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Abstract
We give a systematic description of a canonical renormalisation procedure of
stochastic PDEs containing nonlinearities involving generalised functions. This
theory is based on the construction of a new class of regularity structures which
comes with an explicit and elegant description of a subgroup of their group of
automorphisms. This subgroup is sufficiently large to be able to implement a
version of the BPHZ renormalisation prescription in this context. This is in stark
contrast to previous works where one considered regularity structures with a
much smaller group of automorphisms, which lead to a much more indirect and
convoluted construction of a renormalisation group acting on the corresponding
space of admissible models by continuous transformations.
Our construction is based on bialgebras of decorated coloured forests in coint-

eraction. More precisely, we have two Hopf algebras in cointeraction, coacting
jointly on a vector space which represents the generalised functions of the theory.
Two twisted antipodes play a fundamental role in the construction and provide a
variant of the algebraic Birkhoff factorisation that arises naturally in perturbative
quantum field theory.
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1 Introduction

In a series of celebrated papers [Che54, Che57, Che58, Che71] Kuo-Tsai Chen
discovered that, for any finite alphabet A, the family of iterated integrals of a smooth
path x : R+ → RA has a number of interesting algebraic properties. Writing
T= T (RA) for the tensor algebra on RA, which we identify with the space spanned
by all finite words {(a1 · · · an)}n≥0 with letters in A, we define the family of
functionals Xs,t on T inductively by

Xs,t()
def
= 1, Xs,t(a1 · · · an) def

=

∫ t

s
Xs,u(a1 · · · an−1) ẋan(u) du

where 0 ≤ s ≤ t. Chen showed that this family yields for fixed s, t a character on T

endowed with the shuffle product�, namely

Xs,t(v� w) = Xs,t(v)Xs,t(w), (1.1)

which furthermore satisfies the flow relation

(Xs,r ⊗ Xr,t)∆τ = Xs,tτ, s ≤ r ≤ t,
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where ∆ : T→ T⊗T is the deconcatenation coproduct

∆(a1 · · · an) =
n∑
k=0

(a1 · · · ak)⊗ (ak+1 · · · an) .

In other words, we have a function (s, t) 7→ Xs,t ∈ T∗ which takes values in the
characters on the algebra (T,�) and satisfies the Chen relation

Xs,r ? Xr,t = Xs,t, s ≤ r ≤ t, (1.2)

where ? is the product dual to ∆. Note that T, endowed with the shuffle product
and the deconcatenation coproduct, is a Hopf algebra.

These two remarkable properties do not depend explicitly on the differentiability
of the path (xt)t≥0. They can therefore serve as an important tool if one wants
to consider non-smooth paths and still build a consistent calculus. This intuition
was at the heart of Terry Lyons’ definition [Lyo98] of a geometric rough path as a
function (s, t) 7→ Xs,t ∈ T∗ satisfying the two algebraic properties above and with
a controlled modulus of continuity, for instance of Hölder type

|Xs,t(a1 · · · an)| ≤ C|t− s|nγ , (1.3)

with some fixed γ > 0 (although the original definition involved rather a p-variation
norm, which is natural in this context since it is invariant under reparametrisation of
the path x, just like the definition of X). Lyons realised that this setting would allow
to build a robust theory of integration and of associated differential equations. For
instance, in the case of stochastic differential equations of Stratonovich type

dXt = σ(Xt) ◦ dWt ,

with W : R+ → Rd a d-dimensional Brownian motion and σ : Rd → Rd ⊗ Rd
smooth, one can build rough paths X and W over X , respectivelyW , such that the
mapW 7→ X is continuous, while in general the mapW 7→ X is simply measurable.

The Itô stochastic integration was included in Lyons’ theory although it can not
be described in terms of geometric rough paths. A few years later Massimiliano
Gubinelli [Gub10] introduced the concept of a branched rough path as a function
(s, t) 7→ Xs,t ∈ H∗ taking values in the characters of an algebra (H, ·) of rooted
forests, satisfying the analogue of the Chen relation (1.2) with respect to the
Grossman-Larsson ?-product, dual of the Connes-Kreimer coproduct, and with a
regularity condition

|Xs,t(τ )| ≤ C|t− s||τ |γ (1.4)

where |τ | counts the number of nodes in the forest τ and γ > 0 is fixed. Again,
this framework allows for a robust theory of integration and differential equations
driven by branched rough paths. Moreover H, endowed with the forest product and
Connes-Kreimer coproduct, turns out to be a Hopf algebra.

The theory of regularity structures [Hai14], due to the second named author
of this paper, arose from the desire to apply the above ideas to (stochastic) partial
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differential equations (SPDEs) involving non-linearities of (random) space-time
distributions. Prominent examples are the KPZ equation [Hai13, FH14, GP17], the
Φ4 stochastic quantization equation [JLM85, AR91, DPD03, Hai14, CC18, Kup16],
the continuous parabolic Anderson model [HL15, HL18, GIP15], and the stochastic
Navier-Stokes equations [DPD02, ZZ15].

One apparent obstacle to the application of the rough paths framework to such
SPDEs is that one would like to allow for the analogue of the map s 7→ Xs,tτ to be a
space-time distribution for some τ ∈ H. However, the algebraic relations discussed
above involve products of such quantities, which are in general ill-defined. One of
the main ideas of [Hai14] was to replace the Hopf-algebra structure with a comodule
structure: instead of a single space H, we have two spaces (T,T+) and a coaction
∆+ : T→ T⊗T+ such that T is a right comodule over the Hopf algebra T+. In
this way, elements in the dual space T∗ of Tare used to encode the distributional
objects which are needed in the theory, while elements of T∗+ encode continuous
functions. Note that Tadmits neither a product nor a coproduct in general.

However, the comodule structure allows to define the analogue of a rough path as
a pair: consider a distribution-valued continuous function

Rd 3 y 7→ Πy ∈ T∗ ⊗ D′(Rd) ,

as well as a continuous function

Rd × Rd 3 (x, y) 7→ γxy ∈ T∗+.

The analogue of the Chen relation (1.2) is then given by

γxy ? γyz = γxz , Πy ? γyz = Πz , (1.5)

where the first ?-product is the convolution product on T∗+, while the second ?-
product is given by the dual of the coaction ∆+. This structure guarantees that
all relevant expressions will be linear in the Πy, so we never need to multiply
distributions. To compare this expression to (1.2), think of (Πyτ )(·) ∈ D′(Rd) for
τ ∈ T as being the analogue of z 7→ Xz,y(τ ). Note that the algebraic conditions
(1.5) are not enough to provide a useful object: analytic conditions analogous to
(1.4) play an essential role in the analytical aspects of the theory. Once a model
X = (Π, γ) has been constructed, it plays a role analogous to that of a rough path and
allows to construct a robust solution theory for a class of rough (partial) differential
equations.

In various specific situations, the theory yields a canonical lift of any smoothened
realisation of the driving noise for the stochastic PDE under consideration to a
model Xε. Another major difference with what one sees in the rough paths setting
is the following phenomenon: if we remove the regularisation as ε → 0, neither
the canonical model Xε nor the solution to the regularised equation converge in
general to a limit. This is a structural problem which reflects again the fact that
some products are intrinsically ill-defined.
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This is where renormalisation enters the game. It was already recognised in
[Hai14] that one should find a group R of transformations on the space of models
and elementsMε inR in such a way that, when applyingMε to the canonical lift Xε,
the resulting sequence of models converges to a limit. Then the theory essentially
provides a black box, allowing to build maximal solutions for the stochastic PDE in
question.

One aspect of the theory developed in [Hai14] that is far from satisfactory is
that while one has in principle a characterisation of R, this characterisation is very
indirect. The methodology pursued so far has been to first make an educated guess
for a sufficiently large family of renormalisation maps, then verify by hand that
these do indeed belong to R and finally show, again by hand, that the renormalised
models converge to a limit. Since these steps did not rely on any general theory, they
had to be performed separately for each new class of stochastic PDEs.

The main aim of the present article is to define an algebraic framework allowing
to build regularity structures which, on the one hand, extend the ones built in
[Hai14] and, on the other hand, admit sufficiently many automorphisms (in the sense
of [Hai14, Def. 2.28]) to cover the renormalisation procedures of all subcritical
stochastic PDEs that have been studied to date.

Moreover our construction is not restricted to the Gaussian setting and applies to
any choice of the driving noise with minimal integrability conditions. In particular
this allows to recover all the renormalisation procedures used so far in applications
of the theory [Hai14, HP15, HQ18, HS17, Hos16, SX18]. It reaches however far
beyond this and shows that the BPHZ renormalisation procedure belongs to the
renormalisation group of the regularity structure associated to any class of subcritical
semilinear stochastic PDEs. In particular, this is the case for the generalised KPZ
equation which is the most natural stochastic evolution on loop space and is
(formally!) given in local coordinates by

∂tu
α = ∂2

xu
α + Γαβγ(u)∂xuβ∂xuγ + σαi (u) ξi , (1.6)

where the ξi are independent space-time white noises, Γαβγ are the Christoffel
symbols of the underlying manifold, and the σi are a collection of vector fields with
the property that

∑
i L

2
σi = ∆, where Lσ is the Lie derivative in the direction of σ

and ∆ is the Laplace-Beltrami operator. Another example is given by the stochastic
sine-Gordon equation [HS16] close to the Kosterlitz-Thouless transition. In both
of these examples, the relevant group describing the renormalisation procedures
is of very large dimension (about 100 in the first example and arbitrarily large
in the second one), so that the verification “by hand” that it does indeed belong
to the “renormalisation group” as done for example in [Hai14, HP15], would be
impractical.

In order to describe the renormalisation procedure of SPDEs we introduce a
new construction of an associated regularity structure, that will be called extended
since it contains a new parameter which was not present in [Hai14], the extended
decoration. As above, this yields spaces (Tex,Tex

+ ), such that Tex
+ is a Hopf
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algebra and Tex a right comodule over Tex
+ . The renormalisation procedure of

distributions coded by Tex is then described by another Hopf algebra Tex
− and

coactions ∆−ex : Tex → Tex
− ⊗ Tex and ∆−ex : Tex

+ → Tex
− ⊗ Tex

+ turning both Tex

and Tex
+ into left comodules over Tex

− . This construction is, crucially, compatible
with the comodule structure of Tex over Tex

+ in the sense that ∆−ex and ∆+
ex are in

cointeraction in the terminology of [Foi16], see formulae (3.48)-(5.26) and Remark
3.28 below. Once this structure is obtained, we can define renormalised models as
follows: given a functional g : Tex

− → R and a model X = (Π, γ), we construct a
new model Xg by setting

γgzz̄ = (g ⊗ γzz̄)∆−ex , Πg
z = (g ⊗Πz)∆−ex .

The cointeraction property then guarantees that Xg satisfies again the generalised
Chen relation (1.5). Furthermore, the action of Tex

− on Tex and Tex
+ is such that,

crucially, the associated analytical conditions automatically hold as well.
All the coproducts and coactions mentioned above are a priori different operators,

but we describe them in a unified framework as special cases of a contraction /
extraction operation of subforests, as arising in the BPHZ renormalisation procedure
/ forest formula [BP57, Hep69, Zim69, FMRS85]. It is interesting to remark that
the structure described in this article is an extension of that previously described in
[CHV05, CHV10, CEFM11] in the context of the analysis of B-series for numerical
ODE solvers, which is itself an extension of the Connes-Kreimer Hopf algebra
of rooted trees [CK98, CK00] arising in the abovementioned forest formula in
perturbative QFT. It is also closely related to incidence Hopf algebras associated to
families of posets [Sch87, Sch94].

There are however a number of substantial differences with respect to the existing
literature. First we propose a new approach based on coloured forests; for instance
we shall consider operations like

−→ ⊗ −→ ⊗

of colouring, extraction and contraction of subforests. Further, the abovementioned
articles deal with two spaces in cointeraction, analogous to our Hopf algebras
Tex
− and Tex

+ , while our third space Tex is the crucial ingredient which allows for
distributions in the analytical part of the theory. Indeed, one of the main novelties
of regularity structures is that they allow to study random distributional objects in a
pathwise sense rather than through Feynman path integrals / correlation functions
and the space Tex encodes the fundamental bricks of this construction. Another
important difference is that the structure described here does not consist of simple
trees / forests, but they are decorated with multiindices on both their edges and their
vertices. These decorations are not inert but transform in a non-trivial way under
our coproducts, interacting with other operations like the contraction of sub-forests
and the computation of suitable gradings.



Introduction 7

In this article, Taylor sums play a very important role, just as in the BPHZ
renormalisation procedure, and they appear in the coactions of both Tex

− (the
renormalisation) and Tex

+ (the recentering). In both operations, the group elements
used to perform such operations are constructed with the help of a twisted antipode,
providing a variant of the algebraic Birkhoff factorisation that was previously shown
to arise naturally in the context of perturbative quantum field theory, see for example
[Kre98, CK98, CK00, CK01, EFGK04, Guo10].

In general, the context for a twisted antipode / Birkhoff factorisation is that of
a group G acting on some vector space A which comes with a valuation. Given
an element of A, one then wants to renormalise it by acting on it with a suitable
element ofG in such a way that its valuation vanishes. In the context of dimensional
regularisation, elements of A assign to each Feynman diagram a Laurent series in a
regularisation parameter ε, and the valuation extracts the pole part of this series. In
our case, the spaceA consists of stationary random linear mapsΠ : Tex → C∞ and
we have two actions on it, by the group of characters Gex

± ofTex
± , corresponding to two

different valuations. The renormalisation group Gex
− is associated to the valuation

that extracts the value of E(Πτ )(0) for every homogeneous element τ ∈ Tex of
negative degree. The structure group Gex

+ on the other hand is associated to the
valuations that extract the values (Πτ )(x) for all homogeneous elements τ ∈ Tex of
positive degree.

We show in particular that the twisted antipode related to the action of Gex
+ is

intimately related to the algebraic properties of Taylor remainders. Also in this
respect, regularity structures provide a far-reaching generalisation of rough paths,
expanding Massimiliano Gubinelli’s investigation of the algebraic and analytic
properties of increments of functions of a real variable achieved in the theory of
controlled rough paths [Gub04].

1.1 A general renormalisation scheme for SPDEs
Regularity Structures (RS) have been introduced [Hai14] in order to solve singular
SPDEs of the form

∂tu = ∆u+ F (u,∇u, ξ)

where u = u(t, x) with t ≥ 0 and x ∈ Rd, ξ is a random space-time Schwartz
distribution (typically stationary and approximately scaling-invariant at small scales)
driving the equation and the non-linear term F (u,∇u, ξ) contains some products of
distributions which are not well-defined by classical analytic methods. We write
this equation in the customary mild formulation

u = G ∗ (F (u,∇u, ξ)) (1.7)

where G is the heat kernel and we suppose for simplicity that u(0, ·) = 0.
If we regularise the noise ξ by means of a family of smooth mollifiers (%ε)ε>0,

setting ξε := %ε ∗ ξ, then the regularised PDE

uε = G ∗ (F (uε,∇uε, ξε))
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is well-posed under suitable assumptions on F . However, if we want to remove the
regularisation by letting ε→ 0, we do not know whether uε converges. The problem
is that ξε → ξ in a space of distributions with negative (say) Sobolev regularity, and
in such spaces the solution map ξε 7→ uε is not continuous.

The theory of RS allows to solve this problem for a class of equations, called
subcritical. The general approach is as in Rough Paths (RP): the discontinuous
solution map

D′(Rd) 3 ξε 7→ uε ∈ D′(Rd)

is factorised as the composition of two maps:

D′(Rd) 3 ξε 7→ Xε ∈M , Xε 7→ uε =: Φ(Xε) ∈ D′(Rd),

where (M , d) is a metric space that we call the space of models. The main
point is that the map Φ : M → D′(Rd) can be chosen in such a way that its is
continuous, even though M is sufficiently large to allow for elements exhibiting
a local scaling behaviour compatible with that of ξ. Of course this means that
ξε 7→ Xε is discontinuous in general. In RP, the analogue of the model Xε is the
lift of the driving noise as a rough path, the map Φ is called the Itô-Lyons map,
and its continuity (due to T. Lyons [Lyo98]) is the cornerstone of the theory. The
construction of Φ : M → D′(Rd) in the general context of subcritical SPDEs is
one of the main results of [Hai14].

The construction of Φ, although a very powerful tool, does not solve alone
the aforementioned problem, since it turns out that the most natural choice of Xε,
which we call the canonical model, does in general not converge as we remove the
regularisation by letting ε→ 0. It is necessary to modify, namely renormalise, the
model Xε in order to obtain a family X̂ε which does converge in M as ε→ 0 to a
limiting model X̂. The continuity of Φ then implies that ûε := Φ(X̂ε) converges to
some limit û := Φ(X̂), which we call the renormalised solution to our equation, see
Figure 1. A very important fact is that ûε is itself the solution of a renormalised
equation, which differs from the original equation only by the presence of additional
local counterterms, the form of which can be derived explicitly from the starting
SPDE, see [BCCH17].

The transformationXε 7→ X̂ε is described by the so-called renormalisation group.
The main aim of this paper is to provide a general construction of the space of
models M together with a group of automorphisms G− 3 S : M → M which
allows to describe the renormalised model X̂ε = SεXε for an appropriate choice of
Sε ∈ G−.

Starting with the ϕ4
3 equation and the Parabolic Anderson Model in [Hai14],

several equations have already been successfully renormalised with regularity
structures [Hai16b, HL18, HL15, HP15, HQ18, HS16, HS17, SX18]. In all these
cases, the construction of the renormalised model and its convergence as the
regularisation is removed are based on ad hoc arguments which have to be adapted to
each equation. The present article, together with the companion “analytical” article
[CH16] and the work [BCCH17], complete the general theory initiated in [Hai14]



Introduction 9

ξ ξε

X̂ X̂ε

Xε

û uεûε

Φ

D′(Rd) D′(Rd)

M

Figure 1: In this figure we show the factorisation of the map ξε 7→ uε into
ξε 7→ Xε 7→ Φ(Xε) = uε. We also see that in the space of models M we
have several possible lifts of ξε ∈ S′(Rd), e.g. the canonical model Xε and the
renormalised model X̂ε; it is the latter that converges to a model X̂, thus providing a
lift of ξ. Note that ûε = Φ(X̂ε) and û = Φ(X̂).

by proving that virtually every1 subcritical equation driven by a stationary noise
satisfying some natural bounds on its cumulants can be successfully renormalised
by means of the following scheme:
• Algebraic step: Construction of the space of models (M , d) and renormalisation

of the canonical model M 3 Xε 7→ X̂ε ∈M , this article.
• Analytic step: Continuity of the solution map Φ : M → D′(Rd), [Hai14].
• Probabilistic step: Convergence in probability of the renormalised model X̂ε to
X̂ in (M , d), [CH16].
• Second algebraic step: Identification of Φ(X̂ε) with the classical solution map
for an equation with local counterterms, [BCCH17].

We stress that this procedure works for very general noises, far beyond the Gaussian
case.

1.2 Overview of results
We now describe in more detail the main results of this paper. Let us start from
the notion of a subcritical rule. A rule, introduced in Definition 5.7 below, is
a formalisation of the notion of a “class of systems of stochastic PDEs”. More
precisely, given any system of equations of the type (1.7), there is a natural way of

1There are some exceptions that can arise when one of the driving noises is less regular than white
noise. For example, a canonical solution theory for SDEs driven by fractional Brownian motion
can only be given for H > 1

4
, even though these equations are subcritical for every H > 0. See in

particular the assumptions of [CH16, Thm 2.14].
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assigning to it a rule (see Section 5.4 for an example), which keeps track of which
monomials (of the solution, its derivatives, and the driving noise) appear on the right
hand side for each component. The notion of a subcritical rule, see Definition 5.14,
translates to this general context the notion of subcriticality of equations which was
given more informally in [Hai14, Assumption 8.3].

Suppose now that we have fixed a subcritical rule. The first aim is to construct an
associated space of modelsM ex. The superscript ‘ex’ stands for extended and is used
to distinguish this space from the restricted space of models M , see Definition 6.24,
which is closer to the original construction of [Hai14]. The space M ex extends
M in the sense that there is a canonical continuous injection M ↪→ M ex, see
Theorem 6.33. The reason for considering this larger space is that it admits a
large group Gex

− of automorphisms in the sense of [Hai14, Def. 2.28] which can
be described in an explicit way. Our renormalisation procedure then makes use
of a suitable subgroup G− ⊂ Gex

− which leaves M invariant. The reason why we
do not describe its action on M directly is that although it acts by continuous
transformations, it no longer acts by automorphisms, making it much more difficult
to describe without going through M ex.

To define M ex, we construct a regularity structure (Tex, Gex
+ ) in the sense of

[Hai14, Def. 2.1]. This is done in Section 5, see in particular Definitions 5.26-
5.35 and Proposition 5.39. The corresponding structure group Gex

+ is constructed
as the character group of a Hopf algebra Tex

+ , see (5.23), Proposition 5.34 and
Definition 5.36. The vector space Tex is a right-comodule over Tex

+ , namely there
are linear operators

∆+
ex : Tex → Tex ⊗Tex

+ , ∆+
ex : Tex

+ → Tex
+ ⊗Tex

+ ,

such that the identity

(id⊗∆+
ex)∆+

ex = (∆+
ex ⊗ id)∆+

ex , (1.8)

holds both between operators on Tex and on Tex
+ . The fact that the two operators

have the same name but act on different spaces should not generate confusion since
the domain is usually clear from context. When it isn’t, as in (1.8), then the identity
is assumed by convention to hold for all possible meaningful interpretations.

Next, the renormalisation group Gex
− is defined as the character group of the Hopf

algebra Tex
− , see (5.23), Proposition 5.35 and Definition 5.36. The vector spaces

Tex and Tex
+ are both left-comodules over Tex

− , so that Gex
− acts on the left on Tex

and on Tex
+ . Again, this means that we have operators

∆−ex : H→ Tex
− ⊗H, H∈ {Tex,Tex

+ ,Tex
− }

such that
(id⊗∆−ex)∆−ex = (∆−ex ⊗ id)∆−ex.

The action of Gex
− on the corresponding dual spaces is given by

(gh)(τ ) := (g ⊗ h)∆−exτ, h ∈ H∗, τ ∈ H, g ∈ Gex
− .
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Crucially, these separate actions satisfy a compatibility condition which can be
expressed as a cointeraction property, see (5.26) in Theorem 5.37, which implies
the following relation between the two actions above:

g(hf ) = (gh)(gf ), h ∈ H∗, g ∈ Gex
− , f ∈ Gex

+ , H∈ {Tex,Tex
+ }, (1.9)

see Proposition 3.33 and (5.27). This result is the algebraic linchpin of Theorem 6.16,
where we construct the action of Gex

− on the space M ex of models.
The next step is the construction of the space of smooth models of the regularity

structure (Tex, Gex
+ ). This is done in Definition 6.7, where we follow [Hai14,

Def. 2.17], with the additional constraint that we consider smooth objects. Indeed,
we are interested in the canonical model associated to a (regularised) smooth noise,
constructed in Proposition 6.12 and Remark 6.13, and in its renormalised versions,
namely its orbit under the action of Gex

− , see Theorem 6.16.
Finally, we restrict our attention to a class of models which are random, stationary

and have suitable integrability properties, see Definition 6.17. In this case, we can
define a particular deterministic element of Gex

− that gives rise to what we call the
BPHZ renormalisation, by analogy with the corresponding construction arising in
perturbative QFT [BP57, Hep69, Zim69, FMRS85], see Theorem 6.18. We show
that the BPHZ construction yields the unique element of Gex

− such that the associated
renormalised model yields a centered family of stochastic processes on the finite
family of elements in Tex with negative degree. This is the algebraic step of the
renormalisation procedure.

This is the point where the companion analytical paper [CH16] starts, and then
goes on to prove that the BPHZ renormalised model does converge in the metric d on
M , thus achieving the probabilistic step mentioned above and thereby completing
the renormalisation procedure.

The BPHZ functional is expressed explicitly in terms of an interesting map that we
call negative twisted antipode by analogy to [CK99], see Proposition 6.6 and (6.25).
There is also a positive twisted antipode, see Proposition 6.3, which plays a similarly
important role in (6.12). The main point is that these twisted antipodes encode in
the compact formulae (6.12) and (6.25) a number of nontrivial computations.

How are these spaces and operators defined? Since the analytic theory of [Hai14]
is based on generalised Taylor expansions of solutions, the vector space Tex is
generated by a basis which codes the relevant generalised Taylor monomials, which
are defined iteratively once a rule (i.e. a system of equations) is fixed. Definitions 5.8,
5.13 and 5.26 ensure that Tex is sufficiently rich to allow one to rewrite (1.7) as a
fixed point problem in a space of functions with values in our regularity structure.
Moreover Tex must also be invariant under the actions of Gex

± . This is the aim of the
construction in Sections 2, 3 and 4, that we want now to describe.

The spaces which are constructed in Section 5 depend on the choice of a number
of parameters, like the dimension of the coordinate space, the leading differential
operator in the equation (the Laplacian being just one of many possible choices),
the non-linearity, the noise. In the previous sections we have built universal objects
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with nice algebraic properties which depend on none of these choices, but for the
dimension of the space, namely an (arbitrary) integer number d fixed once for all.

The spaces Tex, Tex
+ and Tex

− are obtained by considering repeatedly suitable
subsets and suitable quotients of two initial spaces, called F1 and F2 and defined in
and after Definition 4.1; more precisely, F1 is the ancestor of Tex and Tex

− , while F2

is the ancestor of Tex
+ . In Section 4 we represent these spaces as linearly generated

by a collection of decorated forests, on which we can define suitable algebraic
operations like a product and a coproduct, which are later inherited by Tex, Tex

+

and Tex
− (through other intermediary spaces which are called H◦, H1 and Ĥ2). An

important difference between Tex
− and Tex

+ is that the former is linearly generated by
a family of forests, while the latter is linearly generated by a family of trees; this
difference extends to the algebra structure: Tex

− is endowed with a forest product
which corresponds to the disjoint union, while Tex

+ is endowed with a tree product
whereby one considers a disjoint union and then identifies the roots.

The content of Section 4 is based on a specific definition of the spaces F1 and F2.
In Sections 2 and 3 however we present a number of results on a family of spaces
(Fi)i∈I with I ⊂ N, which are supposed to satisfy a few assumptions; Section 4
is therefore only a particular example of a more general theory, which is outlined
in Sections 2 and 3. In this general setting we consider spaces Fi of decorated
forests, and vector spaces 〈Fi〉 of infinite series of such forests. Such series are not
arbitrary but adapted to a grading, see Section 2.3; this is needed since our abstract
coproducts of Definition 3.3 contain infinite series and might be ill-defined if were
to work on arbitrary formal series.

The family of spaces (Fi)i∈I are introduced in Definition 3.12 on the basis of
families of admissible forests Ai, i ∈ I . If (Ai)i∈I satisfy Assumptions 1, 2, 3, 4,
5 and 6, then the coproducts ∆i of Definition 3.3 are coassociative and moreover
∆i and ∆j for i < j are in cointeraction, see (3.27). As already mentioned, the
cointeraction property is the algebraic formula behind the fundamental relation (1.9)
between the actions of Gex

+ and Gex
− on Tex

+ . Appendix A contains a summary of
the relations between the most important spaces appearing in this article, while
Appendix B contains a symbolic index.
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2 Rooted forests and bigraded spaces

Given a finite set S and a map ` : S → N, we write

`!
def
=
∏
x∈S

`(x)! ,

and we define the corresponding binomial coefficients accordingly. Note that if `1
and `2 have disjoint supports, then (`1 + `2)! = `1! `2!. Given a map π : S → S̄, we
also define π?` : S̄ → N by π?`(x) =

∑
y∈π−1(x) `(y).

For k, ` : S → N we define(
k

`

)
def
=
∏
x∈S

(
k(x)
`(x)

)
,

with the convention
(
k
`

)
= 0 unless 0 ≤ ` ≤ k, which will be used throughout the

paper. With these definitions at hand, one has the following slight reformulation of
the classical Chu-Vandermonde identity.

Lemma 2.1 (Chu-Vandermonde) For every k : S → N, one has the identity∑
` :π?`

(
k

`

)
=

(
π?k

π?`

)
,

where the sum runs over all possible choices of ` such that π?` is fixed.

Remark 2.2 These notations are also consistent with the case where the maps k
and ` are multi-index valued under the natural identification of a map S → Nd with
a map S × {1, . . . ,∞} → N given by `(x)i ↔ `(x, i).

2.1 Rooted trees and forests
Recall that a rooted tree T is a finite tree (a finite connected simple graph without
cycles) with a distinguished vertex, % = %T , called the root. Vertices of T , also
called nodes, are denoted byN = NT and edges by E = ET ⊂ N2. Since we want
our trees to be rooted, they need to have at least one node, so that we do not allow
for trees with NT = 6#. We do however allow for the trivial tree consisting of an
empty edge set and a vertex set with only one element. This tree will play a special
role in the sequel and will be denoted by •. We will always assume that our trees are
combinatorial meaning that there is no particular order imposed on edges leaving
any given vertex.

Given a rooted tree T , we also endow NT with the partial order ≤ where w ≤ v
if and only if w is on the unique path connecting v to the root, and we orient edges
in ET so that if (x, y) = (x → y) ∈ ET , then x ≤ y. In this way, we can always
view a tree as a directed graph.

Two rooted trees T and T ′ are isomorphic if there exists a bijection ι : ET → ET ′

which is coherent in the sense that there exists a bijection ιN : NT → NT ′ such that



Rooted forests and bigraded spaces 14

ι(x, y) = (ιN (x), ιN (y)) for any edge (x, y) ∈ e and such that the roots are mapped
onto each other.

We say that a rooted tree is typed if it is furthermore endowed with a function
t : ET → L, where L is some finite set of types. We think of L as being fixed once
and for all and will sometimes omit to mention it in the sequel. In particular, we will
never make explicit the dependence on the choice of L in our notations. Two typed
trees (T, t) and (T ′, t′) are isomorphic if T and T ′ are isomorphic and t is pushed
onto t′ by the corresponding isomorphism ι in the sense that t′ ◦ ι = t.

Similarly to a tree, a forest F is a finite simple graph (again with nodes NF and
edgesEF ⊂ N2

F ) without cycles. A forest F is rooted if every connected component
T of F is a rooted tree with root %T . As above, we will consider forests that are
typed in the sense that they are endowed with a map t : EF → L, and we consider
the same notion of isomorphism between typed forests as for typed trees. Note that
while a tree is non-empty by definition, a forest can be empty. We denote the empty
forest by either 1 or 6#.

Given a typed forest F , a subforest A ⊂ F consists of subsets EA ⊂ EF and
NA ⊂ NF such that if (x, y) ∈ EA then {x, y} ⊂ NA. Types in A are inherited
from F . A connected component of A is a tree whose root is defined to be the
minimal node in the partial order inherited from F . We say that subforests A and B
are disjoint, and write A ∩B = 6#, if one has NA ∩NB = 6# (which also implies
that EA ∩EB = 6#). Given two typed forests F,G, we write F tG for the typed
forest obtained by taking the disjoint union (as graphs) of the two forests F and G
and adjoining to it the natural typing inherited from F andG. If furthermoreA ⊂ F
and B ⊂ G are subforests, then we write A tB for the corresponding subforest of
F tG.

We fix once and for all an integer d ≥ 1, dimension of the parameter-space Rd.
We also denote by Z(L) the free abelian group generated by L.

2.2 Coloured and decorated forests
Given a typed forest F , we want now to consider families of disjoint subforests of
F , denoted by (F̂i, i > 0). It is convenient for us to code this family with a single
function F̂ : EF tNF → N as given by the next definition.

Definition 2.3 A coloured forest is a pair (F, F̂ ) such that
1. F = (EF , NF , t) is a typed rooted forest
2. F̂ : EF t NF → N is such that if F̂ (e) 6= 0 for e = (x, y) ∈ EF then
F̂ (x) = F̂ (y) = F̂ (e).

We say that F̂ is a colouring of F . For i > 0, we define the subforest of F

F̂i = (Êi, N̂i), Êi = F̂−1(i) ∩ EF , N̂i = F̂−1(i) ∩NF ,

as well as Ê =
⋃
i>0 Êi. We denote by C the set of coloured forests.

The condition on F̂ guarantees that every F̂i is indeed a subforest of F for i > 0
and that they are all disjoint. On the other hand, F̂−1(0) is not supposed to have any
particular structure and 0 is not counted as a colour.
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Example 2.4 This is an example of a forest with two colours: red for 1 and blue for
2 (and black for 0)

(F, F̂ ) =
%A2

%A1

%A3
%A4

We then have F̂1 = F̂−1(1) = A1 tA3 and F̂2 = F̂−1(2) = A2 tA4.

The set C is a commutative monoid under the forest product

(F, F̂ ) · (G, Ĝ) = (F tG, F̂ + Ĝ) , (2.1)

where colouringss defined on one of the forests are extended to the disjoint union by
setting them to vanish on the other forest. The neutral element for this associative
product is the empty coloured forest 1.

We add now decorations on the nodes and edges of a coloured forest. For this, we
fix throughout this article an arbitrary “dimension” d ∈ N and we give the following
definition.

Definition 2.5 We denote by F the set of all 5-tuples (F, F̂ , n, o, e) such that
1. (F, F̂ ) ∈ C is a coloured forest in the sense of Definition 2.3.
2. One has n : NF → Nd
3. One has o : NF → Zd ⊕ Z(L) with supp o ⊂ supp F̂ .
4. One has e : EF → Nd with supp e ⊂ {e ∈ EF : F̂ (e) = 0} = EF \ Ê.

Remark 2.6 The reason why o takes values in the space Zd ⊕ Z(L) will become
apparent in (3.33) below when we define the contraction of coloured subforests and
its action on decorations.

We identify (F, F̂ , n, o, e) and (F ′, F̂ ′, n′, o′, e′) whenever F is isomorphic to
F ′, the corresponding isomorphism maps F̂ to F̂ ′ and pushes the three decoration
functions onto their counterparts. We call elements of F decorated forests. We will
also sometimes use the notation (F, F̂ )n,oe instead of (F, F̂ , n, o, e).

Example 2.7 Let consider the decorated forest (F, F̂ , n, o, e) given by

n(h)

t(7), e(7)

t(8), e(8)

n(i)

t(3)

n(d), o(d)

t(9)

n(j), o(j)

t(4)

n(e), o(e)

t(1), e(1)

n(b), o(b)

t(2)

t(5) t(6)

t(10), e(10)

t(11) t(12)

t(13), e(13)

n(p)n(m), o(m)n(l), o(l)n(k), o(k)

n(g), o(g)n(f ), o(f )

n(c), o(c)

n(a), o(a)
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In this figure, the edges in EF are labelled with the numbers from 1 to 13
and the nodes in NF with the letters {a, b, c, f, e, f, g, h, i, j, k, l,m, p}. We set
F̂−1(1) = {b, d, e, j, k} t {3, 4, 9} (red subforest), F̂−1(2) = {a, c, f, g, l,m} t
{2, 5, 6, 11, 12} (blue subforest), and on all remaining (black) nodes and edges F̂ is
set equal to 0. Every edge has a type t ∈ L, but only black edges have a possibly
non-zero decoration e ∈ Nd. All nodes have a decoration n ∈ Nd, but only coloured
nodes have a possibly non-zero decoration o ∈ Zd ⊕ Z(L).

Example 2.7 is continued in Examples 3.2, 3.4 and 3.5.

Definition 2.8 For any coloured forest (F, F̂ ), we define an equivalence relation ∼
on the node set NF by saying that x ∼ y if x and y are connected in Ê; this is the
smallest equivalence relation for which x ∼ y whenever (x, y) ∈ Ê.

Definition 2.8 will be extended to a decorated forest (F, F̂ , n, o, e) in Definition 3.18
below.

Remark 2.9 We want to show the intuition behind decorated forests. We think of
each τ = (F, F̂ , n, o, e) as defining a function on (Rd)NF in the following way. We
associate to each type t ∈ L a kernel ϕt : Rd → R and we define the domain

UF
def
= {x ∈ (Rd)NF : xv = xw if v ∼ w} ,

where ∼ is the equivalence relation of Definition 2.8. Then we set Hτ ∈ C∞(UF ),

Hτ (xv, v ∈ NF ) def
=
∏
v∈NF

(xv)n(v)
∏

e=(u,v)∈EF \Ê

∂e(e)ϕt(e)(xu − xv), (2.2)

where, for x = (x1, . . . , xd) ∈ Rd, n = (n1, . . . , nd) ∈ Nd and ϕ ∈ C∞(Rd)

(x)n def
=

d∏
j=1

(xj)n
j
, ∂nϕ = ∂n

1

x1 · · · ∂
nd

xdϕ ∈ C∞(Rd) .

In this way, a decorated forest encodes a function: every node in NF / ∼ represents
a variable in Rd, every uncoloured edge of a certain type t a function ϕt(e) of the
difference of the two variables sitting at each one of its nodes; the decoration n(v)
gives a power of xv and e(e) a derivative of the kernel ϕt(e).

In this example the decoration o plays no role; we shall see below that it allows to
encode some additional information relevant for the various algebraic manipulations
we wish to subject these functions to, see Remarks 3.7, 3.19, 5.38 and 6.26 below
for further discussions.

Remark 2.10 Every forest F = (NF , EF ) has a unique decomposition into non-
empty connected components. This property naturally extends to decorated forests
(F, F̂ , n, o, e), by considering the connected components of the underlying forest F
and restricting the colouring F̂ and the decorations n, o, e.
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Remark 2.11 Starting from Section 4 we are going to consider a specific situation
where there are only two colours, namely F̂ → {0, 1, 2}; all examples throughout
the paper are in this setting. However the results of Sections 2 and 3 are stated and
proved in the more general setting F̂ → N without any additional difficulty.

2.3 Bigraded spaces and triangular maps
It will be convenient in the sequel to consider a particular category of bigraded
spaces as follows.

Definition 2.12 For a collection of vector spaces {Vn : n ∈ N2}, we define the
vector space

V =

n∈N2

Vn ,

as the space of all formal sums
∑

n∈N2 vn with vn ∈ Vn and such that there exists
k ∈ N such that vn = 0 as soon as n2 > k. Given two bigraded spaces V andW ,
we write V ⊗̂W for the bigraded space

V ⊗̂W def
=

n∈N2

[ ⊕
m+`=n

(Vm ⊗W`)

]
. (2.3)

One has a canonical inclusion V ⊗W ⊂ V ⊗̂W given by(∑
m

vm

)
⊗

(∑
`

w`

)
7→
∑
n

( ∑
m+`=n

vm ⊗ w`

)
, vm ∈ Vm, w` ∈W`.

However in general V ⊗̂W is strictly larger since its generic element has the form

∑
n

( ∑
m+`=n

vnm ⊗ wn`

)
, vnm ∈ Vm, wn` ∈W`.

Note that all tensor products we consider are algebraic.

Definition 2.13 We introduce a partial order on N2 by

(m1,m2) ≥ (n1, n2) ⇔ m1 ≥ n1 & m2 ≤ n2 .

Given two such bigraded spaces V and V̄ , a family {Amn}m,n∈N2 of linear maps
Amn : Vn → V̄m is called triangular if Amn = 0 unlessm ≥ n.

Lemma 2.14 Let V and V̄ be two bigraded spaces and {Amn}m,n∈N2 a triangular
family of linear maps Amn : Vn → V̄m. Then the map

Av
def
=
∑
m

(∑
n

Amnvn

)
∈
m∈N2

V̄m, v =
∑
n

vn ∈
n∈N2

Vn

is well defined from V to V̄ and linear. We call A : V → V a triangular map.
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Proof. Let v =
∑

n vn ∈ V and k ∈ N such that vn = 0 whenever n2 > k.
First we note that, for fixed m ∈ N2, the family (Amnvn)n∈N2 is zero unless

n ∈ [0,m1]×[0, k]; indeed if n2 > k then vn = 0, while if n1 > m1 thenAmn = 0.
Therefore the sum

∑
nAmnvn is well defined and equal to some v̄m ∈ V̄m.

We now prove that v̄m = 0 whenever m2 > k, so that indeed
∑

m v̄m ∈
m∈N2 V̄m. Letm2 > k; for n2 > k, vn is 0, while for n2 ≤ k we have n2 < m2

and therefore Anm = 0 and this proves the claim.

A linear function A : V → V̄ which can be obtained as in Lemma 2.14 is called
triangular. The family (Amn)m,n∈N2 defines an infinite lower triangular matrix and
composition of triangular maps is then simply given by formal matrix multiplication,
which only ever involves finite sums thanks to the triangular structure of these
matrices.

Remark 2.15 The notion of bigraded spaces as above is useful for at least two
reasons:
1. The operators ∆i built in (3.7) below turn out to be triangular in the sense

of Definition 2.13 and are therefore well-defined thanks to Lemma 2.14, see
Remark 2.15 below. This is not completely trivial since we are dealing with
spaces of infinite formal series.

2. Some of our main tools below will be spaces of multiplicative functionals, see
Section 3.6 below. Had we simply considered spaces of arbitrary infinite formal
series, their dual would be too small to contain any non-trivial multiplicative
functional at all. Considering instead spaces of finite series would cure
this problem, but unfortunately the coproducts ∆i do not make sense there.
The notion of bigrading introduced here provides the best of both worlds by
considering bi-indexed series that are infinite in the first index and finite in the
second. This yields spaces that are sufficiently large to contain our coproducts
and whose dual is still sufficiently large to contain enough multiplicative linear
functionals for our purpose.

Remark 2.16 One important remark is that this construction behaves quite nicely
under duality in the sense that if V andW are two bigraded spaces, then it is still
the case that one has a canonical inclusion V ∗ ⊗W ∗ ⊂ (V ⊗̂W )∗, see e.g. (3.46)
below for the applications we have in mind. Indeed, the dual V ∗ consists of formal
sums

∑
n v
∗
n with v∗n ∈ V ∗n such that, for every k ∈ N there exists f (k) such that

v∗n = 0 for every n ∈ N2 with n1 ≥ f (n2).

The set F, see Definition 2.5, admits a number of different useful gradings and
bigradings. One bigrading that is well adapted to the construction we give below is

|(F, F̂ )n,oe |bi
def
= (|e|, |F \ (F̂ ∪ %F )|) , (2.4)

where

|e| =
∑
e∈EF

|e(e)|, |a| =
d∑
i=1

ai, ∀ a ∈ Nd,
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and |F \ (F̂ ∪ %F )| denotes the number of edges and vertices on which F̂ vanishes
that aren’t roots of F .

For any subsetA ⊆ F let now 〈A〉 denote the space built fromAwith this grading,
namely

〈A〉 def
=

n∈N2

Vec{F∈ A : |F|bi = n} , (2.5)

where VecS denotes the free vector space generated by a set S. Note that in general
〈M〉 is larger than VecM .

The following simple fact will be used several times in the sequel. Here and
throughout this article, we use as usual the notation f�A for the restriction of a map
f to some subset A of its domain.

Lemma 2.17 Let V = n Vn be a bigraded space and let P : V → V be a
triangular map preserving the bigrading of V (in the sense that there exist linear
maps Pn : Vn → Vn such that P �Vn = Pn for every n) and satisfying P ◦ P = P .
Then, the quotient space V̂ = V/ kerP is again bigraded and one has canonical
identifications

V̂ =
n

(Vn/ kerPn) =
n

(PnVn) .

3 Bialgebras, Hopf algebras and comodules of decorated forests

In this section we want to introduce a general class of operators on spaces of
decorated forests and show that, under suitable assumptions, one can construct in
this way bialgebras, Hopf algebras and comodules.

We recall that (H,M, 1,∆, 1?) is a bialgebra if:
• H is a vector space over R
• there are a linear map M : H ⊗ H → H (product) and an element 1 ∈ H
(identity) such that (H,M, η) is a unital associative algebra, where η : R→ H
is the map r 7→ r1 (unit)

• there are linear maps ∆ : H → H ⊗H (coproduct) and 1? : H → R (counit),
such that (H,∆, 1?) is a counital coassociative coalgebra, namely

(∆⊗ id)∆ = (id⊗∆)∆, (1? ⊗ id)∆ = (id⊗ 1?)∆ = id (3.1)

• the coproduct and the counit are homomorphisms of algebras (or, equivalently,
multiplication and unit are homomorphisms of coalgebras).

A Hopf algebra is a bialgebra (H,M, 1,∆, 1?) endowed with a linear map
A : H → H such that

M(id⊗A)∆ = M(A⊗ id)∆ = 1?1. (3.2)

A left comodule over a bialgebra (H,M, 1,∆, 1?) is a pair (M,ψ) whereM is a
vector space and ψ : M → H ⊗M is a linear map such that

(∆⊗ id)ψ = (id⊗ ψ)ψ, (1? ⊗ id)ψ = id.
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Right comodules are defined analogously.
For more details on the theory of coalgebras, bialgebras, Hopf algebras and

comodules we refer the reader to [Mol77, Car07].

3.1 Incidence coalgebras of forests
Denote by P the set of all pairs (G;F ) such that F is a typed forest and G is a
subforest of F and by Vec(P) the free vector space generated byP. Suppose that for
all (G;F ) ∈ Pwe are given a (finite) collection A(G;F ) of subforests A of F such
that G ⊆ A ⊆ F . Then we define the linear map ∆ : Vec(P)→ Vec(P)⊗Vec(P)
by

∆(G;F ) def
=

∑
A∈A(G;F )

(G;A)⊗ (A;F ). (3.3)

We also define the linear functional 1? : Vec(P) → R by 1?(G;F ) := 1(G=F ).
If A(G;F ) is equal to the set of all subforests A of F containing G, then it is a
simple exercise to show that (Vec(P),∆, 1?) is a coalgebra, namely (3.1) holds. In
particular, since the inclusion G ⊆ F endows the set of typed forests with a partial
order, (Vec(P),∆, 1?) is an example of an incidence coalgebra, see [Sch87, Sch94].
However, if A(F ;G) is a more general class of subforests, then coassociativity is
not granted in general and holds only under certain assumptions.

Suppose now that, given a typed forest F , we want to consider not one but several
disjoint subforests G1, . . . , Gn of F . A natural way to code (G1, . . . , Gn;F ) is to
use a coloured forest (F, F̂ ) where

F̂ (x) =
∑
k

k 1x∈Gk , x ∈ NF t EF .

Then, in the notation of Definition 2.3, we have F̂i = Gi for i > 0 and F̂−1(0) =
F \ (∪iGi).

In order to define a generalisation of the operator ∆ of formula (3.3) to this
setting, we fix i > 0 and assume the following.

Assumption 1 Let i > 0. For each coloured forest (F, F̂ ) as in Definition 2.3 we
are given a collection Ai(F, F̂ ) of subforests of F such that for every A ∈ Ai(F, F̂ )
1. F̂i ⊂ A and F̂j ∩A = 6# for every j > i,
2. for all 0 < j < i and every connected component T of F̂j , one has either
T ⊂ A or T ∩A = 6#.

We also assume that Ai is compatible with the equivalence relation ∼ given
by forest isomorphisms described above in the sense that if A ∈ Ai(F, F̂ ) and
ι : (F, F̂ )→ (G, Ĝ) is a forest isomorphism, then ι(A) ∈ Ai(G, Ĝ).

It is important to note that colours are denoted by positive integer numbers and
are therefore ordered, so that the forests F̂j , F̂i and F̂k can play different roles in
Assumption 1 if j < i < k. This becomes crucial in our construction below, see
Proposition 3.27 and Remark 3.29.
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Lemma 3.1 Let (F, F̂ ) ∈ C be a coloured forest and A ∈ Ai(F, F̂ ). Write
• F̂ �A for the restriction of F̂ to NA t EA
• F̂ ∪i A for the function on EF tNF given by

(F̂ ∪i A)(x) =

{
i if x ∈ EA tNA,

F̂ (x) otherwise.

Then, under Assumption 1, (A, F̂ �A) and (F, F̂ ∪i A) are coloured forests.

Proof. The claim is elementary for (A, F̂ �A); in particular, setting Ĝ def
= F̂ �A, we

have Ĝj = F̂j ∩A for all j > 0. We prove it now for (F, F̂ ∪i A). We must prove
that, setting Ĝ def

= F̂ ∪i A, the sets Ĝj
def
= Ĝ−1(j) define subforests of F for all j > 0.

We have by the definitions

Ĝi = F̂i ∪A, Ĝj = F̂j\A, j 6= i, j > 0,

and these are subforests of F by the properties 1 and 2 of Assumption 1.

We denote by Vec(C) the free vector space generated by all coloured forests.
This allows to define the following operator for fixed i > 0, ∆i : Vec(C) →
Vec(C)⊗ Vec(C)

∆i(F, F̂ ) def
=

∑
A∈Ai(F,F̂ )

(A, F̂ �A)⊗ (F, F̂ ∪i A). (3.4)

Note that if i = 1 and F̂ ≤ 1 then we can identify
• the coloured forest (F, F̂ ) with the pair of subforests (F̂1;F ) ∈ P,
• A(F̂1;F ) with A1(F, F̂ )
• ∆ in (3.3) with ∆1 in (3.4).

Example 3.2 Let us continue Example 2.7, forgetting the decorations but keeping
the same labels for the nodes and in particular for the leaves. We recall that F̂ is
equal to 1 on the red subforest, to 2 on the blue subforest and to 0 elsewhere. Then

(F, F̂ ) =

h ji

e

k l m p

A valid example of A ∈ A2(F, F̂ ) could be such that

(A, F̂ �A)⊗ (F, F̂ ∪2 A) =

j

e

l m

⊗

h ji

e

k l m p
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Note that in this example, one has F̂2 ⊂ A, so that A /∈ A1(F, F̂ ) since A violates
the first condition of Assumption 1. A valid example of B ∈ A1(F, F̂ ) could be
such that

(B, F̂ �B)⊗ (F, F̂ ∪1 B) =

ji

e

k p ⊗

h ji

e

k l m p

In the rest of this section we state several assumptions on the family Ai(F, F̂ )
yielding nice properties for the operator ∆i such as coassociativity, see e.g. Assump-
tion 2. However, one of the main results of this article is the fact that such properties
then automatically also hold at the level of decorated forests with a non-trivial action
on the decorations which will be defined in the next subsection.

3.2 Operators on decorated forests
The set F, see Definition 2.5, is a commutative monoid under the forest product

(F, F̂ , n, o, e) · (G, Ĝ, n′, o′, e′) = (F tG, F̂ + Ĝ, n + n′, o + o′, e + e′) , (3.5)

where decorations defined on one of the forests are extended to the disjoint union by
setting them to vanish on the other forest. This product is the natural extension of
the product (2.1) on coloured forests and its identity element is the empty forest 1.

Note that
|F· G|bi = |F|bi + |G|bi , (3.6)

for any F, G∈ F, where | · |bi is the bigrading defined in (2.4) above. WheneverM
is a submonoid of F, as a consequence of (3.6) the forest product · defined in (3.5)
can be interpreted as a triangular linear map from 〈M〉⊗̂〈M〉 into 〈M〉, thus turning
(〈M〉, ·) into an algebra in the category of bigraded spaces as in Definition 2.12; this
is in particular the case forM = F. We recall that 〈M〉 is defined in (2.5).

We generalise now the construction (3.4) to decorated forests.

Definition 3.3 The triangular linear maps ∆i : 〈F〉 → 〈F〉 ⊗̂ 〈F〉 are given for
τ = (F, F̂ , n, o, e) by

∆iτ =
∑

A∈Ai(F,F̂ )

∑
εFA,nA

1

εFA!

(
n

nA

)
(A, F̂ �A, nA + πεFA, o�NA, e�EA) (3.7)

⊗ (F, F̂ ∪i A, n− nA, o + nA + π(εFA − eA6#), eFA + εFA) ,

where
a) For A ⊆ B ⊆ F and f : EF → Nd, we use the notation fBA

def
= f 1EB\EA .

b) The sum over nA runs over all maps nA : NF → Nd with supp nA ⊂ NA.
c) The sum over εFA runs over all εFA : EF → Nd supported on the set of edges

∂(A,F ) def
= {(e+, e−) ∈ EF \ EA : e+ ∈ NA}, (3.8)

that we call the boundary of A in F . This notation is consistent with point a).
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d) For all ε : EF → Zd we denote

πε : NF → Zd, πε(x) def
=

∑
e=(x,y)∈EF

ε(e).

We will henceforth use these notational conventions for sums over node / edge
decorations without always spelling them out in full.

Example 3.4 We continue Examples 2.7 and 3.2, by showing how decorations
are modified by ∆i. We consider first i = 2, corresponding to a blue subforest
A ∈ A2(F, F̂ ). Then we have that (A, F̂ �A, nA + πεFA, o�NA, e�EA) is equal to

nA + πεFA, o

nA, o

nA, o

e

nA, o

nA, onA, o

nA + πεFA, onA + πεFA, o

nA, o

nA, o

(3.9)

while (F, F̂ ∪2 A, n− nA, o + nA + π(εFA − eA6#), eFA + εFA) becomes
n

e + εFA

e + εFA

n

n− nA, o + nA + πεFA

n− nA, o + nA

n− nA, o + nA

n− nA, o + nA

e + εFA e + εFA

nn− nA, o + nAn− nA, o + nAn, o

n− nA, o + nA + πεFAn− nA, o + nA + πεFA

n− nA, o + nA

n− nA, o + nA − πe

(3.10)

Note that εFA is supported by ∂(A,F ) = {7, 8, 10, 13}, where we refer to the
labelling of edges and nodes fixed in the Example 2.7, and

πεFA(d) = εFA(7) + εFA(8), πεFA(f ) = εFA(10), πεFA(g) = εFA(13).

Note that the edge 1was black in (F, F̂ ) and becomes blue in (F, F̂∪2A); accordingly,
in (F, F̂ ∪2A, n− nA, o+ nA +π(εFA− eA6#), eFA + εFA) the value of e on 1 is set to 0

and e(1) is subtracted from o(a). In accordance with Assumption 1, A ∈ A2(F, F̂ )
contains one of the two connected components of F̂1 and is disjoint from the other
one.

Example 3.5 We continue Example 3.4 for the choice of B made in Example 3.2
and for i = 1, corresponding to a red subforestB ∈ A1(F, F̂ ). Then (B, F̂ �B, nB +
πεFB, o�NB, e�EB) is equal to

nB (i)

e

nB , o

nB (b), o(b)

nB + πεFB , o

nB , o

nB (p)nB (k), o(k)

(3.11)
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while (F, F̂ ∪1 B, n− nB, o + nB + π(εFB − eB6#), eFB + εFB) becomes

n

e + εFB

n− nB , nB

n− nB , o + nB + π(εFB − eB6# )

n− nB , o + nB

n− nB , o + nB

e

n− nB , o + nB

e e

n− nB , nBn, on, on− nB , o + nB

n, on, o

n, o

n, o

(3.12)

Here we have that ∂(B,F ) = {7}, where we refer to the labelling of edges
and nodes fixed in the Example 2.7. Therefore πεFB(d) = εFB(7). Note that the
edge 8 was black in (F, F̂ ) and becomes red in (F, F̂ ∪1 B); accordingly, in
(F, F̂ ∪1 B, n− nB, o + nB + π(εFB − eB6#), eFB + εFB) the value of e on 8 is set to 0

and e(8) is subtracted from o(d). In accordance with Assumption 1, B ∈ A1(F, F̂ )
is disjoint from the blue subforest F̂2 and, accordingly, all decorations on F̂2 are
unchanged. Finally, note that the edge 1 is not in ∂(B,F ) since it is equal to (a, b)
with b ∈ B and a /∈ B.

Remark 3.6 From now on, in expressions like (3.7) we are going to use the
simplified notation

(A, F̂ �A, nA + πεFA, o�NA, e�EA) =: (A, F̂ �A, nA + πεFA, o, e),

namely the restrictions of o and e will not be made explicit. This should generate no
confusion, since by Definition 2.5 in (A, Â, n′, o′, e′) we have o′ : NA → Zd ⊕Z(L)
and e′ : EA → Nd. On the other hand, the notation F̂ �A refers to a slightly less
standard operation, see Lemma 3.1 above, and will therefore be made explicitly
throughout. Note also that nA is not defined as the restriction of n to NA.

Remark 3.7 It may not be obvious why Definition 3.3 is natural, so let us try to
offer an intuitive explanation of where it comes from. First note that (3.7) reduces
to (3.4) if we drop the decorations and the combinatorial coefficients.

If we go back to Remark 2.9, and we recall that a decorated forest encodes a
function of a set of variables in Rd indexed by the nodes of the underlying forest,
then we can realise that the operator ∆i in (3.7) is naturally motivated by Taylor
expansions.

Let us consider first the particular case of τ = (F, F̂ , 0, o, e). Then nA has to
vanish because of the constraint 0 ≤ nA ≤ n and (3.7) becomes

∆iτ =
∑

A∈Ai(F,F̂ )

∑
εFA

1

εFA!
(A, F̂ �A, πεFA, o, e) (3.13)

⊗ (F, F̂ ∪i A, 0, o + π(εFA − eA6#), eFA + εFA) .

Consider a single term in this sum and fix an edge e = (v, w) ∈ ∂(A,F ). Then, in
the expression

(F, F̂ ∪i A, 0, o + π(εFA − eA6#), eFA + εFA) ,
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the decoration of e is changing from e(e) to e(e)+εFA(e). Recalling (2.2), this should
be interpreted as differentiating εFA(e) times the kernel encoded by the edge e. At
the same time, in the expression

(A, F̂ �A, πεFA, o, e) ,

the term πεFA(v) is a sum of several contributions, among which εFA(e). If we take
into account the factor 1/εFA(e)!, we recognise a (formal) Taylor sum

∑
k∈Nd

(xv)k

k!
∂e(e)+k
xv ϕt(e)(xv − xw), e = (v, w) ∈ ∂(A,F ).

If n is not zero, then we have a similar Taylor sum given by

∑
k∈Nd

(xv)k

k!
∂e(e)+k
xv

[
(xv)n(v)ϕt(e)(xv − xw)

]
, e = (v, w) ∈ ∂(A,F ).

The role of the decoration o is still mysterious at this stage: we ask the reader to wait
until the Remarks 3.19, 5.38 and 6.26 below for an explanation. The connection
between our construction and Taylor expansions (more precisely, Taylor remainders)
will be made clear in Lemma 6.10 and Remark 6.11 below.

Remark 3.8 Note that, in (3.7), for each fixedA the decoration nA runs over a finite
set because of the constraint 0 ≤ nA ≤ n.

On the other hand, εFA runs over an infinite set, but the sum is nevertheless well
defined as an element of 〈F〉 ⊗̂ 〈F〉, even though it does not belong to the algebraic
tensor product 〈F〉 ⊗ 〈F〉. Indeed, since |e�EA|+ |eFA + εFA| = |e|+ |εFA| ≥ |e| and

|A \ ((F̂ �A) ∪ %A)|+ |F \ ((F̂ ∪i A) ∪ %F )| ≤ |F \ (F̂ ∪ %F )| ,

it is the case that if |τ |bi = n, then the degree of each term appearing on the right
hand side of (3.7) is of the type (n1 + k1, n2 − k2) with ki ≥ 0. Since furthermore
the sum is finite for any given value of |εFA|, this is indeed a triangular map on 〈F〉,
see Remark 2.15 above.

There are many other ways of bigrading F to make the ∆i triangular, but the
one chosen here has the advantage that it behaves nicely with respect to the various
quotient operations of Sections 3.5 and 4.1 below.

Remark 3.9 The coproduct ∆i defined in (3.7) does not look like that of a combi-
natorial Hopf algebra since for εFA the coefficients are not necessarily integers. This
could in principle be rectified easily by a simple change of basis: if we set

(F, F̂ , n, o, e)◦
def
=

1

e!
(F, F̂ , n, o, e) ,
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then we can write (3.7) equivalently as

∆iτ =
∑

A∈Ai(F,F̂ )

∑
εFA,nA

(
e + εFA
εFA

)(
n

nA

)
(A, F̂ �A, nA + πεFA, o, e)◦

⊗ (F, F̂ ∪i A, n− nA, o + nA + π(εFA − eA6#), eFA + εFA)◦ ,

for τ = (F, F̂ , n, o, e)◦. Note that with this notation it is still the case that

(F, F̂ , n, o, e)◦ · (G, Ĝ, n′, o′, e′)◦ = (F tG, F̂ + Ĝ, n + n′, o + o′, e + e′)◦ .

However, since this lengthens some expressions, does not seem to create any
significant simplifications, and completely destroys compatibility with the notations
of [Hai14], we prefer to stick to (3.7).

Remark 3.10 As already remarked, the grading | · |bi defined in (3.6) is not
preserved by the ∆i. This should be considered a feature, not a bug! Indeed, the fact
that the first component of our bigrading is not preserved is precisely what allows
us to have an infinite sum in (3.7). A more natural integer-valued grading in that
respect would have been given for example by

|(F, F̂ )n,oe |− = |EF | − |Ê|+ |n| − |e| ,

which would be preserved by both the forest product · and ∆i. However, since e
can take arbitrarily large values, this grading is no longer positive. A grading very
similar to this will play an important role later on, see Definition 5.3 below.

3.3 Coassociativity
Assumption 2 For each coloured forest (F, F̂ ) as in Definition 2.3, the collection
Ai(F, F̂ ) of subforests of F satisfies the following properties.
1. One has

Ai(F tG, F̂ + Ĝ) = {C tD : C ∈ Ai(F, F̂ ) & D ∈ Ai(G, Ĝ)} . (3.14)

2. One has
A ∈ Ai(F, F̂ ) & B ∈ Ai(F, F̂ ∪i A) , (3.15a)

if and only if
B ∈ Ai(F, F̂ ) & A ∈ Ai(B, F̂ �B). (3.15b)

Assumption 2 is precisely what is required so that the “undecorated” versions of
the maps ∆i, as defined in (3.4), are both multiplicative and coassociative. The next
proposition shows that the definition (3.7) is such that this automatically carries over
to the “decorated” counterparts.
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Proposition 3.11 Under Assumptions 1 and 2, the maps ∆i are coassociative and
multiplicative on 〈F〉, namely the identities

(∆i ⊗ id)∆iF= (id⊗∆i)∆iF , (3.16a)
∆i(F· G) = (∆iF) · (∆iG) , (3.16b)

hold for all F, G∈ 〈F〉.

Proof. The multiplicativity property (3.16b) is an immediate consequence of
property 1 in Assumption 2 and the fact that the factorial factorises for functions
with disjoint supports, so we only need to verify (3.16a).

Applying the definition (3.7) twice yields the identity

(∆i ⊗ id)∆i(F, F̂ , n, o, e) =

=
∑

B∈Ai(F,F̂ )

∑
εFB ,nB

∑
A∈Ai(B,F̂ �B)

∑
εBA ,nA

1

εFB!

(
n

nB

)
1

εBA !

(
nB + πεFB

nA

)
(A, F̂ �A, nA + πεBA , o, e)⊗ (3.17)
(B, (F̂ �B) ∪i A, nB + πεFB − nA, o + nA + π(εBA − eA6#), eBA + εBA)⊗

(F, F̂ ∪i B, n− nB, o + nB + π(εFB − eB6#), eFB + εFB) .

Note that we should write for instance (A, F̂ �A, nA+πεBA , o�NA, e�EA) rather than
(A, F̂ �A, nA + πεBA , o, e), but in this as in other cases we prefer the lighter notation
if there is no risk of confusion. Analogously, one has

(id⊗∆i)∆i(F, F̂ , n, o, e) =

=
∑

A∈Ai(F,F̂ )

∑
εFA,nA

∑
C∈Ai(F,F̂∪iA)

∑
εFC ,nC

1

εFA!

(
n

nA

)
1

εFC !

(
n− nA
nC

)
(A, F̂ �A, nA + πεFA, o, e)⊗ (3.18)
(C, (F̂ ∪i A)�C, nC + πεFC , o + nA + π(εFA − eA6#), eCA + (εFA)CA)⊗

(F, F̂ ∪i C, n−nA−nC , o+nA+nC + π((εFA)FC + εFC − eC6#), eFC + (εFA)FC + εFC),

where we recall that, by Definition 3.3, for A ⊆ B ⊆ F and f : EF → Nd, we use
the notation fBA

def
= f 1EB\EA ; in particular

(εFA)FC
def
= εFA 1EF \EC , (εFA)CA

def
= εFA 1EC . (3.19)

By this definition it is clear that (εFA)FC and (εFA)CA have disjoint supports andmoreover

(εFA)FC + (εFA)CA = εFA.

This is the reason, in particular, why the term π((εFA)FC) appears in the last line of
(3.18). In the proof of (3.18) we also make use of the fact that, since A ⊂ C, one
has

(F̂ ∪i A) ∪i C = F̂ ∪i C .
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We now make the following changes of variables. First, we set

ε̄FC
def
= (εFA)FC + εFC , ε̄CA

def
= (εFA)CA , ε̄FA,C

def
= ε̄FC − εFC = (εFA)FC (3.20)

with the naming conventions (3.19). Note that the support of ε̄FA,C is contained in
∂(A,F ) ∩ ∂(C,F ). Now the map

(εFA, ε
F
C) 7→ (ε̄FC , ε̄

C
A, ε̄

F
A,C)

given by (3.20) is invertible on its image, with inverse given by

(ε̄FC , ε̄
C
A, ε̄

F
A,C) 7→ (εFA, ε

F
C) = (ε̄CA + ε̄FA,C , ε̄

F
C − ε̄FA,C). (3.21)

Furthermore, the only restriction on its image besides the constraints on the supports
is the fact that ε̄FA,C ≤ ε̄FC , which is required to guarantee that, with εFC = ε̄FC − ε̄FA,C
as in (3.21), one has εFC ≥ 0.

Now, the supports of ε̄CA and ε̄FA,C are disjoint, since

supp ε̄CA ⊂ ∂(A,F ) ∩ EC , supp ε̄FA,C ⊂ ∂(A,F ) \ EC .

Since the factorial factorises for functions with disjoint supports, we can rewrite the
combinatorial prefactor as

1

εFA!

1

εFC !
=

1

ε̄CA!ε̄FA,C !

1

(ε̄FC − ε̄FA,C)!
=

1

ε̄CA!ε̄FC !

(
ε̄FC
ε̄FA,C

)
. (3.22)

In this way, the constraint ε̄FA,C ≤ ε̄FC is automatically enforced by our convention
for binomial coefficients, so that (3.18) can be written as

(id⊗∆i)∆i(F, F̂ , n, o, e) =

=
∑

A∈Ai(F,F̂ )

∑
C∈Ai(F,F̂∪iA)

∑
ε̄CA,ε̄

F
C ,ε̄

F
A,C

∑
nA,nC

1

ε̄FC !ε̄CA!

(
ε̄FC
ε̄FA,C

)(
n

nA

)(
n− nA
nC

)
(A, F̂ �A, nA + πεFA, o, e)⊗ (3.23)
(C, (F̂ ∪i A)�C, nC + πεFC , o + nA + π(εFA − eA6#), eCA + ε̄CA)⊗

(F, F̂ ∪i C, n−nA−nC , o+nA+nC + π(ε̄FC − eC6#), eFC + ε̄FC) ,

where εFA and εFC are determined by (3.21).
We now make the further change of variables

n̄C = nA + nC , n̄A = nA + πε̄FA,C .

It is clear that, given ε̄FA,C , this is again a bijection onto its image and that the latter
is given by those functions with the relevant supports such that furthermore

n̄A ≥ πε̄FA,C . (3.24)
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With these new variables, (3.21) immediately yields

nA + πεFA = n̄A + πε̄CA , nC + πεFC = n̄C − n̄A + πε̄FC . (3.25)

Furthermore, we have(
n

nA

)(
n− nA
nC

)
=

(
n

nA + nC

)(
nA + nC

nA

)
=

(
n

n̄C

)(
n̄C

n̄A − πε̄FA,C

)
. (3.26)

Rewriting the combinatorial factor in this way, our convention on binomial co-
efficients once again enforces the condition (3.24), so that (3.23) can be written
as

(id⊗∆i)∆i(F, F̂ , n, o, e) = (3.27)

=
∑

A∈Ai(F,F̂ )

∑
C∈Ai(F,F̂∪iA)

∑
ε̄CA,ε̄

F
C ,ε̄

F
A,C

∑
n̄A,n̄C

1

ε̄FC !ε̄CA!

(
n

n̄C

)(
ε̄FC
ε̄FA,C

)(
n̄C

n̄A − πε̄FA,C

)
(A, F̂ �A, n̄A + πε̄CA, o, e)⊗
(C, (F̂ ∪i A)�C, n̄C − n̄A + πε̄FC , o + n̄A + πε̄CA − πeA6#, eCA + ε̄CA)⊗

(F, F̂ ∪i C, n− n̄C , o+n̄C + π(ε̄FC − eC6#), eFC + ε̄FC) ,

with the summation only restricted by the conditions on the supports implicit in the
notations. At this point, we note that the right hand side depends on ε̄FA,C only via
the combinatorial factor and that, as a consequence of Chu-Vandermonde, one has∑

ε̄FA,C

(
ε̄FC
ε̄FA,C

)(
n̄C

n̄A − πε̄FA,C

)
=
∑
πε̄FA,C

(
πε̄FC
πε̄FA,C

)(
n̄C

n̄A − πε̄FA,C

)

=

(
n̄C + πε̄FC

n̄A

)
. (3.28)

Inserting (3.28) into (3.27), using the fact that (F̂ �C) ∪i A = (F̂ ∪i A)�C and
comparing to (3.17) (with B replaced by C) completes the proof.

3.4 Bialgebra structure
Fix throughout this section i > 0.

Definition 3.12 For Ai a family satisfying Assumptions 1 and 2, we set

Ci
def
= {(F, F̂ ) ∈ C : F̂ ≤ i & {F, F̂i} ⊂ Ai(F, F̂ )} ,

Fi
def
= {(F, F̂ , n, o, e) ∈ F : F̂ ≤ i & {F, F̂i} ⊂ Ai(F, F̂ )} .

We also define the set Ui of all (F, i, 0, o, 0) ∈ Fi, where (F, i) denotes the coloured
forest (F, F̂ ) such that either F is empty or F̂ ≡ i on the whole forest F . In
particular, one has |τ |bi = 0 for every τ ∈ Ui. Finally we define 1?i : F → R by
setting

1?i (τ ) def
= 1(τ∈Ui). (3.29)
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For instance, the following forest belongs to U1 where 1 corresponds to red:

o

t

o

t

o

t

o

t

o

o

o

t

o

t

o (3.30)

We also define 1?i : C→ R as 1?i (F, F̂ ) = 1(F̂≡i).

Assumption 3 For every coloured forest (F, F̂ ) such that F̂i ∈ Ai(F, F̂ ) and for
all A ∈ Ai(F, F̂ ), we have
1. {A, F̂i} ⊂ Ai(A, F̂ �A)
2. if F̂ ≤ i then {F,A} ⊂ Ai(F, F̂ ∪i A).

Under Assumptions 1 and 3 it immediately follows from (3.7) that, setting

〈Fi〉 =

n∈N2

Vec{F∈ Fi : |F|bi = n}

as in (2.5), ∆i maps 〈Fi〉 into 〈Fi〉 ⊗̂ 〈Fi〉.

Lemma 3.13 Under Assumptions 1, 2 and 3,
• (Vec(Ci), ·,∆i, 1, 1?i ) is a bialgebra
• (〈Fi〉, ·,∆i, 1, 1?i ) is a bialgebra in the category of bigraded spaces as in
Definition 2.12.

Proof. We consider only (〈Fi〉, ·,∆i, 1, 1?i ), since the other case follows in the same
way. By the first part of Assumption 2, Fi is closed under the forest product, so that
(〈Fi〉, ·, 1) is indeed an algebra.

Sincewe already argued that∆i : 〈Fi〉 → 〈Fi〉⊗̂〈Fi〉 and since∆i is coassociative
by (3.16a), in order to show that (〈Fi〉,∆i, 1?i ) is a coalgebra, it remains to show that

(1?i ⊗ id)∆i = (id⊗ 1?i )∆i = id, on 〈Fi〉 .

For A ∈ Ai(F, F̂ ), we have (A, F̂ �A, n′, o′, e′) ∈ Ui if and only if F̂ ≡ i on A,
i.e. A ⊆ F̂i; since F̂i ⊆ A by Assumption 1, then the only possibility is A = F̂i.
Analogously, we have (F, F̂ ∪iA, n′, o′, e′) ∈ Ui if and only ifA = F . The definition
(3.7) of ∆i yields the result.

The required compatibility between the algebra and coalgebra structures is given
by (3.16b), thus concluding the proof.

3.5 Contraction of coloured subforests and Hopf algebra structure
The bialgebra (〈Fi〉, ·,∆i, 1, 1?i ) does not admit an antipode. Indeed, for any
τ = (F, i, 0, o, 0) ∈ Ui, see Definition 3.12, with F non-empty, satisfies by (3.13)

∆iτ = τ ⊗ τ. (3.31)
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In other words τ is grouplike. If a linear map A : 〈Fi〉 → 〈Fi〉 must satisfy (3.2),
then

τ ·Aτ = 1?i (τ ) 1 = 1

by (3.29), which is impossible since F is non-empty while 1 is the empty decorated
forest. A way of turning 〈Fi〉 into a Hopf algebra (again in the category of bigraded
spaces as in Definition 2.12) is to take a suitable quotient in order to eliminate
elements which do not admit an antipode, and this is what we are going to show now.

To formalise this, we introduce a contraction operator on coloured forests. Given
a coloured forest (F, F̂ ), we recall that Ê, defined in Definition 2.3, is the union of
all edges in F̂j over all j > 0.

Definition 3.14 For any coloured forest (F, F̂ ), we write KF̂F for the typed forest
obtained in the following way. We use the equivalence relation ∼ on the node set
NF defined in Definition 2.8, namely x ∼ y if x and y are connected in Ê. Then
KF̂F is the quotient graph of (NF , EF \ Ê) by ∼. By the definition of ∼, each
equivalence class is connected so that KF̂F is again a typed forest. Finally, F̂
is constant on equivalence classes with respect to ∼, so that the coloured forest
(KF̂F, F̂ ) is well defined and we denote it by

K(F, F̂ ) def
= (KF̂F, F̂ ).

If G := KF̂F , then there is a canonical projection π : NF → NG. This allows to
define a canonical map K

]

F̂
from subforests of KF̂F to subforests of F as follows:

if A = (NA, EA) is a subforest of KF̂F , then K
]

F̂
A := (NB, EB) where NB is

π−1(NA) and EB is the set of all (x, y) ∈ EF such that either π(x) = π(y) ∈ NA

or (π(x), π(y)) ∈ EA.

Note that in (KF̂F, F̂ ) all non-empty coloured subforests are reduced to single
nodes.

We are going to restrict our attention to collections Ai satisfying the following
assumption.

Assumption 4 For all coloured forests (F, F̂ ), the map K
]

F̂
is a bijection between

Ai(KF̂F, F̂ ) and Ai(F, F̂ ).

We recall that we have defined in (3.4) the operator acting on linear combinations of
coloured forests (F, F̂ ) 7→ ∆i(F, F̂ ). Then we have

Lemma 3.15 If Ai satisfies Assumption 4, then

(K⊗K)∆i = (K⊗K)∆iK on Vec(C).

Proof. It is enough to check that for all A ∈ Ai(KF̂F, F̂ ), setting A′ = K
]

F̂
A,

K(A′, F̂ �A′) = K(A, F̂ �A),
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K(F, F̂ ∪i A′) = K(KF̂F, F̂ ∪i A),

which follow from the definitions.

Example 3.16 For the tree of Example 3.2, we have

(F, F̂ ) = a

h ji

b

e

k l m p

, (KF̂F, F̂ ) =
a

b

h i

k p

Moreover for the choice A′ ∈ A2(KF̂F, F̂ ) given by

A′ =
a

b
=⇒ (A′, F̂ �A′) =

a

b
, (KF̂F, F̂ ∪2 A

′) =
a

b

h i

k p

we obtain that A = K
]

F̂
A′ is such that

(A, F̂ �A)⊗ (F, F̂ ∪2 A) =

j

e

l m

⊗

h ji

e

k l m p

Then in accordance with Lemma 3.15 we have

K(A, F̂ �A)⊗K(F, F̂ ∪2 A) = K(A′, F̂ �A′)⊗K(KF̂F, F̂ ∪2 A
′) ,

and both are equal to
a

b ⊗
h i k p

. For the choice of B′ ∈ A1(KF̂F, F̂ ) given

by B′ = i

b

k p so that

(B′, F̂ �B′) =
i

b

k p , (KF̂F, F̂ ∪1 B
′) =

a

b

h i

k p

,

we obtain that B = K
]

F̂
B′ is such that

(B, F̂ �B)⊗ (F, F̂ ∪1 B) =
b

ji

e

k p ⊗

h ji

e

k l m p

Then in accordance with Lemma 3.15 we have

K(B, F̂ �B)⊗K(F, F̂ ∪1 B) = K(B′, F̂ �B′)⊗K(KF̂F, F̂ ∪1 B
′)

and both are equal to

i

k p ⊗

h

k p
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Contraction of couloured subforests leads us closer to a Hopf algebra, but there is
still a missing element. Indeed, an element like (F, F̂ ) = (• t •, 1), namely two red
isolated roots with no edge, is grouplike since it satisfies∆1(F, F̂ ) = (F, F̂ )⊗(F, F̂ )
and therefore it can not admit an antipode, see the discussion after (3.31) above.

We recall that Ci has been introduced in Definition 3.12. We define first the
factorisation of Ci 3 τ = µ · ν where the forest product · has been defined in (2.1)
and
• ν ∈ Ci is the disjoint union of all non-empty connected componens of τ of the

form (A, i)
• µ ∈ Ci is the unique element such that τ = µ · ν.

For instance

τ = =⇒ ν = µ =

Note that by the first part of Assumption 2, we know that if τ = µ · ν ∈ Ci, then
µ ∈ Ci and ν ∈ Ci. Then, we know by Assumption 4 that if µ ∈ Ci, thenK(µ) ∈ Ci.
Then, using this factorisation, we define Ki : Vec(Ci) → Vec(Ci) as the linear
operator such that

Ki(τ ) = K(µ). (3.32)

For example

K1

( )
=

Then

Proposition 3.17 Under Assumptions 1–4, the space Ii
def
= kerKi is a bialgebra

ideal of Vec(Ci), i.e.

Vec(Ci) ·Ii ⊂ Ii, ∆iIi ⊂ Ii ⊗ Vec(Ci) + Vec(Ci)⊗Ii .

Moreover setting Bi := Vec(Ci)/Ii, the bialgebra (Bi, ·,∆i, 1i, 1?i ) is a Hopf
algebra, where 1i

def
= 1 + Ii.

Proof. The first assertion follows from the fact that Ki is an algebra morphism, and
from Lemma 3.15.

For the second assertion, we note that the vector space Bi is isomorphic to
Vec(Ci), where Ci = {τ ∈ Ci : Kiτ = τ} = KiCi. Moreover Vec(Ci)/Ii as a
bialgebra is isomorphic to (Vec(Ci),KiM, (Ki ⊗Ki)∆i, 1i, 1?i ), where M denotes
the forest product. The latter space is a Hopf algebra since it is a connected graded
bialgebra with respect to the grading |(F, F̂ )|i

def
= |F \ F̂i|, namely the number of

nodes and edges which are not coloured with i.

We now extend the above construction to decorated forests.
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Definition 3.18 Let K : 〈F〉 → 〈F〉 be the triangular map given by

K(F, F̂ )n,oe
def
= (KF̂F, F̂ )[n],[o]

[e] , (F, F̂ )n,oe ∈ F,

where the decorations [n], [o] and [e] are defined as follows:
• if x is an equivalence class of∼ as in Definition 3.14, then [n](x) =

∑
y∈x n(y).

• [e] is defined by simple restriction of e on EF \ Ê.
• [o](x) is defined by

[o](x) def
=
∑
y∈x

o(y) +
∑

e∈EF∩x2
t(e). (3.33)

The definition (3.33) explains why o is defined as a function taking values in
Zd ⊕ Z(L), see Remark 2.6 above.

Remark 3.19 The contraction of a subforest entails a loss of information. We use
the decoration o in order to retain part of the lost information, namely the types of
the edges which are contracted. This plays an important role in the degree | · |+
introduced in Definition 5.3 below and is the key to one of the main results of this
paper, see Remark 5.38.

Example 3.20 If (F, F̂ )n,oe is
n

t, e

n

t, e

n, o

t

n1, o1

t, e

n, o

t

n, o

t

n1, o1

n3, o3

t

n3, o3n, o

t, e

n2, o2 n4, o4

(3.34)

then K(F, F̂ )n,oe is
n

t, e

n

t, e

[n1], [o1]

t, e

[n], [o] n, o

t, e

n2, o2 [n3], [o3] n4, o4

(3.35)

Note that the types t of edges which are erased by the contraction are stored inside
the decoration [o] of the corresponding node.

Let now Mi ⊂ Fi be the set of decorated forests which are of type (F, i, n, o, 0).
This includes the caseF = 6# so thatUi ⊂Mi, whereUi is defined in Definition 3.12.
For example, the following decorated forest belongs toM1

n, o

t

n, o

t

n, o

t

n, o

t

n, o

n, o

n, o

t

n, o

t

n, o (3.36)
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Compare this forest with that in (3.30), which belongs to U1; in (3.36) the decoration
n can be non-zero, while it has to be identically zero in (3.30).

We define then an operator ki : Mi →Mi by setting

ki(ν) def
= (•, i,Σνn, 0, 0) ,

for any ν = (F, i, n, o, 0) with Σνn
def
=
∑

NF
n. For instance, the forest in (3.30)

is mapped by k1 to (•, 1, 0, 0, 0), while the forest ν in (3.36) is mapped by k1 to
(•, 1,Σn, 0, 0).

We define first the factorisation of Fi 3 τ = µ · ν where the forest product · has
been defined in (3.5) and
• ν ∈Mi is the disjoint union of all non-empty connected componens of τ of the

form (A, i, n, o, e)
• µ ∈ Fi is the unique element such that τ = µ · ν.

For instance, in (3.34) and (3.35), we have two forests in F2; in both cases we have
τ = µ · ν as above, where µ is the product of the first two trees (from left to right)
and ν ∈M2 is the product of the two remaining trees.

By the first part of Assumption 2, we know that if τ = µ ·ν ∈ Fi, then µ ∈ Fi and
ν ∈ Fi. We also know by Assumption 4 that if µ ∈ Fi, then K(µ) ∈ Fi. Therefore,
using this factorisation, we define Φi : Fi → Fi by

Φi(τ ) def
= µ · ki(ν) . (3.37)

In (3.34) and (3.35), the action of Φ2 corresponds to merging the third and fourth
tree into a single decorated node (•, 2,Σn3 + Σn4, 0, 0) with all other components
remaining unchanged.

We also define Φ̂i : Fi → Fi by Φ̂i = P̂i ◦ Φi = Φi ◦ P̂i, where P̂i(G, Ĝ, n, o, e)
sets o to 0 on every connected component of Ĝi that contains a root of G. For
instance, the action of P̂2 on the forests in (3.34) and (3.35) is to set to 0 the
decoration o of all blue nodes. On the other hand, we have

P̂1


n, o

t, e

n, o

 =

n, o

t, e

n

(3.38)

namely the red node which is not in the red connected component of the root is left
unchanged.

Finally, we define Ki, K̂i : Fi → Fi

Ki
def
= Φi ◦K , K̂i

def
= Φ̂i ◦K . (3.39)

For instance, if τ is the forest of (3.34) and σ = K(τ ) is that of (3.35), then

K2(τ ) = Φ2(σ) =

n

t, e

n

t, e

[n1], [o1]

t, e

[n], [o] n, o

t, e

n2, o2 [n3] + n4

(3.40)
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K̂2(τ ) = Φ̂2(σ) =

n

t, e

n

t, e

[n1]

t, e

[n], [o] n, o

t, e

n2 [n3] + n4

Note that in K2(τ ) the roots of the connected components which do not belong to
M2 may have a non-zero o decoration, while the unique connected component in
M2 (reduced to a blue root with a possibly non-zero n decoration) always has a zero
o decoration. In K̂2(τ ) all roots have zero o decoration.

Since K commutes with Φi (as well as with Φ̂i), is multiplicative, and is the
identity on the image of ki inMi, it follows that for τ = µ · ν as above, we have

Ki(τ ) = K(µ) · ki(ν) .

Moreover Ki and K̂i are idempotent and extend to triangular maps on 〈Fi〉 since
K, Φi and Φ̂i are all idempotent and preserve our bigrading. We then have the
following result.

Lemma 3.21 Under Assumptions 1–4, the spaces Ii = kerKi and Îi = ker K̂i

are bialgebra ideals, i.e.

〈Fi〉 ·Ii ⊂ Ii, ∆iIi ⊂ Ii ⊗̂ 〈Fi〉+ 〈Fi〉 ⊗̂Ii ,

and similarly for Îi.

Proof. AlthoughKi is not quite an algebra morphism of (〈Fi〉, ·), it has the property
Ki(a · b) = Ki(a ·Ki(b)) for all a, b ∈ Fi, from which the first property follows
for Ii. Since P̂i is an algebra morphism, the same holds for Îi. To show the
second claim, we first recall that for all coloured forests (F, F̂ ), the map K]

F̂
defined

in Definition 3.14 is, by the Assumption 4, a bijection between Ai(KF̂F, F̂ ) and
Ai(F, F̂ ). Combining this with Chu-Vandermonde, one can show that K satisfies

(K⊗K)∆iK= (K⊗K)∆i . (3.41)

The same can easily be verified for Φi and P̂i, so that it also holds for Ki and K̂i,
whence the claim follows.

If we define
Hi

def
= 〈Fi〉/Ii, 1i

def
= 1 + Ii ∈ Hi, (3.42)

then, as a consequence of Lemma 3.21, (Hi, ·,∆i, 1i, 1?i ) defines a bialgebra.

Remark 3.22 Using Lemma 2.17, we have a canonical isomorphism

(Hi,M,∆i, 1i, 1?i ) ←→ (〈Hi〉,KiM, (Ki ⊗Ki)∆i, 1i, 1?i ) ,

where Hi = {F ∈ Fi : KiF = F} = KiFi and M denotes the forest product.
This can be useful if one wants to work with explicit representatives rather than
with equivalence classes. Note that Hi can be characterised as the set of all
(F, F̂ , n, o, e) ∈ Fi such that
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1. the coloured subforests F̂k, 0 < k ≤ i, contain no edges, namely Ê = 6#,
2. there is one and only one connected component of F which has the form

(•, i, n, o, 0) and moreover o(•) = 0.
For example, the forest in (3.40) is an element of H2.

Proposition 3.23 Under Assumptions 1–4, the space (Hi, ·,∆i, 1i, 1?i ) is a Hopf
algebra.

Proof. By Lemma 3.13, 1?i is a counit in Hi. We only need now to show that this
space admits an antipode Ai, that we are going to construct recursively.

For k ∈ Nd, we denote by Xk ∈ Hi the equivalence class of the element
(•, i, k, 0, 0). It then follows from

∆iX
k =

∑
j∈Nd

(
k

j

)
Xj ⊗Xk−j (3.43)

that the subspace spanned by (Xk, k ∈ Nd) is isomorphic to the Hopf algebra of
polynomials in d commuting variables, provided that we set

AiX
k = (−1)|k|Xk . (3.44)

For any τ = (F, F̂ , n, o, e) ∈ Fi, let |τ |i = |F \ F̂i| and recall the definition (2.4)
of the bigrading |τ |bi. Note that |Kiτ |i = |τ |i and, as we have already remarked,
|Kiτ |bi = |τ |bi, so that both these gradings make sense on Hi. We now extend Ai
to Hi by induction on |τ |i.

If |τ |i = 0 then, by definition, one has τ ∈ Mi so that τ = Xk for some k
and (3.44) defines Aiτ . Let now N > 0 and assume that Aiτ has been defined
for all τ ∈ Hi with |τ |i < N . Assume also that it is such that if |τ |bi = m, then
(Aiτ )n 6= 0 only if n ≥ m, which is indeed the case for (3.44) since all the terms
appearing there have degree (0, 0). (This latter condition is required if we want Ai
to be a triangular map.)

For τ = (F, F̂ , n, o, e) and k : NF → Nd, we define Rkτ
def
= (F, F̂ , k, o, e). For

such a τ with |τ |i = N and |τ |bi = M , we then note that one has

∆iτ =
∑
k≤n

(
n

k

)
Rkτ ⊗XΣ(n−k) +

∑
`+m≥M

τ `(1) ⊗ τm(2) ,

where Σ(n− k) :=
∑

x∈F (n− k)(x) and for ` ∈ N2

τ `(1) ∈ Vec{σ ∈ Hi : |σ|bi = `, |σ|i < N},
τ `(2) ∈ Vec{σ ∈ Hi : |σ|bi = `, |σ|i ≤ N}.

Note that the first term in the right hand side above corresponds to the choice of
A = F , while the second term contains the sum over all possible A 6= F . Here, the
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property |τ `(1)|i < N holds because these terms come from terms with A 6= F in
(3.7). Since for τ 6= 1i we want to have

M(Ai ⊗ id)∆iτ = 0 ,

this forces us to choose Aiτ in such a way that

Aiτ = −
∑
k 6=n

(
n

k

)
Ai(Rkτ ) ·XΣ(n−k) −

∑
`+m≥M

Ai(τ `(1)) · τm(2) . (3.45)

In the case n = 0, this uniquely defines Aiτ by the induction hypothesis since every
one of the terms τ `(1) appearing in this expression satisfies |τ `(1)|i < N .

In the case where n 6= 0, Aiτ is also easily seen to be uniquely defined by
performing a second inductive step over |n| ∈ N. All terms appearing in the right
hand side of (3.45) do indeed satisfy that their total | · |bi-degree is at leastM by using
the induction hypothesis. Furthermore, our definition immediately guarantees that
M(Ai ⊗ id)∆i = 1i1?i . It remains to verify that one also has M(id⊗Ai)∆i = 1i1?i .
For this, it suffices to verify that Ai is multiplicative, whence the claim follows by
mimicking the proof of the fact that a semigroup with left identity and left inverse is
a group.

Multiplicativity of Ai also follows by induction over N = |τ |i. Indeed, it follows
from (3.44) that it is the case forN = 0. It is also easy to see from (3.45) that if τ is
of the form τ ′ ·Xk for some τ ′ and some k > 0, then one hasAiτ = (Aiτ ′) · (AiXk).
Assuming that it is the case for all values less than some N , it therefore suffices to
verify thatAi is multiplicative for elements of the type τ = σ · σ̄ with |σ|i∧|σ̄|i > 0.
If we extend Ai multiplicatively to elements of this type then, as a consequence of
the multiplicativity of ∆i, one has

M(Ai ⊗ id)∆iτ = (M(Ai ⊗ id)∆iσ) · (M(Ai ⊗ id)∆iσ̄) = 0 ,

as required. Since the map Ai satisfying this property was uniquely defined by our
recursion, this implies that Ai is indeed multiplicative.

3.6 Characters group
Recall that an element g ∈ H∗i is a character if g(τ · τ̄ ) = g(τ )g(τ̄ ) for any τ, τ̄ ∈ Hi.
Denoting by Gi the set of all such characters, the Hopf algebra structure described
above turns Gi into a group by

(f ◦ g)(τ ) = (f ⊗ g) ∆iτ , g−1(τ ) = g(Aiτ ) , (3.46)

where the former operation is guaranteed to make sense by Remark 2.16.

Definition 3.24 Denote by Pi the set of elements F= (F, F̂ , n, o, e) ∈ Hi as in
Remark 3.22, such that
• F has exactly one connected component
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• either F̂ is not identically equal to i or F = (•, i, δn, 0, 0) for some n ∈
{1, . . . , d}, where (δn(•))j = δnj .

It is then easy to see that for every τ ∈ Hi there exists a unique (possibly empty)
collection {τ1, . . . , τN} ⊂ Pi such that τ = Ki(τ1 · . . . · τN ). As a consequence, a
multiplicative functional on Hi is uniquely determined by the collection of values
{g(τ ) : τ ∈ Pi}. The following result gives a complete characterisation of the
class of functions g : Pi → R which can be extended in this way to a multiplicative
functional on Hi.

Proposition 3.25 A function g : Pi → R determines an element of Gi as above
if and only if there exists m : N → N such that g(τ ) = 0 for every τ ∈ Pi with
|τ |bi = n such that n1 > m(n2).

Proof. We first show that, under this condition, the unique multiplicative extension
of g defines an element of H∗i . By Remark 2.16, we thus need to show that there
exists a function m̃ : N → N such that g(τ ) = 0 for every τ ∈ Hi with |τ |bi = n
and n1 > m̃(n2).

If σ = (F, F̂ , n, o, e) ∈ Pi satisfies n2 = 0, then F̂ is nowhere equal to 0 on F
by the definition (2.4); by property 2 in Definition 2.3, F̂ is constant on F , since we
also assume that F has a single connected component; in this case e ≡ 0 by property
3 in Definition 2.5; therefore, if n2 = 0 then n1 = 0 as well. Therefore we can set
m̃(0) = 0.

Let now k ≥ 1. We claim that m̃(k) def
= k sup1≤`≤km(`) has the required property.

Indeed, for τ = Ki(τ1 · . . . · τN ), one has g(τ ) = 0 unless g(τj) 6= 0 for every j; in
this case, setting nj = (nj1, n

j
2) = |τj |bi, we havem(nj2) ≥ nj1 for all j = 1, . . . , N .

Since n = (n1, n2) def
= |τ |bi =

∑
j |τj |bi, this implies that nk =

∑
j n

j
k, k = 1, 2.

Then
m̃(n2) ≥ n2 max

1≤`≤n2

m(`) ≥ n2 max
1≤`≤N

nj1 ≥ n1.

The converse is elementary.

3.7 Comodule bialgebras
Let us fix throughout this section 0 < i < j. We want now to study the possible
interaction between the structures given by the operators ∆i and ∆j . For the
definition of a comodule, see the beginning of Section 3.

Assumption 5 Let 0 < i < j. For every coloured forest (F, F̂ ) such that F̂ ≤ j
and {F, F̂j} ⊂ Aj(F, F̂ ), one has F̂i ∈ Ai(F, F̂ ).

Lemma 3.26 Let 0 < i < j. Under Assumptions 1–4 for i and under Assumption 5
we have

∆i : 〈Fj〉 → 〈Fi〉 ⊗̂ 〈Fj〉 , (1?i ⊗ id)∆i = id ,

which endows 〈Fj〉 with the structure of a left comodule over the bialgebra 〈Fi〉.
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Proof. Let (F, F̂ , n, o, e) ∈ Fj and A ∈ Ai(F, F̂ ); by Definition 3.12, we have
F̂ ≤ j and {F, F̂j} ⊂ Aj(F, F̂ ), so that by Assumption 5 we have F̂i ∈ Ai(F, F̂ ).
Then, by property 1 in Assumption 3, we have F̂i ∩ A = F̂i ∈ Ai(A, F̂ �A).
Now, since A ∩ F̂j = 6# by property 1 in Assumption 1, we have (F̂ ∪i A)j =
F̂j \ A = F̂j ∈ Aj(F, F̂ ∪i A) by the Definition 3.12 of Fj ; all this shows that
∆i : 〈Fj〉 → 〈Fi〉 ⊗̂ 〈Fj〉.

For A ∈ Ai(F, F̂ ), we have (A, F̂ �A, n′, o′, e′) ∈ Ui if and only if F̂ ≡ i on A,
i.e. A ⊆ F̂i; since F̂i ⊆ A by Assumption 1, then the only possibility is A = F̂i.
By Assumption 5 we have F̂i ∈ Ai(F, F̂ ) and therefore (1?i ⊗ id)∆i = id.

Finally, the co-associativity (3.16a) of ∆i on F shows the required compatibility
between the coaction ∆i : 〈Fj〉 → 〈Fi〉 ⊗̂ 〈Fj〉 and the coproduct ∆i : 〈Fi〉 →
〈Fi〉 ⊗̂ 〈Fi〉.

We now introduce an additional structure which will yield as a consequence the
cointeraction property (3.48) between the maps ∆i and ∆j , see Remark 3.28.

Assumption 6 Let 0 < i < j. For every coloured forest (F, F̂ ), one has

A ∈ Ai(F, F̂ ) & B ∈ Aj(F, F̂ ∪i A) , (3.47a)

if and only if

B ∈ Aj(F, F̂ ) & A ∈ Ai(F, F̂ ∪j B) t Ai(B, F̂ �B) , (3.47b)

where A t Ā is a shorthand for {A t Ā : A ∈ A & Ā ∈ Ā}.

We then have the following crucial result.

Proposition 3.27 Under Assumptions 1 and 6 for some 0 < i < j, the identity

M(13)(2)(4)(∆i ⊗∆i)∆j = (id⊗∆j)∆i (3.48)

holds on F, where we used the notation

M(13)(2)(4)(τ1 ⊗ τ2 ⊗ τ3 ⊗ τ4) = (τ1 · τ3 ⊗ τ2 ⊗ τ4) . (3.49)

Proof. The proof is very similar to that of Proposition 3.11, but using (3.47) instead
of (3.15). Using (3.47) and our definitions, for τ = (F, F̂ , n, o, e) ∈ F one has

M(13)(2)(4)(∆i ⊗∆i)∆j τ =

=
∑

B∈Aj (F,F̂ )

∑
A1∈Ai(B,F̂ �B)

∑
A2∈Ai(F,F̂∪jB)

∑
εFB ,ε

B
A1
,εFA2

∑
nB ,nA1

,nA2

1

εFB!εBA1
!εFA2

!

(
n

nB

)(
n− nB
nA2

)(
nB + πεFB

nA1

)
(3.50)

(A1 tA2, F̂ �A, nA1 + nA2 + π(εBA1
+ εFA2

), o, e)
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⊗ (B, (F̂ �B) ∪i A1, nB + πεFB − nA1 , o + nA1 + π(εBA1
− eA1
6# ), eBA1

+ εBA1
)

⊗ (F, (F̂ ∪j B) ∪i A2, n− nB − nA2 , o + nB + nA2 + π(εFB + εFA2
− eA2tB
6# )

, eFA2tB + (εFB)FA2
+ εFA2

) .

We claim that A2 ∩ B = 6#. Indeed, as noted in the proof of Lemma 3.1, since
B ∈ Aj(F, F̂ ) one has (F̂ ∪j B)−1(j) = B and since A2 ∈ Ai(F, F̂ ∪j B) one has
A2 ∩ (F̂ ∪j B)−1(j) = 6# by property 1 in Assumption 1. This implies that

(εFB)FA2
= εFB ,

since εFB has support in ∂(B,F ) which is disjoint from EA2 . This is because, for
e = (e+, e−) ∈ ∂(B,F ) we have by definition e+ ∈ NB ⊂ NF \NA2 and therefore
e /∈ EA2 .

Similarly, one has

(id⊗∆j)∆iτ =

=
∑

A∈Ai(F,F̂ )

∑
C∈Aj (F,F̂∪iA)

∑
εFC ,ε

F
A

∑
nC ,nA

1

εFA!εFC !

(
n

nA

)(
n− nA
nC

)
(3.51)

(A, F̂ �A, nA + πεFA, o, e)

⊗ (C, (F̂ ∪i A)�C, nC + πεFC , o + nA + π(εFA − eC6#), eFA + εFA)

⊗ (F, (F̂ ∪i A) ∪j C, n− nA − nC , o + nA + nC + π((εFA)FC + εFC − eC∪A6# )

, eFC∪A + (εFA)FC + εFC) .

By Assumption 6, there is a bijection between the outer sums of (3.50) and (3.51)
given by (A,C) ↔ (A1 t A2, B), with inverse (A1, A2, B) ↔ (A ∩ C,A\C,C).
Then one then has indeed (F̂ �B) ∪i A1 = (F̂ ∪i A)�C. Similarly, since i < j and
A2∩C = 6#, one has (F̂ ∪j B)∪iA2 = (F̂ ∪iA)∪j C, so we only need to consider
the decorations and the combinatorial factors.

For this purpose, we define

ε̄CA1
= εFA 1EC , ε̄FA2

= (εFA)1∂(A2,F ) ,
ε̄FA1,C = εFA 1∂(C,F ) , ε̄FC = εFC + ε̄FA1,C ,

as well as

n̄A1 = (nA�C) + πε̄FA1,C , n̄A2 = nA�(F \ C) , n̄C = nC + (nA�C) .

As before, the supports of these functions are consistent with our notations, with
the particular case of ε̄FA1,C

whose support is contained in ∂(A,F ) ∩ ∂(C,F ) =
∂(A1, F ) ∩ ∂(C,F ), where we use again the fact that A2 ∩ C = 6#. Moreover the
map

(εFA, ε
F
C , nA, nC) 7→ (ε̄CA1

, ε̄CA2
, ε̄FA1,C , ε̄

F
C , n̄A1 , n̄A2 , n̄C)
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is invertible on its image, given by the functions with the correct supports and the
additional constraint

n̄A1 ≥ πε̄FA1,C .

Its inverse is given by

εFC = ε̄FC − ε̄FA1,C , εFA = ε̄CA1
+ ε̄FA2

+ ε̄FA1,C ,

nA = n̄A1 + n̄A2 − πε̄FA1,C , nC = n̄C − n̄A1 + πε̄FA1,C .

Following a calculation virtually identical to (3.22) and (3.26), combined with
the fact that nA + nC = n̄C + n̄A2 , we see that

1

εFA! εFC !
=

1

ε̄CA1
! ε̄FA2

! ε̄FA1,C
!

1

(ε̄FC − ε̄FA1,C
)!

=
1

ε̄FC ! ε̄CA1
! ε̄FA2

!

(
ε̄FC
ε̄FA1,C

)
,(

n

nA

)(
n− nA
nC

)
=

(
n̄C + n̄A2

n̄A1 + n̄A2 − πε̄FA1,C

)(
n

n̄C + n̄A2

)
.

Since A2 ∩C = 6# and A1 ⊂ C, we can simplify this expression further and obtain(
n̄C + n̄A2

n̄A1 + n̄A2 − πε̄FA1,C

)
=

(
n̄C

n̄A1 − πε̄FA1,C

)
.

Following the same argument as (3.28), we conclude that∑
ε̄FA1,C

(
ε̄FC
ε̄FA1,C

)(
n̄C

n̄A1 − πε̄FA1,C

)
=

(
n̄C + πε̄FC

n̄A1

)
,

so that (3.51) can be rewritten as

(id⊗∆j)∆iτ =
∑

C∈Aj (F,F̂ )

∑
A∈Ai(F,F̂ �C)

∑
A∈Ai(F,F̂∪jC)

∑
ε̄CA1

,ε̄CA2
,ε̄FC

∑
n̄A1

,n̄A2
,n̄C

1

ε̄FC !ε̄CA1
!ε̄FA2

!

(
n

n̄C + n̄A2

)(
n̄C + πε̄FC

n̄A1

)
(A1 tA2, F̂ �A, n̄A1 + n̄A2 + π(ε̄CA1

+ ε̄FA2
), o, e)

⊗ (C, (F̂ �C) ∪i A1, n̄C + πε̄FC − n̄A1 , o + n̄A1 + π(ε̄CA1
− eA1
6# ), eCA1

+ ε̄CA1
)

⊗ (F, (F̂ ∪j C) ∪i A2, n− n̄C − n̄A2 , o + n̄C + n̄A2 + π(ε̄FC + ε̄FA2
− eA2tC
6# )

, eFA2tC + ε̄FC + ε̄FA2
) .

(3.52)

We have also used the fact that

(πεFA)�NC = π(εFA1EC ) + π(εFA1∂(C,F )) = πε̄CA1
+ πε̄FA1,C .

On the other hand, since A2 and B are disjoint, one has(
n

nB

)(
n− nB
nA2

)
=

n!

nB! nA2 ! (n− nB − nA2)!
=

(
n

nB + nA2

)
,
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so that (3.50) can be rewritten as

M(13)(2)(4)(∆i ⊗∆i)∆j τ =

=
∑

B∈Aj (F,F̂ )

∑
A1∈Ai(B,F̂ �B)

∑
A2∈Ai(F,F̂∪jB)

∑
εFB ,ε

B
A1
,εFA2

∑
nB ,nA1

,nA2

1

εFB!εBA1
!εFA2

!

(
n

nB + nA2

)(
nB + πεFB

nA1

)
(A1 tA2, F̂ �A, nA1 + nA2 + π(εBA1

+ εFA2
), o, eA1tA2

6# )

⊗ (B, (F̂ �B) ∪i A1, nB + πεFB − nA1 , o + nA1 + π(εBA1
− eA1
6# ), eBA1

+ εBA1
)

⊗ (F, (F̂ ∪j B) ∪i A2, n− nB − nA2 , o + nB + nA2 + π(εFB + εFA2
− eA2
6# ),

eFA2
+ εFB + εFA2

) .

(3.53)

Comparing this with (3.52) we obtain the desired result.

Remark 3.28 Let 0 < i < j. If Assumptions 1–6 hold, then the space 〈Fj〉 is
a comodule bialgebra over the bialgebra 〈Fi〉 with coaction ∆i, in the sense of
[Mol77, Def 2.1(e)]. In the terminology of [Foi16, Def. 1], 〈Fj〉 and 〈Fi〉 are in
cointeraction.

Remark 3.29 Note that the roles of i and j are asymmetric for 0 < i < j: 〈Fi〉
is in general not a comodule bialgebra over 〈Fj〉. This is a consequence of the
asymmetry between the roles played by i and j in Assumption 1. In particular, every
A ∈ Ai(F, F̂ ) has empty intersection with F̂j , while any B ∈ Aj(F, F̂ ) can contain
connected components of F̂i.

3.8 Skew products and group actions
We assume throughout this subsection that 0 < i < j and that Assumptions 1–6
hold. Following [Mol77], we define a space Hij = Hi n Hj as follows. As a vector
space, we set Hij = Hi ⊗̂Hj , and we endow it with the product and coproduct

(a⊗ b) · (ā⊗ b̄) = (a · ā)⊗ (b · b̄) , (3.54)
∆ij(a⊗ b) = M(14)(3)(2)(5)(id⊗ id⊗ id⊗∆i)(∆i ⊗∆j)(a⊗ b) .

We also define 1ij
def
= 1i ⊗ 1j , 1?ij

def
= 1?i ⊗ 1?j .

Proposition 3.30 The 5-tuple (Hij , ·,∆ij , 1ij , 1?ij) is a Hopf algebra.

Proof. We first note that, for every τ ∈Mj , one has ∆iτ = 1 ⊗ τ since one has
Ai(F, j) = {6#} by Assumptions 1 and 5. It follows that one has the identity

(Ki ⊗Kj)∆i = (Ki ⊗Kj)∆iKj ,

see also (3.41). Combining this with Lemma 3.26, we conclude that one can indeed
view ∆i as a map ∆i : Hj → Hi ⊗̂Hj , so that (3.54) is well-defined.
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By Proposition 3.27, ∆ij is coassociative, and it is multiplicative with respect to
the product, see also [Mol77, Thm 2.14]. Note also that on Hj one has the identity

(id⊗ 1?j )∆i = 1i 1?j ,

where 1i is the unit in Hi. As a consequence, 1?ij is the counit for Hij , and one can
verify that

Aij = (AiM⊗Aj)(id⊗∆i) ,

is the antipode turning Hij into a Hopf algebra.

Let us recall that Gi denotes the character group of Hi.

Lemma 3.31 Let us set for g ∈ Gi, f ∈ Gj , the element gf ∈ H∗j

(gf )τ def
= (g ⊗ f ) ∆iτ, τ ∈ Hj .

Then this defines a left action of Gi onto Gj by group automorphisms.

Proof. The dualization of the cointeraction property (3.48) yields that g(f1f2) =
(gf1)(gf2), which means that this is indeed an action.

Proposition 3.32 The semi-direct product Gij
def
= GinGj , with group multiplication

(g1, f1)(g2, f2) = (g1g2, f1(g1f2)), g1, g2 ∈ Gi, f1, f2 ∈ Gj , (3.55)

defines a sub-group of the group of characters of Hij .

Proof. Note that (3.55) is the dualisation of ∆ij in (3.54). The inverse is given by

(g, f )−1 = (g−1, g−1f−1) ,

since (g, f ) · (g−1, g−1f−1) = (gg−1, f (gg−1f−1)) = (1?i , 1?j ).

Proposition 3.33 Let V be a vector space such that Gi acts on V on the left and Gj
acts on V on the right, and we assume that

g(hf ) = (gh)(gf ) , g ∈ Gi, f ∈ Gj , h ∈ V. (3.56)

Then Gij acts on the left on V by

(g, f )h = (gh)f−1 , g ∈ Gi, f ∈ Gj , h ∈ V. (3.57)

Proof. Now we have

(g1, f1)((g2, f2)h) = (g1, f1)((g2h)f−1
2 ) = (g1((g2h)f−1

2 ))f−1
1

= (g1g2h)(g1f
−1
2 )f−1

1 = (g1g2, f1(g1f2))h = ((g1, f1)(g2, f2))h ,

which is exactly what we wanted.
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For instance, we can choose as V the dual space H∗j of Hj . For all h ∈ H∗j , g ∈ Gi
and f ∈ Gj we can set

H∗j 3 gh := (g ⊗ h)∆i, H∗j 3 hf := (h⊗ f )∆j .

In this case (3.56) is the dualisation of the cointeraction property (3.48). The space
Hj is a left comodule over Hij with coaction given by βij : Hj → Hij ⊗Hj with

βij = σ(132)(∆i ⊗Aj)∆j , (3.58)

where σ(132)(a⊗ b⊗ c) def
= a⊗ c⊗ b. Note that (3.57) is the dualisation of (3.58).

4 A specific setting suitable for renormalisation

We now specialise the framework described in the previous section to the situation
of interest to us. We define two collections A1 and A2 as follows.

Definition 4.1 For any coloured forest (F, F̂ ) as in Definition 2.3 we define the
collection A1(F, F̂ ) of all subforests A of F such that F̂1 ⊂ A and F̂2 ∩ A = 6#.
We also define A2(F, F̂ ) to consist of all subforests A of F with the following
properties:
1. A contains F̂2

2. for every non-empty connected component T of F , T ∩ A is connected and
contains the root of T

3. for every connected component S of F̂1, one has either S ⊂ A or S ∩A = 6#.

The images in Examples 3.2 and 3.16 above are compatible with these definitions.
We recall from Definition 3.12 that Ci and Fi are given for i = 1, 2 by

Ci = {(F, F̂ ) ∈ C : F̂ ≤ i & {F, F̂i} ⊂ Ai(F, F̂ )} ,

Fi = {(F, F̂ , n, o, e) ∈ F : (F, F̂ ) ∈ Ci} .

Lemma 4.2 For τ = (F, F̂ ) ∈ C we have
• τ ∈ C1 if and only if F̂ ≤ 1
• τ ∈ C2 if and only if F̂ ≤ 2 and, for every non-empty connected component T

of F , F̂2 ∩ T is a subtree of T containing the root of T .

Proof. Let (F, F̂ ) ∈ C. If F̂ ≤ 1 then F̂2 = 6# and therefore F ∈ A1(F, F̂ );
moreover A = F̂1 clearly satisfies F̂1 ⊂ A and A ∩ F̂2 = 6#, so that F̂1 ∈ A1(F, F̂ )
and therefore (F, F̂ )n,oe ∈ C1. The converse is obvious.

Let us suppose now that F̂ ≤ 2 and for every connected component T of F ,
F̂2 ∩ T is a subtree of T containing the root of T . Then A = F clearly satisfies the
properties 1-3 of Definition 4.1. If now A = F̂2, then A satisfies the properties 1
and 2 since for every non-empty connected component T of F , F̂2 ∩ T is a subtree
of T containing the root of T , while property 3 is satisfied since F̂1 ∩ F̂2 = 6#. The
converse is again obvious.
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Example 4.3 As in previous examples, red stands for 1 and blue for 2 (and black
for 0):

∈ C1, ∈ C2.

On the other hand,

/∈ C2, /∈ C2

because F̂2 does not contain the root in the first case, and in the second F̂2 has two
disjoint connected components inside a connected component of F . The decorated
forests (3.11), (3.30), (3.36) and (3.38) are in C1, while the decorated forests in
(3.9), (3.10), (3.12), (3.34) and (3.35) are in C2.

Lemma 4.4 Let A1 and A2 be given by Definition 4.1.
• A1 satisfies Assumptions 1, 2, 3 and 4.
• A2 satisfies Assumptions 1, 2, 3 and 4.
• The pair (A1,A2) satisfies Assumptions 5 and 6.

Proof. The first statement concerning A1 is elementary. The only non-trivial
property to be checked about A2 is (3.15); note that A2 has the stronger property
that for any two subtrees B ⊂ A ⊂ F , one has A ∈ A2(F, F̂ ) if and only if
A ∈ A2(F, F̂ ∪2 B) and B ∈ A2(F, F̂ ) if and only if B ∈ A2(A, F̂ �A), so that
property (3.15) follows at once.

Assumption 5 is easily seen to hold, since for every coloured forest (F, F̂ ) such
that F̂ ≤ 2 and {F, F̂2} ⊂ A2(F, F̂ ), for A def

= F̂1 one has F̂1 ⊂ A and F̂2 ∩A = 6#,
so that F̂1 ∈ A1(F, F̂ ).

We check now that A1 and A2 satisfy Assumption 6. Let A ∈ A1(F, F̂ ) and
B ∈ A2(F, F̂ ∪1A); thenA∩ F̂2 = 6# and thereforeB ∈ A2(F, F̂ ); moreover every
connected component ofA is contained in a connected component of F̂1 and therefore
is either contained in B or disjoint from B, i.e. A ∈ A1(F, F̂ ∪2 B)tA1(B, F̂ �B).
Conversely, let B ∈ A2(F, F̂ ) and A ∈ A1(F, F̂ ∪2 B) t A1(B, F̂ �B); then
F̂1 = (F̂ ∪2B)1t (F̂ �B)1 and F̂2 ⊂ (F̂ ∪2B)2 so thatA contains F̂1 and is disjoint
from F̂2 and therefore A ∈ A1(F, F̂ ); moreover (F̂ ∪1 A)2 ⊆ F̂2 so that B contains
(F̂ ∪1 A)2; finally (F̂ ∪1 A)1 = A and by the assumption on A we have that every
connected component of (F̂ ∪1 A)1 is either contained in B or disjoint from B. The
proof is complete.

In view of Propositions 3.17, 3.23 and 3.27, we have the following result.

Corollary 4.5 Denoting by M the forest product, we have:
1. The space (B2,M,∆2, 12, 1?2) is a Hopf algebra and a comodule bialgebra

over the Hopf algebra (B1,M,∆1, 11, 1?1) with coaction ∆1 and counit 1?1.
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2. The space (H2,M,∆2, 12, 1?2) is a Hopf algebra and a comodule bialgebra over
the Hopf algebra (H1, ·,∆1, 11, 1?1) with coaction ∆1 and counit 1?1.

We note thatB1 can be canonically identified with Vec(C1), where C1 = K1C1, see
the definition of Ki before Proposition 3.17, and C1 is the set of (possibly empty)
coloured forests (F, F̂ ) such that F̂ ≤ 1 and F̂1 is a collection of isolated nodes,
namely E1 = 6#. For instance

∈ C1, /∈ C1.

Analogously, B2 can be canonically identified with Vec(C2), where C2 = K2C2,
and C2 is the set of non-empty coloured forests (F, F̂ ) such that F̂ ≤ 2, F̂1 is a
collection of isolated nodes, namely E1 = 6#, and F̂2 coincides with the set of roots
of F . For instance

∈ C2, /∈ C2.

The action of ∆1 onBi, i = 1, 2, can be described on Vec(Ci) as the action of
(K1⊗Ki)∆1, namely: on a coloured forest (F, F̂ ) ∈ Ci, one chooses a subforest B
of F which contains F̂1 and is disjoint from F̂2, which is empty if i = 1 and equal to
the set of roots of F if i = 2; then one has (B, F̂ �B) ∈ C1 andKi(F, F ∪1B) ∈ Ci.
Summing over all possible B of this form, we find

(K1 ⊗Ki)∆1(F, F̂ ) =
∑
B

K1(B, F̂ �B)⊗Ki(F, F ∪1 B) ∈ B1 ⊗Bi.

This describes the coproduct of B1 if i = 1 and the coaction on B2 if i = 2.
In both cases, we have a contraction/extraction operator of subforests: indeed, in
(B, F̂ �B) we have the extracted subforestB, with colouring inherited from F̂ , while
in Ki(F, F ∪1 B) we have extended the red colour to B and then contracted B to a
family of red single nodes. For instance, using Example 3.16

(K1 ⊗K2)∆1
a

b

h i

k p

= . . .+
i
p ⊗

h

k p

+ . . .

since by (3.32) the red node labelled k on the left side of the tensor product is killed
by K1.

The action of∆2 onB2 can be described onVec(C2) as the action of (K2⊗K2)∆2,
namely: on a coloured tree (F, F̂ ) ∈ C2, one chooses a subtree A of F which
contains the root of F ; then one has (A, F̂ �A) ∈ C2 and K2(F, F ∪2 A) ∈ C2.
Summing over all possible A of this form, we find

(K2 ⊗K2)∆2(F, F̂ ) =
∑
A

K2(A, F̂ �A)⊗K2(F, F ∪2 A) ∈ B2 ⊗B2.
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If (F, F̂ ) = τ ∈ C2 is a coloured forest, one decomposes τ in connected components,
and then uses the above description and the multiplicativity of the coproduct. This
describes the coproduct ofB2 as a contraction/extraction operator of rooted subtrees.
For instance, using Example 3.16

(K2 ⊗K2)∆2
a

b

h i

k p

= . . .+
a

b ⊗
h i k p

+ . . .

The operators {∆1,∆2} on the spaces {H1,H2} act in the same way on the coloured
subforests, and add the action on the decorations.

4.1 Joining roots
While the product given by “disjoint unions” considered so far is very natural when
considering forests, it is much less natural when considering spaces of trees. There,
the more natural thing to do is to join trees together by their roots. Given a typed
forest F , we then define the typed tree J (F ) by joining all the roots of F together.
In other words, we set J (F ) = F/ ∼, where ∼ is the equivalence relation on
nodes in NF given by x ∼ y if and only if either x = y or both x and y belong to
the set %F of nodes of F . For example

F = =⇒ J (F ) =

When considering coloured or decorated trees as we do here, such an operation
cannot in general be performed unambiguously since different trees may have roots
of different colours. For example, if

(F, F̂ ) =

then we do not know how to define a colouring of J (F ) which is compatible
with F̂ . This justifies the definition of the subset Di(J ) ⊂ F as the set of all
forests (F, F̂ , n, o, e) such that F̂ (%) ∈ {0, i} for every root % of F . We also write
D(J ) =

⋃
i≥0 Di(J ) and D̂i(J ) ⊂ Di(J ) for the set of forests such that every

root has colour i.

Example 4.6 Using as usual red for 1 and blue for 2, we have

∈ D1(J ), ∈ D̂1(J ), ∈ D̂2(J ).

We can then extend J to D(J ) in a natural way as follows.

Definition 4.7 For τ = (F, F̂ , n, o, e) ∈ D(J ), we define the decorated tree
J (τ ) ∈ F by

J (τ ) = (J (F ), [F̂ ], [n], [o], e) ,

where [n](x) =
∑

y∈x n(y), [o](x) =
∑

y∈x o(y), and [F̂ ](x) = supy∈x F̂ (y).
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Example 4.8 The following coloured forests belong to D2(J )

τ1 = τ2 = τ1 · τ2 = J (τ1 · τ2) =

The following coloured forests belong to D̂2(J )

τ1 = τ2 = τ1 · τ2 = J (τ1 · τ2) =

It is clear that the Di’s are closed under multiplication and that one has

J (τ · τ̄ ) = J (τ ·J (τ̄ )) , τ, τ̄ ∈ Di(J ) (4.1)

for every i ≥ 0. Furthermore, J is idempotent and preserves our bigrading. The
following fact is also easy to verify, where K, K̂i, Φi, Φ̂i and P̂i were defined in
Section 3.5.

Lemma 4.9 For i ≥ 0, the sets Di(J ) and D̂i(J ) are invariant under K, Φi, P̂i
and J . Furthermore, J commutes with both Kand P̂i on Di(J ) and satisfies
the identity

K̂iJ = K̂iJ K̂i , on D̂i(J ). (4.2)

In particular K̂iJ is idempotent on D̂i(J ).

Proof. The spaces Di(J ) and D̂i(J ) are invariant under K, Φi and P̂i because
these operations never change the colours of the roots. The invariance under J
follows in a similar way.

The fact that J commutes with K is obvious. The reason why it commutes with
P̂i is that o vanishes on colourless nodes by the definition of F. Regarding (4.2),
since K̂i = P̂iΦiK, and all three operators are idempotent and commute with each
other, we have

K̂iJ = ΦiP̂iJ K , K̂iJ K̂i = ΦiP̂iJ ΦiK

so that it suffices to show that

P̂iJ K= P̂iJ ΦiK . (4.3)

For this, consider an element τ ∈ D̂i(J ) and write τ = µ · ν as in (3.37). By the
definition of this decomposition and of K, there exist k ≥ 0 and labels nj ∈ Nd,
oj ∈ Zd ⊕ Z(L) with j ∈ {1, . . . , k} such that

Kτ = (Kµ) · x(i)
n1,o1 · · ·x

(i)
nk,ok

,

where x(i)
n,o = (•, i, n, o, 0). It follows that

ΦiKτ = (Kµ) · x(i)
n,0 (4.4)
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with n =
∑k

j=1 nj . On the other hand, by (4.1), one has

J Kτ = J ((Kµ) · x(i)
n,o) ,

with o defined from the oi similarly to n. Comparing this to (4.4), it follows that
J Kτ differs from J ΦiKτ only by its o-decoration at the root of one of its
connected components in the sense of Remark 2.10. Since these are set to 0 by Φ̂i,
(4.3) follows.

Finally, we show that the operation of joining roots is well adapted to the
definitions given in the previous subsection. In particular, we assume from now on
that the Ai for i = 1, 2 are given by Definition 4.1. Our definitions guarantee that
• F1 ⊂ D1(J )
• F2 ⊂ D̂2(J ).

We then have the following, where J is extended to the relevant spaces as a
triangular map.

Proposition 4.10 One has the identities

∆2J = (J ⊗J )∆2 = (J ⊗J )∆2J , on D(J ),
∆1J = (id⊗J )∆1 = (id⊗J )∆1J , on F2.

Proof. Extend J to coloured trees by J (F, F̂ ) = (J (F ), [F̂ ]) with [F̂ ] as in
Definition 4.7. The first identity then follows from the following facts. By the
definition of A2, one has

A2(J (F, F̂ )) = {JFA : A ∈ A2(F, F̂ )} , (4.5)

where JFA is the subforest of JF obtained by the image of the subforest A of F
under the quotient map. The map JF is furthermore injective on A2(F, F̂ ), thus
yielding a bijection between A2(J (F, F̂ )) and A2(F, F̂ ). Finally, as a consequence
of the fact that each connected component ofA contains a root of F , there is a natural
tree isomorphism between JFA and JA. Combining this with an application of
the Chu-Vandermonde identity on the roots allows to conclude.

The identity (4.5) fails to be true forA1 in general. However, if (F, F̂ , n, o, e) ∈ F2,
then each of the roots of F is covered by F̂−1(2), so that (4.5) with A2 replaced by
A1 does hold in this case. Furthermore, one then has a natural forest isomorphism
between JFA and A (as a consequence of the fact that A does not contain any of
the roots of F ), so that the second identity follows immediately.

We now use the “root joining” map J to define

Ĥ2
def
= 〈F2〉/ ker(J K̂2) ' H2/ ker(J P̂2) . (4.6)
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Note here that J P̂2 is well-defined on H2 by (4.2), so that the last identity makes
sense. The identity (4.2) also implies that ker(J K̂2) = ker(K̂2J ), so the order in
which the two operators appear here does not matter. We define also

B̂2
def
= Vec(C2)/ ker(J K2) ' B2/ ker(J ) , (4.7)

where J : C2 → C2 is defined by (J (F ), F̂ ), which makes sense since all roots
in F have the same (blue) colour.

Finally, we define the tree product for i ≥ 0

Di(J )× Di(J ) 3 (τ, τ̄ ) 7→ τ τ̄
def
= J (τ · τ̄ ) (4.8)

Then we have the following complement to Corollary 4.5

Proposition 4.11 Denoting by M̂ the tree product (4.8),
1. (Ĥ2, M̂,∆2, 12, 1?2) is a Hopf algebra and a comodule bialgebra over the Hopf

algebra (H1,M,∆1, 11, 1?1) with coaction ∆1 and counit 1?1.
2. (B̂2, M̂,∆2, 12, 1?2) is a Hopf algebra and a comodule bialgebra over the Hopf

algebra (B1,M,∆1, 11, 1?1) with coaction ∆1 and counit 1?1.

Proof. The Hopf algebra structure of H2 turns Ĥ2 into a Hopf algebra as well by the
first part of Proposition 4.10 and (4.1), combined with [Nic78, Thm 1 (iv)], which
states that if H is a Hopf algebra over a field and I a bi-ideal of H such that H/I is
commutative, then H/I is a Hopf algebra. For B̂2, the same proof holds.

The second assertion in Proposition 4.11 is in fact the same result, just written
differently, as [CEFM11, Thm 8]. Indeed, our space B2 is isomorphic to the
Connes-Kreimer Hopf algebra HCK, and B1 is isomorphic to an extension of the
extraction/contraction Hopf algebra H. The difference between our B1 and H

in [CEFM11] is that we allow extraction of arbitrary subforests, including with
connected components reduced to single nodes; a subspace ofB1 which turns out
to be exactly isomorphic to H is the linear space generated by coloured forests
(F, F̂ ) ∈ C1 such that NF ⊂ F̂1.

4.2 Algebraic renormalisation
We set

F◦
def
= {(F, F̂ , n, o, e) ∈ F : F̂ ≤ 1, F is a tree} , H◦

def
= 〈F◦〉/ ker(K) . (4.9)

Then, H◦ is an algebra when endowed with the tree product (4.8) in the special case
i = 1. Note that this product is well-defined on H◦ since K is multiplicative and
J commutes with K. Furthermore, one has τ · τ̄ ∈ D1(J ) for any τ, τ̄ ∈ F◦. As
a consequence of (4.1) and the fact that · is associative, we see that the tree product
is associative, thus turning H◦ into a commutative algebra with unit (•, 0, 0, 0, 0).
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Remark 4.12 The main reason why we do not define H◦ similarly to Ĥ2 by setting
H◦ = 〈F1〉/ ker(J K) is that ∆1 is not well-defined on that quotient space, while
it is well-defined on H◦ as given by (4.9), see Proposition 4.14.

Remark 4.13 Using Lemma 2.17 as in Remark 3.22, we have canonical isomor-
phisms

H◦ ' 〈H◦〉, H◦
def
= {F∈ F◦ : KF= F} ,

H1 ' 〈H1〉, H1
def
= {F∈ F1 : K1F= F} , (4.10)

Ĥ2 ' 〈Ĥ2〉, Ĥ2
def
= {F∈ F2 : J K̂2F= F} .

In particular, we can view H◦ and Ĥ2 as spaces of decorated trees rather than forests.
In both cases, the original forest product · can (and will) be interpreted as the tree
product (4.8) with, respectively, i = 1 and i = 2.

We denote by Ĝ2 the group of characters of Ĥ2 and by G1 the group of characters of
H1.

Combining all the results we obtained so far, we see that we have constructed the
following structure.

Proposition 4.14 We have
1. H◦ is a left comodule over H1 with coaction ∆1 and counit 1?1.
2. Ĥ2 is a left comodule over H1 with coaction ∆1 and counit 1?1.
3. H◦ is a right comodule algebra over Ĥ2 with coaction ∆2 and counit 1?2.
4. Let H∈ {H◦, Ĥ2}. We define a left action of G1 on H∗ by

gh(τ ) def
= (g ⊗ h)∆1τ, g ∈ G1, h ∈ H∗, τ ∈ H,

and a right action of Ĝ2 on H∗ by

hf (τ ) def
= (h⊗ f )∆2τ, f ∈ Ĝ2, h ∈ H∗, τ ∈ H.

Then we have

g(hf ) = (gh)(gf ) , g ∈ G1, f ∈ Ĝ2, h ∈ H∗. (4.11)

Proof. The first, the second and the third assertions follow from the coassociativity
of ∆1, respectively ∆2, proved in Proposition 3.11, combined with Proposition 4.10
to show that these maps are well-defined on the relevant quotient spaces. The
multiplicativity of ∆2 with respect to the tree product (4.8) follows from the first
identity of Proposition 4.10, combined with the fact that Ĥ2 is a quotient by ker J .

In order to prove the last assertion, we show first that the above definitions yield
indeed actions, since by the coassociativity of ∆1 and ∆2 proved in Proposition 3.11

g1(g2h) = (g1 ⊗ (g2 ⊗ h)∆1)∆1 = (g1 ⊗ g2 ⊗ h)(id⊗∆1)∆1
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= (g1 ⊗ g2 ⊗ h)(∆1 ⊗ id)∆1 = ((g1 ⊗ g2)∆1 ⊗ h)∆1 = (g1g2)h,

and

(hf1)f2 = ((h⊗ f1)∆2 ⊗ f2)∆2 = (h⊗ f1 ⊗ f2)(∆2 ⊗ id)∆2

= (h⊗ f1 ⊗ f2)(id⊗∆2)∆2 = (h⊗ (f1 ⊗ f2)∆2)∆2 = h(f1f2).

Following (3.57), the natural definition is for (g, f ) ∈ G1 × Ĝ2 and h ∈ H∗◦

(g, f )h def
= (gh)f−1 = (gh⊗ fA2)∆2 = (g ⊗ h⊗ fA2)(∆1 ⊗ id)∆2.

We prove now (4.11). By the definitions, we have

g(hf ) = (g ⊗ (h⊗ f )∆2)∆1 = (g ⊗ h⊗ f )(id⊗∆2)∆1

= (g ⊗ h⊗ f )(id⊗∆2)∆1,

while

(gh)(gf ) = ((g ⊗ h)∆1 ⊗ (g ⊗ f )∆1)∆2

= (g ⊗ h⊗ g ⊗ f )(∆1 ⊗∆1)∆2

= (g ⊗ h⊗ f )M(13)(2)(4)(∆1 ⊗∆1)∆2.

and we conclude by Proposition 3.27.

Proposition 4.14 and its direct descendant, Theorem 5.36, are crucial in the
renormalisation procedure below, see Theorem 6.16 and in particular (6.20).

By Proposition 3.33 and (4.11), we obtain from (4.11) that H◦ is a left comodule
over the Hopf algebra Ĥ12 = H1 n Ĥ2 = (H1 nH2)/ ker(id⊗J ), with counit 1?12

and coaction

∆◦ : H◦ → Ĥ12 ⊗̂H◦, ∆◦
def
= σ(132)(∆1 ⊗ Â2)∆2

where σ(132)(a⊗ b⊗ c) def
= a⊗ c⊗ b and Â2 is the antipode of Ĥ2. Equivalently, the

semi-direct product G1 n Ĝ2 acts on the left on the dual space H∗◦ by the formula

(`, g)h(τ ) def
= (`⊗ h⊗ gÂ2)(∆1 ⊗ id)∆2τ,

for ` ∈ G1, g ∈ Ĝ2, h ∈ H∗◦ , τ ∈ H◦. In other words, with this action H∗◦ is a left
module on G1 n Ĝ2, see Proposition 3.33.

Remark 4.15 The action of ∆1 on Ĥ2 differs from the action on {H◦,H1} because
of the following detail: Ĥ2 is generated (as bigraded space) by a basis of rooted
trees whose root is blue; since ∆1 acts by extraction/contraction of subforests which
contain F̂1 and are disjoint from F̂2, such subforests can never contain the root.
Since on the other hand in H◦ and H1 one has coloured forests with empty F̂2, no
such restriction applies to the action of ∆1 on these spaces.
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4.3 Recursive formulae
We now show how the formalism developed so far in this article links to the one
developed in [Hai14, Sec. 8]. For that, we use the canonical identifications

H◦ = 〈H◦〉, H1 = 〈H1〉, Ĥ2 = 〈Ĥ2〉,

given in Remarks 3.22 and 4.13. We furthermore introduce the following notations.
1. For k ∈ Nd, wewriteXk as a shorthand for (•, 0)k,00 ∈ H◦. We also interpret this

as an element of Ĥ2, although its canonical representative there is (•, 2)k,00 ∈ Ĥ2.
As usual, we also write 1 instead of X0, and we write Xi with i ∈ {1, . . . , d}
as a shorthand for Xk with k equal to the i-th canonical basis element of Nd.

2. For every type t ∈ L and every k ∈ Nd, we define the linear operator

It
k : H◦ → H◦ (4.12)

in the following way. Let τ = (F, F̂ )n,oe ∈ H◦, so that we can assume that F
consists of a single tree with root %. Then, It

k(τ ) = (G, Ĝ)n̄,ōē ∈ H◦ is given by

NG = NF t {%G} , EG = EF t {(%G, %)} ,

the root of G is %G, the type of the edge (%G, %) is t. For instance

(F, F̂ ) =
%

=⇒ (G, Ĝ) =
%G

The decorations of It
k(τ ), as well as Ĝ, coincide with those of τ , except on the

newly added edge / vertex where Ĝ, n̄ and ō vanish, while ē(%G, %) = k. This
gives a triangular operator and It

k : H◦ → H◦ is therefore well defined.
3. Similarly, we define operators

Ĵt
k : H◦ → Ĥ2 (4.13)

in exactly the same way as the operators It
k defined in (4.12), except that the

root of Ĵt
k(τ ) is coloured with the colour 2, for instance

(F, F̂ ) =
%

=⇒ (G, Ĝ) =
%G

4. For α ∈ Zd ⊕ Z(L), we define linear triangular maps Rα : H◦ → H◦ in such a
way that if τ = (T, T̂ )n,oe ∈ H◦ with root % ∈ NT , then Rα(τ ) ∈ H◦ coincides
with τ , except for o(%) to which we add α and T̂ (%) which is set to 1. In
particular, one has Rα ◦Rβ = Rα+β .
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Remark 4.16 With these notations, it follows from the definition of the sets H◦,
H1 and Ĥ2 that they can be constructed as follows.
• Every element of H◦ \ {1} can be obtained from elements of the type Xk by

successive applications of the maps It
k, Rα, and the tree product (4.8).

• Every element of H1 is the forest product of a finite number of elements of H◦.
• Every element of Ĥ2 is of the form

Xk
∏
i

Ĵti
ki

(τi) , (4.14)

for some finite collection of elements τi ∈ H◦ \ {1}, ti ∈ L and ki ∈ Nd.

Then, one obtains a simple recursive description of the coproduct ∆2.

Proposition 4.17 With the above notations, the operator ∆2 : H◦ → H◦ ⊗̂ Ĥ2 is
multiplicative, satisfies the identities

∆2Xi = Xi ⊗ 1 + 1⊗Xi , ∆21 = 1⊗ 1 ,

∆2I
t
k(τ ) =

(
It
k ⊗ id

)
∆2τ +

∑
`

X`

`!
⊗ Ĵt

k+`(τ ), (4.15)

∆2Rα(τ ) = (Rα ⊗ id)∆2τ

and it is completely determined by these properties. Likewise, ∆2 : Ĥ2 → Ĥ2 ⊗̂ Ĥ2

is multiplicative, satisfies the identities on the first line of (4.15) and

∆2Ĵ
t
k(τ ) =

(
Ĵt
k ⊗ id

)
∆2τ +

∑
`

X`

`!
⊗ Ĵt

k+`(τ ) (4.16)

and it is completely determined by these properties.

Proof. The operator ∆2 is multiplicative on H◦ as a consequence of the first identity
of Proposition 4.10 and its action onXk was already mentioned in (3.43). It remains
to verify that the recursive identities hold as well.

We first consider ∆2σ with σ = It
k(τ ) and τ = (T, T̂ )n,oe . We write σ =

(F, F̂ )n,oe+k1e , where e is the “trunk” of type t created by It
k and % is the root of F ;

moreover we extend n to NF and o to NF̂ by setting n(%) = o(%) = 0. It follows
from the definitions that

A2(F, F̂ ) = {{%}} ∪ {A ∪ {%, e} : A ∈ A2(T, T̂ )} .

Indeed, if e does not belong to an elementA ofA2(F, F̂ ) then, sinceA has to contain
% and be connected, one necessarily has A = {%}. If on the other hand e ∈ A, then
one also has % ∈ A and the remainder of A is necessarily a connected subtree of T
containing its root, namely an element of A2(T, T̂ ).
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Given A ∈ A2(T, T̂ ), since the root-label of σ is 0, the set of all possible
node-labels nA for σ appearing in (3.7) for ∆2σ coincides with those appearing in
the expression for ∆2τ , so that we have the identity

∆2σ = (It
k ⊗ id)∆2τ +

∑
εF% ,n%

1

εF% !

(
n

n%

)
(•, 0, n% + πεF% , 0, 0)

⊗ (F, F̂ + 21%, n− n%, o, e + k1e + εF% )

= (It
k ⊗ id)∆2τ +

∑
`

1

`!
X` ⊗ Ĵt

k+`(τ ) .

This is because n(%) = 0, so that the sum over n% contains only the zero term.
Since ∆2 : H◦ → H◦ ⊗̂ Ĥ2, we are implicitly applying the appropriate contraction
K⊗J K̂2, see (4.6)-(4.9).

We now consider ∆2σ with σ = Rα(τ ). In this case, we write τ = (T, T̂ )n,oe so
that, denoting by % the root of T , one has σ = (T, T̂ ∨ 1%, n, o + α1%, e). We claim
that in this case one has

A2(T, T̂ ) = A2(T, T̂ ∨ 1%) .

This is non-trivial only in the case T̂ (%) = 0. In this case however, it is necessarily
the case that T̂ (e) = 0 for every edge e incident to the root. This in turn guarantees
that the family A2(T, T̂ ) remains unchanged by the operation of colouring the root.
This implies that one has

∆2Rα(τ ) = (Rα ⊗Rα)∆2τ .

This appears slightly different from the desired identity, but the latter then follows
by observing that, for every τ̄ ∈ Ĥ2, one has Rατ̄ = τ̄ as elements of Ĥ2, thanks to
the fact that we quotiented by the kernel of K̂2 which sets the value of o to 0 on the
root.

We finally have the following results on the antipode of Ĥ2:

Proposition 4.18 Let Â2 : Ĥ2 → Ĥ2 be the antipode of Ĥ2. Then
• The algebra morphism Â2 : Ĥ2 → Ĥ2 is defined uniquely by the fact that

Â2Xi = −Xi and for all Ĵt
k(τ ) ∈ Ĥ2 with τ ∈ H◦

Â2Ĵ
t
k(τ ) = −

∑
`∈Nd

(−X)`

`!
M(Ĵt

k+` ⊗ Â2)∆2τ , (4.17)

where M: Ĥ2 ⊗̂ Ĥ2 → Ĥ2 denotes the (tree) product.
• On Ĥ2, one has the identity

∆1Â2 = (id⊗ Â2)∆1 . (4.18)
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Proof. By (4.14) and by induction over the number of edges in τ , this uniquely
determines a morphism Â2 of Ĥ2, so it only remains to show that

M(id⊗ Â2)∆2τ = 1
Ĥ2

1?
Ĥ2

(τ ) .

The formula is true for τ = Xk, so that, since both sides are multiplicative, it is
enough to consider elements of the form Ĵt

k(τ ) for some τ ∈ H◦. Exploiting the
identity (4.17), one then has

M(id⊗ Â2)∆2Ĵ
t
k(τ ) =

= M(id⊗ Â2)

[(
Ĵt
k ⊗ id

)
∆2τ +

∑
`

X`

`!
⊗ Ĵt

k+`(τ )

]

= M

(Ĵt
k ⊗ Â2

)
−
∑
`,i

X`

`!
⊗ (−X)i

i!
M(Ĵt

k+`+i ⊗ Â2)

∆2τ

= M

[(
Ĵt
k ⊗ Â2

)
−
∑
`

(X −X)`

`!
M(Ĵt

k+` ⊗ Â2)

]
∆2τ

=
[
M
(
Ĵt
k ⊗ Â2

)
−M(Ĵt

k ⊗ Â2)
]
∆2τ = 0 ,

as required.
A similar proof by induction yields (4.18): see the proof of Lemma 6.5 for an

analogous argument. Note that (4.18) is also a direct consequence of Proposition 3.27
and more precisely of the fact that the bialgebras H1 and Ĥ2 are in cointeraction, as
follows from Remark 3.28: see [Foi16, Prop. 2] for a proof. Having this property,
the antipode Â2 is a morphism of the H1-comodule Ĥ2.

In this section we have shown several useful recursive formulae that characterize
∆2, see also Section 6.4 below. The paper [Bru18] explores in greater detail this
recursive approach to Regularity Structures, and includes a recursive formula for
∆1, which is however more complex than that for ∆2.

5 Rules and associated Regularity Structures

We recall the definition of a regularity structure from [Hai14, Def. 2.1]

Definition 5.1 A regularity structure T = (A, T,G) consists of the following
elements:
• An index set A ⊂ R such that A is bounded from below, and A is locally finite.
• A model space T , which is a graded vector space T =

⊕
α∈A Tα, with each Tα

a Banach space.
• A structure group G of linear operators acting on T such that, for every Γ ∈ G,

every α ∈ A, and every a ∈ Tα, one has

Γa− a ∈
⊕
β<α

Tβ . (5.1)
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The aim of this section is to relate the construction of the previous section to
the theory of regularity structures as exposed in [Hai14, Hai16b]. For this, we first
assign real-valued degrees to each element of F.

Definition 5.2 A scaling is a map s : {1, . . . d} → [1,∞) and a degree assignment
is a map | · |s : L → R \ {0}. By additivity, we then assign a degree to each
(k, v) ∈ Zd ⊕ Z(L) by setting

|(k, v)|s
def
= |k|s + |v|s ∈ R, |k|s

def
=

d∑
i=1

kisi, |v|s
def
=
∑
t∈L

vt |t|s, (5.2)

if v =
∑

t∈L vtt with vt ∈ Z.

Definition 5.3 Given a scaling s as above, for τ = (F, F̂ , n, o, e) ∈ F2, we define
two different notions of degree |τ |−, |τ |+ ∈ R by

|τ |− =
∑

e∈EF \Ê

(|t(e)|s − |e(e)|s) +
∑
x∈NF

|n(x)|s ,

|τ |+ =
∑

e∈EF \Ê2

(|t(e)|s − |e(e)|s) +
∑
x∈NF

|n(x)|s +
∑

x∈NF \N̂2

|o(x)|s ,

where we recall that o takes values in Zd ⊕ Z(L) and t : EF → L is the map
assigning to an edge its type in F , see Section 2.1.

Note that both of these degrees are compatible with the contraction operator K
of Definition 3.18, as well as the operator J , in the sense that |τ |± = |τ̄ |± if and
only if |Kτ |± = |Kτ̄ |± and similarly for J . In the case of | · |+, this is true thanks
to the definition (3.33), while the coloured part of the tree is simply ignored by | · |−.
We furthermore have

Lemma 5.4 The degree | · |− is compatible with the operators Ki and K̂i of (3.39),
while | · |+ is compatible withK2 and K̂2. Furthermore, both degrees are compatible
with J and K, so that in particular H1 is | · |−-graded and Ĥ2 and H◦ are both
| · |− and | · |+-graded.

Proof. The first statement is obvious since | · |− ignores the coloured part of the
tree, except for the labels n whose total sum is preserved by all these operations. For
the second statement, we need to verify that | · |+ is compatible with Φ̂2 as defined
just below (3.37). which is the case when acting on a tree with % ∈ F̂2 since the
o-decoration of nodes in F̂2 does not contribute to the definition of | · |+.

As a consequence, | · |− yields a grading for H1, | · |+ yields a grading for Ĥ2, and
both of them yield gradings for H◦. With these definitions, we see that we obtain a
structure resembling a regularity structure by taking H◦ to be our model space, with
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grading given by | · |+ and structure group given by the character group Ĝ2 of Ĥ2

acting on H◦ via

Γg : 〈F◦〉 → 〈F◦〉 , Γgτ = (id⊗ g)∆2τ .

The second statement of Proposition 4.14 then guarantees that this action is multi-
plicative with respect to the tree product (4.8) on H◦, so that we are in the context
of [Hai14, Sec. 4]. There are however two conditions that are not met:
1. The action of Ĝ2 on H◦ is not of the form “identity plus terms of strictly lower

degree”, as required for regularity structures.
2. The possible degrees appearing in H◦ have no lower bound and might have

accumulation points.
We will fix the first problem by encoding in our context what we mean by

considering a “subcritical problem”. Such problems will allow us to prune our
structure in a natural way so that we are left with a subspace of H◦ that has the
required properties. The second problem will then be addressed by quotienting a
suitable subspace of Ĥ2 by the terms of negative degree. The group of characters of
the resulting Hopf algebra will then turn out to act on H◦ in the desired way.

5.1 Trees generated by rules
From now to Section 5.4 included, the colourings and the labels o will be ignored.
It is therefore convenient to consider the space

T
def
= {(T, T̂ , n, o, e) ∈ F : T is a tree, T̂ ≡ 0, o ≡ 0}. (5.3)

In order to lighten notations, we write elements of T as (T, n, e) = T n
e with T a

typed tree (for some set of types L) and n : NT → Nd, e : ET → Nd as above.
Similarly to before, T is a monoid for the tree product (4.8). Again, this product is
associative and commutative, with unit (•, 0, 0).

Definition 5.5 We say that an element T n
e ∈ T is trivial if T consists of a single

node •. It is planted if T has exactly one edge incident to its root % and furthermore
n(%) = 0.

In other words, a planted T n
e ∈ T is necessarily of the form It

k(τ ) with τ ∈ T, see
(4.12). For example,

a planted tree: and a non-planted tree: .

With this definition, each τ ∈ T has by (4.14) a unique (up to permutations)
factorisation with respect to the tree product (4.8)

τ = •nτ1τ2 · · · τk , (5.4)

for some n ∈ Nd, where each τi is planted and •n denotes the trivial element
(•, n, 0) ∈ T.
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In order to define a suitable substructure of the structure described in Proposi-
tion 4.14, we introduce the notion of “rules”. Essentially, a “rule” describes what
behaviour we allow for a tree in the vicinity of any one of its nodes.

In order to formalise this, we first define the set of edge types E and the set of
node types Nby

E= L× Nd , N= P̂(E) def
=
⋃
n≥0

[E]n , (5.5)

where [E]n denotes the set of unordered E-valued n-uples, namely [E]n = En/Sn,
with the natural action of the symmetric group Sn on En. In other words, given any
set A, P̂(A) consists of all finite multisets whose elements are elements of A.

Remark 5.6 The fact that we consider multisets and not just n-uples is a reflection
of the fact that we always consider the situation where the tree product (4.8) is
commutative. This condition could in principle be dropped, thus leading us to
consider forests consisting of planar trees instead, but this would lead to additional
complications and does not seem to bring any advantage.

Given two sets A ⊂ B, we have a natural inclusion P̂(A) ⊂ P̂(B). We will usually
write elements of [E]n as n-uples with the understanding that this is just an arbitrary
representative of an equivalence class. In particular, we write () for the unique
element of [E]0.

Given any T n
e ∈ T, we then associate to each node x ∈ NT a node typeN(x) ∈N

by

N(x) = (s(e1), . . . , s(en)), s(e) def
= (t(e), e(e)) ∈ E, e ∈ ET , (5.6)

where (e1, . . . , en) denotes the collection of edges leaving x, i.e. edges of the form
(x, y) for some node y. We will sometimes use set-theoretic notations. In particular,
given N = (s1, . . . , sn) ∈NandM = (r1, . . . , r`) ∈N, we write

M tN def
= (r1, . . . , r`, s1, . . . , sn) ,

and we say thatM ⊂ N if there exists N̄ such that N = M t N̄ . When we write a
sum of the type

∑
M⊂N , we take multiplicities into account. For example (a, b) is

contained twice in (a, b, b), so that such a sum always contains 2n terms if N is an
n-tuple. Similarly, we write t ∈ N if (t) ⊂ N and we also count sums of the type∑

t∈N with the corresponding multiplicities.

Definition 5.7 Denoting by PN the powerset of N, a rule is a map R : L →
PN\ {6#}. A rule is said to be normal if, wheneverM ⊂ N ∈ R(t), one also has
M ∈ R(t).

For example we may have L = {t1, t2} and

R

(
t1

)
= R

(
t2

)
=

{
(),
(

t1, e1

)
,

(
t2, e2

)
,

(
t1, e1 , t2, e2

)}
. (5.7)
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Then, according to the rule R, an edge of type t1 or t2 can be followed in a tree by,
respectively, no edge, or a single edge of type ti with decoration ei with i ∈ {1, 2},
or by two edges, one of type t1 with decoration e1 and one of type t2 with decoration
e2. We do not expect however to find two edges both of type t1 (or t2) sharing a
node which is not the root.

Definition 5.8 Let R be a rule and τ = T n
e ∈ T. We say that

• τ conforms to R at the vertex x if either x is the root and there exists t ∈ L
such that N(x) ∈ R(t) or one has N(x) ∈ R(t(e)), where e is the unique edge
linking x to its parent in T .

• τ conforms to R if it conforms to R at every vertex x, except possibly its root.
• τ strongly conforms to R if it conforms to R at every vertex x.

In particular, the trivial tree • strongly conforms to every normal rule since, as a
consequence of Definition 5.7, there exists at least one t ∈ L with () ∈ R(t).

Example 5.9 Consider R as in (5.7) and the trees

t2, e3
t1, e1 t1, e1

t2, e2

t2, e2

t2, e2

t1, e1t1, e1

t2, e2

t1, e1

t2, e2

t1, e1

t1, e1t1, e1

t1, e1

t2, e2

t2, e2

The first tree does not conform to the rule R since the bottom left edge of type
t2 is followed by three edges. The second tree conforms to R but not strongly,
since the root is incident to three edges. The third tree strongly conforms to R.
If we call %i the root of the i-th tree, then we have N(%1) = {(t2, e2), (t2, e2)},
N(%2) = {(t1, e1), (t1, e1), (t2, e2)}, N(%3) = {(t1, e1), (t2, e2)}, see (5.6). Finally,
note that R is normal.

Remark 5.10 If R is a normal rule, then by Definition 5.7 we have in particular
that () ∈ R(t) for every t ∈ L. This guarantees that L contains no useless labels in
the sense that, for every t ∈ L, there exists a tree conforming to R containing an
edge of type t: it suffices to consider a rooted tree with a single edge e = (x, y) of
type t; in this case,N(y) = {()} ∈ R(t). More importantly, this also guarantees that
we can build any tree conforming to R from the root upwards (start with an edge of
type t, add to it a node of some type in R(t), then restart the construction for each of
the outgoing edges of that node) in finitely many steps.

Remark 5.11 A rule R can be represented by a directed bipartite multigraph
G(R) = (V (R), E(R)) as follows. Take as the vertex set V (R) = EtN. Then,
connect N ∈N to t ∈ E if t ∈ N . If t is contained in N multiple times, repeat the
connection the corresponding number of times. Conversely, connect (t, k) ∈ E to
N ∈ N if N ∈ R(t). The conditions then guarantee that () ∈ N can be reached
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from every vertex in the graph. Given a tree τ ∈ T, every edge of τ corresponds
to an element of E and every node corresponds to an element of N via the map
x 7→N(x) defined above. A tree then conforms to R if, for every path joining the
root to one of the leaves, the corresponding path in V always follows directed edges
in G(R). It strongly conforms to R if the root corresponds to a vertex in V with at
least one incoming edge.

Definition 5.12 Given s as in Definition 5.2, we assign a degree |τ |s to any τ ∈ T
by setting

|T n
e |s =

∑
e∈ET

(|t(e)|s − |e(e)|s) +
∑
x∈NT

|n(x)|s . (5.8)

This definition is compatible with both notions of degree given in Definition 5.3,
since we view T as a subset of F with F̂ and o identically 0. This also allows us to
give the following definition.

Definition 5.13 Given a rule R, we write
• T◦(R) ⊂ T for the set of trees that strongly conform to R
• T1(R) ⊂ F for the submonoid of F (for the forest product) generated by T◦(R)
• T2(R) ⊂ T for the set of trees that conform to R.

Moreover, we write T−(R) ⊂ T◦(R) for the set of trees τ = T n
e such that

• |τ |s < 0, n(%τ ) = 0,
• if τ is planted, namely τ = It

k(τ̄ ) with τ̄ ∈ T, see (4.12), then |t|s < 0.

The second restriction on the definition of τ ∈ T−(R) is related to the defini-
tion (5.22) of the Hopf algebra Tex

− and of its characters group Gex
− , that we call the

renormalisation group and which plays a fundamental role in the theory, see e.g.
Theorem 6.16.

5.2 Subcriticality
Given a map reg : L→ R we will henceforth interpret it as maps reg : E→ R and
reg : N→ R as follows: for (t, k) ∈ E and N ∈N

reg(t, k) def
= reg(t)− |k|s, reg(N ) def

=
∑

(t,k)∈N
reg(t, k), (5.9)

with the convention that the sum over the empty word () ∈N is 0.

Definition 5.14 A rule R is subcritical with respect to a fixed scaling s if there
exists a map reg : L→ R such that

reg(t) < |t|s + inf
N∈R(t)

reg(N ) , ∀ t ∈ L, (5.10)

where we use the notation (5.9).
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We will see in Section 5.4 below that classes of stochastic PDEs generate rules.
In this context, the notion of subcriticality given here formalises the one given
somewhat informally in [Hai14]. In particular, we have the following result which
is essentially a reformulation of [Hai14, Lem. 8.10] in this context.

Proposition 5.15 If R is a subcritical rule, then, for every γ ∈ R, the set {τ ∈
T◦(R) : |τ |s ≤ γ} is finite.

Proof. Fix γ ∈ R and let T n
e ∈ T◦(R) with |T n

e |s ≤ γ. Since there exists c > 0
such that

|T n
e |s ≥ |T 0

e |s + c|n|

and there exist only finitely many trees in T◦(R) of the type |T 0
e | for a given number

of edges, it suffices to show that the number |ET | of edges of T is bounded by some
constant depending only on γ.

Since the set L is finite, (5.10) implies that there exists a constant κ > 0 such
that the bound

reg(t) + κ ≤ |t|s + inf
N∈R(t)

reg(N ) , (5.11)

holds for every t ∈ L with the notation (5.9). We claim that for every planted
T n
e ∈ T◦(R) such that the edge type of its trunk e = (%, x) is (t, k) ∈ E, we have

reg(t, k) ≤ |T n
e |s − κ|ET |. (5.12)

We denote the space of such planted trees byT(t,k)
◦ (R). We verify (5.12) by induction

on the number of edges |ET | of T . If |ET | = 1, namely the unique element of ET
is the trunk e = (%, x), then N(x) = () ∈ R(t) in the notation of (5.6) and by (5.11)

reg(t) + κ ≤ |t|s =⇒ reg(t, k) ≤ |t|s − |k|s − κ ≤ |T n
e |s − κ.

For a planted T n
e ∈ T◦(R) with |ET | > 1, then N(x) = (s(e1), . . . , s(en)) ∈ R(t)

and by (5.11) and the induction hypothesis

reg(t)− |k|s + κ ≤ |t|s − |k|s +

n∑
i=1

[reg(ti)− |ki|s] ≤ |T n
e |s − κ(|ET | − 1) ,

where s(ei) = (ti, ki). Therefore (5.12) is proved for planted trees.
Given an arbitrary tree T n

e of degree at most γ strongly conforming to the rule R,
there exists t0 ∈ L such that e ∈ N(%T ) = R(t0). We can therefore consider the
planted tree T̄ n

e containing a trunk of type t0 connected to the root of T , and with
vanishing labels on the root and trunk respectively. It then follows that

κ|ET | < κ|ET̄ | ≤ |T̄ n
e |s − reg(t0) = |T n

e |s + |t0|s − reg(t0)

≤ γ + inf
t∈L

(|t|s − reg(t)) ,

and the latter expression is finite since L is finite. The claim follows at once.
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Remark 5.16 The inequality (5.10) encodes the fact that we would like to be able
to assign a regularity reg(t) to each component ut of our SPDE in such a way that the
“naïve regularity” of the corresponding right hand side obtained by a power-counting
argument is strictly better than reg(t)− |t|. Indeed, infN∈R(t) reg(N ) is precisely the
regularity one would like to assign to Ft(u,∇u, ξ). Note that if the inequality in
(5.10) is not strict, then the conclusion of Proposition 5.15 may fail to hold.

Remark 5.17 Assuming that there exists a map reg satisfying (5.11) for a given
κ > 0, one can find a map regκ that is optimal in the sense that it saturates the bound
(5.12):

regκ(t, k) = min
T n
e ∈T(t,k)

◦ (R)
(|T n

e |s − κ|ET |)

where (t, k) ∈ E. We proceed as follows. Set reg0
κ(t) = +∞ for every t ∈ L and

then define recursively

regn+1
κ (t) = |t|s − κ+ inf

N∈R(t)
regnκ(N ) . (5.13)

By recurrence we show that n 7→ regnκ(t) is decreasing and reg ≤ regnκ; then the
limit

regκ(t) = lim
n→∞

regnκ(t)

exists and has the required properties. If we extend regnκ to EtN by (5.9), the
iteration (5.13) can be interpreted as a min-plus network on the graph G(R) with
arrows reversed, see Remark 5.11.

5.3 Completeness
Given an arbitrary rule (subcritical or not), there is no reason in general to expect
that the actions of the analogues of the groups G1 and Ĝ2 constructed in Section 4
leave the linear span of T◦(R) invariant. We now introduce a notion of completeness,
which will guarantee later on that the actions of G1 and Ĝ2 do indeed leave the span
of T◦(R) (or rather an extension of it involving again labels o on nodes) invariant.
This eventually allows us to build, for large classes of subcritical stochastic PDEs,
regularity structures allowing to formulate them, endowed with a large enough group
of automorphisms to perform the renormalisation procedures required to give them
canonical meaning.

Definition 5.18 Given N = ((t1, k1), . . . , (tn, kn)) ∈ N and m ∈ Nd, we define
∂mN ⊂Nas the set of all n-tuples of the form ((t1, k1 +m1), . . . , (tn, kn +mn))
where themi ∈ Nd are such that

∑
imi = m.

Furthermore, we introduce the following substitution operation on N. Assume that
we are given N ∈ N, M ⊂ N and an element M̃ ∈ P̂(N) which has the same
size asM . In other words, ifM = (r1, . . . , r`), one has M̃ = (M̃1, . . . , M̃`) with
M̃i ∈N. Then, writing N = M t N̄ , we define

RM̃
MN

def
= N̄ t M̃1 t . . . t M̃` . (5.14)
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Definition 5.19 Given a rule R, for any tree T n
e ∈ T◦(R) we associate to each edge

e ∈ ET a set N̄(e) ⊂N in the following recursive way. If e = (x, y) and y is a leaf,
namely the node-type N(y) of the vertex y is equal to the empty word () ∈N, then
we set

N̄(e) def
= R(t(e)) .

Otherwise, writing (e1, . . . , e`) the incoming edges of y, namely ei = (y, vi), we
define

N̄(e) def
= {RM

N(y)N : N(y) ⊂ N ∈ R(t(e)), M ∈ N̄(e1)× · · · × N̄(e`)} .

Finally, we define for every node y ∈ NT a set M(y) ⊂ P̂(N) by M(y) def
= {()} if y

is a leaf, and
M(y) def

= N̄(e1)× · · · × N̄(e`)

if (e1, . . . , e`) are the outgoing edges of y.

It is easy to see that, if we explore the tree from the leaves down, this specifies N̄(e)
and M(y) uniquely for all edges and nodes of T .

Definition 5.20 A ruleR is	-completewith respect to a fixed scaling s if, whenever
τ ∈ T−(R) and t ∈ L are such that there exists N ∈ R(t) with N(%τ ) ⊂ N , one
also has

∂m(RM
N(%τ )N) ⊂ R(t) ,

for everyM ∈M(%τ ) and for every multiindexm with |m|s + |τ |s < 0.

At first sight, the notion of 	-completeness might seem rather tedious to verify
and potentially quite restrictive. Our next result shows that this is fortunately not the
case, at least when we are in the subcritical situation.

Proposition 5.21 Let R be a normal subcritical rule. Then, there exists a normal
subcritical rule R̄ which is 	-complete and extends R in the sense that R(t) ⊂ R̄(t)
for every t ∈ L.

Proof. Given a normal subcritical rule R, we define a new rule QR by setting

(QR)(t) = R(t) ∪
⋃

τ∈T−(R)

R−(t; τ ) , (5.15)

where R−(t; τ ) is the union of all collections of node types of the type

N̂ ∈ ∂m(RM
N(%τ )N) ,

for some N ∈ R(t) with N(%τ ) ⊂ N , someM ∈M(%τ ), and some multiindexm
with |m|s+ |τ |s ≤ 0. Since (QR)(t) ⊃ R(t) andT−(R) is finite by Proposition 5.15,
this is again a valid rule. Furthermore, by definition, a rule R is 	-complete if and
only if QR = R.
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We claim that the desired rule R̄ can be obtained by setting

R̄(t) =
⋃
n≥0

(QnR)(t) .

It is straightforward to verify that R̄ is 	-complete. (This follows from the fact that
the sequence of rules QnR is increasing and Q is closed under increasing limits.)

It remains to show that R̄ is again normal and subcritical. To show normality, we
note that ifR is normal, then QR is again normal. This is because, by Definition 5.19,
the sets N̄(e) used to build M(%τ ) also have the property that if N ∈ N̄(e) and
M ⊂ N , then one also hasM ∈ N̄(e). As a consequence, QnR is normal for every
n, from which the normality of R̄ follows.

To show that R̄ is subcritical, we first recall that by Remark 5.17, for κ as in
(5.11), we can find a maximal function regκ : L→ R such that

regκ(t) = |t|s − κ+ inf
N∈R(t)

regκ(N ) . (5.16)

Furthermore, the extension of regκ to node types given by (5.9) is such that, for
every node type N and every multiindexm, one has

regκ(∂mN ) = regκ(N )− |m|s . (5.17)

(We used a small abuse of notation here since ∂mN is really a collection of node
types. Since regκ takes the same value on each of them, this creates no ambiguity.)

We claim that the same function regκ also satisfies (5.10) for the larger rule QR.
In view of (5.16) and of the definition (5.15) of QR, it is enough to prove that

regκ(t) ≤ |t|s − κ+ reg(N ), ∀N ∈
⋃

τ∈T−(R)

R−(t; τ ). (5.18)

Arguing by induction as in the proof of (5.12), one can first show the following.
Let σ ∈ T◦(R) any every planted tree whose trunk e has edge type (t, k). Then one
has the bound

regκ(t, k) ≤ |σ|s + regκ(G) , ∀G ∈ N̄(e). (5.19)

Indeed, if e is the only edge of σ, then N̄(e) = R(t) and by (5.16)

regκ(t, k) ≤ |t|s − |k|s + regκ(G) = |σ|s + regκ(G).

If now e = (x, y) and (e1, . . . , e`) are the outgoing edges of y, then N̄(e) is the set of
all RM

N(y)N with N(y) ⊂ N ∈ R(t(e)) andM = (M1, . . . ,M`) withMi ∈ N̄(ei).
By the induction hypothesis,

regκ(N(y)) ≤
∑̀
i=1

[
|σi|s + regκ(Mi)

]



Rules and associated Regularity Structures 67

where σi is the largest planted subtree of σ with trunk ei. Then

regκ(RM
N(y)N ) = regκ(N )− regκ(N(y)) +

∑̀
i=1

regκ(Mi) ≥ regκ(N )−
∑̀
i=1

|σi|s.

Combining this with (5.16) we obtain, since |t|s − |k|s +
∑`

i=1 |σi|s = |σ|s,

regκ(t, k) ≤ |t|s − |k|s + reg(N ) ≤ |σ|s + regκ(RM
N(y)N )

and (5.19) is proved.
We prove now (5.18). Let τ ∈ T−(R), N ∈ R(t) with N(%τ ) ⊂ N , M =

(M1, . . . ,M`) ∈ M(%τ ), and m ∈ Nd with |m|s + |τ |s ≤ 0. Let τ = τ1 . . . τ` be
the decomposition of τ into planted trees. Recalling (5.17) and Definitions 5.19
and 5.18, we have

regκ(∂m(RM
N(%τ )N)) = regκ

(
RM

N(%τ )N
)
− |m|s

= regκ(N ) +
∑̀
i=1

[
regκ(Mi)− regκ(si)

]
− |m|s ,

where si is the edge type of the trunk of τi. Combining this with (5.19) yields

regκ(∂m(RM
N(%τ )N)) ≥ regκ(N )− |m|s − |τ |s ≥ regκ(N ) ,

with the last inequality a consequence of the condition |m|s + |τ |s ≤ 0. This proves
(5.18).

We conclude that (5.16) also holds when consideringN ∈ (QR)(t), thus yielding
the desired claim. Iterating this, we conclude that regκ satisfies (5.10) for each of
the rules QnR and therefore also for R̄ as required.

Definition 5.22 We say that a subcritical rule R is complete (with respect to a fixed
scaling s) if it is both normal and 	-complete. If R is only normal, we call the rule
R̄ constructed in the proof of Proposition 5.21 the completion of R.

5.4 Three prototypical examples
Let us now show how, concretely, a given stochastic PDE (or system thereof) gives
rise to a rule in a natural way. Let us start with a very simple example, the KPZ
equation formally given by

∂tu = ∆u+ (∂xu)2 + ξ .

One then chooses the set L so that it has one element for each noise process and
one for each convolution operator appearing in the equation. In this case, using the
variation of constants formula, we rewrite the equation in integral form as

u = Pu0 + P ∗ 1t>0((∂xu)2 + ξ) ,
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where P denotes the heat kernel and ∗ is space-time convolution. We therefore
need two types in L in this case, which we call {Ξ,I} in order to be consistent with
[Hai14].

We assign degrees to these types just as in [Hai14]. In our example, the underlying
space-time dimension is d = 2 and the equation is parabolic, so we fix the parabolic
scaling s = (2, 1) and then assign to Ξ a degree just below the exponent of self-
similarity of white noise under the scaling s, namely |Ξ|s = −3

2 − κ for some small
κ > 0. We also assign to each type representing a convolution operator the degree
corresponding to the amount by which it improves regularity in the sense of [Hai14,
Sec. 4]. In our case, this is given by |I|s = 2.

It then seems natural to assign to such an equation a rule R̃ by

R̃(Ξ) = {()}, R̃(I) = {(Ξ), (I1,I1)} ,

where I1 is a shorthand for the edge type (I, (0, 1)) and we simply write t as a
shorthand for the edge type (t, 0). In other words, for every noise type t, we set
R̃(t) = {()} and for every kernel type t we include one node type into R̃(t) for each
of the monomials in our equation that are convolved with the corresponding kernel.
The problem is that such a rule is not normal. Therefore we define rather

R(Ξ) = {()}, R(I) = {(), (Ξ), (I1), (I1,I1)} ,

which turns out to be normal and complete. It is simple to see that the function
regκ : {Ξ,I} → R

regκ(Ξ) = −3

2
− 2κ, regκ(I) =

1

2
− 3κ,

makes R subcritical for sufficiently small κ > 0.
One can also consider systems of equations. Consider for example the system of

coupled KPZ equations formally given by

∂tu1 = ∆u1 + (∂xu1)2 + ξ1 ,
∂tu2 = ν∆u2 + (∂xu2)2 + ∆u1 + ξ2 .

In this case, we have two noise types Ξ1,2 as well as two kernel types, which we
call I for the heat kernel with diffusion constant 1 and Iν for the heat kernel with
diffusion constant ν. There is some ambiguity in this case whether the term ∆u1

appearing in the second equation should be considered part of the linearisation of the
equation or part of the nonlinearity. In this case, it turns out to be more convenient to
consider this term as part of the nonlinearity, and we will see that the corresponding
rule is still subcritical thanks to the triangular structure of this system.

Using the same notations as above, the normal and complete rule R naturally
associated with this system of equations is given by

R(Ξi) = {()}, R(I) = {(), (Ξ1), (I1), (I1,I1)}
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R(Iν) = {(), (Ξ2), (Iν
1 ), (Iν

1 ,I
ν
1 ), (I2)}.

In this case, we see that R is again subcritical for sufficiently small κ > 0 with

regκ(Ξi) = −3/2− 2κ , regκ(I) = 1/2− 3κ , regκ(Iν) = 1/2− 4κ .

Our last example is given by the following generalisation of the KPZ equation:

∂tu = ∆u+ g(u)(∂xu)2 + h(u)∂xu+ k(u) + f (u)ξ ,

which is motivated by (1.6) above, see [Hai16a]. In this case, the set L is again
given by {Ξ, I}, just as in the case of the standard KPZ equation. Writing [I]` as
a shorthand for I, ...,Iwhere I is repeated ` times, the rule R associated to this
equation is given by

R(Ξ) = {()}, R(I) = {([I]`), ([I]`,I1), ([I]`,I1,I1), ([I]`,Ξ), ` ∈ N} .

Again, it is straightforward to verify that R is subcritical and that one can use the
same map regκ as in the case of the standard KPZ equation. Even though in this case
there are infinitely many node types appearing inR(I), this is not a problem because
regκ(I) > 0, so that repetitions of the symbol I in a node type only increase the
corresponding degree.

5.5 Regularity structures determined by rules
Throughout this section, we assume that we are given
• a finite type set L together with a scaling s and degrees | · |s as in Definition 5.2,
• a normal rule R for L which is both subcritical and complete, in the sense of

Definition 5.22,
• the integer d ≥ 1 which has been fixed at the beginning of the paper.
We show that the above choices, when combined with the structure built in

Sections 3 and 4, yield a natural substructure with the same algebraic properties
(the only exception being that the subspace of H◦ we consider is not an algebra in
general), but which is sufficiently small to yield a regularity structure. Furthermore,
this regularity structure contains a very large group of automorphisms, unlike the
slightly smaller structure described in [Hai14]. The reason for this is the additional
flexibility granted by the presence of the decoration o, which allows to keep track of
the degrees of the subtrees contracted by the action of G1.

Definition 5.23 We define for every τ = (G, n′, e′) ∈ T and every node x ∈ NG a
set D(x, τ ) ⊂ Zd ⊕ Z(L) by postulating that α ∈ D(x, τ ) if there exist
• σ = (F, n, e) ∈ T
• A ⊂ F is a subtree such that σ conforms to the rule R at every node y ∈ A
• functions nA : NA → Nd with nA ≤ n�NA and εFA : ∂(A,F )→ Nd

such that (A, 0, nA + πεFA, 0, e) ∈ T−(R) (see Definition 5.13) and

(G,1{x}, n
′, α1{x}, e

′) = K1(F,1A, n− nA, nA + π(εFA − eA6#), eFA + εFA) (5.20)
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and in particular
α =

∑
NA

(
nA + π(εFA − eA6#)

)
.

We define S : F→ T ⊂ F by S(F, F̂ , n, o, e) def
= (F, n, e).

Definition 5.24 We denote by Λ = Λ(L, R, s, d) the set of all τ = (F, F̂ , n, o, e) ∈
F such that τ = K1τ and, for all x ∈ NF , exactly one of the following two mutually
exclusive statements holds.
• One has F̂ (x) ∈ {0, 2} and o(x) = 0.
• One has F̂ (x) = 1 and o(x) ∈ D(x,Sτ ).

Lemma 5.25 Letσ = (F, F̂ , n, o, e) ∈ Λ andA ∈ A1(F, F̂ ) be a subforest such that
σ conforms to the ruleR at every vertex x ∈ A and fix functions nA : NA → Nd with
nA ≤ n�NA and εFA : ∂(A,F )→ Nd. Assume furthermore that for each connected
component B of A, we have (B, 0, nA + πεFA, 0, e) ∈ T−(R), see Definition 5.13.
Then the element

τ = K1(F, F̂ ∪1 A, n− nA, nA + π(εFA − eA6#), eFA + εFA) (5.21)

also belongs to Λ.
Conversely, every element τ of Λ is of the form (5.21) for an element σ with

F̂ (x) ∈ {0, 2} and o ≡ 0.

Proof. Let us start by showing the last assertion. Let τ = (G, Ĝ, n′, o′, e′) ∈ Λ and
{x1, . . . , xn} ⊂ NG all nodes is such that Ĝ(xi) = 1. Let us argue by recurrence
over i ∈ {1, . . . , n}. By Definition 5.23 one can write

(G, Ĝ1{x1,...,xi}, n
′, o′1{x1,...,xi}, e

′) = K1σi

= K1(Fi,1Ai , n− nAi , nAi + π(εFiAi − eAi6# ), eFiAi + εFiAi)

as in (5.20). Setting F = Fn and A = An we have the required representation.
Now the first assertion follows easily from the second one.

We nowdefine spaces of coloured forests τ = (F, F̂ , n, o, e) such that (F, 0, n, 0, e)
is compatible with the rule R in a suitable sense, and such that τ ∈ Λ.

Definition 5.26 Recalling Definition 5.13 and Remark 4.13, we define the bigraded
spaces

T̂ex
+ = 〈B+〉 ⊂ Ĥ2 , B+

def
= {τ ∈ Ĥ2 : τ ∈ Λ & Sτ ∈ T2(R)} ,

T̂ex
− = 〈B−〉 ⊂ H1 , B−

def
= {τ ∈ H1 : τ ∈ Λ & Sτ ∈ T1(R)} ,

Tex = 〈B◦〉 ⊂ H◦ , B◦
def
= {τ ∈ H◦ : τ ∈ Λ & Sτ ∈ T◦(R)} .
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Remark 5.27 The superscript “ex” stands for “extended”, see Section 6.4 below
for an explanation of the reason why we choose this terminology. The identification
of these spaces as suitable subspaces of Ĥ2, H1 and H◦ is done via the canonical
basis (4.10).

Note that both T̂ex
− and T̂ex

+ are algebras for the products inherited from H1 and
Ĥ2 respectively. On the other hand, Tex is in general not an algebra anymore.

Lemma 5.28 We have

∆1 : Tex → T̂ex
− ⊗̂H◦ , ∆1 : T̂ex

− → T̂ex
− ⊗̂H1 , ∆1 : T̂ex

+ → T̂ex
− ⊗̂ Ĥ2 ,

as well as ∆2 : H→ H ⊗̂ T̂ex
+ for H ∈ {Tex, T̂ex

+ }. Moreover, T̂ex
+ is a Hopf

subalgebra of Ĥ2 and Tex is a right Hopf-comodule over T̂ex
+ with coaction ∆2.

Proof. By the normality of the rule R, if a tree conforms to R then any of its
subtrees does too. On the other hand, contracting subforests can generate non-
conforming trees in the case of ∆1, while, since ∆2 extracts only subtrees at the
root, completeness of the rule implies that this can not happen in the case of ∆2,
thus showing that the maps ∆i do indeed behave as claimed.

The fact that T̂ex
+ is in fact a Hopf algebra, namely that the antipode Â2 of Ĥ2

leaves T̂ex
+ invariant, can be shown by induction using (4.17) and Remark 4.16.

Note that T̂ex
− is a sub-algebra but in general not a sub-coalgebra of H1 (and a

fortiori not a Hopf algebra). Recall also that, by Lemma 5.4, the grading | · |− of
Definition 5.3 is well defined on T̂ex

− and on Tex, and that | · |+ is well defined on
both T̂ex

+ and Tex. Furthermore, these gradings are preserved by the corresponding
products and coproducts.

Definition 5.29 Let J∓ ⊂ T̂ex
± be the ideals given by

J− =〈{τ ∈ B+ : τ = J K̂2(σ · σ̄) , σ, σ̄ ∈ B+, σ 6= 12, |σ|+ ≤ 0}〉 ,
J+ =〈{τ ∈ B− : τ = K1(σ · σ̄) , σ, σ̄ ∈ B−,

(σ 6= 11 & |σ|− ≥ 0) or (σ = It
k(σ′) & |t|s > 0)}〉 .

(5.22)

Then, we set
Tex
−

def
= T̂ex

− /J+ , Tex
+

def
= T̂ex

+ /J− , (5.23)

with canonical projections pex
± : T̂ex

± → Tex
± . Moreover, we define the operator

Jt
k : Tex → Tex

+ as Jt
k = pex

+ ◦ Ĵt
k.

With these definitions at hand, it turns out that the map (pex
− ⊗ id)∆1 is much better

behaved. Indeed, we have the following.

Lemma 5.30 The map ∆−ex = (pex
− ⊗ id)∆1 satisfies

∆−ex : H→ Tex
− ⊗̂H , for H∈ {T̂ex

− ,T
ex, T̂ex

+ }.



Rules and associated Regularity Structures 72

Proof. This follows immediately from Lemma 5.28, combined with the fact that
completeness of R has beed defined in Definition 5.20 in terms of extraction of
τ ∈ T−(R), which in particular means that |τ |s = |τ |− < 0.

Analogously to Lemma 3.21 we have

Lemma 5.31 We have

(pex
− ⊗ pex

− )∆1J+ = 0 , (pex
− ⊗ pex

+ )∆1J− = 0 , (pex
+ ⊗ pex

+ )∆2J− = 0 . (5.24)

Proof. We note that the degrees | · |± have the following compatibility properties
with the operators ∆i. For 0 < i ≤ j ≤ 2, τ ∈ Fj and ∆iτ =

∑
τ (1)
i ⊗ τ

(2)
i (with

the summation variable suppressed), one has

|τ (1)
1 |− + |τ (2)

1 |− = |τ |− , |τ (2)
1 |+ = |τ |+ , |τ (1)

2 |+ + |τ (2)
2 |+ = |τ |+ . (5.25)

The first identity of (5.24) then follows from the first identity of (5.25) and from
the following remark: if B− 3 τ = It

k(σ), then for each term appearing in the sum
over A ∈ A1 in the expression (3.7) for ∆1τ , one has two possibilities:
• either A does not contain the edge incident to the root of τ , and then the second

factor is a tree with only one edge incident to its root,
• or A does contain the edge incident to the root, in which case the first factor

contains one connected component of that type.
The second identity of (5.24) follows from the second identity of (5.25) combined
with the fact that, for τ ∈ F2, ∆1τ contains no term of the form σ ⊗ 12, even when
quotiented by ker(J K̂2). The third identity of (5.24) finally follows from the third
identity of (5.25), combined with the fact that if τ ∈ B+ \ {12} with |τ |+ ≤ 0, then
the term 12 ⊗ 12 does not appear in the expansion for ∆2τ .

As a corollary, we have the following.

Corollary 5.32 The operator ∆−ex = (pex
− ⊗ id)∆1 is well-defined as a map

∆−ex : H→ Tex
− ⊗̂H , for H∈ {T̂ex

− ,T
ex
− ,T

ex,Tex
+ , T̂ex

+ }.

Similarly, the operator ∆+
ex = (id⊗ pex

+ )∆2 is well-defined as a map

∆+
ex : H→ H⊗̂Tex

+ , for H∈ {Tex,Tex
+ , T̂ex

+ }.

Remark 5.33 The operators ∆±ex of Corollary 5.32 are now given by finite sums so
that for all of these choices of H, the operators ∆−ex and ∆+

ex actually map H into
Tex
− ⊗H and H⊗Tex

+ respectively.

Proposition 5.34 There exists an algebra morphism Aex
+ : Tex

+ → Tex
+ so that

(Tex
+ ,M,∆+

ex, 12, 1?2,Aex
+ ), where M is the tree product (4.8), is a Hopf algebra.

Moreover the map ∆+
ex : Tex → Tex ⊗ Tex

+ , turns Tex into a right comodule for
Tex

+ with counit 1?2.
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Proof. We already know that T̂ex
+ is a Hopf sub-algebra of Ĥ2 with antipode Â2

satisfying (4.17). Since J− is a bialgebra ideal by Lemma 5.31, the first claim
follows from [Nic78, Thm 1.(iv)].

The fact that ∆+
ex : Tex → Tex ⊗ Tex

+ is a co-action and turns Tex into a right
comodule for Tex

+ follows from the coassociativity of ∆2.

Proposition 5.35 There exists an algebra morphism Aex
− : Tex

− → Tex
− so that

(Tex
− , ·,∆−ex, 11, 1?1,Aex

− ) is a Hopf algebra. Moreover the map ∆−ex : Tex →
Tex
− ⊗Tex turns Tex into a left comodule for Tex

− with counit 1?1.

Proof. One difference between Tex
− and Tex

+ is that T̂ex
− is not in general a sub-

coalgebra of H1 and therefore it does not possess an antipode. However we can see
that the antipode A1 of H1 satisfies for all τ 6= 1

A1τ = −τ −M(A1 ⊗ id)(∆1τ − τ ⊗ 1− 1⊗ τ ),

where M is the product map. By the second formula of (5.25), it follows that if
|τ |− > 0 then A1τ ∈ J+ and therefore, since A1 is an algebra morphism, A1(J+) ⊆
J+. We obtain that A1 defines a unique algebra morphism Aex

− : Tex
− → Tex

− which
is an antipode for Tex

− .

Definition 5.36 We call Gex
± the character group of Tex

± .

We have therefore obtained the following analogue of Proposition 4.14:

Theorem 5.37
1. On Tex, we have the identity

M(13)(2)(4)(∆−ex ⊗∆−ex)∆+
ex = (id⊗∆+

ex)∆−ex , (5.26)

holds, with M(13)(2)(4) as in (3.49). The same is also true on Tex
+ .

2. Let H∈ {Tex,Tex
+ }. We define a left action of Gex

− on H∗ by

gh(τ ) def
= (g ⊗ h)∆−exτ, g ∈ Gex

− , h ∈ H∗, τ ∈ H,

and a right action of Gex
+ on H∗ by

hf (τ ) def
= (h⊗ f )∆+

exτ, f ∈ Gex
+ , h ∈ H∗, τ ∈ H.

Then we have

g(hf ) = (gh)(gf ) , g ∈ Gex
− , f ∈ Gex

+ , h ∈ H∗. (5.27)

Proof. By the second identity of (5.25), the action of ∆−ex preserves the degree | · |+.
In particular we have

∆−exp
ex
+ =

(
id⊗ pex

+

)
∆−ex. (5.28)
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From this property, one has:

M(13)(2)(4)(∆−ex ⊗∆−ex)∆+
ex = M(13)(2)(4)(∆−ex ⊗

(
id⊗ pex

+

)
∆−ex)∆2

=
(
pex
− ⊗ id⊗ pex

+

)
M(13)(2)(4)(∆1 ⊗∆1)∆2

and we conclude by applying the Proposition 3.27. Now the proof of (5.27) is the
same as that of (4.11) above.

Formula (5.26) yields the cointeraction property see Remark 3.28.

Remark 5.38 We can finally see here the role played by the decoration o: were it
not included, the cointeraction property (5.26) of Theorem 5.37 would fail, since it
is based upon (5.28), which itself depends on the second identity of (5.25). Now
recall that | · |+ takes the decoration o into account, and this is what makes the
second identity of (5.25) true. See also Remark 6.26 below.

As in the discussion following Proposition 4.14, we see that Tex is a left comodule
over the Hopf algebra T̂ex

12
def
= Tex

− n Tex
+ , with coaction

∆◦ : Tex → T̂ex
12 ⊗̂Tex, ∆◦

def
= σ(132)(∆−ex ⊗Aex

+ )∆+
ex

where σ(132)(a⊗ b⊗ c) def
= a⊗ c⊗ b and Aex

+ is the antipode of Tex
+ .

We define Aex def
= {|τ |+ : τ ∈ B◦}, where Tex = 〈B◦〉 as in Definition 5.26.

Proposition 5.39 The above construction yields a regularity structure T ex =
(Aex,Tex, Gex

+ ) in the sense of Definition 5.1.

Proof. By the definitions, every element τ ∈ B◦ has a representation of the type
(5.21) for some σ = (T, 0, n, 0, e) ∈ T. Furthermore, it follows from the definitions
of | · |+ and | · |s that one has |τ |+ = |σ|s. The fact that, for all γ ∈ R, the set
{a ∈ Aex : a ≤ γ} is finite then follows from Proposition 5.15.

The space Tex is graded by | · |+ and Gex
+ acts on it by Γg

def
= (id⊗ g)∆+

ex. The
property (5.1) then follows from the fact ∆+

ex preserves the total | · |+-degree by the
third identity in (5.25) and all terms appearing in the second factor of ∆+

exτ − τ ⊗ 1
have strictly positive | · |+-degree by Definition 5.29.

Remark 5.40 Since Tex
− is finitely generated as an algebra (though infinite-dimen-

sional as a vector space), its character group Gex
− is a finite-dimensional Lie group.

In contrast, Gex
+ is not finite-dimensional but can be given the structure of an

infinite-dimensional Lie group, see [BS18].
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6 Renormalisation of models

We now show how the construction of the previous sections can be applied to the
theory of regularity structures to show that the “contraction” operations one would
like to perform in order to renormalise models are “legitimate” in the sense that
they give rise to automorphisms of the regularity structures built in Section 5.5.
Throughout this section, we are in the framework set at the beginning of Section 5.5.
We furthermore impose the additional constraint that, writing L = L− t L+ with
t ∈ L+ if and only if |t|s > 0, one has

t ∈ L− ⇒ R(t) = {()} . (6.1)

Remark 6.1 Labels inL+ represent “kernels” while labels inL+ represent “noises”,
which naturally leads to (6.1). (We could actually have defined L− by L− = {t :
R(t) = {()}}.) The condition that elements of L− are of negative degree and those
in L+ are of positive degree is also natural in this context. It could in principle be
weakened, which corresponds to allowing kernels with a non-integrable singularity
at the origin. This would force us to slightly modify Definition 6.8 below in order to
interpret these kernels as distributions but would not otherwise lead to any additional
complications.

Note now that we have a natural identification of Tex
± with the subspaces

〈{τ ∈ B± : τ 6∈ Jex
∓ }〉 ⊂ T̂ex

± .

Denote by iex
± : Tex

± → T̂ex
± the corresponding inclusions, so that we have direct sum

decompositions
T̂ex
± = Tex

± ⊕Jex
∓ . (6.2)

For instance, with this identification, the map Ĵt
k : Tex → T̂ex

+ defined in (4.13)
associates to τ ∈ Tex an element Ĵt

k(τ ) ∈ T̂ex
+ which can be viewed as Jt

k(τ ) ∈
Tex

+ \{0} if and only if its degree |Jt
k(τ )|+ is positive, namely |τ |+ + |t|s−|k|s > 0.

Proposition 6.2 Let Aex
+ : Tex

+ → Tex
+ be the antipode of Tex

+ . Then
• Aex

+ is defined uniquely by the fact that Aex
+Xi = −Xi and for all Jt

k(τ ) ∈ Tex
+

Aex
+Jt

k(τ ) = −
∑
`∈Nd

(−X)`

`!
Mex

+ (Jt
k+` ⊗Aex

+ )∆+
exτ , (6.3)

where Mex
+ : Tex

+ ⊗ Tex
+ → Tex

+ denotes the (tree) product and ∆+
ex : Tex →

Tex ⊗Tex
+ .

• On Tex
+ , one has the identity

∆−exA
ex
+ = (id⊗Aex

+ )∆−ex . (6.4)

Proof. The claims follow easily from Propositions 4.18 and 5.34.
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6.1 Twisted antipodes
We define now the operator P+ : T̂ex

+ → T̂ex
+ given on τ ∈ B+ by

P+(τ ) def
=

{
τ if |τ |+ > 0,
0 otherwise.

Note that this is quite different from the projection iex
+ ◦ pex

+ . However, for elements
of the form Ĵt

k(τ ) ∈ T̂ex
+ for some τ ∈ Tex, we have P+Ĵ

t
k(τ ) = (iex

+ ◦ pex
+ )(Ĵt

k(τ )).
The difference is that iex

+ ◦ pex
+ is multiplicative under the tree product, while P+ is

not.

Proposition 6.3 There exists a unique algebra morphism Ãex
+ : Tex

+ → T̂ex
+ , which

we call the “positive twisted antipode”, such that Ãex
+Xi = −Xi and furthermore

for all Jt
k(τ ) ∈ Tex

+

Ãex
+Jt

k(τ ) = −
∑
`∈Nd

(−X)`

`!
P+M̂

ex
+ (Ĵt

k+` ⊗ Ãex
+ )∆+

exτ , (6.5)

where Ĵt
k : Tex → T̂ex

+ is defined in (4.13), similarly to above M̂ex
+ is the product in

T̂ex
+ and ∆+

ex : Tex → Tex ⊗Tex
+ is as in Corollary 5.32.

Proof. Proceeding by induction over the number of edges appearing in τ , one easily
verifies that such a map exists and is uniquely determined by the above properties.

Comparing this to the recursion for Aex
+ given in (6.3), we see that they are very

similar, but the projection pex
+ in (6.3) is inside the multiplication Mex

+ , while P+ in
(6.5) is outside M̂ex

+ .
We recall now that the antipode Aex

+ is characterised among algebra-morphisms
of Tex

+ by the identity

Mex
+ (id⊗Aex

+ )∆+
ex = 121?2 on Tex

+ , (6.6)

where ∆+
ex : Tex

+ → Tex
+ ⊗Tex

+ is as in Corollary 5.32. The following result shows
that Ãex

+ satisfies a property close to (6.6), which is where the name “twisted antipode”
comes from.

Proposition 6.4 The map Ãex
+ : Tex

+ → T̂ex
+ satisfies the equation

M̂ex
+ (id⊗ Ãex

+ )∆+
exi

ex
+ = 121?2 on Tex

+ , (6.7)

where ∆+
ex : T̂ex

+ → T̂ex
+ ⊗Tex

+ is as in Corollary 5.32.
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Proof. Since both sides of (6.7) are multiplicative and since the identity obviously
holds when applied to elements of the type Xk, we only need to verify that the left
hand side vanishes when applied to elements of the form Jt

k(τ ) for some τ ∈ Tex

with |τ |+ + |t|s − |k|s > 0, and then use Remark 4.16. Similarly to the proof of
(4.17), we have

M̂ex
+ (id⊗ Ãex

+ )∆+
exĴ

t
k(τ ) =

= M̂ex
+ (id⊗ Ãex

+ )

[(
Ĵt
k ⊗ id

)
∆+

exτ +
∑
`

X`

`!
⊗Jt

k+`(τ )

]

= M̂ex
+

(Ĵt
k ⊗ Ãex

+

)
∆+

exτ −
∑
`,m

X`

`!
⊗ (−X)m

m!
P+M̂

ex
+ (Ĵt

k+`+m ⊗ Ãex
+ )∆+

exτ


=
[
M̂ex

+

(
Ĵt
k ⊗ Ãex

+

)
− P+M̂

ex
+ (Ĵt

k ⊗ Ãex
+ )
]
∆+

exτ = 0 ,

since |M̂ex
+ (Ĵt

k ⊗ Ãex
+ )∆+

exτ |+ = |Jt
k(τ )|+ > 0.

A very useful property of the positive twisted antipode Ãex
+ is that its action is

intertwined with that of ∆−ex in the following way.

Lemma 6.5 The identity

∆−exÃ
ex
+ = (id⊗ Ãex

+ )∆−ex

holds between linear maps from Tex
+ to Tex

− ⊗ T̂ex
+ .

Proof. Since both sides of the identity are multiplicative, by using Remark 4.16 it is
enough to prove the result on Xi and on elements of the form Jk(τ ) ∈ Tex

+ . The
identity clearly holds on the linear span of Xk since ∆−ex acts trivially on them and
Ãex

+ preserves that subspace.
Using the recursion (6.5) for Ãex

+ , the identity ∆−exP+ = (id⊗ P+)∆−ex on T̂ex
+ ,

followed by the fact that ∆−ex is multiplicative, we obtain

∆−exÃ
ex
+Jt

k(τ ) = −
∑
`∈Nd

(
id⊗ (−X)`

`!

)
∆−exP+M̂

ex
+ (Ĵt

k+` ⊗ Ãex
+ )∆+

exτ

= −
∑
`∈Nd

(
id⊗ (−X)`

`!
P+M̂

ex
+

)
M(13)(2)(4)(∆−exĴ

t
k+` ⊗∆−exÃ

ex
+ )∆+

exτ .

Using the fact that ∆−exĴ
t
k =

(
id⊗ Ĵt

k

)
∆−ex, as well as (5.26), we have

∆−exÃ
ex
+Jt

k(τ ) = −
∑
`∈Nd

(
id⊗ (−X)`

`!
P+M̂

ex
+

)
×M(13)(2)(4)((id⊗ Ĵt

k+`)∆
−
ex ⊗ (id⊗ Ãex

+ )∆−ex)∆+
exτ
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= −
∑
`∈Nd

(
id⊗ (−X)`

`!
P+M̂

ex
+ (Ĵt

k+` ⊗ Ãex
+ )
)

(id⊗∆+
ex)∆−exτ

= (id⊗ Ãex
+Jt

k)∆−exτ = (id⊗ Ãex
+ )∆−exJ

t
kτ .

Here, the passage from the penultimate to the last line crucially relies on the fact that
the action of G−ex onto Tex

+ preserves the | · |+-degree, i.e. on the second formula in
(5.25).

We have now a similar construction of a negative twisted antipode.

Proposition 6.6 There exists a unique algebra morphism Ãex
− : Tex

− → T̂ex
− , that

we call the “negative twisted antipode”, such that for τ ∈ Tex
− ∩ ker 1?1

Ãex
− τ = −M̂ex

− (Ãex
− ⊗ id)(∆−exi

ex
−τ − τ ⊗ 11). (6.8)

Similarly to (6.7), the morphism Ãex
− : Tex

− → T̂ex
− satisfies

M̂ex
− (Ãex

− ⊗ id)∆−exi
ex
− = 111?1 on Tex

− , (6.9)

where ∆−ex : T̂ex
− → Tex

− ⊗ T̂ex
− is as in Corollary 5.32.

Proof. Proceeding by induction over the number of colourless edges appearing in τ ,
one easily verifies that such a morphism exists and is uniquely determined by (6.8).
The property (6.9) is a trivial consequence of (6.8).

6.2 Models
We now recall (a simplified version of) the definition of a model for a regularity
structure given in [Hai14, Def. 2.17]. Given a scaling s as in Definition 5.2 and
interpreting our constant d ∈ N as a space(-time) dimension, we define a metric ds
on Rd by

‖x− y‖s
def
=

d∑
i=1

|xi − yi|1/si . (6.10)

Note that ‖ · ‖s is not a norm since it is not 1-homogeneous, but it is still a distance
function since si ≥ 1. It is also homogeneous with respect to the (inhomogeneous)
scaling in which the ith component is multiplied by λsi .

Definition 6.7 A smooth model for a given regularity structure T = (A, T,G) on
Rd with scaling s consists of the following elements:
• A map Γ: Rd × Rd → G such that Γxx = id, the identity operator, and such

that Γxy Γyz = Γxz for every x, y, z in Rd.
• A collection of continuous linear maps Πx : T → C∞(Rd) such that Πy =

Πx ◦ Γxy for every x, y ∈ Rd.
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Furthermore, for every ` ∈ A and every compact set K ⊂ Rd, we assume the
existence of a constant C`,K such that the bounds

|Πxτ (y)| ≤ C`,K‖τ‖` ‖x− y‖`s, ‖Γxyτ‖m ≤ C`,K‖τ‖` ‖x− y‖`−ms , (6.11)

hold uniformly over all x, y ∈ K, allm ∈ A withm < ` and all τ ∈ T`.

Here, recalling that the space T in Definitions 5.1 and 6.7 is a direct sum of
Banach spaces (Tα)α∈A, the quantity ‖σ‖m appearing in (6.11) denotes the norm
of the component of σ ∈ T in the Banach space Tm form ∈ A. We also note that
Definition 6.7 does not include the general framework of [Hai14, Def. 2.17], where
Πx takes values in D′(Rd) rather than C∞(Rd); however this simplified setting is
sufficient for our purposes, at least for now. The condition (6.11) on Πx is of course
relevant only for ` > 0 since Πxτ (·) is assumed to be a smooth function at this stage.

Recall that we fixed a label set L = L− t L+. We also fix a collection of kernels
{Kt}t∈L+ ,Kt : Rd \ {0} → R, satisfying the conditions of [Hai14, Ass. 5.1] with
β = |t|s. We use extensively the notations of Section 4.3.

Definition 6.8 Given a linear mapΠ : Tex → C∞, we define for all z, z̄ ∈ Rd
• a character g+

z (Π) : T̂ex
+ → R by extending multiplicatively

g+
z (Π)Xi = (ΠXi)(z), g+

z (Π)Jt
k(τ ) = (DkKt ∗Πτ )(z)

for t ∈ L+ and setting g+
z (Π)Jl

k(τ ) = 0 for l ∈ L−.
• a linear map Πz : Tex → C∞ and a character fz ∈ Gex

+ by

Πz = (Π⊗ fz)∆+
ex , fz = g+

z (Π)Ãex
+ , (6.12)

where Ãex
+ is the positive twisted antipode defined in (6.5)

• a linear map Γzz̄ : Tex → Tex and a character γzz̄ ∈ Gex
+ by

Γzz̄ = (id⊗ γzz̄)∆+
ex, γzz̄ = (fzA

ex
+ ⊗ fz̄)∆+

ex . (6.13)

Finally, we write Zex : Π 7→ (Π,Γ) for the map given by (6.12) and (6.13).

We do not want to consider arbitrary maps Π as above, but we want them to
behave in a “nice” way with respect to the natural operations we have on Tex. We
therefore introduce the following notion of admissibility. For this, we note that,
as a consequence of (6.1), the only basis vectors of the type It

k(τ ) with t ∈ L−
belonging to Tex are those with τ = X` for some ` ∈ Nd, so we give them a special
name by setting Ξl

k,` = Il
k(X`) and Ξl = Ξl

0,0.

Definition 6.9 Given a linear map Π : Tex → C∞, we set ξl
def
= ΠΞl for l ∈ L−.

We then say that Π is admissible if it satisfies

Π1 = 1 , ΠXkτ = xkΠτ ,
ΠIt

k(τ ) = DkKt ∗Πτ , ΠΞl
k,` = Dk(x`ξl) ,

(6.14)
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for all τ ∈ Tex, k, ` ∈ Nd, t ∈ L+, l ∈ L−, where It
k : Tex → Tex is defined by

(4.12), ∗ is the distributional convolution in Rd, and we use the notation

Dk =

d∏
i=1

∂ki

∂ykii
, xk : Rd → R, xk(y) def

=

d∏
i=1

ykii .

Note that this definition guarantees that the identityΠIt
k(τ ) = DkΠIt

0(τ ) always
holds, whether t is in L− or in L+.

It is then simple to check that, with these definitions, ΠzΓzz̄ = Πz̄ and (Π,Γ)
satisfies the algebraic requirements of Definition 6.7. However, (Π,Γ) does not
necessarily satisfy the analytical bounds (6.11), although one has the following.

Lemma 6.10 If Π is admissible then, for every It
k(τ ) ∈ Tex with t ∈ L+, we have

fz(Jt
k(τ )) = −

∑
|`|s<|Jt

k(τ )|+

(−z)`

`!
(Dk+`Kt ∗Πzτ)(z) , (6.15)

(
ΠzI

t
k(τ )

)
(z̄) = (DkKt ∗Πzτ)(z̄)−

∑
|`|s<|It

k(τ )|+

(z̄ − z)`

`!
(Dk+`Kt ∗Πzτ)(z) .

Proof. It follows immediately from (4.16) and the admissibility ofΠ thatΠzI
t
k(τ )−

DkKt ∗ Πzτ is a polynomial of degree |It
k(τ )|+. On the other hand, it follows

from (6.7) that ΠzI
t
k(τ ) and its derivatives up to the required order (because taking

derivatives commutes with the action of the structure group) vanish at z, so there is
no choice of what that polynomial is, thus yielding the second identity. The first
identity then follows by comparing the second formula to (6.12).

Remark 6.11 Lemma 6.10 shows that the positive twisted antipode Ãex
+ is intimately

related to Taylor remainders, see Remark 3.7 and (6.12).

Lemma 6.10 shows that (Π,Γ) satisfies the analytical property (6.11) on planted
trees of the form It

k(τ ) ∈ Tex. However this is not necessarily the case for products
of such trees, since neither Π nor Πz are assumed to be multiplicative under the
tree product (4.8). If, however, we also assume that Π is multiplicative, then the
map Zex always produces a bona fide model.

Proposition 6.12 IfΠ : Tex → C∞ is admissible and such that, for all τ, τ̄ ∈ Tex

with τ τ̄ ∈ Tex and all α ∈ Zd ⊕ Z(L), we have

Π(τ τ̄ ) = (Πτ ) · (Πτ̄ ) , ΠRα(τ ) = Πτ , (6.16)

then Zex(Π) is a model for T ex.
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Proof. The proof of the algebraic properties follows immediately from (6.13). Re-
garding the analytical bound (6.11) onΠzσ, it immediately follows fromLemma 6.10
in the case when σ is of the formIt

k(τ ). For products of such elements, it follows im-
mediately from the multiplicative property of Π combined with the multiplicativity
of the action of ∆+

ex on Tex, which imply that

Πx(σσ̄) = (Πxσ) · (Πxσ̄) .

Regarding vectors of the type σ = Rα(τ ), it follows immediately from the last
identity in (4.15) combined with (6.16) that ΠxRα(τ ) = Πxτ .

The proof of the second bound in (6.11) for Γxy is virtually identical to the one
given in [Hai14, Prop. 8.27], combined with Lemma 6.10. Formally, the main
difference comes from the change of basis (6.31) mentioned in Section 6.4, but this
does not affect the relevant bounds since it does not mix basis vectors of different
| · |+-degree.

Remark 6.13 If a map Π : Tex → C∞ is admissible and furthermore satisfies
(6.16), then it is uniquely determined by the functions ξl

def
= ΠΞl for l ∈ L−. In this

case, we callΠ the canonical lift of the functions ξl.

6.3 Renormalised Models
Wenow use the structure built in this article to provide a large class of renormalisation
procedures, which in particular includes those used in [Hai14, HP15, HS17]. For
this, we first need a topology on the space of all models for a given regularity
structure. Given two smooth models (Π,Γ) and (Π̄, Γ̄), for all ` ∈ A and K ⊂ Rd a
compact set, we define the pseudo-metrics

|||(Π,Γ); (Π̄, Γ̄)|||`;K
def
= ‖Π− Π̄‖`;K + ‖Γ− Γ̄‖`;K , (6.17)

where

‖Π− Π̄‖`;K
def
= sup

{
|〈(Πx − Π̄x)τ, ϕλx〉|

‖τ‖λ`
: x ∈ K, |τ |+ = `, λ ∈ (0, 1], ϕ ∈ B

}
,

‖Γ− Γ̄‖`;K
def
= sup

{
‖Γxyτ − Γ̄xyτ‖m
‖τ‖ ‖x− y‖m−`s

: x, y ∈ K, x 6= y, |τ |+ = `,m < `

}
.

Here, the set B ∈ C∞0 (Rd) denotes the set of test functions with support in the
centred ball of radius one and all derivatives up to oder 1 + | infA| bounded by 1.
Given ϕ ∈ B, ϕλx : Rd → R denotes the translated and rescaled function

ϕλx(y) def
= λ−(s1+···+sd) ϕ

(
((yi − xi)λ−si)di=1

)
, y ∈ Rd,

for x ∈ Rd and λ > 0 as in [Hai14]. Finally, 〈·, ·〉 is the usual L2 scalar product.
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Definition 6.14 We denote by M ex
∞ the space of all smooth models of the form

Zex(Π) for some admissible linearmapΠ : Tex → C∞ in the sense ofDefinition 6.9.
We endow M ex

∞ with the system of pseudo-metrics (|||·; ·|||`;K)`;K and we denote by
M ex

0 the completion of this metric space.

We refer to [Hai14, Def. 2.17] for the definition of the space M ex of models of a
fixed regularity structure. With that definition, M ex

0 is nothing but the closure of
M ex
∞ in M ex.
In many singular SPDEs, one is naturally led to a sequence of models Z(Π(ε))

which do not converge as ε → 0. One would then like to be able to “tweak” this
model in such a way that it remains an admissible model but has a chance of
converging as ε→ 0. A natural way of “tweaking” Π(ε) is to compose it with some
linear mapM ex : Tex → Tex. This naturally leads to the following question: what
are the linear mapsM ex which are such that if Zex(Π) is an admissible model, then
Zex(ΠM ex) is also a model? We then give the following definition.

Definition 6.15 A linear map M : Tex → Tex is an admissible renormalisation
procedure if
• for every admissible Π : Tex → C∞ such that Zex(Π) ∈ M ex

∞ , ΠM is
admissible and Zex(ΠM ) ∈M ex

∞
• the map M ex

∞ 3 Zex(Π) 7→ Zex(ΠM ) ∈ M ex
∞ extends to a continuous map

from M ex
0 to M ex

0 .

We define a right action of Gex
− onto H, with H∈ {Tex,Tex

+ }, by g 7→M ex
g with

M ex
g : H→ H, M ex

g τ = (g ⊗ id)∆−exτ, g ∈ Gex
− , τ ∈ H. (6.18)

The following Theorem is one of the main results of this article.

Theorem 6.16 For every g ∈ Gex
− , the map M ex

g : Tex → Tex is an admissible
renormalisation procedure. Moreover the renormalised model Zex(ΠM ex

g ) =
(Πg,Γg) is described by:

Πg
z = ΠzM

ex
g , γgzz̄ = γzz̄M

ex
g . (6.19)

Proof. Let us fix g ∈ Gex
− and an admissible linearmapΠ such thatZex(Π) = (Π,Γ)

is a model and set Πg def
= ΠM ex

g . We check first that Πg is admissible, namely that
it satisfies (6.14). First, we note that, in the sum over A in (3.7) defining ∆1I

t
k(τ ),

we have two mutually excluding possibilities:
1. A is a subforest of τ
2. A contains the edge of type t added by the operator It

k or the root of I
t
k(τ ) as

an isolated node (which has however positive degree and is therefore killed by
the projection pex

− in ∆−ex).
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When we apply gpex
− to the terms corresponding to case 2, the result is 0 since A

contains one planted tree (with same root as that of It
k(τ )) and pex

−I
t
k = 0 by the

definition (5.22) of J+. Therefore we have

(g ⊗ id)∆−exI
t
k(τ ) = (g ⊗It

k)∆−exτ.

Therefore

ΠgIt
k(τ ) = (g ⊗Π)∆−exI

t
k(τ ) = (g ⊗ΠIt

k)∆−exτ

= (g ⊗DkKt ∗Π)∆−exτ = DkKt ∗Πgτ.

Since Xk has positive degree, with a similar computation we obtain

ΠgXkτ = (g ⊗Π)∆−exX
kτ = (g ⊗ΠXk)∆−exτ

= (g ⊗ xkΠ)∆−exτ = xkΠgτ

and this shows thatΠg is admissible.
Now we verify that, writingM ex

g as before and Zex(Πg) = (Πg,Γg), we have

γgzz̄ = (g ⊗ γzz̄)∆−ex , Πg
z = (g ⊗Πz)∆−ex .

To show this, one first uses (6.4) to show that fgz = (g ⊗ fz)∆−ex, where f and fg
are defined fromΠ andΠg as in (6.12). Indeed, one has

fgz = g+
z (ΠM ex

g )Ãex
+ =

(
g ⊗ g+

z (Π)
)
∆−exÃ

ex
+

= (g ⊗ g+
z (Π)Ãex

+ )∆−ex = (g ⊗ fz)∆−ex = fzM
ex
g .

One then uses (5.26) on Tex to show that the required identity (6.19) for Πg
z holds.

Indeed, it follows that

Πg
z = (Πg ⊗ fgz )∆+

ex = (g ⊗Π⊗ g ⊗ fz)
(
∆−ex ⊗∆−ex

)
∆+

ex

= (g ⊗Π⊗ fz)
(
id⊗∆+

ex
)
∆−ex = (g ⊗Πz)∆−ex.

(6.20)

In other words, we have applied (5.27) for (g, f, h) = (g, fz,Π). Regarding γzz̄ , we
have analogously

γgzz̄ =
(
fgzA

ex
+ ⊗ f

g
z̄

)
∆+

ex =
(
fzM

ex
g Aex

+ ⊗ fz̄M ex
g

)
∆+

ex

= (fzAex
+ ⊗ fz̄)

(
M ex
g ⊗M ex

g

)
∆+

ex = (fzAex
+ ⊗ fz̄)∆+

exM
ex
g

= (g ⊗ γzz̄)∆−ex .

(6.21)

Note now that, at the level of the character γzz̄ , the bound (6.11) reads |γzz̄(τ )| ≤
‖z − z̄‖|τ |+s as a consequence of the fact that ∆+

ex preserves the sum of the | · |+-
degrees of each factor. On the other hand, for every character g of Tex

− and any τ
belonging to either B◦ or B+ (see Definition 5.26), the element (g ⊗ id)∆−exτ is a
linear combination of terms with the same | · |+-degree as τ . As a consequence,
it is immediate that if a given model (Π,Γ) satisfies the bounds (6.11), then the
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renormalisedmodel (Πg,Γg) satisfies the same bounds, albeit with different constants,
depending on g. We conclude that indeed for every admissible Π : Tex → C∞

such that Zex(Π) ∈M ex
∞ , Πg is admissible and Zex(Πg) ∈M ex

∞ .
The exact same argument also shows that if we extend the action of Gex

− to all of
M ex by (6.20) and (6.21), then this yields a continuous action, which in particular
leaves M ex

0 invariant as required by Definition 6.15.

Note now that the group Rd acts on admissible (in the sense of Definition 6.9)
linear maps Π : Tex → C∞ in two different ways. First, we have the natural action
by translations Th, h ∈ Rd given by

(Th(Π)τ)(z) def
= (Πτ)(z − h) .

However, Rd can also be viewed as a subgroup of Gex
+ by setting

gh(Xi) = −hi , gh(Jt
k(τ )) = 0 . (6.22)

This also acts on admissible linear maps by setting

(T̃h(Π)τ)(z) def
= ((Π⊗ gh)∆+

exτ)(z) . (6.23)

Note that ifΠ is admissible, then one has Th(Π)Xk = T̃h(Π)Xk for every k ∈ Nd
and every h ∈ Rd.

Definition 6.17 We say that a random linear mapΠ : Tex → C∞ is stationary if,
for every (deterministic) element h ∈ Rd, the random linear maps Th(Π) and T̃h(Π)
are equal in law. We also assume that Π and its derivatives, computed at 0 have
moments of all orders.

By Definition 5.26 and Remark 4.16, T̂ex
− can be identified canonically with the

free algebra generated by B◦. We write

ι◦ : Tex = 〈B◦〉 → T̂ex
−

for the associated canonical injection.
Every random stationary map Π : Tex → C∞ in the sense of Definition 6.17

then naturally determines a (deterministic) character g−(Π) of T̂ex
− by setting

g−(Π)(ι◦τ ) def
= E(Πτ)(0) , (6.24)

for τ ∈ B◦, where the symbol E on the right hand side denotes expectation over the
underlying probability space. This is extended multiplicatively to all of T̂ex

− . Then
we can define a renormalised map Π̂ : Tex → C∞ by

Π̂τ = (g−(Π)Ãex
− ⊗Π)∆−exτ , (6.25)

where Ãex
− : Tex

− → T̂ex
− is the negative twisted antipode defined in (6.8) and

satisfying (6.9).
Let us also denote by B−◦ the (finite!) set of basis vectors τ ∈ B◦ such that

|τ |− < 0. The specific choice of g = g−(Π)Ãex
− used to define Π̂ is very natural

and canonical in the following sense.
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Theorem 6.18 LetΠ : Tex → C∞ be stationary and admissible such that Zex(Π)
is a model in M ex

∞ . Then, among all random functionsΠg : Tex → C∞ of the form

Πg = ΠM ex
g = (g ⊗Π)∆−exτ, g ∈ Gex

− ,

withM ex
g as in (6.18), Π̂ is the only one such that, for all h ∈ Rd, we have

E(Π̂τ)(h) = 0 , ∀ τ ∈ B−◦ . (6.26)

We call Π̂ the BPHZ renormalisation of Π.

Proof. We first show that Π̂ does indeed have the desired property. We first consider
h = 0 and we writeΠ0 : Tex → R for the map (not to be confused with Π0)

Π0τ = E(Πτ )(0) .

Let us denote byB]
◦ the set of τ ∈ B−◦ which are not of the formIt

k(σ) with |t|s > 0.
The main point now is that, thanks to the definitions of g−(Π) and ∆−ex, we have the
identity

(id⊗Π0)∆−ex = (id⊗ g−(Π))∆−exι◦ , on Tex.

Combining this with (6.25), we obtain for all τ ∈ B]
◦

E(Π̂τ)(0) = (g−(Π)Ãex
− ⊗Π0)∆−exτ = (g−(Π)Ãex

− ⊗ g−(Π))∆−exι◦τ

= g−(Π)M̂ex
− (Ãex

− ⊗ id)∆−exι◦τ = 0 ,

by the defining property (6.9) of the negative twisted antipode, since ι◦τ belongs
both to the image of iex

− and to the kernel of 1?1.
Let now τ ∈ B−◦ be of the form It

k(σ) with |t|s > 0, i.e. τ ∈ B−◦ \B
]
◦. Arguing

as in the proof of Theorem 6.16 we see that

∆−exι◦I
t
k(σ) = (id⊗ ι◦It

k)∆−exσ .

It then follows that

E(Π̂τ)(0) = M̂ex
− (g−(Π)Ãex

− ⊗ g−(Π)ι◦It
k)∆−exσ .

The definition of g−(Π) combined with the fact that Π is admissible and the
definition of Π̂ now implies that

E(Π̂τ)(0) =

∫
Rd
DkKt(−y)E(Π̂σ)(y) dy ,

where DkKt should be interpreted in the sense of distributions. In particular, one
has

E(Π̂τ)(0) = (−1)|k|
∫
Rd
Kt(−y)DkE(Π̂σ)(y) dy . (6.27)
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For σ = (F, F̂ , n, o, e) and n̄ : NF → Nd with n̄ ≤ n, we now write Ln̄σ =
(F, F̂ , n− n̄, o, e) and we note that for gh as in (6.22) one has the identity

(id⊗ gh)∆+
exσ =

∑
n̄

(
n

n̄

)
(−h)Σn̄Ln̄σ ,

so that the stationarity of Π implies that

E(Π̂σ)(y) = E(T̃−yΠ̂σ)(0) =
∑
n̄

(
n

n̄

)
yΣn̄E(Π̂Ln̄σ)(0) .

Plugging this into (6.27), we conclude that the terms for which there exists i with
ki > (Σn̄)i vanish. If on the other hand one has ki ≤ (Σn̄)i for every i, then
|k|s ≤ |Σn̄|s and one has

|Ln̄σ|s = |σ|s − |Σn̄|s ≤ |σ|s − |k|s ≤ |σ|s − |k|s + |t|s = |It
k(σ)|s < 0 ,

so that Ln̄σ ∈ B−◦ and has strictly less colourless edges than τ = It
k(σ). If σ

has only one colourless edge, then σ belongs to B]
◦; therefore the proof follows by

induction over the number of colourless edges of τ .
Let us now turn to the case h 6= 0. First, we claim that, setting Π̂h = T̃h(Π̂), one

has
E(Π̂hτ)(h) = 0 . (6.28)

This follows from the fact that Π̂ is stationary since the action T̃ commutes with that
of Gex

− as a consequence of (5.26), combined with the fact that (f⊗gh)∆−exτ = gh(τ )
for every f ∈ Gex

− , every τ ∈ Tex
+ and every gh of the form (6.22).

On the other hand, we have

Π̂τ = T̃−h(Π̂h)τ .

It follows immediately from the expression for the action of T̃ that Π̂τ is a
deterministic linear combination of terms of the form Π̂hσ with |σ|− ≤ |τ |−, so
that the claim (6.26) follows from (6.28).

It remains to show that Π̂ is the only function of the typeΠg with this property.
For this, note that every such function is also of the form Π̂g for some different
g ∈ Gex

− , so that we only need to show that for every element g different from the
identity, there exists τ such that E(Π̂gτ)(0) 6= 0.

Using Definitions 5.26 and 5.29, Remark 4.16 and the identification (6.2), Tex
−

can be canonically identified with the free algebra generated by B]
◦. Therefore the

character g is completely characterised by its evaluation on B]
◦ and it is the identity

if and only if this evaluation vanishes identically. Fix now such a g different from
the identity and let τ ∈ B]

◦ be such that g(τ ) 6= 0, and such that g(σ) = 0 for all
σ ∈ B]

◦ with the property that either |σ|− < |τ |− or |σ|− = |τ |−, but σ has strictly
less colourless edges than τ . Since B]

◦ is finite and g doesn’t vanish identically, such
a τ exists.
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We can then also view τ as an element of Tex and we write

∆−exτ = τ ⊗ 11 +
∑
i

τ (1)
i ⊗ τ

(2)
i ,

so that
Π̂gτ = g(τ ) +

∑
i

g(τ (1)
i )Π̂τ (2)

i . (6.29)

Note now that ∆−ex preserves the | · |−-degree so that for each of the term in the
sum it is either the case that |τ (1)

i |− < |τ |− or that |τ (2)
i | ≤ 0. In the former case,

the corresponding term in (6.29) vanishes identically by the definition of τ . In the
latter case, its expectation vanishes at the origin if |τ (2)

i | < 0 by (6.26). If |τ (2)
i | = 0

then, since τ (2)
i is not proportional to 11 (this is the first term which was taken out

of the sum explicitly), τ (2)
i must contain at least one colourless edge. Since ∆−ex

also preserves the number of colourless edges, this implies that again g(τ (1)
i ) = 0 by

our construction of τ . We conclude that one has indeed E(Π̂gτ )(0) = g(τ ) 6= 0, as
required.

Remark 6.19 The rigidity apparent in (6.26) suggests that for a large class of random
admissible maps Π(ε) : Tex → C∞ built from some stationary processes ξ(ε)

t by
(6.14) and (6.16), the corresponding collection of models built from Π̂(ε) defined
as in (6.25) should converge to a limiting model, provided that the ξ(ε)

t converge
in a suitable sense as ε→ 0. This is indeed the case, as shown in the companion
“analytical” article [CH16]. It is also possible to verify that the renormalisation
procedures that were essentially “guessed” in [Hai13, Hai14, HP15, HS17] are
precisely of BPHZ type, see Section 6.4.1 and Section 6.4.3 below.

Remark 6.20 One immediate consequence of Theorem 6.18 is that, for any g ∈ Gex
−

and any admissible Π, if we set Πg = (g ⊗Π)∆−ex as in Theorem 6.16, then the
BPHZ renormalisation of Πg is Π̂. In particular, the BPHZ renormalisation of the
canonical lift of a collection of stationary processes {ξl}l∈L− as in Remark 6.13 is
identical to that of the centred collection {ξ̃l}l∈L− where ξ̃l = ξl − Eξl(0).

Remark 6.21 Although the map Π 7→ Π̂ selects a “canonical” representative in
the class of functions of the form Πg, this does not necessarily mean that every
stochastic PDE in the class described by the underlying rule R can be renormalised
in a canonical way. The reason is that the kernelsKt are typically some truncated
version of the heat kernel and not simply the heat kernel itself. Different choices of
the kernelsKt may then lead to different choices of the renormalisation constants
for the corresponding SPDEs.

6.4 The reduced regularity structure
In this section we study the relation between the regularity structure T ex introduced
in this paper and the one originally constructed in [Hai14, Sec. 8].
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Definition 6.22 Let us call an admissiblemapΠ : Tex → C∞ reduced if the second
identity in (6.16) holds, namelyΠRα(τ ) = Πτ for all τ ∈ Tex and α ∈ Zd⊕Z(L).
We also define the idempotent map Q1 : F→ F by

Q1 : (F, F̂ , n, o, e) 7→ (F, d1 ◦ F̂ , n, 0, e) ,

with d1 : N→ N, d1(n) = n1(n6=1), and set Q = Q1K.

For example

Q1

 n, o

t, e

n, o

t, e

n
 =

n

t, e

n

t, e

n

An admissible map is reduced if and only if Πτ = ΠQτ for every τ ∈ Tex.
Moreover Q commutes with the mapsKi, K̂i and J , and preserves the | · |−-degree,
so that it is in particular also well-defined on Tex, T̂ex

+ , T̂ex
− and Tex

− . It does however
not preserve the | · |+-degree so that it is not well-defined on Tex

+ ! Indeed, the
| · |+-degree depends on the o decoration, which is set to 0 by Q, see Definition 5.3.

Definition 6.23 Let Tand T̂+ respectively be the subspaces of Tex and T̂ex
+ given

by
T

def
= {τ ∈ Tex : Qτ = τ} , T̂+

def
= {τ ∈ T̂ex

+ : Qτ = τ} ,

We also set T+ = pex
+ T̂+, where pex

± : T̂ex
± → Tex

± is defined after (5.23).

The reason why we define T+ in this slightly more convoluted way instead of
setting it equal to {τ ∈ Tex

+ : Qτ = τ} is that although Q is well-defined on T̂ex
+ , it

is not well-defined on Tex
+ since it does not preserve the | · |+-degree, as already

mentioned above. Since Q is multiplicative, T+ is a subalgebra of Tex
+ . We set

∆
def
= ∆+

ex : T→ T⊗T+ , ∆+ def
= ∆+

ex : T+ → T+ ⊗T+ . (6.30)

Looking at the recursive definition (6.3) of the antipode Aex
+ , it is clear that it also

maps T+ into itself, so that T+ is a Hopf subalgebra of Tex
+ . Moreover ∆ turns T

into a co-module over T+.
We can therefore define G+ as the characters group of T+ and introduce the

action of G+ on T:

G+ 3 f → Γf : T→ T, Γfτ
def
= (id⊗ f )∆τ, τ ∈ T.

If we grade T by | · |+ and we define T = (A,T, G+) where A def
= {|τ |+ : τ ∈

B◦, τ = Qτ} and Tex = 〈B◦〉 as in Definition 5.26, then arguing as in the proof of
Proposition 5.39, we see that the action of G+ on Tsatisfies (5.1). Therefore T is
a regularity structure as in Definition 5.1.

We set now J̃t
k : Tex → Tex

+ and J̃t
k : T→ T+,

J̃t
k(τ ) =

∑
|m|s<|Jt

k(τ )|+

(−X)m

m!
Jt
k+m(τ ) . (6.31)



Renormalisation of models 89

Suppose that {t, i} ⊆ L with |t|s > 0 and |i|s < 0. We set Ξi := Ii
0(1). Then we

have by (4.15) and (4.16) for all τ ∈ T

∆1 = 1⊗ 1 , ∆Ξi = Ξi ⊗ 1 , ∆Xi = Xi ⊗ 1 + 1⊗Xi ,

∆It
k(τ ) = (It

k ⊗ 1)∆τ +
∑
`,m

X`

`!
⊗ Xm

m!
J̃t
k+`+m(τ ) , (6.32)

as well as

∆+1 = 1⊗ 1 , ∆+Xi = Xi ⊗ 1 + 1⊗Xi ,

∆+J̃t
k(τ ) = 1⊗ J̃t

kτ +
∑
`

(
J̃t
k+` ⊗

(−X)`

`!

)
∆τ , (6.33)

with the additional property that both maps are multiplicative with respect to the
tree product.

We see therefore that the operators ∆: T→ T⊗T+ and ∆+ : T+ → T+ ⊗T+

are isomorphic to those defined in [Hai14, Eq. (8.8)–(8.9)]. This shows that the
regularity structure T , associated to a subcritical complete rule R, is isomorphic to
the regularity structure associated to a subcritical equation constructed in [Hai14,
Sec. 8], modulo a simple change of coordinates. Note that this change of coordinates
is “harmless” as far as the link to the analytical part of [Hai14] is concerned since it
does not mix basis vectors of different degrees.

As explained in Remark 5.27, the superscript ‘ex’ stands for extended: the reason
is that the regularity structure T ex is an extension of T in the sense that T ⊂ T ex

with the inclusion interpreted as in [Hai14, Sec. 2.1]. By contrast, we call T the
reduced regularity structure.

By the definition of Q, the extended structure Tex encodes more information since
we keep track of the effect of the action of G− by storing the (negative) homogeneity
of the contracted subtrees in the decoration o and by colouring the corresponding
nodes; both these details are lost when we apply Q and therefore in the reduced
structure T.

Note that if Π : Tex → C∞ is such that Zex(Π) = (Π,Γ) is a model of T ex,
then the restriction Z(Π) of Zex(Π) to T is automatically again a model. This is
always the case, irrespective of whetherΠ is reduced or not, since the action of Gex

+

leaves T invariant. This allows to give the following definition.

Definition 6.24 We denote by M∞ the space of all smooth models for T , in the
sense of Definition 6.7, obtained by restriction to Tof Zex(Π) for some reduced
admissible linear map Π : Tex → C∞. We endow M∞ with the system of
pseudo-metrics (6.17) and we denote by M0 the completion of this metric space.

Remark 6.25 The restriction that Π be reduced may not seem very natural in view
of the discussion preceding the definition. It follows however from Theorem 6.33
below that lifting this restriction makes no difference whatsoever since it implies in
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particular that every smooth admissible model on T is of the form Z(Π) for some
reduced Π.

Remark 6.26 By restriction ofZex(ΠMg) toT for g ∈ Gex
− , we get a renormalised

model Z(ΠMg) which covers all the examples treated so far in singular SPDEs.
It is however not clear a priori whether we really have an action of a suitable
subgroup of Gex

− onto M∞ or M0. This is because the coaction of ∆−ex on Tex

and Tex
+ fails to leave the reduced sector invariant. If on the other hand we tweak

this coaction by setting ∆− = (id⊗ Q)∆−ex, then unfortunately ∆+ and ∆− do not
have the cointeraction property (3.48), which was crucial for our construction, see
Remark 5.38. See Corollary 6.37 below for more on ∆−.

Remark 6.27 In accordance with [Hai14, Formula (8.20)], it follows from (6.15)
and the binomial identity that, for all Jt

k(τ ) ∈ Tex
+ with |Jt

k(τ )|+ > 0

fz(J̃t
k(τ )) = −(DkKt ∗Πzτ)(z) .

Remark 6.28 The negative twisted antipode Ãex
− : Tex

− → T̂ex
− of Proposition 6.6

satisfies the identity QÃex
− = QÃex

−Q. This follows from the induction (6.8), the
multiplicativity of Q, and the formula

(Q⊗ Q)∆−exQ = (Q⊗ Q)∆−ex , (6.34)

where ∆−ex : Tex → Tex
− ⊗ Tex. Therefore, if a stationary admissible Π is (al-

most surely) reduced, then the character g−(Π) is also reduced in the sense that
g−(Π)(Qτ ) = g−(Π)(τ ). Using again (6.34), it follows immediately that Π̂ as
given by (6.25) is again reduced, so that the class of reduced models is preserved by
the BPHZ renormalisation procedure.

There turn out to be two natural subgroups of Gex
− that are determined by their

values on QTex
− :

• We set G−
def
= {g ∈ Gex

− : g(τ ) = g(Qτ ), ∀ τ ∈ Tex
− }. This is the most natural

subgroup of Gex
− since it contains the characters g−(Π)Ãex

− used for the definition
of Π̂ in (6.25), as soon as Π = ΠQ. The fact that G− is a subgroup follows
from the property (6.34).

• We set Ga−
def
= {g ∈ Gex

− : g(τ ) = 0, ∀τ ∈ Tc
−} where Tc

− is the bialgebra
ideal of Tex

− generated by {τ ∈ B−, Qτ 6= τ}. Then one can identify
Ga− with the group of characters of the Hopf algebra

(
Tex
− /T

c
−,∆

−
ex
)
. It

turns out that this is simply the polynomial Hopf algebra with generators
{τ ∈ B− : |τ |− < 0, Qτ = τ}, so that Ga− is abelian.

We then have the following result.

Theorem 6.29 There is a continuous action R of G− onto M0 with the property
that, for every g ∈ G− and every reduced and admissible Π : Tex → C∞ with
Zex(Π) ∈M ex

0 , one has RgZ(Π) = Z(ΠMg).
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Proof. We already know by Theorem 6.16 that G− acts continuously onto M ex
0 .

Furthermore, by the definition of G−, it preserves the subset M r
0 ⊂M ex

0 of reduced
models, i.e. the closure in M ex

0 of all models of the form Zex(Π) for Π admissible
and reduced. Since T ⊂ T ex, we already mentioned that we have a natural
projection πex : M ex

0 →M0 given by restriction (so that Z(Π) = πexZex(Π)), and
it is straightforward to see that πex is injective on M r

0 . It therefore suffices to show
that there is a continuous map ιex : M0 →M ex

0 which is a right inverse to πex, and
this is the content of Theorem 6.33 below.

Remark 6.30 We’ll show in Section 6.4.3 below that the action of G− onto M0 is
given by elements of the “renormalisation group” defined in [Hai14, Sec. 8.3].

6.4.1 An example

We consider the example of the stochastic quantization given in dimension 3 by:

∂tu = ∆u+ u3 + ξ.

This equation has been solved first in [Hai14] with regularity structures and then in
[CC18]. One tree needed for its resolution reveals the importance of the extended
decoration. Using the symbolic notation, it is given by τ = I(Ξ)2I(I(Ξ)3). Then
we use the following representation:

I(Ξ) = , RαIei =
a

i , Xi = i , J= , τ = ,

where ei is the ith canonical basis element of Nd and a belongs to {α, β, γ} with
α = 2I+ 2Ξ, β = 2I+ 2Ξ + 1 and γ = 5I+ 4Ξ. Then we have

∆−ex = ⊗ 11 + 11 ⊗ + 3 ⊗
α

+ 3
i
⊗

β

i

+ ⊗
α

+
i
⊗

β

i
+ 3 ⊗

α

α

+ 3
i
⊗

α

β

i

+ 3
i
⊗

β

α

i
+ 3

i j
⊗

β

β

j

i
+ ⊗

γ
+ (...)

with summation over i and j implied. In (...), we omit terms of the form τ (1) ⊗ τ (2)

where τ (1) may contain planted trees or where τ (2) has an edge of typeIfinishing on
a leaf. The planted trees will disappear by applying an element of Gex

− and the others
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are put to zero through the evaluation of the smooth model Π see [Hai14, Ass. 5.4]
where the kernels {Kt}t∈L+ are chosen such that they integrate polynomials to zero
up to a certain fixed order. If g ∈ Gex

− is the character associated to the BPHZ
renormalisation for a Gaussian driving noise with a covariance that is symmetric
under spatial reflections, we obtain

M ex
g τ = (g ⊗ id)∆−exτ

= + 3C1

α

+ C1 α
+ 3C2

1 α

α

+ 3C2 γ

where
C1 = −g−(Π)

[ ]
, C2 = −g−(Π)

[ ]
,

and all other renormalisation constants vanish. Applying Q, we indeed recover the
renormalisation map given in [Hai14, Sec 9.2]. The main interest of the extended
decorations is to shorten some Taylor expansions which allows us to get the co-
interaction between the two renormalisations. In the computation below, we show
the difference between a term having extended decoration and the same without:

∆+
ex α

α

=
α

α

⊗ 1 + α ⊗
α

∆+
ex = ⊗ 1 + 1⊗ +Xi ⊗

i
.

6.4.2 Construction of extended models

In general if, for some sequence Π(n) : Tex → C∞, Zex(Π(n)) ∈M ex
∞ converges

to a limiting model in M ex
0 , it does not follow that the characters g+(Π(n)) of T̂ex

+

converge to a limiting character. However, we claim that the characters f (n)
x of

Tex
+ given by (6.12) do converge, which is not so surprising since our definition of

convergence implies that the characters γ(n)
xy of Tex

+ given by (6.13) do converge.
More surprising is that the convergence of the characters f (n)

x follows already
from a seemingly much weaker type of convergence. Writing D′ for the space of
distributions on Rd, we have the following.

Proposition 6.31 Let Π(n) : Tex → C∞ be an admissible linear map with

Zex(Π(n)) = (Π(n),Γ(n)) ∈M ex
∞

and assume that there exist linear maps Πx : Tex → D′(Rd) such that, with the
notation of (6.17), ‖Π(n) − Π‖`,K → 0 for every ` ∈ R and every compact set K.
Then, the characters f (n)

x defined as in (6.12) converge to a limit fx. Furthermore,
defining Γxy by (6.13), one has Z= (Π,Γ) ∈M ex

0 and Zex(Π(n))→ Z in M ex
0 .
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Finally, one has Π : Tex → D′(Rd) such that Πx = (Π⊗ fx)∆+
ex and such that

Π(n)τ → Πτ in D′(Rd) for every τ ∈ Tex.

Proof. The convergence of the f (n)
x follows immediately from the formula given in

Lemma 6.10, combined with the convergence of the Π(n)
x and [Hai14, Lem. 5.19].

The fact that (Π,Γ) satisfies the algebraic identities required for a model follows
immediately from the fact that this is true for every n. The convergence of the Γ(n)

xy

and the analytical bound on the limit then follow from [Hai14, Sec. 5.1].

Remark 6.32 This relies crucially on the fact that the maps Π under consideration
are admissible and that the kernelsKt satisfy the assumptions of [Hai14, Sec. 5]. If
one considers different notions of admissibility, as is the case for example in [HQ18],
then the conclusion of Proposition 6.31 may fail.

For a linear Π : T → C∞ we define Πex : Tex → C∞ by simply setting
Πex = ΠQ. Then we say that Π is admissible if Πex is. We have the following
crucial fact

Theorem 6.33 If Π : T→ C∞ is admissible and Z(Πex) belongs to M∞, then
Zex(Πex) belongs to M ex

∞ . Furthermore, the map Z(Πex) 7→ Zex(Πex) extends to
a continuous map from M0 to M ex

0 .

Before proving this Theorem, we define a linear map L : Tex → T⊗T+ such that

LΞl
k,` = Ξl

k,` ⊗ 1 , LXk = Xk ⊗ 1 ,

and then recursively

LRα(τ ) = Lτ , L(τ τ̄ ) = L(τ )L(τ̄ ) ,

as well as

LIt
k(τ ) = (It

k ⊗ id)Lτ −
∑

|m|s≥|It
kτ |+

Xm

m!
⊗M+(J̃t

k+m ⊗ id)Lτ , (6.35)

where M+ is the tree product (4.8) on T+ and J̃ is as in (6.31).
Moreover L+ : Tex

+ → T+ is the algebra morphism such that L+X
k = Xk and

for Jt
k(τ ) ∈ Tex

+ with |Jt
k(τ )|+ > 0

L+J̃
t
k(τ ) = M+

(
J̃t
k ⊗ id

)
Lτ . (6.36)

The reason for these definitions is that these map will provide the required injection
M0 →M ex

0 by (6.38) below. Before we proceed to show this, we state the following
preliminary identity.

Lemma 6.34 On Tex

(id⊗M+)(∆⊗ id)L = (Q⊗ L+)∆+
ex . (6.37)
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Proof. We prove (6.37) by recursion. Both maps in (6.37) agree on elements of the
form Ξl

k,` or X
k and both maps are multiplicative for the tree product. Consider

now a tree of the form It
k(τ ) and assume that (6.37) holds when applied to τ . Then

we have by (6.32)

(id⊗M+)(∆⊗ id)LIt
k(τ ) = (id⊗M+)(∆It

k ⊗ id)Lτ

− (id⊗M+)
∑

|m|s≥|It
kτ |+

∆Xm

m!
⊗M+(J̃t

k+m ⊗ id)Lτ

=
(
It
k ⊗M+

)
(∆⊗ id)Lτ +

∑
`,m

X`

`!
⊗ Xm

m!
M+(J̃t

k+`+m ⊗ id)Lτ

−
∑

|`+m|s≥|It
kτ |+

X`

`!
⊗ Xm

m!
M+(J̃t

k+`+m ⊗ id)Lτ

=
(
It
k ⊗M+

)
(∆⊗ id)Lτ +

∑
|`+m|s<|It

kτ |+

X`

`!
⊗ Xm

m!
M+(J̃t

k+`+m ⊗ id)Lτ .

On the other hand

(Q⊗ L+)∆+
exI

t
k(τ ) =

=
(
QIt

k ⊗ L+

)
∆+

exτ +
∑

|`+m|s<|It
kτ |+

X`

`!
⊗ Xm

m!
L+J̃

t
k+`+m(τ )

=
(
It
k Q⊗ L+

)
∆+

exτ +
∑

|`+m|s<|It
kτ |+

X`

`!
⊗ Xm

m!
M+(J̃t

k+`+m ⊗ id)Lτ.

Comparing both right hand sides and using the induction hypothesis, we conclude
that (6.37) does indeed hold as claimed.

Proof of Theorem 6.33. LetΠ : T→ C∞ be such thatZ(Πex) = (Π,Γ) is a model
of T and write (Πex,Γex) = Zex(Πex). In accordance with (6.12) and (6.13), we
set

f ex
z

def
= g+

z (Πex)Ãex
+ , γex

zz̄
def
= (f ex

z Aex
+ ⊗ f ex

z̄ )∆+
ex ,

so that one has

Πex
z = (Πex ⊗ f ex

z )∆+
ex , Γex

zz̄ = (id⊗ γex
zz̄ )∆+

ex .

With the notations introduced in (6.30), the model (Π,Γ) = Z(Πex) is then given
by

Πzτ = (Π⊗ fz)∆τ , Γzz̄τ = (id⊗ γzz̄)∆τ , τ ∈ T,

where fz = f ex
z �T+ and similarly for γzz̄ . Define Π̂z : Tex → C∞ and f̂z ∈ Gex

+ by

Π̂z
def
= (Πz ⊗ fz)L, f̂z

def
= fzL+ , (6.38)
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where L,L+ are defined in (6.35)-(6.36). We want to show that Πex = (Π̂z ⊗
f̂zA

ex
+ )∆+

ex for all z. By the definitions

(Π̂z ⊗ f̂zAex
+ )∆+

ex = (Πz ⊗ fz ⊗ f̂zAex
+ )(L⊗ id)∆+

ex

= (Π⊗ fzM+ ⊗ f̂zAex
+ )((∆⊗ id)L⊗ id)∆+

ex.

By (6.37)

(Π̂z ⊗ f̂zAex
+ )∆+

ex = (Π⊗ fz ⊗ f̂zAex
+ )((Q⊗ L+)∆+

ex ⊗ id)∆+
ex

= (ΠQ⊗ f̂z ⊗ f̂zAex
+ )(∆+

ex ⊗ id)∆+
ex

= (Πex ⊗ f̂z ⊗ f̂zAex
+ )(id⊗∆+

ex)∆+
ex = Πex.

We want now to show that f̂z ≡ f ex
z on Tex

+ . By Remark 6.27, for Jt
k(σ) ∈ T+ with

|Jt
k(σ)|+ > 0 we have

fz(J̃t
k(σ)) = −(DkKt ∗Πzσ)(z) .

Therefore, by the definitions of f̂z and L+, for all Jt
k(τ ) ∈ Tex

+ with |Jt
k(τ )|+ > 0

f̂z(J̃t
k(τ )) =

(
fzJ̃

t
k ⊗ fz

)
Lτ = −(DkKt ∗ (Πz ⊗ fz)Lτ)(z)

= −(DkKt ∗ Π̂zτ)(z) ,

which is equal to f ex
z (J̃t

k(τ )) by Lemma 6.10 and Remark 6.27. Since f̂z and f ex
z are

multiplicative linear functionals on Tex
+ and they coincide on a set which generates

Tex
+ as an algebra, we conclude that f̂z ≡ f ex

z on Tex
+ and therefore that Π̂z ≡ Πex

z

on Tex. Finally, we can prove by recurrence that for all τ ∈ Tex and τ̄ ∈ Tex
+

Lτ = Qτ ⊗ 1 +
∑
i

τ (1)
i ⊗ τ

(2)
i , L+τ̄ = Qτ̄ +

∑
i

τ̄i,

with |τ (1)
i |+ ≥ |τ |+ and |τ̄ (1)

i |+ ≥ |τ̄ |+. This implies the required analytical
estimates for (Πex,Γex).

6.4.3 Renormalisation group of the reduced structure

In this section, we show that the action of the renormalisation group G− onM0 given
by Theorem 6.29 is indeed given by elements of the “renormalisation group” R as
defined in [Hai14, Sec. 8.3]. This shows in particular that the BPHZ renormalisation
procedure given in Theorem 6.18 does always fit into the framework developed
there.

We recall that, by [Hai14, Lem. 8.43, Thm 8.44] and [HQ18, Thm B.1], R is the
set of linear operatorsM : T→ Tsatisfying the following properties.
• One has It

kMτ = MIt
kτ andMXkτ = XkMτ for all t ∈ L+, k ∈ Nd, and

τ ∈ T.
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• Consider the (unique) linear operators ∆M : T→ T⊗T+ and M̂ : T+ → T+

such that M̂ is an algebra morphism, M̂Xk = Xk for all k, and such that, for
every τ ∈ Tand every σ ∈ Tand k ∈ Nd with |Jt

k(σ)|+ > 0,

M̂J̃t
k(σ) = M+(J̃t

k ⊗ id)∆Mσ , (6.39)
(id⊗M+)(∆⊗ id)∆Mτ = (M ⊗ M̂ )∆τ , (6.40)

where J̃t
k : T→ T+ is defined by (6.31). Then, for all τ ∈ T, one can write

∆Mτ =
∑
τ (1) ⊗ τ (2) with |τ (1)|+ ≥ |τ |+.

Remark 6.35 Despite what a cursory inspection may suggest, the condition (6.39)
is not equivalent to the same expression with J̃t

k replaced by Jt
k. This is because

(6.39) will typically fail to hold when |Jt
k(σ)|+ ≤ 0.

We recall that the group G−
def
= {g ∈ Gex

− : g(τ ) = g(Qτ ), ∀ τ ∈ Tex
− } has beed

defined after Remark 6.28.

Theorem 6.36 Given g ∈ G−, define M ex
g on Tex and Tex

+ as in (6.18) and let
Mg : T→ T be given by Mg = QM ex

g . Then Mg ∈ R, g 7→ Mg is a group
homomorphism, and one has the identities

M̂g = L+M
ex
g : T+ → T+ , ∆Mg = LM ex

g : T→ T⊗T+ , (6.41)

where the maps L,L+ are given in (6.35)–(6.36).

Proof. In order to check (6.39), it suffices by (6.41) to use (6.36) and the fact that
M ex
g preserves the | · |+-degree. It remains to check (6.40). We have on T that

(id⊗M+)(∆⊗ id)∆Mg = (id⊗M+)(∆⊗ id)LM ex
g ,

(Mg ⊗ M̂g)∆ = (QM ex
g ⊗ L+M

ex
g )∆ =

= (QM ex
g ⊗ L+M

ex
g )∆+

ex = (Q⊗ L+)∆+
exM

ex
g ,

where we have used the co-interaction property in the last line. It follows from (6.37)
that these two terms are indeed equal. The triangularity of L andM ex

g , combined
with (6.41), implies the triangularity of ∆Mg .

The homomorphism property follows from (6.34) and the definition of G− since

MḡMg = QM ex
ḡ QM ex

g = (ḡ ⊗ Q)∆−exQM
ex
g = (ḡQ⊗ Q)∆−exQM

ex
g

= (ḡQ⊗ Q)∆−exM
ex
g = (ḡ ⊗ Q)∆−exM

ex
g = QM ex

ḡ M
ex
g = QM ex

ḡg = Mḡg ,

as required.

Corollary 6.37 The space T−
def
= Tex

− / ker Q inherits from Tex
− a Hopf algebra

structure and its group of characters is isomorphic to G−. Furthermore, the map

∆− : T→ T− ⊗T , ∆−
def
= (id⊗ Q)∆−ex ,

turns T into a left comodule for T−.
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Proof. This follows immediately from (6.34), Theorem 6.36, the definition of G−,
the fact that Q is an algebra morphism on Tex

− , and the same argument as in the
proof of Proposition 4.11.

By the Remarks 6.19 and 6.28, the renormalisation procedures of [Hai13, Hai14,
HP15, HS17] can be described in this framework.

Appendix A Spaces and canonical basis vectors

The following diagram summarises the relations between the main spaces appearing
in this article.

〈F1〉
N n

}}

K1 // // H1 T̂ex
−?
_oo

pex
−

33 33 T
ex
− = T̂ex

− /J+
Y9

iex
−ss

〈F〉 〈F◦〉
K // //? _oo H◦ Tex? _oo ?�

ι◦

OO

〈F2〉
0 P

aa

J Ĥ2 // // Ĥ2 T̂ex
+
? _oo

pex
+

33 33 T
ex

+ = T̂ex
+ /J−

Y9

iex
+ss

The next diagram similarly shows the relations between various sets of trees / forests.
The first four columns in this diagram show the canonical basis vectors for the spaces
appearing in the first four columns of the previous diagram.

F1Oo

��

K1 // // H1 B−?
_oo

S
// // T1(R)

F F◦
K // //? _oo H◦ B◦?

_oo ?�

ι◦

OO

S
// // T◦(R)
?�

OO

_�

��

T−(R)? _oo

F2

. N

^^

J Ĥ2// // Ĥ2 B+
? _oo

S
// // T2(R)

Appendix B Symbolic index

Here, we collect some of the most used symbols of the article, together with their
meaning and the page where they were first introduced.

Symbol Meaning Page

| · |bi Bigrading on coloured decorated forests 18
| · |− Degree not taking into account the label o 58
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Symbol Meaning Page

| · |+ Degree taking into account the label o 58
Ai Subforests appearing in the definition of ∆i 20
Ai Antipode of Hi 37
Aex
± Antipode of Tex

± 72
Ãex
± Twisted antipode Tex

± → T̂ex
± 76

Â2 Antipode of Ĥ2 52
B◦ Elements of H◦ strongly conforming to the rule R 70
B−◦ Elements of B◦ of negative degree 84
B]
◦ Elements of B−◦ that are not planted 85

B− Elements of H1 strongly conforming to the rule R 70
B+ Elements of Ĥ2 conforming to the rule R 70
Bi Hopf algebra of coloured forests 33
C All coloured forests (F, F̂ ) 14
Ci All coloured forests compatible with Ai 29
Di(J ) All roots of colour in {0, i} 48
D̂i(J ) All roots of colour i 48
∆i Coproduct on 〈F〉 turning the 〈Fi〉 into bialgebras 22
E Edge types given by E= L× Nd 60
f�A Restriction of the function f to the set A 19
F All decorated forests (F, F̂ , n, o, e) 15
Fi All decorated forests compatible with Ai 29
F◦ Trees with colours in {0, 1} 51
Φi Collapse of factors inMi 35
g+
z (Π) Character on T̂ex

+ defined byΠ 79
g−z (Π) Character on T̂ex

− defined byΠ 84
Gi Characters of Hi 38
Gex
± Character group of Tex

± 73
Ĝ2 Characters of Ĥ2 52
H◦ Algebra given by 〈F◦〉/ kerK 51
Ĥ2 Hopf algebra H2/ ker(J P̂2) 50
Hi Hopf algebra 〈Fi〉/Ii 36
H◦ Representative of H◦ given by H◦ = KF◦ 52
Ĥ2 Representative of Ĥ2 given by Ĥ2 = J K̂2F2 52
Hi Representative of Hi given by Hi = KiFi 36
iex
± Canonical injection Tex

± ↪→ T̂ex
± 75

Ii Kernel of Ki 36
Îi Kernel of K̂i 36
It
k Abstract integration map in H◦ 54
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Symbol Meaning Page

J Joins the root of all trees together 48
Jt
k Abstract integration map H◦ → Ĥ2 54

J+ Subspace of terms in T̂ex
− with a factor of positive degree 71

J− Subspace of terms in T̂ex
+ with a factor of negative degree 71

K Contraction of coloured portions 34
Ki Defined by Ki = Φi ◦K 35
K̂i Defined by K̂i = Pi ◦ Φi ◦K 35
|k| Unscaled length of a multi-index k 18
|k|s Scaled length of a multi-index k 58
L Set of all types 14
Mi Elements of Fi completely coloured with i 35
M Space of all models 82
M0 Closure of smooth models 82
M∞ Space of all smooth models 82
N Node types given by N= P̂(E) 60
N(x) Type of the node x 60
P̂i Sets o-decoration to 0 on i-coloured roots 35
P(A) Powerset of the set A 60
P̂(A) Multisets with elements from the set A 60
pex
± Canonical projection T̂ex

± → Tex
± 71

Π Linear map Tex → C∞ specifying a model 79
R Rule determining a class of trees 60
Rα Operator adding α to o at the root 54
s Scaling of Rd 58
T Simple decorated trees 59
T◦(R) Trees strongly conforming to the rule R 62
T1(R) Forests strongly conforming to the rule R 62
T2(R) Trees conforming to the rule R 62
T−(R) Trees strongly conforming to R of negative degree 62
T̂ex

+ Subspace of Ĥ2 determined by a rule R 70
T̂ex
− Subspace of H1 determined by a rule R 70

Tex Subspace of H◦ determined by a rule R 70
Tex

+ Quotient space T̂ex
+ /J− 71

Tex
− Quotient space T̂ex

− /J+ 71
Ui Units of 〈Fi〉 29
〈V 〉 Bigraded space generated from a bigraded set V 19
Xk Shorthand for (•, i)k,00 with i ∈ {0, 2} depending on context 54
Ξl Element Il

0(1) representing the noise 79
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Symbol Meaning Page

‖z‖s Scaled distance 78
Zex Map turningΠ into a model 79
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