r) = {inhn, (in + 1)hn} (with the same in ∈ J0, Gn − 1K) is finite.
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Proof. (i) For all r̃ ∈ (0, r), by compactness, sup {η∞(t) ; t ∈ T \
⋃

(xν − r̃, xν + r̃)} <
1. Thus by uniform convergence there exists n0 ∈ N such that for all n > n0,

(ηn ± hn
2
ηn
′) < 1 on T \

⋃N
ν=1(xν − r̃, xν + r̃), and the first claim is proved.

(ii) If moreover η′′∞(xν) 6= 0, it is in fact negative. Choosing r̃ ∈ (0, r) small enough

and then n large enough, we may assume that ηn
′′ < −k0 in (xν − r̃, xν + r̃),

for some k0 > 0, and by (D.1) that S
(r)
n,ν(r) ∪ S(l)

n,ν(r) ⊂ (xν − r̃, xν + r̃). By

uniform convergence, ηn
′′+ hn

2
|η(3)
n | < −k0

2
for n large enough, so that both functions

ηn + hn
2
ηn
′ and ηn− hn

2
ηn
′ are strictly concave in (xν − r̃, xν + r̃). This implies that

S
(r)
n,ν(r) (resp. S

(l)
n,ν(r)) is of the form ∅, {ihn}, or {ihn, (i+ 1)hn}.

Observe also that ηn + hn
2
ηn
′ − (ηn − hn

2
ηn
′) = hnηn

′. Since the function ηn
′ is

strictly decreasing in (xν − r̃, xν + r̃), it vanishes at most once. If S
(r)
n,ν(r) 6= ∅ and

S
(l)
n,ν(r) 6= ∅, it must change sign in (xν − r̃, xν + r̃) and thus it vanishes exactly

once, at some ξ ∈ (xν − r̃, xν + r̃). Then for t ∈ (xν − r̃, ξ),

(ηn −
hn
2
ηn
′)(t) = (ηn +

hn
2
ηn
′)(t)− hnη′n(t) 6 1− hnη′n(t) < 1

so that minS
(l)
n,ν(r) > ξ. Similarly maxS

(r)
n,ν(r) 6 ξ.

(iii) By contradiction, assume that the set of n′ ∈ N such that S
(r)
n′,ν(r) 6= ∅ and

S
(l)
n′,ν(r) 6= ∅ is infinite. We may extract a subsequence n = n′(m) such that there

exists in, jn ∈ J0, Gn − 1K (denoted hereafter i, j) with ihn ∈ S(r)
n,ν(rm), jhn ∈ S(l)

n,ν .

Combining the Taylor expansions of ηn and (ηn)′ around ihn (resp. jhn), we get

1 > ηn((i+ 1)hn)− hn
2
ηn
′((i+ 1)hn)

= ηn(ihn) + hnηn
′(ihn)(1− 1

2
)︸ ︷︷ ︸

=1

+hn
2ηn
′′(ihn)

(
1

2!
− 1

2

)
︸ ︷︷ ︸

=0

+hn
3ηn

(3)(ihn)α3

+ hn
4

∫ 1

0

ηn
(4)(ihn + thn)

(
(1− t)3

3!
− (1− t)2

2!× 2

)
dt, and

1 > ηn((j − 1)hn) +
hn
2
ηn
′((j − 1)hn)

= ηn(jhn)− hnηn′(jhn)(1− 1

2
)︸ ︷︷ ︸

=1

+hn
2ηn
′′(jhn)

(
1

2!
− 1

2

)
︸ ︷︷ ︸

=0

−hn3ηn
(3)(jhn)α3

+ hn
4

∫ 1

0

ηn
(4)(jhn − thn)

(
(1− t)3

3!
− (1− t)2

2!× 2

)
dt

where αk is defined in (D.6). Now, let n→ +∞. By (D.1), ihn → xν and jhn → xν ,

and using the uniform convergence of η
(k)
n towards η

(k)
∞ , dividing by hn

3, we obtain

respectively 0 > −η(3)
∞ (xν)× 1

12
and 0 > η

(3)
∞ (xν)× 1

12
, thus η

(3)
∞ (xν) = 0.

(iv) Assume, by contradiction, that the mentioned set is infinite. For such n, a Taylor
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expansion at ihn yields (we write i for in):

1 = ηn((i+ 1)hn)− hn
2
ηn
′((i+ 1)hn)

= ηn(ihn) +
hn
2
ηn
′(ihn)︸ ︷︷ ︸

=1

+γ3hn
3ηn

(3)(ihn) + γ4hn
4ηn

(4)(ihn)

+ hn
5

∫ 1

0

ηn
(5)(ihn + thn)

(
(1− t)4

4!
− (1− t)3

3!× 2

)
dt, and

1 = ηn((i− 1)hn) +
hn
2
ηn
′((i− 1)hn)

= ηn(ihn)− hn
2
ηn
′(ihn)︸ ︷︷ ︸

=1

−γ3hn
3ηn

(3)(ihn) + γ4hn
4ηn

(4)(ihn)

+ hn
5

∫ 1

0

ηn
(5)(ihn + thn)

(
(1− t)4

4!
− (1− t)3

3!× 2

)
dt,

with γk = 1
k!
− 1

(k−1)!×2
. Summing both equalities, dividing by hn

4 and taking the

limit n→ +∞ yields (η∞)(4)(xν) = 0, a contradiction.

This other lemma focusses on the limit of the sets Dn defined in (42).

Lemma 6. As n → +∞, the sets Dn converge towards D∞ defined in (44) (in the

sense of set convergence).

Proof. We observe that En ⊂ Dn ⊂ F n, where

En def.
=

{
p ∈ H ; max

t∈T
(Φ∗p)(t) +

hn
2
|(Φ∗p)′(t)| 6 1

}
,

F n def.
=

{
p ∈ H ; max

k∈J0, Gn−1K
Φ∗p(khn) 6 1

}
so that it suffices to prove that En and F n converge towards D∞. On the one hand, it is

clear that D∞ =
⋂
n∈N F

n, and the sequence F n is non-increasing. On the other hand,

it is possible to check that D∞ =
⋃
n∈NE

n, and the sequence En is non-decreasing. As

a consequence, the claimed set convergences hold (see [19, Ex. 4.3]).

Let us recall that the dual problem to (Qnλ(y)) is the projection onto the closed

convex set

Dn def.
=

{
p ∈ H ; (Φ∗p)(ihn) +

hn
2
|(Φ∗p)′(ihn)| 6 1

}
.

Since the set convergence of Dn (see Lemma 6 above) implies the convergence of

the projections onto Dn (see [19], or [11] for a direct proof in a similar context), we

obtain:
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Lemma 7. Let pλ,n (resp. pλ,∞) be a solution of (Enλ (y)) (resp. (E∞λ (y))), and

ηλ,n = Φ∗pλ,n (resp. ηλ,∞ = Φ∗pλ,∞). Then

lim
n→+∞

pλ,n = pλ,∞ strongly in H,

lim
n→+∞

η
(k)
λ,n = η

(k)
λ,∞ in the sense of the uniform convergence, for all k ∈ N up to the regularity of ϕ.

We are now in position to prove Proposition 5.

Proof of Proposition 5. By Lemma 7, we know that the dual certificates ηλ,n converge

towards ηλ,∞. By Lemma 5 (i) and the optimality conditions, we have thus

lim supn→+∞(supp(mλ,n)) ⊂ {x1, . . . , xN}.
If mλ,∞ is the unique solution, assume by contradiction that lim inf(supp(mλ,n)) (

{x1, . . . , xN}. Then there is some ν, some ε > 0 such that (up to a subsequence)

(supp(mλ,n))∩ (xν − ε, xν + ε) = ∅. This contradicts the Γ-convergence result (Prop. 4)

which ensures that mλ,n converges towards mλ,∞ in the weak* topology. As a result

limn→+∞(supp(mλ,n)) = {x1, . . . , xN}.
If µ′′λ,∞(xν) 6= 0, Lemma 5 ensures that the sets S

(r)
n,ν(r) and S

(l)
n,ν(r) are of the form

∅, {ihn}, or {ihn, (i + 1)hn}. Moreover, since limn→+∞(suppmλ,n) = {x1, . . . , xN} we

must have S
(r)
n,ν(r) 6= ∅ or S

(l)
n,ν(r) 6= ∅. Using the fact that maxS

(r)
n,ν(r) 6 minS

(l)
n,ν(r),

one may check that the only possible saturation points of ηλ,n+ hn
2
η′λ,n and ηλ,n− hn

2
ηλ,n

′

are given in Table 1. The optimality conditions of Proposition 1 imply that mλ,n is at

most a sum of Dirac masses at those locations.

If η
(3)
λ,∞(xν) 6= 0, Lemma 5 (iii) implies that for n large enough, S

(r)
n,ν(r) = ∅ or

S
(r)
n,ν(r) = ∅ (but not both). Hence there are at most two (successive) saturations,

produced either by ηλ,n + hn
2
η′λ,n or by ηλ,n − hn

2
η′λ,n.

Appendix D.1. Asymptotics of the Minimal Norm Certificates

We begin with two propositions concerning minimal norm certificates. From

Remark 4, given x ∈ G0, if the Twice Non-Degenerate Source Condition (Definition 5)

holds, then the vector (a, b) defined by (51), with y
def.
= ΦGna + Φ′Gnb, is a solution

to (Qn0 (y)) for all n large enough, and ηT is a valid dual certificate, i.e. a solution

to (En0 (y)). In fact the associated minimal norm certificates (which thus exist) converge

towards ηT .

Proposition 6. Let x ∈ G0 satisfy the Twice Non-Degenerate Source Condition (and

ηT the corresponding Third derivative (pre)certificate). Let p0,n be the minimal norm

solution of (En0 (y)), and η0,n = Φ∗p0,n. Then,

• limn→+∞ p0,n = pT for the H strong topology,

• limn→+∞ η
(k)
0,n = η

(k)
T in the sense of the uniform convergence, for all k ∈ N up to

the regularity of ϕ.
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Proof. As mentioned above, the Twice Non-Degenerate Source Condition and Lemma 4

imply ηT is a certificate for (Qn0 (y)). As a result, ‖p0,n‖ 6 ‖pT‖ and the sequence

(p0,n)n∈N is bounded in H. We may extract a subsequence p0,n′ which weakly converges

towards some p̃ ∈ H, and then ‖p̃‖ 6 lim infn′→+∞ ‖p0,n‖ 6 ‖pT‖. Since Φ∗ and Φ(k),∗

are compact (see [12, Lemma 1]), we obtain that η
(k)
0,n′ = (Φ∗p0,n′)

(k) converges toward

η̃(k) def.
= (Φ∗p̃)(k) in the (strong) topology of uniform convergence. We immediately obtain

that η̃(t) 6 1 for all t ∈ T, and η̃(xν) = 1, η̃(xν) = 0 for all ν ∈ {1, . . . , N}.
Moreover, applying Lemma 5 to Φ∗p0,n (observing that xν ∈ S(r)

n,ν(r) ∩ S(l)
n,ν(r)), we

get η̃(3)(xν) = 0. As a result, p̃ is admissible for (49), hence ‖pT‖ 6 ‖p̃‖. Thus in fact

‖pT‖ = ‖p̃‖ and pT = p̃. Since the limit of the extracted subsequence does not depend

on the choice of the subsequence, in fact the whole sequence converges. Moreover, the

convergence is strong in H since limn→+∞ ‖p0,n‖ = ‖pT‖.

As a consequence of the above convergence result, the third derivative precertificate

controls the extended support on thin grids.

Proposition 7. Let x ∈ G0, such that the Twice Non Degenerate Source Condition

holds. Then, for n large enough, any vector (a, b) ∈ Chn defined by (51), with

y
def.
= ΦGna+ Φ′Gnb, is a solution to (Qn0 (y)) and its extended support is given by:

ext(r)
n (a, b) =

N⋃
ν=1

S(r)
n,ν(r), and ext(l)

n (m) =
N⋃
ν=1

S(l)
n,ν(r), (D.2)

where

• S(r)
n,ν(r) is equal to {xν} or {xν − hn, xν},

• S(l)
n,ν(r) is equal to {xν} or {xν , xν + hn}.

Moreover, one cannot have simultaneously S
(r)
n,ν(r) = {xν − hn, xν} and S

(l)
n,ν(r) =

{xν , xν + hn}.

Proof. By Remark 4 ηT is a solution to (En0 (y)) and (a, b) is a solution to (Qn0 (y)).

Applying Lemma 5 to η0,n, ηT , we see that S
(r)
n,ν(r) is of the form ∅, {ihn} or

{(i− 1)hn, ihn}, and that S
(l)
n,ν(r) is of the form ∅, {jhn} or {jhn, (j+ 1)hn}, with i 6 j.

On the other hand, by the extremality relations between η0,n (solution of (En0 (y))) and

(a, b) (solution of (Qn0 (y))), xν ∈ S(r)
n,ν(r) and xν ∈ S(l)

n,ν(r). As a consequence S
(r)
n,ν(r) is

equal to {xν} or {xν − hn, xν}, and S
(l)
n,ν(r) is equal to {xν} or {xν , xν + hn}.

Now, since η4
T (0) 6= 0, the fourth point of Lemma 5 ensures that for n large enough,

one cannot have simultaneously S
(r)
n,ν(r) = {xν−hn, xν} and S

(l)
n,ν(r) = {xν , xν +hn}.

Remark 7. As Proposition 7 shows, for each original spike, at most one pair of spikes

appears at low noise: the original spike slightly shifted and either the immediate left

neighbor shifted by +hn/2 or the immediate right neighbor shifted by −hn/2.
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Appendix D.2. Proof of Theorem 3

We proceed by building a good candidate for η0,n, making the ansatz that for all

ν ∈ {1, . . . , N}, its saturation points satisfy

if ρν > 0, then S(r)
n,ν(r) = {xν − hn, xν}, and S(l)

n,ν(r) = {xν}, (D.3)

if ρν < 0, then S(r)
n,ν(r) = {xν}, and S(l)

n,ν(r) = {xν , xν + hn}, (D.4)

and then, using Lemma 3, we prove that this candidate is indeed the minimal norm

certificate.

To comply with the notations of Lemma 3, let us write I(r) def.
= I(l) def.

= I
def.
=

{i ∈ J0, Gn − 1K ; ai 6= 0}.
For any choice of shift (εi)i∈I ∈ {−1,+1}N , we set J (r) def.

= I(r) ∪
{i+ εi ; i ∈ I and εi = −1} and J (l) def.

= I(l) ∪ {i+ εi ; i ∈ I and εi = +1}. Since

|xν − xν′| > 2hn for ν ′ 6= ν and n large enough, we have Card J (r) + Card J (l) =

3× Card I = 3N . The idea is to find a choice of ε such that uj > 0 for all j ∈ J (r) \ I,

and vj > 0 for all j ∈ J (l) \ I, where(
uJ(r)

vJ(l)

)
def.
= −(Â∗hÂh)−1

(
1J(r)

1J(l)

)
, Âh

def.
=
(

(A+ h
2
B)J(r) (A− h

2
B)J(l)

)
A

def.
= ΦGn and B

def.
= Φ′Gn .

In this particular case where I(r) = I(l) = I, all j in (J (r) \ I) ∪ (J (l) \ I) may be

uniquely written as j = i + εi for some i ∈ I, where εi ∈ {−1,+1}. We may swap the

columns of Âh so as to reformulate the condition

(
uJ(r)

vJ(l)

)
= −(Â∗hÂh)−113N into

uIvI
t̃I

 = −(Ā∗hĀh)−1

1N1N
1N

 , (D.5)

where Āh
def.
=
(
AI + hn

2
BI AI − hn

2
BI AI+ε − hn

2
BI+ε diag(ε)

)
and t̃i > 0 for all i ∈ I

(more precisely t̃i = ui−1 for εi = −1, t̃i = vi+1 for εi = 1). But a Taylor expansion

yields

AI+ε −
hn
2
BI+ε diag(ε) = Φx︸︷︷︸

=AI

+
hn
2

Φ′x︸︷︷︸
=BI

diag(ε) + (hn)3(γ3Φ
(3)
x diag(ε) + o(1)),

where we defined

γk
def.
=

1

k!
− 1

(k − 1)!× 2
. (D.6)

Hence, we may apply Lemma 2 to Φx, Φ′x and (γ3Φ
(3)
x + o(1)) so as to obtain

t̃I = − 1

γ3hn
3 diag(ε)ρ+ o

(
1

hn
3

)
.
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Therefore it is sufficient to choose ε = − sign(ρ) to make all the components of t̃I
nonnegative (recall that γ3 < 0).

With that choice of ε, it remains to prove that

max

[(
(A+ h

2
B)∗

J(r)c

(A− h
2
B)∗

J(l)c

)
Âh

(
uJ(r)

vJ(l)

)]
< 1.

Let us write p̃n
def.
= Âh

(
uJ(r)

vJ(l)

)
. Since

(
uJ(r)

vJ(l)

)
= −(Â∗hÂh)−113N , we get p̃n =

Â+,∗
h 13N = Ā+,∗

h 13N , and applying Lemma 2 again, we see that p̃n converges towards pT
(using (50)).

By construction of p̃n,

∀j ∈ J (r) \ I, (Φ∗p̃n +
hn
2

(Φ∗p̃n)′)(jhn) = 1,

and ∀j ∈ J (l) \ I, (Φ∗p̃n −
hn
2

(Φ∗p̃n)′)(jhn) = 1, (D.7)

which may be summarized as

∀i ∈ I, (Φ∗p̃n − εi
hn
2

(Φ∗p̃n)′)((i+ εi)hn) = 1.

Arguing as in the proof of point (iv) in Lemma 5 (replacing “1 = . . .” with

“1 > . . .” and using that η
(4)
T (xν) > 0), we may prove that for n large enough,

(Φ∗p̃n + εi
hn
2

(Φ∗p̃n)′)((i− εi)hn) < 1.

Then, by the same argument of compactness and local concavity as in point (ii) of

Lemma 5, we observe that{
k ∈ J0, Gn − 1K ; (Φ∗p̃n +

hn
2

(Φ∗p̃n)′)(khn) > 1

}
⊂ J (r),{

k ∈ J0, Gn − 1K ; (Φ∗p̃n −
hn
2

(Φ∗p̃n)′)(khn) > 1

}
⊂ J (l),

and those inclusions are in fact equalities. That precisely means that

max

[(
(A+ h

2
B)∗

J(r)c

(A− h
2
B)∗

J(l)c

)
p̃n

]
< 1.

Hence, by Lemma 3, Φ∗p̃n is the minimal norm certificate η0,n and (J (r)hn, J
(l)hn)

is the extended support. This concludes the proof.

Appendix D.3. Proof of Corollary 1

We build a pair of candidate solutions for the primal and dual problems, and we

prove that they satisfy the optimality conditions. Again, we change variables so as to

deal with the positive Lasso, working with (rλ, lλ) rather than (aλ, bλ) (see (20)). In

particular, we define (r, l) from (a, b) using (20).
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Moreover, as the noise w and the remainder of the Taylor expansion Rα(s) play the

same role, we set w̃
def.
= Rα(s) + w, to simplify the notation. In the rest of the proof,

we assume that there exists κ ∈ (0, 1) such that ‖s‖∞ 6 κhn
2

: as we shall see, it is not

restrictive since the constraints on the “noise” w̃ impose s� hn.

Recall the notation A
def.
= ΦGn , B

def.
= Φ′Gn and Ah

def.
=
(
A+ h

2
B A− h

2
B
)

. Defining

(J (r), J (l)) as in the proof of Theorem 3, we let Âh
def.
=
(

(A+ h
2
B)J(r) (A− h

2
B)J(l)

)
(again, Âh has full rank for h small enough since

(
Φx Φ′x Φ

(3)
x

)
has full rank).

Now, we let

(
(rλ)J(r)

(lλ)J(l)

)
def.
= Â+

h y − λ(Â∗hÂh)−113N =

(
rJ(r)

lJ(l)

)
+ Â+

h w̃ + λ

(
uJ(r)

vJ(l)

)
,

pλ
def.
= 1

λ

(
y − Âh

(
(rλ)J(r)

(lλ)J(l)

))
= 1

λ
Π(Im Âh)⊥y + Â+,∗

h 13N ,

(D.8)

where u, v are defined as in the proof of Theorem 3 by

(
uJ(r)

vJ(l)

)
def.
= −(Â∗hÂh)−1

(
1J(r)

1J(l)

)
=

−(Â∗hÂh)−113N .

Observe that by construction of pλ,
(
A+ h

2
B A− h

2
B
)∗
pλ = Â∗hpλ = 13N . It

remains to prove that

(i) For all i ∈ I, rλ,i > 0 and lλ,i > 0.

(ii) For all j ∈ J (r) \ I (resp. j ∈ J (l) \ I) , rλ,j > 0 (resp. lλ,j > 0).

(iii) For k /∈ J (r) (resp. k /∈ J (l)) ((A∗ + hn
2
B∗)pλ)k < 1 (resp. ((A∗ − hn

2
B∗)pλ)k < 1)

Regarding the first two points, we apply the same reordering of the columns as in

the proof of Theorem 3,(rλ)I
(lλ)I
(zλ)I

 =

 rI
lI
0N

+ Ā+
h w̃ − λ(Ā∗hĀh)−113N , (D.9)

where (zλ)i = (rλ)i−1 if i ∈ J (r) \ I, and (lλ)i+1 otherwise (i.e. i ∈ J (l) \ I). Using the

same Taylor expansion (denoting Φ
(3)
x,h

def.
= Φ

(3)
x + o(1)), combined with (A.8) and (A.6),

we get

Ā+
h =

1

γ3h3

diag
(
−1+ε

2

)
diag

(
1−ε

2

)
diag(ε)

 (Π(Im Γx)⊥Φ
(3)
x,h)

+ +

1
2
IdN

1
h
IdN

1
2
IdN − 1

h
IdN

0 0

 (Π
(Im Φ

(3)
x,h)⊥

Γx)
+

and (Ā∗hĀh)−113N = − 1

γ3h3

diag
(
−1+ε

2

)
diag

(
1−ε

2

)
diag(ε)

 (Φ
(3),∗
x,h Π(Im Γx)⊥Φ

(3)
x,h)

−1Φ
(3)
x,hΓ

+
x

(
1N

0

)

+

1
2
IdN

1
h
IdN

1
2
IdN − 1

h
IdN

0 0

 (Γ∗xΠ(Im Φ
(3)
x,h)⊥

Γx)
−1

(
1N

0

)
.
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As a result, the following componentwise inequality holds, (rλ)I
(lλ)I

(zλ)I+ε

 >

 rI
lI
0N

− ∥∥∥Â+
h

∥∥∥
∞,H
‖w̃‖H − λ

∥∥(Ā∗hĀh)−113N

∥∥
∞

From the above expressions, and using the fact that (Φ
(3),∗
x,h Π(Im Γx)⊥Φ

(3)
x,h)

−1Φ
(3)
x,hΓ

+
x

(
1N

0

)
=

ρ+ o(1), we get the asymptotic equivalents∥∥∥Â+
h

∥∥∥
∞,H
∼ 1

|γ3|(h)3

∥∥∥(Π(Im Γx)⊥Φ
(3)
x )+

∥∥∥
∞,H

,

and
∥∥(Ā∗hĀh)−113N

∥∥
∞ ∼

1

|γ3|(h)3
‖ρ‖∞ .

Since mini∈I ri = minν∈{1,...,N}

(
1
2
αν + 1

hn
ανsν

)
> (1−κ)

2
minα, and similarly mini∈I li >

(1−κ)
2

minα, we deduce that (rλ)I and (lλ)I have positive components provided

(hn)3 minα > c1 ‖w̃‖H + c2λ, (D.10)

with c1
def.
=

4

|γ3|(1− κ)

∥∥∥(Π(Im Γx)⊥Φ
(3)
x )+

∥∥∥
∞,H

and c2
def.
=

4

|γ3|(1− κ)
‖ρ‖∞ .

(D.11)

As for (zλ)I , i.e. the components of (rλ)J(r)\I and (lλ)J(l)\I , we note that in fact,

(zλ)I > −
∥∥∥Â+

h

∥∥∥
∞,H
‖w̃‖H + λ

1

γ3h3
diag(ε)(Φ

(3),∗
x,h Π(Im Γx)⊥Φ

(3)
x,h)

−1Φ
(3)
x,hΓ

+
x

(
1N

0

)
︸ ︷︷ ︸

= 1
|γ3|h3

(|ρ|+o(1))

.

Hence, they are positive provided
∥∥∥Â+

h

∥∥∥
∞,H
‖w̃‖H <

λ
|γ3|h3 min {|ρi|+ o(1) ; i ∈ I}. This

condition holds for large n provided ‖w̃‖H /λ 6 c3, where

c3 =
mini∈I |ρi|

2
∥∥∥(Π(Im Γx)⊥Φ

(3)
x )+

∥∥∥
∞,H

. (D.12)

To summarize, we have proved the first two points.

For the last point, we have to ensure that

max

[(
(A∗ + h

2
B∗)(J(r))c

(A∗ − h
2
B∗)(J(l))c

)
pλ

]
< 1

Since by construction

pλ =
1

λ

(
Π(Im Âh)⊥y

)
+ Â+,∗

h 13N =
1

λ

(
Π(Im Âh)⊥w̃

)
+ Â+,∗

h 13N =
1

λ

(
Π(Im Âh)⊥w̃

)
+ p0,n,
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we are led to check that(
η0,n +

ω

λ

)
(jh) +

h

2

(
η0,n +

ω

λ

)′
(jh) < 1 for all j ∈ (J (r))C , (D.13)(

η0,n +
ω

λ

)
(jh)− h

2

(
η0,n +

ω

λ

)′
(jh) < 1 for all j ∈ (J (l))C , (D.14)

where ω
def.
= Φ∗Π(Im Âh)⊥w and η0,n

def.
= Φ∗(Â∗hÂh)−113N = Φ∗p0,n yields the minimal norm

certificate

η̄0,n =

(
(η0,n + h

2
η′0,n)(Gn)

(η0,n − h
2
η′0,n)(Gn)

)
=

(
(A+ h

2
B)∗

(A− h
2
B)∗

)
(Â∗hÂh)−113N .

Given 0 < r < 1
2

minν 6=ν′ |xν−xν′|, let N (r)
def.
=
⋃
ν(xν−r, xν +r) be a neighborhood

of the xν ’s. By the Twice Non-Degenerate Source condition, we may choose r > 0, such

that

k̃2
def.
= − sup

t∈N (r)

η′′T (t) > 0, and k̃4
def.
= inf

t∈N (r)
η

(4)
T (t) > 0.

By compactness, k̃0
def.
= supt∈T\N (r) ηT (t) < 1.

Let us recall that η0,n → ηT in the sense of the uniform convergence (and similarly

for the derivatives). As a result, for n ∈ N large enough,

sup
t∈T\N (r)

η0,n(t) 6
1 + k̃0

2
< 1, sup

t∈N (r)

(η0,n)′′(t) 6 − k̃2

2
< 0, inf

t∈N (r)
(η0,n)(4)(t) >

k̃4

2
> 0,

(D.15)∥∥∥η(5)
0,n

∥∥∥
∞

6 k̃5
def.
=
∥∥∥µ(5)

T

∥∥∥
∞

+ 1, (D.16)

h

2
‖(η0,n)′‖∞ 6

1− k̃0

6
and

h

2

∥∥(η0,n)(3)
∥∥
∞ 6

k̃2

8
.

Now, we assume that
‖w̃‖H
λ

is small enough, so that

∥∥(Φ(j))∗
∥∥
∞,H
‖w̃‖H
λ

6
1− k̃0

6
, for j ∈ {0, 1}, (D.17)∥∥(Φ(j))∗

∥∥
∞,H
‖w̃‖H
λ

6
k̃2

8
, for j ∈ {2, 3}, (D.18)

and
∥∥(Φ(4))∗

∥∥
∞,H
‖w̃‖H
λ

6
k̃4

4
. (D.19)

Then, using the fact that and |ω(j)|(t) 6
∥∥(Φ(j))∗

∥∥
∞,H ‖w̃‖H and h 6 1, we obtain

sup
t∈T\N (r)

(
η0,n +

ω

λ
+
h

2

∣∣∣(η0,n +
ω

λ
)′
∣∣∣) (t) 6

1 + k̃0

2
+

1− k̃0

6
+

1− k̃0

6
+

1

2

(
1− k̃0

6

)
< 1.
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Thus it remains to prove that for each ν ∈ {1, . . . , N},(
η0,n +

ω

λ
+
h

2
(η0,n +

ω

λ
)′
)

(t) < 1 for t ∈ (xν − r, xν + r) ∩ Gn \ S(r)
n,ν(r),

(D.20)

and

(
η0,n +

ω

λ
− h

2
(η0,n +

ω

λ
)′
)

(t) < 1 for t ∈ (xν − r, xν + r) ∩ Gn \ S(l)
n,ν(r).

(D.21)

We first deal with the case S
(r)
n,ν(r) = {xν}, S(l)

n,ν(r) = {xν , xν +h}. Let f
def.
= 1

λ
ω(·−xν)+

η0,n(· − xν). By definition of Π(Im Âh)⊥ , ω(xν) = ω′(xν) = ω(xν + h)− h
2
ω′(xν + h) = 0,

so that

f(0) = 1, f ′(0) = 0, and f(h)− h

2
f ′(h) = 1. (D.22)

Moreover, letting k2 = 3
8
k̃2, k4 = 1

2
k̃4, k5 = k̃5, we see from Eq. (D.15) to (D.19) that f

satisfies the hypotheses of Lemma 8 below. We deduce that the local inequalities (D.20)

and (D.21) hold. The symmetric case, S
(r)
n,ν(r) = {xν−h, xν}, S(l)

n,ν(r) = {xν}, is handled

similarly, replacing f with f(−·).
To summarize, we have proved the global inequalities (D.13) and (D.14). The

(strict) extremality relations hold for (rλ, lλ) and pλ and they are unique solutions of

the primal and dual problems respectively. The conditions on
‖w̃‖H
λ

stemming from

(D.12), and (D.17)-(D.19) define the bound C(3). The condition on the signal to noise

ratio ‖w̃‖ /minα and λ/minα given in (D.10) define the bounds C(1) and C(2).

To finish, using the mapping Hh, we recover (aλ, bλ) from (D.9) so as to derive (53).

We obtain(
(aλ)I
(bλ)I

)
=

(
aI
bI

)
+ (Π

(Im Φ
(3)
x,h)⊥

Γx)
+w +

1

|γ3|

(
1
h3

diag(ε)
1

2h2
diag(ε)

)
(Π(Im Γx)⊥Φ

(3)
x,h)

+w

− λ(Γ∗xΠ(Im Φ
(3)
x,h)⊥

Γx)
−1

(
1N

0N

)
+

λ

|γ3|

(
1
h3

(|ρ|+ o(1))
1

2h2
(|ρ|+ o(1))

)
.

and using that ri = 0 (resp. li = 0) if zi = li (resp. ri), we get(
(aλ)I+ε
(bλ)I+ε

)
= − 1

|γ3|

(
1
h3

diag(ε)(Π
(Im Φ

(3)
x,h)⊥

Γx)
+w

1
2h2

(Π
(Im Φ

(3)
x,h)⊥

Γx)
+w

)
+

λ

|γ3|

(
1
h3

(|ρ|+ o(1))
1

2h2
diag(ε)(|ρ|+ o(1))

)
.

Lemma 8. Let r > 0, f ∈ C 5([−r, r]), k2 > 0, k4 > 0, and k5 > 0. Then, for all h > 0

small enough, the conditions

f(0) = 1, f ′(0) = 1, and f(h)− h

2
f ′(h) = 1, (D.23)

sup
t∈(−r,r)

f ′′(t) 6 −k2,
h

2

∥∥f (3)
∥∥
∞ 6

k2

2
, inf

t∈(−r,r)
f (4)(t) > k4 and

∥∥f (5)
∥∥
∞ 6 k5,

(D.24)
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imply

∀t ∈ [−r, 0) ∪ (h, r], f(t)− h

2
f ′(t) < 1, (D.25)

and ∀t ∈ [−r,−h] ∪ (0, r], f(t) +
h

2
f ′(t) < 1. (D.26)

Proof. We let g−(t)
def.
= f(t)− h

2
f ′(t) and g+(t)

def.
= f(t) + h

2
f ′(t). It suffices to show that

g−(t) < 1 and g+(t) < 1 in the corresponding intervals.

Observe that

∀t ∈ (−r, r), g′′−(t) = f ′′(t)− h

2
f (3)(t) 6 −k2

2
< 0

so that g− is strictly concave. Since g−(0) = g−(h) = 1, we deduce that g−(t) < 1 for

all t ∈ [−r, 0) ∪ (h, r].

As for g+, we observe similarly that g+ is strictly concave. Since g′+(0) = h
2
f ′′(0) < 0

and g′+ is decreasing, we deduce that g+(t) < g+(0) = 1 for all t ∈ (0, r].

We obtain the desired result if we can prove that g+(−h) < 1. Now,

f(h) + f(−h) = 2

(
f(0) + h2f

′′(0)

2
+ h4f

(4)(0)

4!

)
+ h5

∫ 1

0

(f (5)(sh)− f (5)(−sh))
(1− s)4

4!
ds

and

h

2
(−f ′(h) + f ′(−h)) = h

(
−f ′′(0)h− h3f

(4)(0)

3!

)
− h5

∫ 1

0

(f (5)(sh)− f (5)(−sh))
(1− s)3

2× 3!
ds.

Hence,

g−(h) + g+(−h) = 2f(0) + 2h4f (4)(0)

(
1

4!
− 1

2× 3!

)
+ h5

∫ 1

0

(f (5)(sh)− f (5)(−sh))

(
(1− s)4

4!
− (1− s)3

2× 3!

)
ds.

Since g−(h) = f(0) = 1 and f (4)(0) > k4 > 0, we obtain

g+(−h) 6 1− 1

12
k4h

4 +
1

40

∥∥f (5)
∥∥
∞ h

5 (D.27)

6 1− 1

12
k4h

4 +
1

40
k5h

5 < 1 (D.28)

for h small enough. We conclude that the claimed inequality holds.
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