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Abstract
We give a systematic description of a canonical renormalisation procedure of
stochastic PDEs containing nonlinearities involving generalised functions. This
theory is based on the construction of a new class of regularity structures which
comes with an explicit and elegant description of a subgroup of their group of
automorphisms. This subgroup is sufficiently large to be able to implement a
version of the BPHZ renormalisation prescription in this context. This is in stark
contrast to previous works where one considered regularity structures with a
much smaller group of automorphisms, which lead to a much more indirect and
convoluted construction of a renormalisation group acting on the corresponding
space of admissible models by continuous transformations.

Our construction is based on bialgebras of decorated coloured forests in coint-
eraction. More precisely, we have two Hopf algebras in cointeraction, coacting
jointly on a vector space which represents the generalised functions of the theory.
Two twisted antipodes play a fundamental role in the construction and provide a
variant of the algebraic Birkhoff factorisation that arises naturally in perturbative
quantum field theory.

Contents

1 Introduction 2

2 Rooted forests and bigraded spaces 8
2.1 Rooted trees and forests . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Coloured and decorated forests . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Bigraded spaces and triangular maps . . . . . . . . . . . . . . . . . . . . . 11

3 A general construction 13
3.1 Incidence coalgebras of subforests . . . . . . . . . . . . . . . . . . . . . 14
3.2 Operators on decorated forests . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Coassociativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Bialgebra structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Contraction of coloured subforests and Hopf algebra structure . . . . . . 22



INTRODUCTION 2

3.6 Characters group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Comodule bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.8 Skew products and group actions . . . . . . . . . . . . . . . . . . . . . . . 31

4 A specific setting suitable for renormalisation 33
4.1 Joining roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Algebraic renormalisation . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Recursive formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Renormalisation group in SPDEs 42
5.1 Simple decorated trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Trees generated by rules . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Subcriticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Three prototypical examples . . . . . . . . . . . . . . . . . . . . . . . . 52
5.6 Regularity structures determined by rules . . . . . . . . . . . . . . . . . 54
5.7 Link to previous constructions . . . . . . . . . . . . . . . . . . . . . . . 59

6 Renormalisation of models 60
6.1 Twisted antipodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Renormalised Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 The reduced regularity structure . . . . . . . . . . . . . . . . . . . . . . 72

A Symbolic index 78

1 Introduction

In a series of celebrated papers [Che54, Che57, Che58, Che71] Kuo-Tsai Chen
discovered that, for any finite alphabet A, the family of iterated integrals of a
smooth path x : R+ → RA has a number of interesting algebraic properties.
Writing T= T (RA) for the tensor algebra on RA, which we identify with the space
spanned by all finite words {(a1 · · · an)}n≥0 with letters in A, we define the family
of functionals Xs,t on T inductively by

Xs,t()
def
= 1, Xs,t(a1 · · · an) def

=

∫ t

s
Xs,u(a1 · · · an−1) ẋan(u) du

where 0 ≤ s ≤ t. Chen showed that this family yields for fixed s, t a character on
Tendowed with the shuffle product�, namely

Xs,t(v� w) = Xs,t(v)Xs,t(w), (1.1)

which furthermore satisfies the flow relation

(Xs,r ⊗ Xr,t)∆τ = Xs,tτ, s ≤ r ≤ t,

where ∆ : T→ T⊗T is the deconcatenation coproduct

∆(a1 · · · an) =
n∑
k=0

(ak+1 · · · an)⊗ (a1 · · · ak).
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In other words, we have a function (s, t) 7→ Xs,t ∈ T∗ which takes values in the
characters on the algebra (T,�) and satisfies the Chen relation

Xs,r ? Xr,t = Xs,t, s ≤ r ≤ t, (1.2)

where ? is the product dual to ∆. Note that T, endowed with the shuffle product
and the deconcatenation coproduct, is a Hopf algebra.

These two remarkable properties do not depend explicitly on the differentiability
of the path (xt)t≥0. They can therefore serve as an important tool if one wants
to consider non-smooth paths and still build a consistent calculus. This intuition
was at the heart of Terry Lyons’ definition [Lyo98] of a geometric rough path as a
function (s, t) 7→ Xs,t ∈ T∗ satisfying the two algebraic properties above and with
a controlled modulus of continuity, for instance of Hölder type

|Xs,t(a1 · · · an)| ≤ C|t− s|nγ , (1.3)

with some fixed γ > 0 (although the original definition involved rather a p-variation
norm, which is natural in this context since it is invariant under reparametrisation).
Lyons realised that this setting would allow to build a robust theory of integration
and of associated differential equations. For instance, in the case of stochastic
differential equations of Stratonovich type

dXt = σ(Xt) ◦ dWt

with W : R+ → Rd a d-dimensional Brownian motion and σ : Rd → Rd ⊗ Rd

smooth, one can build rough paths X and W over X , respectively W , such that
the map W 7→ X is continuous, while in general the map W 7→ X is simply
measurable.

The Itô stochastic integration was included in Lyons’ theory although it can
not be described in terms of geometric rough paths. A few years later Massim-
iliano Gubinelli [Gub10] introduced the concept of a branched rough path as a
function (s, t) 7→ Xs,t ∈ H∗ taking values in the characters of an algebra (H, ·) of
rooted forests, satisfying the analogue of the Chen relation (1.2) with respect to the
Grossman-Larsson ?-product, dual of the Connes-Kreimer coproduct, and with a
regularity condition

|Xs,t(τ )| ≤ C|t− s||τ |γ (1.4)

where |τ | counts the number of nodes in the forest τ and γ > 0 is fixed. Again,
this framework allows for a robust theory of integration and differential equations
driven by branched rough paths. Moreover H, endowed with the forest product and
Connes-Kreimer coproduct, turns out to be a Hopf algebra.

The theory of regularity structures [Hai14], due to the second named author of
this paper, arose from the desire to apply the above ideas to (stochastic) partial
differential equations involving non-linearities of (random) space-time distributions.
Prominent examples are the KPZ equation [Hai13, FH14, GP15], the Φ4 stochastic
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quantization equation [JLM85, AR91, DPD03, Hai14, CC13, Kup16], the con-
tinuous parabolic Anderson model [HL15b, HL15a, GIP15], and the stochastic
Navier-Stokes equations [DPD02, ZZ14].

One major obstacle to the application of the rough paths framework to such
SPDEs is that one would like to allow for the analogue of the map s 7→ Xs,tτ to
be a space-time distribution for some τ ∈ H. However, the algebraic relations
discussed above involve products of such quantities, which are in general ill-defined.
One of the main ideas of [Hai14] was to replace the Hopf-algebra structure with a
comodule structure: instead of a single space H, we have two spaces (T,T+) and a
coaction ∆+ : T→ T⊗T+ such that T is a right comodule over the Hopf algebra
T+. In this way, elements in the dual space T∗ of T can code the distributional
objects which are needed in the theory, while elements of the dual space T∗+ of T+

represent classical functions. Note that T is not assumed to be an algebra, which
reflects the fact that we do not expect to be able to multiply arbitrary distributions
with each other; T is not assumed to be a coalgebra either, so that T∗ has no natural
?-product and the Chen relation (1.2) can not be given a meaning.

However the comodule structure allows to define the analogue of a rough path
as a pair: a distribution-valued object indexed by Tand a function-valued object
indexed by T+. More precisely, we consider a distribution-valued function

Rd 3 y 7→ Πyτ ∈ T∗ ⊗ D′(Rd) ,

as well as a continuous function

Rd × Rd 3 (x, y) 7→ γx,y ∈ T∗+.

The analogue of the Chen relation (1.2) is then given by

γxy ? γyz = γxz , Πy ? γyz = Πz , (1.5)

where the first ?-product is the convolution product on T∗+, while the second ?-
product is given by the dual of the coaction ∆+. This structure guarantees that all
relevant expressions will be linear in the Πy, so we never need to multiply distri-
butions. Note that these algebraic conditions are not enough: analytic conditions
analogous to (1.4) play an essential role in the analytical aspects of the theory. Once
a model X = (Π, γ) has been constructed, it plays a role analogous to that of a rough
path and allows to construct a robust solution theory for a class of rough (partial)
differential equations.

The theory yields a canonical lift of any smoothened realisation of the driving
noise for the stochastic PDE under consideration to a model Xε. Another major
difference with what one sees in the rough paths setting is the following phenomenon:
if we remove the regularisation as ε→ 0, neither the canonical model Xε nor the
solution to the regularised equation converge in general to a limit. This is a structural
problem which reflects again the fact that some products are intrinsically ill-defined.

This is where renormalisation enters the game. It was already recognised in
[Hai14] that one should find a group R of transformations on the space of models
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and elementsMε in R in such a way that, when applyingMε to the canonical lift Xε,
the resulting sequence of models converges to a limit. Then the theory essentially
provides a black box, allowing to build maximal solutions for the stochastic PDE in
question.

One aspect of the theory developed in [Hai14] that is far from satisfactory is
that while one has in principle a characterisation of R, this characterisation is very
indirect. The methodology pursued so far has been to first make an educated guess
for a sufficiently large family of renormalisation maps, then verify by hand that
these do indeed belong to R and finally show, again by hand, that the renormalised
models converge to a limit. Since these steps did not rely on any general theory,
they had to be performed separately for each new class of stochastic PDEs.

The main aim of the present article is to define an algebraic framework allowing
to build regularity structures which, on the one hand, extend the ones built in
[Hai14] and, on the other hand, admit sufficiently many automorphisms (in the sense
of [Hai14, Def. 2.28]) to cover the renormalisation procedures of all subcritical
stochastic PDEs that have been studied to date.

Moreover our construction is not restricted to the Gaussian setting and applies to
any choice of the driving noise with minimal integrability conditions. In particular
this allows to recover all the renormalisation procedures used so far in applications
of the theory [Hai14, HP15, HQ15, HS15, Hos16, SX16]. It reaches however far
beyond this and shows that the BPHZ renormalisation procedure belongs to the
renormalisation group of the regularity structure associated to any class of subcrit-
ical semilinear stochastic PDEs. In particular, this is the case for the generalised
KPZ equation which is the most natural stochastic evolution on loop space and is
(formally!) given in local coordinates by

∂tu
α = ∂2

xu
α + Γαβγ(u)∂xuβ∂xuγ + σαi (u) ξi , (1.6)

where the ξi are independent space-time white noises, Γαβγ are the Christoffel
symbols of the underlying manifold, and the σi are a collection of vector field with
the property that

∑
i L

2
σi = ∆, where Lσ is the Lie derivative in the direction of σ

and ∆ is the Laplace-Beltrami operator. Another example is given by the stochastic
sine-Gordon equation [HS14] close to the Kosterlitz-Thouless transition. In both
of these examples, the relevant group describing the renormalisation procedures
is of very large dimension (about 100 in the first example and arbitrarily large
in the second one), so that the verification “by hand” that it does indeed belong
to the “renormalisation group” as done for example in [Hai14, HP15], would be
impractical.

The renormalisation procedure of distributions coded by T is described in this
paper by a new Hopf algebra T− and a coaction ∆− : T→ T− ⊗ T turning T

into a left comodule over T−. This construction is, crucially, compatible with the
comodule structure of T over T+. In particular, T− and T+ are in cointeraction
(in the terminology of [Foi16]), namely T+ is a left-comodule over T− and this
coaction allows to define a skew-product Hopf algebra T− n T+; moreover this is
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compatible with the two comodule structures of Tover T− and T+ respectively,
making Ta comodule over T− n T+.

Once this structure is obtained, we can define renormalised models as follows:
for a suitable choice of a functional g : T− → R,

γgzz̄ = (g ⊗ γzz̄)∆− , Πg
z = (g ⊗Πz)∆− .

With this definition one can construct a model Xg satisfying again the generalised
Chen relation (1.5) and, crucially, the associated analytical conditions.

All the coproducts and coactions mentioned above are a priori different operators,
but we describe them in a unified framework as special cases of a contraction /
extraction operation of subforests, as arising in the BPHZ renormalisation procedure
/ forest formula [BP57, Hep69, Zim69, FMRS85]. It is interesting to remark that
the structure described in this article is an extension of that previously described in
[CHV05, CHV10, CEFM11] in the context of the analysis of B-series for numerical
ODE solvers, which is itself an extension of the Connes-Kreimer Hopf algebra
of rooted trees [CK98, CK00] arising in the abovementioned forest formula in
perturbative QFT. It is also closely related to incidence Hopf algebras associated to
families of posets [Sch87, Sch94].

There are however a number of substantial differences with respect to the existing
literature. First we propose a new approach based on coloured forests; for instance
we shall consider operations like

−→ ⊗ −→ ⊗

of colouring, extraction and contraction of subforests. Further, the abovementioned
articles deal with two spaces in cointeraction, analogous to our Hopf algebras
T− and T+, while our third space T is the crucial ingredient which allows for
distributions in the analytical part of the theory. Indeed, one of the main novelties
of regularity structures is that they allow to study random distributional objects
in a pathwise sense rather than through Feynman integrals / correlation functions
and the space T encodes the fundamental bricks of this construction. Another
important difference is that the structure described here does not consist of simple
trees / forests, but they are decorated with multiindices on both their edges and their
vertices. These decorations are not inert but transform in a non-trivial way under
our coproducts, interacting with other operations like the contraction of sub-forests
and the computation of suitable gradings.

In this article, Taylor sums play a very important role, just as in the BPHZ
renormalisation procedure, and they appear in the actions of both T− (the renor-
malisation) and T+ (the recentering). In both operations, the group elements used
to perform such operations are constructed with the help of a twisted antipode,
providing a variant of the algebraic Birkhoff factorisation that was previously shown
to arise naturally in the context of perturbative quantum field theory, see for example
[Kre98, CK98, CK00, CK01, EFGK04, Guo10].
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In general, the context for a twisted antipode / Birkhoff factorisation is that of
a group G acting on some vector space A which comes with a valuation. Given
an element of A, one then wants to renormalise it by acting on it with a suitable
element such that its valuation vanishes. In the context of dimensional regularisation,
elements of A assign to each Feynman diagram a Laurent series in some parameter
ε and the valuation extracts the pole part of this series. In our case, the space A
consists of stationary linear maps Π : T→ C∞ and we have two actions on it, by
the group of characters G± of T±, corresponding to two different valuations. The
renormalisation group G− is associated to the valuation that extracts the value of
E(Πτ )(0) for every homogeneous element τ ∈ Tof negative degree. The structure
group G+ on the other hand is associated to the valuations that extract the value
(Πτ )(x) for homogeneous elements τ ∈ Tof positive degree.

We show in particular that the twisted antipode related to the action of G+ is
intimately related to the algebraic properties of Taylor remainders. Also in this
respect, regularity structures provide a far-reaching generalisation of rough paths,
expanding Massimiliano Gubinelli’s investigation of the algebraic and analytic
properties of increments of functions of a real variable achieved in the theory of
controlled rough paths [Gub04].

Let us give a short survey of the content of this article. First, in Section 2,
we introduce some of the tools and definitions required for our construction. In
particular, we introduce a notion of bigraded space which is essential to formalise
the coproducts we introduce later on. This is because our coproducts are described
by infinite formal series instead of finite sums.

In Section 3, we then use these tools to give a general construction of a sequence
of Hopf algebras and obtain a cointeraction property between bialgebras of forests.

In Section 4, we specialise this construction to the case relevant for the renor-
malisation of stochastic PDEs. This leads to the construction of two Hopf algebras
H1 and H2 as well as a vector space H◦ which is a left comodule for H1 and a
right comodule for H2. Furthermore, H2 is itself a left comodule over H1, which
allows to construct a skew-product Hopf algebra H12 = H1 n H2. Finally, H◦ is
a left-comodule over H12. This construction is universal and does not depend on
the specific class of stochastic PDEs one considers. In particular, the space H◦ is
actually an algebra and the coaction of H2 is compatible with that algebra structure.

In Section 5, we show how to further specialise this construction to specific
classes of stochastic PDEs. For this, we introduce the new notion of a rule which
formalises the notion of a class of stochastic PDEs. Rules come with a notion of
subcriticality, which makes more precise the corresponding notion used in [Hai14]
in a more informal way, as well as a notion of completeness which guarantees
that the class of stochastic PDEs in question is invariant under our renormalisation
procedure. Each complete subcritical rule then gives rise to subspaces Tex

− / Tex /
Tex

+ of H1 / H◦ / H2 which still carry all of the structure described above (except
that Tex is no longer an algebra), but the space Tex furthermore comes with a
discrete R-grading which turns T ex = (Tex, Gex

+ ) into a regularity structure, where
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Gex
± denotes the character group of Tex

± . The group Gex
− then acts on this regularity

structure by automorphisms in the sense of [Hai14, Def. 2.28].
Finally, in Section 6 we give a general and systematic construction of renor-

malised models for a subcritical SPDE with a stationary noise. In this construction
the two twisted antipodes mentioned above play a critical role. We conclude by
showing that although the regularity structure T ex is different from the structure T
constructed in [Hai14] (it extends it, which is the reason for the superscript ‘ex’),
the action of a suitable subgroup G− of Gex

− onto the space of those models for T ex

that are “compatible” with T in a suitable sense also yields a continuous action of
G− onto the space of (admissible) models for T .
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2 Rooted forests and bigraded spaces

Given a finite set S and a map ` : S → N, we write

`!
def
=
∏
x∈S

`(x)! ,

and we define the corresponding binomial coefficients accordingly. Note that if `1
and `2 have disjoint supports, then (`1 + `2)! = `1!`2!. Given a map π : S → S̄, we
also define π?` : S̄ → N by π?`(x) =

∑
y∈π−1(x) `(y).

For k, ` : S → N we define(
k

`

)
def
=
∏
x∈S

(
k(x)
`(x)

)
,

with the convention
(
k
`

)
= 0 unless 0 ≤ ` ≤ k, which will be used throughout the

paper. With these definitions at hand, one has the following slight reformulation of
the classical Chu-Vandermonde identity.

Lemma 2.1 (Chu-Vandermonde) For every k : S → N, one has the identity∑
` :π?`

(
k

`

)
=

(
π?k

π?`

)
,

where the sum runs over all possible choices of ` such that π?` is fixed.

Remark 2.2 These notations are also consistent with the case where the maps k
and ` are multi-index valued under the natural identification of a map S → Nd with
a map S × {1, . . . ,∞} → N given by `(x)i ↔ `(x, i).
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2.1 Rooted trees and forests
Recall that a rooted tree T is a finite tree (a finite connected simple graph without
cycles) with a distinguished vertex, % = %T , called the root. Vertices of T , also
called nodes, are denoted by N = NT and edges by E = ET ⊂ N2. Since we
want our trees to be rooted, they need to have at least one node, so that we do not
allow for trees with NT = 6#. We do however allow for the trivial tree consisting
of an empty edge set and a vertex set with only one element. This tree will play a
special role in the sequel and will be denoted by •. We will always assume that our
trees are combinatorial meaning that there is no particular order imposed on edges
leaving any given vertex.

Given a rooted tree T , we also endow NT with the partial order ≤ where w ≤ v
if and only if w is on the unique path connecting v to the root, and we orient edges
in ET so that if (x, y) = (x → y) ∈ ET , then x ≤ y. In this way, we can always
view a tree as a directed graph.

Two rooted trees T and T ′ are isomorphic if there exists a bijection ι : ET → ET ′

which is coherent in the sense that there exists a bijection ιN : NT → NT ′ such that
ι(x, y) = (ιN (x), ιN (y)) for any edge (x, y) ∈ e and such that the roots are mapped
onto each other.

We say that a rooted tree is typed if it is furthermore endowed with a function
t : ET → L, where L is some finite set of types. We think of L as being fixed once
and for all and will sometimes omit to mention it in the sequel. In particular, we
will never make explicit the dependence on the choice of L in our notations. Two
typed trees (T, t) and (T ′, t′) are isomorphic if T and T ′ are isomorphic and t is
pushed onto t′ by the corresponding isomorphism ι in the sense that t′ ◦ ι = t.

Similarly to a tree, a forest F is a finite simple graph (again with nodes NF

and edges EF ⊂ N2
F ) without cycles. A forest F is rooted if every connected

component T of F is a rooted tree with root %T . As above, we will consider forests
that are typed in the sense that they are endowed with a map t : EF → L, and we
consider the same notion of isomorphism between typed forests as for typed trees.
Note that while a tree is non-empty by definition, a forest can be empty. We denote
the empty forest by either 1 or 6#.

Given a typed forest F , a subforest A ⊂ F consists of subsets EA ⊂ EF and
NA ⊂ NF such that if (x, y) ∈ EA then {x, y} ⊂ NA. Types in A are inherited
from F . A connected component of A is a tree whose root is defined to be the
minimal node in the partial order inherited from F . We say that subforests A and B
are disjoint, and write A ∩B = 6#, if one has NA ∩NB = 6# (which also implies
that EA ∩EB = 6#). Given two typed forests F,G, we write F tG for the typed
forest obtained by taking the disjoint union (as graphs) of the two forests F and G
and adjoining to it the natural typing inherited from F andG. If furthermoreA ⊂ F
and B ⊂ G are subforests, then we write A tB for the corresponding subforest of
F tG.

We fix once and for all an integer d ≥ 1, dimension of the parameter-space Rd.
We also denote by Z(L) the free abelian group generated by L.
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2.2 Coloured and decorated forests
Given a typed forest F , we want now to consider families of disjoint subforests of
F , denoted by (F̂i, i > 0). It is convenient for us to code this family with a single
function F̂ : EF tNF → N as given by the next definition.

Definition 2.3 A coloured forest is a pair (F, F̂ ) such that
1. F = (EF , NF , t) is a typed rooted forest
2. F̂ : EF t NF → N is such that if F̂ (e) 6= 0 for e = (x, y) ∈ EF then
F̂ (x) = F̂ (y) = F̂ (e).

We say that F̂ is a colouring of F . For i > 0, we define the subforest of F

F̂i = (Êi, N̂i), Êi = F̂−1(i) ∩ EF , N̂i = F̂−1(i) ∩NF ,

as well as Ê =
⋃
i>0 Êi.

The condition on F̂ guarantees that every F̂i is indeed a subforest for i > 0 and
that they are all disjoint. On the other hand, F̂−1(0) is not supposed to have any
particular structure and 0 is not counted as a colour.

Example 2.4 This is an example of a forest with two colours: red for 1 and blue
for 2 (and black for 0)

(F, F̂ ) =
%A2

%A1

%A3
%A4

We then have F̂1 = F̂−1(1) = A1 tA3 and F̂2 = F̂−1(2) = A2 tA4.

We add now decorations on the nodes and edges of a coloured forest. For this, we
fix throughout this article an arbitrary “dimension” d ∈ N and we give the following
definition.

Definition 2.5 We denote by F the set of all 5-tuples (F, F̂ , n, o, e) such that
1. (F, F̂ ) is a coloured forest in the sense of Definition 2.3.
2. One has n : NF → Nd

3. One has o : NF → Zd ⊕ Z(L) with supp o ⊂ supp F̂ .
4. One has e : EF → Nd with supp e ⊂ {e ∈ EF : F̂ (e) = 0}.

We identify (F, F̂ , n, o, e) and (F ′, F̂ ′, n′, o′, e′) whenever F is isomorphic to
F ′, the corresponding isomorphism maps F̂ to F̂ ′ and pushes the three decoration
functions onto their counterparts. We call elements of F decorated forests. We will
also sometimes use the notation (F, F̂ )n,oe instead of (F, F̂ , n, o, e).

The set F is a commutative monoid under the forest product

(F, F̂ , n, o, e) · (G, Ĝ, n′, o′, e′) = (F tG, F̂ + Ĝ, n + n′, o + o′, e + e′) , (2.1)
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where decorations defined on one of the forests are extended to the disjoint union
by setting them to vanish on the other forest. The identity element of F is the empty
forest 1.

Definition 2.6 For any coloured forest (F, F̂ ), we define an equivalence relation ∼
on the node set NF by saying that x ∼ y if x and y are connected in Ê; this is the
smallest equivalence relation for which x ∼ y whenever (x, y) ∈ Ê.

Remark 2.7 We want to show the intuition behind decorated forests. We think of
each τ = (F, F̂ , n, o, e) as defining a function on (Rd)NF in the following way. We
associate to each type t ∈ L a kernel ϕt : Rd → R and we define the domain

UF
def
= {x ∈ (Rd)NF : xv = xw if v ∼ w} ,

where ∼ is the equivalence relation of Definition 2.6. Then we set Hτ ∈ C∞(UF ),

Hτ (xv, v ∈ NF ) def
=
∏
v∈NF

(xv)n(v)
∏

e=(u,v)∈EF \Ê

∂e(e)ϕt(e)(xu − xv), (2.2)

where, for x = (x1, . . . , xd) ∈ Rd, n = (n1, . . . , nd) ∈ Nd and ϕ ∈ C∞(Rd)

(x)n def
=

d∏
j=1

(xj)n
j
, ∂nϕ = ∂n

1

x1 · · · ∂
nd

xdϕ ∈ C∞(Rd) .

In this way, a decorated forest encodes a function: every node in NF / ∼ represents
a variable in Rd, every uncoloured edge of a certain type t a function ϕt(e) of the
difference of the two variables sitting at each one of its nodes; the decoration n(v)
gives a power of xv and e(e) a derivative of the kernel ϕt(e).

In this example the decoration o plays no role. We shall see below that o
allows us to encode some additional information relevant for the various algebraic
manipulations we wish to subject these functions to.

Remark 2.8 Every forest F = (NF , EF ) has a unique decomposition into non-
empty connected components. This property naturally extends to decorated forests
(F, F̂ , n, o, e), by considering the connected components of the underlying forest F
and restricting the colouring F̂ and the decorations n, o, e.

2.3 Bigraded spaces and triangular maps
It will be convenient in the sequel to consider a particular category of bigraded
spaces as follows.

Definition 2.9 For a collection of vector spaces {Vk : k ∈ N2}, we define the
vector space

V =

n∈N2

Vn ,
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as the space of all formal sums
∑

n∈N2 vn with vn ∈ Vn and such that there exists
k ∈ N such that vn = 0 as soon as n2 > k. Given two bigraded spaces V and W ,
we write V ⊗̂W for the bigraded space

V ⊗̂W def
=

n∈N2

[ ⊕
k+`=n

(Vk ⊗W`)

]
. (2.3)

One has a canonical inclusion V ⊗W ⊂ V ⊗̂W , but in general the latter is strictly
larger.

Definition 2.10 We introduce a partial order on N2 by

(m1,m2) ≥ (n1, n2) ⇔ m1 ≥ n1 & m2 ≤ n2 .

Given two such bigraded spaces V and V̄ , a family {Amn}m,n∈N2 of linear maps
Amn : Vn → V̄m is called triangular if Amn = 0 unless m ≥ n.

Lemma 2.11 Let V and V̄ be two bigraded spaces and {Amn}m,n∈N2 a triangular
family of linear maps Amn : Vn → V̄m. Then the map

Av
def
=
∑
m

(∑
n

Amnvn

)
∈
m∈N2

V̄m, v =
∑
n

vn ∈
n∈N2

Vn

is well defined from V to V̄ and linear. We call A : V → V a triangular map.

Proof. Let v =
∑

n vn ∈ V and k ∈ N such that vn = 0 whenever n2 > k.
First we note that, for fixed m ∈ N2, the family (Amnvn)n∈N2 is zero unless

n ∈ [0,m1]×[0, k]; indeed if n2 > k then vn = 0, while if n1 > m1 thenAnm = 0.
Therefore the sum

∑
nAmnvn is well defined and equal to some v̄m ∈ V̄m.

We now prove that v̄m = 0 whenever m2 > k, so that indeed
∑

m v̄m ∈
m∈N2 V̄m. Let m2 > k; for n2 > k, vn is 0, while for n2 ≤ k we have n2 < m2

and therefore Anm = 0 and this proves the claim.

A linear function A : V → V̄ which can be obtained as in Lemma 2.11 is called
triangular. The family (Amn)m,n∈N2 defines an infinite lower triangular matrix and
composition of triangular maps is then simply given by formal matrix multiplication,
which only ever involves finite sums thanks to the triangular structure of these
matrices.

Remark 2.12 The reason for introducing the notion of bigraded spaces as above is
that it allows us to build a family of combinatorial Hopf algebras where the coproduct
of each canonical basis vector is given by an infinite formal series. In order to define
this, we could of course simply have considered spaces of arbitrary infinite formal
series. However the dual of such a space contains only finite sequences, so that
it typically contains no non-zero multiplicative functional at all! The notion of
bigrading introduced here gives us enough flexibility to construct spaces that are
sufficiently large to contain our coproducts and whose dual is still sufficiently large
to contain a large class of multiplicative linear functionals.
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Remark 2.13 One important remark is that this construction behaves quite nicely
under duality in the sense that if V and W are two bigraded spaces, then it is still
the case that one has a canonical inclusion V ∗⊗W ∗ ⊂ (V ⊗̂W )∗. Indeed, the dual
V ∗ consists of formal sums

∑
n v
∗
n with v∗n ∈ V ∗n such that, for every k ∈ N there

exists f (k) such that v∗n = 0 for every n ∈ N2 with n1 ≥ f (n2).

The set F, see Definition 2.5, admits a number of different useful gradings and
bigradings. One bigrading that is well adapted to the construction we give below is
given by setting

|(F, F̂ )n,oe |bi
def
= (|e|, |F \ (F̂ ∪ %F )|) , (2.4)

where

|e| =
∑
e∈EF

|e(e)|, |a| =
d∑
i=1

ai, ∀ a ∈ Nd,

and |F \ (F̂ ∪ %F )| denotes the number of edges and vertices on which F̂ vanishes
that aren’t roots of F . Then

|F· G|bi = |F|bi + |G|bi , (2.5)

for any F, G∈ F.
For any subset A ⊆ F let now 〈A〉 denote the space built from A with this

grading, namely
〈A〉 def

=

n∈N2

Vec{F∈ A : |F|bi = n} , (2.6)

where VecS denotes the free vector space generated by a set S. Whenever M is a
submonoid of F, as a consequence of (2.5) the forest product · can be interpreted as
a triangular linear map from 〈M〉 ⊗̂ 〈M〉 into 〈M〉, thus turning (〈M〉, ·) into an
algebra in the category of bigraded spaces as in Definition 2.9. This is in particular
the case for M = F. We emphasise once again that in general 〈M〉 is larger than
VecM . The following simple fact will be used several times in the sequel. Here
and throughout this article, we use as usual the notation f�A for the restriction of a
map f to some subset A of its domain.

Lemma 2.14 Let V = n Vn be a bigraded space and let P : V → V be a
triangular map preserving the bigrading of V (in the sense that there exist linear
maps Pn : Vn → Vn such that P �Vn = Pn for every n) and satisfying P ◦ P = P .
Then, the quotient space V̂ = V/ kerP is again bigraded and one has canonical
identifications

V̂ =
n

(Vn/ kerPn) =
n

(PnVn) .

3 A general construction

In this section we want to introduce a general class of operators on spaces of
decorated forests and show that, under suitable assumptions, one can construct



A GENERAL CONSTRUCTION 14

in this way bialgebras, Hopf algebras and comodules. We start with a simplified
setting.

3.1 Incidence coalgebras of subforests
Denote by P the set of all pairs (G;F ) such that F is a typed forest and G is a
subforest of F and by C the free vector space generated by P. Suppose that for all
(G;F ) ∈ P we are given a (finite) collection A(G;F ) of subforests A of F such
that G ⊆ A ⊆ F . Then we define the linear map ∆ : C→ C⊗ C by

∆(G;F ) def
=

∑
A∈A(G;F )

(G;A)⊗ (A;F ). (3.1)

If A(G;F ) is equal to the set of all subforests A of F containing G, then it is a
simple exercise to show that ∆ is coassociative, namely that

(∆⊗ id)∆ = (id⊗∆)∆ on C.

In particular, since the inclusion G ⊆ F endows the set of typed forests with a
partial order, (C,∆) is an example of an incidence coalgebra, see [Sch87, Sch94].
However, if A(F ;G) is a more general class of subforests, then coassociativity is
not granted in general and holds only under certain assumptions.

Suppose now that, given a typed forest F , we want to consider not one but several
disjoint subforests G1, . . . , Gn of F . A natural way to code (G1, . . . , Gn;F ) is to
use a coloured forest (F, F̂ ) where

F̂ (x) =
∑
k

k 1x∈Gk , x ∈ NF t EF .

Then, in the notation of Definition 2.3, we have F̂i = Gi for i > 0 and F̂−1(0) =
F \ (∪iGi).

In order to define a generalisation of the operator ∆ of formula (3.1) to this
setting, we fix i > 0 and assume the following.

Assumption 1 Let i > 0. For each coloured forest (F, F̂ ) as in Definition 2.3 we
are given a collection Ai(F, F̂ ) of subforests of F such that for every A ∈ Ai(F, F̂ )
1. F̂i ⊂ A and F̂j ∩A = 6# for every j > i,
2. for all 0 < j < i and every connected component T of F̂j , one has either
T ⊂ A or T ∩A = 6#.

We also assume that Ai is compatible with the equivalence relation ∼ given by tree
isomorphisms described above in the sense that if A ∈ Ai(F, F̂ ) and ι : (F, F̂ )→
(G, Ĝ) is a tree isomorphism, then ι(A) ∈ Ai(G, Ĝ).

It is important to note that colours are denoted by positive integer numbers and
are therefore ordered, so that the forests F̂j , F̂i and F̂k can play different roles in
Assumption 1 if j < i < k. This becomes crucial in our construction below, see
Proposition 3.22 and Remark 3.24.
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Lemma 3.1 Let (F, F̂ ) be a coloured forest and A ∈ Ai(F, F̂ ). Write
• F̂ �A for the restriction of F̂ to NA t EA
• F̂ ∪i A for the function on EF tNF given by

(F̂ ∪i A)(x) =

{
i if x ∈ EA tNA,

F̂ (x) otherwise.

Then, under Assumption 1, (A, F̂ �A) and (F, F̂ ∪i A) are coloured forests.

Proof. The claim is elementary for (A, F̂ �A); in particular, setting Ĝ def
= F̂ �A, we

have Ĝj = F̂j ∩A for all j > 0. We prove it now for (F, F̂ ∪i A). We must prove
that, setting Ĝ def

= F̂ ∪iA, the sets Ĝj
def
= Ĝ−1(j) define subforests of F for all j > 0.

We have by the definitions

Ĝi = F̂i ∪A, Ĝj = F̂j\A, j 6= i, j > 0,

and these are subforests of F by the properties 1 and 2 of Assumption 1.

This allows to define the following operator for fixed i > 0

∆i(F, F̂ ) def
=

∑
A∈Ai(F,F̂ )

(A, F̂ �A)⊗ (F, F̂ ∪i A). (3.2)

Note that if i = 1 and F̂ ≤ 1 then we can identify the coloured forest (F, F̂ ) with
the pair of subforests (F̂1;F ) ∈ P, A(F̂1;F ) with A1(F, F̂ ) and ∆ in (3.1) with ∆1

in (3.2).

Example 3.2 Consider the following example of a forest with two colours: red for
1 and blue for 2 (and black for 0)

(F, F̂ ) =

`1 `3`2

`4

`5 `6 `7 `8

A valid example of A ∈ A2(F, F̂ ) could be such that

(A, F̂ �A)⊗ (F, F̂ ∪2 A) =

`3

`4

`6 `7

⊗

`1 `3`2

`4

`5 `6 `7 `8

Note that in this example, one has F̂2 ⊂ A, so that A /∈ A1(F, F̂ ) since A violates
the first condition of Assumption 1. A valid example of B ∈ A1(F, F̂ ) could be
such that

(B, F̂ �B)⊗ (F, F̂ ∪1 B) =

`3`2

`4

`5 `8 ⊗

`1 `3`2

`4

`5 `6 `7 `8
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In the rest of this section we state several assumptions on the family Ai(F, F̂ )
yielding nice properties for the operator ∆i such as coassociativity, see e.g. Assump-
tion 2. However, one of the main results of this article is the fact that such properties
then automatically also hold at the level of decorated forests with a non-trivial action
on the decorations which will be defined in the next subsection.

3.2 Operators on decorated forests
We generalise now the construction (3.2) to decorated forests.

Definition 3.3 The triangular linear maps ∆i : 〈F〉 → 〈F〉 ⊗̂ 〈F〉 are given for
τ = (F, F̂ , n, o, e) by

∆iτ =
∑

A∈Ai(F,F̂ )

∑
εFA,nA

1

εFA!

(
n

nA

)
(A, F̂ �A, nA + πεFA, o�NA, e�EA) (3.3)

⊗ (F, F̂ ∪i A, n− nA, o + nA + π(εFA − eA6#), eFA + εFA) ,

where
a) For A ⊆ B ⊆ F and f : EF → Nd, we use the notation fBA

def
= f 1EB\EA .

b) The sum over nA runs over all maps nA : NF → Nd with supp nA ⊂ NA.
c) The sum over εFA runs over all εFA : EF → Nd supported on the set of edges

∂(A,F ) def
= {(e+, e−) ∈ EF \ EA : e+ ∈ NA}, (3.4)

that we call the boundary of A in F . This notation is consistent with point a).
d) For all ε : EF → Zd we denote

πε : NF → Zd, πε(x) def
=

∑
e=(x,y)∈EF

ε(e).

We will henceforth use these notational conventions for sums over node / edge
decorations without always spelling them out in full.

Example 3.4 Let (F, F̂ ) and A as in Example 3.2. Then the boundary of A in F is
given by ∂(A,F ) = {(x, `1), (y, `5), (z, `8)} for some x, y, z ∈ NA.

Remark 3.5 It may not be obvious why Definition 3.3 is natural, so let us try to
offer an intuitive explanation of where it comes from. First note that (3.3) reduces
to (3.2) if we drop the decorations and the combinatorial coefficients.

If we go back to Remark 2.7, and we recall that a decorated forest encodes a
function of a set of variables in Rd indexed by the nodes of the underlying forest,
then we can realise that the operator ∆i in (3.3) is naturally motivated by Taylor
expansions.

Let us consider first the particular case of τ = (F, F̂ , 0, o, e). Then nA has to
vsnish because of the constraint 0 ≤ nA ≤ n and (3.3) becomes

∆iτ =
∑

A∈Ai(F,F̂ )

∑
εFA

1

εFA!
(A, F̂ �A, πεFA, o, e) (3.5)
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⊗ (F, F̂ ∪i A, 0, o + π(εFA − eA6#), eFA + εFA) .

Consider a single term in this sum and fix an edge e = (v, w) ∈ ∂(A,F ). Then, in
the expression

(F, F̂ ∪i A, 0, o + π(εFA − eA6#), eFA + εFA) ,

the decoration of e is changing from e(e) to e(e)+εFA(e). Recalling (2.2), this should
be interpreted as differentiating εFA(e) times the kernel encoded by the edge e. At
the same time, in the expression

(A, F̂ �A, πεFA, o�NA, e�EA) ,

the term πεFA(v) is a sum of several contributions, among which εFA(e). If we take
into account the factor 1/εFA(e)!, we recognise a (formal) Taylor sum∑

k∈Nd

(xv)k

k!
∂e(e)+k
xv ϕt(e)(xv − xw), e = (v, w) ∈ ∂(A,F ).

If n is not zero, then we have a similar Taylor sum given by∑
k∈Nd

(xv)k

k!
∂e(e)+k
xv

[
(xv)n(v)ϕt(e)(xv − xw)

]
, e = (v, w) ∈ ∂(A,F ).

The role of the decoration o is still mysterious at this stage: we ask the reader to wait
until the Remarks 3.15, 5.38 and 6.25 below for an explanation. The connection
between our construction and Taylor expansions (more precisely, Taylor remainders)
will be made clear in Lemma 6.9 and Remark 6.10 below.

Remark 3.6 Note that, in (3.3), for each fixed A the decoration nA runs over a
finite set because of the constraint 0 ≤ nA ≤ n.

On the other hand, εFA runs over an infinite set, but the sum is nevertheless well
defined as an element of 〈F〉 ⊗̂ 〈F〉, even though it does not belong to the algebraic
tensor product 〈F〉 ⊗ 〈F〉. Indeed, since |e�A|+ |eFA + εFA| = |e|+ |εFA| ≥ |e| and

|A \ ((F̂ �A) ∪ %A)|+ |F \ ((F̂ ∪i A) ∪ %F )| ≤ |F \ (F̂ ∪ %F )| ,

it is the case that if |τ |bi = n, then the degree of each term appearing on the right
hand side of (3.3) is of the type (n1 + k1, n2 − k2) with ki ≥ 0. Since furthermore
the sum is finite for any given value of |εFA|, this is indeed a triangular map on 〈F〉.

There are many other ways of bigrading F to make the ∆i triangular, but the
one chosen here has the advantage that it behaves nicely with respect to the various
quotient operations of Sections 3.5 and 4.1 below.

Remark 3.7 The coproduct ∆i defined in (3.3) does not look like that of a combi-
natorial Hopf algebra since for εFA the coefficients are not necessarily integers. This
could in principle be rectified easily by a simple change of basis: if we set

(F, F̂ , n, o, e)◦
def
=

1

e!
(F, F̂ , n, o, e) ,
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then we can write (3.3) equivalently as

∆iτ =
∑

A∈Ai(F,F̂ )

∑
εFA,nA

(
e + εFA
εFA

)(
n

nA

)
(A, F̂ �A, nA + πεFA, o, e)◦

⊗ (F, F̂ ∪i A, n− nA, o + nA + π(εFA − eA6#), eFA + εFA)◦ ,

for τ = (F, F̂ , n, o, e)◦. Note that with this notation it is still the case that

(F, F̂ , n, o, e)◦ · (G, Ĝ, n′, o′, e′)◦ = (F tG, F̂ + Ĝ, n + n′, o + o′, e + e′)◦ .

However, since this lengthens some expressions, does not seem to create any
significant simplifications, and completely destroys compatibility with the notations
of [Hai14], we prefer to stick to (3.3).

Remark 3.8 As already remarked, the grading | · |bi defined in (2.5) is not preserved
by the ∆i. This should be considered a feature, not a bug! Indeed, the fact that the
first component of our bigrading is not preserved is precisely what allows us to have
an infinite sum in (3.3). A more natural integer-valued grading in that respect would
have been given for example by

|(F, F̂ )n,oe |− = |EF | − |Ê|+ |n| − |e| ,

which would be preserved by both the forest product · and ∆i. However, since e
can take arbitrarily large values, this grading is no longer positive. A grading very
similar to this will play an important role later on, see Definition 5.3 below.

3.3 Coassociativity
Assumption 2 For each coloured forest (F, F̂ ) as in Definition 2.3, the collection
Ai(F, F̂ ) of subforests of F satisfies the following properties.
1. One has

Ai(F tG, F̂ + Ĝ) = {C tD : C ∈ Ai(F, F̂ ) & D ∈ Ai(G, Ĝ)} . (3.6)

2. One has
A ∈ Ai(F, F̂ ) & B ∈ Ai(F, F̂ ∪i A) , (3.7a)

if and only if
B ∈ Ai(F, F̂ ) & A ∈ Ai(B, F̂ �B) (3.7b)

where FA = (EA, NA) denotes the subforest of F with edge setEA = {(x, y) ∈
E : {x, y} ⊂ A}.

Assumption 2 is precisely what is required so that the “undecorated” versions of
the maps ∆i, as defined in (3.2), are both multiplicative and coassociative. The next
proposition shows that the definition (3.3) is such that this automatically carries
over to the “decorated” counterparts.
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Proposition 3.9 Under Assumptions 1 and 2, the maps ∆i are coassociative and
multiplicative on 〈F〉, namely the identities

(∆i ⊗ id)∆iF= (id⊗∆i)∆iF , (3.8a)

∆i(F· G) = (∆iF) · (∆iG) , (3.8b)

hold for all F, G∈ 〈F〉.

Proof. Multiplicativity is an immediate consequence of property 1 in Assumption 2
and the fact that the factorial factorises for functions with disjoint supports, so we
only need to verify (3.8b).

Applying the definition (3.3) twice yields the identity

(∆i ⊗ id)∆i(F, F̂ , n, o, e) =

=
∑

B∈Ai(F,F̂ )

∑
εFB ,nB

∑
A∈Ai(B,F̂ �B)

∑
εBA ,nA

1

εFB!

(
n

nB

)
1

εBA !

(
nB + πεFB

nA

)
(A, F̂ �A, nA + πεBA , o, e)⊗ (3.9)

(B, (F̂ �B) ∪i A, nB + πεFB − nA, o + nA + π(εBA − eA6#), eBA + εBA)⊗

(F, F̂ ∪i B, n− nB, o + nB + π(εFB − eB6#), eFB + εFB) .

Note that we should write for instance (A, F̂ �A, nA + πεBA , o�NA, e�EA) rather
than (A, F̂ �A, nA + πεBA , o, e), but in this as in other cases we prefer the lighter
notation if there is no risk of confusion. Analogously, one has

(id⊗∆i)∆i(F, F̂ , n, o, e) =

=
∑

A∈Ai(F,F̂ )

∑
εFA,nA

∑
C∈Ai(F,F̂∪iA)

∑
εFC ,nC

1

εFA!

(
n

nA

)
1

εFC !

(
n− nA
nC

)
(A, F̂ �A, nA + πεFA, o, e)⊗ (3.10)

(C, (F̂ ∪i A)�C, nC + πεFC , o + nA + π(εFA − eA6#), eCA + (εFA)CA)⊗

(F, F̂ ∪i C, n−nA−nC , o+nA+nC + π((εFA)FC + εFC − eC6#), eFC + (εFA)FC + εFC),

where we recall that, by Definition 3.3, for A ⊆ B ⊆ F and f : EF → Nd, we use
the notation fBA

def
= f 1EB\EA ; in particular

(εFA)FC
def
= εFA 1EF \EC , (εFA)CA

def
= εFA 1EC . (3.11)

By this definition it is clear that (εFA)FC and (εFA)CA have disjoint supports and more-
over

(εFA)FC + (εFA)CA = εFA.

This is the reason, in particular, why the term π((εFA)FC) appears in the last line of
(3.10). In the proof of (3.10) we also make use of the fact that, since A ⊂ C, one
has

(F̂ ∪i A) ∪i C = F̂ ∪i C .
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We now make the following changes of variables. First, we set

ε̄FC
def
= (εFA)FC + εFC , ε̄CA

def
= (εFA)CA , ε̄FA,C

def
= ε̄FC − εFC = (εFA)FC (3.12)

with the naming conventions (3.11). Note that the support of ε̄FA,C is contained in
∂(A,F ) ∩ ∂(C,F ). Now the map

(εFA, ε
F
C) 7→ (ε̄FC , ε̄

C
A, ε̄

F
A,C)

given by (3.12) is invertible on its image, with inverse given by

(ε̄FC , ε̄
C
A, ε̄

F
A,C) 7→ (εFA, ε

F
C) = (ε̄CA + ε̄FA,C , ε̄

F
C − ε̄FA,C). (3.13)

Furthermore, the only restriction on its image besides the constraints on the supports
is the fact that ε̄FA,C ≤ ε̄FC , which is required to guarantee that, with εFC = ε̄FC− ε̄FA,C
as in (3.13), one has εFC ≥ 0.

Now, the supports of ε̄CA and ε̄FA,C are disjoint, since

supp ε̄CA ⊂ ∂(A,F ) ∩ EC , supp ε̄FA,C ⊂ ∂(A,F ) \ EC .

Since the factorial factorises for functions with disjoint supports, we can rewrite the
combinatorial prefactor as

1

εFA!

1

εFC !
=

1

ε̄CA!ε̄FA,C !

1

(ε̄FC − ε̄FA,C)!
=

1

ε̄CA!ε̄FC !

(
ε̄FC
ε̄FA,C

)
. (3.14)

In this way, the constraint ε̄FA,C ≤ ε̄FC is automatically enforced by our convention
for binomial coefficients, so that (3.10) can be written as

(id⊗∆i)∆i(F, F̂ , n, o, e) =

=
∑

A∈Ai(F,F̂ )

∑
C∈Ai(F,F̂∪iA)

∑
ε̄CA,ε̄

F
C ,ε̄

F
A,C

∑
nA,nC

1

ε̄FC !ε̄CA!

(
ε̄FC
ε̄FA,C

)(
n

nA

)(
n− nA
nC

)
(A, F̂ �A, nA + πεFA, o, e)⊗ (3.15)

(C, (F̂ ∪i A)�C, nC + πεFC , o + nA + π(εFA − eA6#), eCA + ε̄CA)⊗

(F, F̂ ∪i C, n−nA−nC , o+nA+nC + π(ε̄FC − eC6#), eFC + ε̄FC) ,

where εFA and εFC are determined by (3.13).
We now make the further change of variables

n̄C = nA + nC , n̄A = nA + πε̄FA,C .

It is clear that, given ε̄FA,C , this is again a bijection onto its image and that the latter
is given by those functions with the relevant supports such that furthermore

n̄A ≥ πε̄FA,C . (3.16)
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With these new variables, (3.13) immediately yields

nA + πεFA = n̄A + πε̄CA , nC + πεFC = n̄C − n̄A + πε̄FC . (3.17)

Furthermore, we have(
n

nA

)(
n− nA
nC

)
=

(
n

nA + nC

)(
nA + nC

nA

)
=

(
n

n̄C

)(
n̄C

n̄A − πε̄FA,C

)
. (3.18)

Rewriting the combinatorial factor in this way, our convention on binomial co-
efficients once again enforces the condition (3.16), so that (3.15) can be written
as

(id⊗∆i)∆i(F, F̂ , n, o, e) = (3.19)

=
∑

A∈Ai(F,F̂ )

∑
C∈Ai(F,F̂∪iA)

∑
ε̄CA,ε̄

F
C ,ε̄

F
A,C

∑
n̄A,n̄C

1

ε̄FC !ε̄CA!

(
n

n̄C

)(
ε̄FC
ε̄FA,C

)(
n̄C

n̄A − πε̄FA,C

)
(A, F̂ �A, n̄A + πε̄CA, o, e)⊗
(C, (F̂ ∪i A)�C, n̄C − n̄A + πε̄FC , o + n̄A + πε̄CA − πeA6#, eCA + ε̄CA)⊗

(F, F̂ ∪i C, n− n̄C , o+n̄C + π(ε̄FC − eC6#), eFC + ε̄FC) ,

with the summation only restricted by the conditions on the supports implicit in the
notations. At this point, we note that the right hand side depends on ε̄FA,C only via
the combinatorial factor and that, as a consequence of Chu-Vandermonde, one has∑

ε̄FA,C

(
ε̄FC
ε̄FA,C

)(
n̄C

n̄A − πε̄FA,C

)
=
∑
ε̄FA,C

(
ε̄FC
ε̄FA,C

)(
n̄C

n̄A − πε̄FA,C

)

=
∑
πε̄FA,C

(
πε̄FC
πε̄FA,C

)(
n̄C

n̄A − πε̄FA,C

)
=

(
n̄C + πε̄FC

n̄A

)
. (3.20)

Inserting (3.20) into (3.19), using the fact that (F̂ �C) ∪i A = (F̂ ∪i A)�C and
comparing to (3.9) (with B replaced by C) completes the proof.

3.4 Bialgebra structure
Fix throughout this section i > 0.

Definition 3.10 For Ai a family satisfying Assumptions 1 and 2, we set

Fi = {(F, F̂ , n, o, e) ∈ F : F̂ ≤ i & {F, F̂i} ⊂ Ai(F, F̂ )} .

We also define the set Ui of all (F, i, 0, o, 0) ∈ Fi, where (F, i) denotes the coloured
forest (F, F̂ ) such that either F is empty or F̂ ≡ i on the whole forest F . In
particular, one has |τ |bi = 0 for every τ ∈ Ui. Finally we define 1?i : F → R by
setting

1?i (τ ) def
= 1(τ∈Ui). (3.21)
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Assumption 3 For every coloured forest (F, F̂ ) such that F̂i ∈ Ai(F, F̂ ) and for
all A ∈ Ai(F, F̂ ), we have
1. {A, F̂i} ⊂ Ai(A, F̂ �A)
2. if F̂ ≤ i then {F,A} ⊂ Ai(F, F̂ ∪i A).

Under Assumptions 1 and 3 it immediately follows from (3.3) that, setting

〈Fi〉 =

n∈N2

Vec{F∈ Fi : |F|bi = n}

as in (2.6), ∆i maps 〈Fi〉 into 〈Fi〉 ⊗̂ 〈Fi〉.

Lemma 3.11 Under Assumptions 1, 2 and 3, (〈Fi〉, ·,∆i, 1, 1?i ) is a bialgebra in
the category of bigraded spaces as in Definition 2.9.

Proof. It follows from the first part of Assumption 2 that Fi is closed under the
product, so that (〈Fi〉, ·, 1) is indeed an algebra.

Since we already argued that ∆i : 〈Fi〉 → 〈Fi〉 ⊗̂ 〈Fi〉 and since ∆i is coassocia-
tive by (3.8a), in order to show that (〈Fi〉,∆i, 1?i ) is a coalgebra, it remains to show
that

(1?i ⊗ id)∆i = (id⊗ 1?i )∆i = id, on 〈Fi〉 .

For A ∈ Ai(F, F̂ ), we have (A, F̂ �A, n′, o′, e′) ∈ Ui if and only if F̂ ≡ i on A,
i.e. A ⊆ F̂i; since F̂i ⊆ A by Assumption 1, then the only possibility is A = F̂i.
Analogously, we have (F, F̂ ∪i A, n′, o′, e′) ∈ Ui if and only if A = F . The
definition (3.3) of ∆i yields the result.

The required compatibility between the algebra and coalgebra structures is given
by (3.8b), thus concluding the proof.

In general, the bialgebra (〈Fi〉, ·,∆i, 1, 1?i ) does not admit an antipode. However,
there is a simple way of turning it into a Hopf algebra (again in the category of
bigraded spaces as in Definition 2.9) by taking a suitable quotient, which is what
we are going to show now.

3.5 Contraction of coloured subforests and Hopf algebra structure
In order to obtain an antipode for ∆i, we can restrict to decorated forests s.t. F̂
is non-zero only on a set of isolated nodes. An additional requirement is that an
isolated node in F which is coloured by i must have a non-zero label n.

To formalise this, we introduce a contraction operator on coloured forests. Given
a coloured forest (F, F̂ ), we recall that Ê, defined in Definition 2.3, is the union of
all edges in F̂j over all j > 0.

Definition 3.12 For any coloured forest (F, F̂ ), we write KÊF for the typed forest
obtained in the following way. We use the equivalence relation ∼ on the node set
NF defined in Definition 2.6, namely x ∼ y if x and y are connected in Ê. Then
KÊF is the quotient graph of (NF , EF \ Ê) by ∼. By the definition of ∼, each
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equivalence class is connected so that KÊF is again a typed forest. Finally, F̂
is constant on equivalence classes with respect to ∼, so that the coloured forest
(KÊF, F̂ ) is well defined.

Note that in (KÊF, F̂ ) all non-empty coloured subforests are reduced to single
nodes.

Example 3.13 With the notation of Definition 3.12, we have the following example
of contraction of a coloured forest

(F, F̂ ) =

`1 `3`2

`4

`5 `6 `7 `8

−→ (KÊF, F̂ ) =

`1 `2 `5

`8
.

The construction in Definition 3.12 defines a map K
]

Ê
from subforests of KÊF

to subforests of F . We are going to restrict our attention to collections Ai satisfying
the following assumption.

Assumption 4 For all coloured forests (F, F̂ ), the map K
]

Ê
is a bijection between

Ai(KÊF, F̂ ) and Ai(F, F̂ ).

We now extend the contraction operator of Definition 3.12 to decorated forests.

Definition 3.14 Let K : 〈F〉 → 〈F〉 be the triangular map given by

K(F, F̂ )n,oe
def
= (KÊF, F̂ )[n],[o]

[e] , (F, F̂ )n,oe ∈ F,

where the decorations [n], [o] and [e] are defined as follows:
• if x is an equivalence class of∼ as in Definition 3.12, then [n](x) =

∑
y∈x n(y).

• [e] is defined by simple restriction of e on EF \ Ê.
• [o](x) is defined by

[o](x) =
∑
y∈x

o(y) +
∑

e∈EF∩x2
t(e). (3.22)

Recall that, as assumed in Definition 2.5, o and [o] take values in Zd ⊕ Z(L), so
that this expression makes sense.

Remark 3.15 The contraction of a subforest entails a loss of information. We use
the decoration o in order to retain part of the lost information, namely the types of
the edges which are contracted. This plays an important role in the degree | · |+
introduced in Definition 5.3 and is the key to one of the main results of this paper,
see Remark 5.38.
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Let now Mi ⊂ Fi be the set of decorated forests which are of type (F, i, n, o, 0).
This includes the case F = 6# so that Ui ⊂ Mi, where Ui is defined in Defini-
tion 3.10. We define then an operator ki : Mi →Mi by setting

ki(ν) def
= (•, i,Σn, 0, 0) ,

for any ν = (F, i, n, o, 0) with Σn
def
=
∑

NF
n. Note that, for every τ ∈ Fi, there is a

unique couple (µ, ν) such that τ = µ · ν, ν ∈Mi, and such that every connected
component of µ = (G, Ĝ, n, o, e) in the sense of Remark 2.8 contains at least one
node x on which Ĝ(x) 6= i. Using this factorisation, we define Φi : Fi → Fi by

Φi(τ ) def
= µ · ki(ν) . (3.23)

We also define Φ̂i : Fi → Fi by Φ̂i = P̂i ◦ Φi = Φi ◦ P̂i, where P̂i(G, Ĝ, n, o, e)
sets o to 0 on every connected component of Ĝi that contains a root of G. Finally,
we define Ki, K̂i : Fi → Fi

Ki
def
= Φi ◦K , K̂i

def
= Φ̂i ◦K . (3.24)

Since Kcommutes with Φi (as well as with Φ̂i), is multiplicative, and is the identity
on the image of ki in Mi, it follows that for τ = µ · ν as above, we have

Ki(τ ) = K(µ) · ki(ν) .

Moreover Ki and K̂i are idempotent and extend to triangular maps on 〈Fi〉 since
K, Φi and Φ̂i are all idempotent and preserve our bigrading. We then have the
following.

Lemma 3.16 Under Assumptions 1–4, the spaces Ii = kerKi ⊂ 〈Fi〉 and Îi =
ker K̂i are bialgebra ideals, i.e.

〈Fi〉 ·Ii ⊂ Ii, ∆iIi ⊂ Ii ⊗̂ 〈Fi〉+ 〈Fi〉 ⊗̂Ii ,

and similarly for Îi.

Proof. Although Ki is not quite an algebra morphism of (〈Fi〉, ·), it has the property
Ki(a · b) = Ki(a ·Ki(b)) for all a, b ∈ Fi, from which the first property follows
for Ii. Since P̂i is an algebra morphism, the same holds for Îi. To show the
second claim, we first recall that for all coloured forests (F, F̂ ), the map K

]

Ê
defined

in Definition 3.12 is, by the Assumption 4, a bijection between Ai(KÊF, F̂ ) and
Ai(F, F̂ ). Combining this with Chu-Vandermonde, one can show that K satisfies

(K⊗K)∆iK= (K⊗K)∆i . (3.25)

The same can easily be verified for Φi and P̂i, so that it also holds for Ki and K̂i,
whence the claim follows.
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If we define
Hi

def
= 〈Fi〉/Ii, 1i

def
= 1 + Ii ∈ Hi, (3.26)

then, as a consequence of Lemma 3.16, (Hi, ·,∆i, 1i, 1?i ) defines a bialgebra.

Remark 3.17 Using Lemma 2.14, we have a canonical isomorphism

(Hi, ·,∆i, 1i, 1?i ) ←→ (〈Hi〉,KiM, (Ki ⊗Ki)∆i, 1i, 1?i ) ,

where Hi = {F ∈ Fi : KiF = F} = KiFi and M denotes the product. This
can be useful if one wants to work with explicit representatives rather than with
equivalence classes.

Proposition 3.18 Under Assumptions 1–4, the space (Hi, ·,∆i, 1, 1?i ) is a Hopf
algebra.

Proof. By Lemma 3.11, 1?i is a counit in Hi. We only need now to show that this
space admits an antipode Ai, that we are going to construct recursively.

For k ∈ Nd, we denote by Xk ∈ Hi the equivalence class of the element
(•, i, k, 0, 0). It then follows from

∆iX
k =

∑
j∈Nd

(
k

j

)
Xj ⊗Xk−j (3.27)

that the subspace spanned by (Xk, k ∈ Nd) is isomorphic to the Hopf algebra of
polynomials in d commuting variables, provided that we set

AiX
k = (−1)|k|Xk . (3.28)

For any τ = (F, F̂ , n, o, e) ∈ Fi, let |τ |i = |F \ F̂i| and recall the definition (2.4)
of the bigrading |τ |bi. Note that |Kiτ |i = |τ |i and, as we have already remarked,
|Kiτ |bi = |τ |bi, so that both these gradings make sense on Hi. We now extend Ai
to Hi by induction on |τ |i.

If |τ |i = 0 then, by definition, one has τ ∈ Mi so that τ = Xk for some k
and (3.28) defines Aiτ . Let now N > 0 and assume that Aiτ has been defined
for all τ ∈ Hi with |τ |i < N . Assume also that it is such that if |τ |bi = m, then
(Aiτ )n 6= 0 only if n ≥ m, which is indeed the case for (3.28) since all the terms
appearing there have degree (0, 0). (This latter condition is required if we want Ai
to be a triangular map.)

For τ = (F, F̂ , n, o, e) and k : NF → Nd, we define Rkτ
def
= (F, F̂ , k, o, e). For

such a τ with |τ |i = N and |τ |bi = M , we then note that one has (with the obvious
modification of Sweedler’s notation)

∆iτ =
∑
k≤n

(
n

k

)
Rkτ ⊗Xn−k +

∑
`+m≥M

τ `(1) ⊗ τm(2) ,
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where for j = 1, 2 and ` ∈ N2

τ `(j) ∈ Vec{σ ∈ Hi : |σ|bi = `, |σ|i < N}.

Here, the property |σ|i < N holds because these terms come from terms with
A 6= F in (3.3). Since for τ 6= 1i we want to have

M(Ai ⊗ id)∆iτ = 0 ,

this forces us to choose Aiτ in such a way that

Aiτ = −
∑
k 6=n

(
n

k

)
Ai(Rkτ ) ·Xn−k −

∑
`+m≥M

Ai(τ `(1)) · τm(2) . (3.29)

In the case n = 0, this uniquely defines Aiτ by the induction hypothesis since every
one of the terms τ `(1) appearing in this expression satisfies |τ `(1)|i < N . In the case
where n 6= 0, it is also easily seen to be uniquely defined by performing a second
inductive step over |n| ∈ N.

All terms appearing in the right hand side of (3.29) do indeed satisfy that their
total | · |bi-degree is at least M by using the induction hypothesis. Furthermore, our
definition immediately guarantees that M(Ai ⊗ id)∆i = 1i1?i . It remains to verify
that one also has M(id ⊗ Ai)∆i = 1i1?i . For this, it suffices to verify that Ai is
multiplicative, whence the claim follows by mimicking the proof of the fact that a
semigroup with left identity and left inverse is a group.

Multiplicativity of Ai also follows by induction over N = |τ |i. Indeed, it follows
from (3.28) that it is the case for N = 0. It is also easy to see from (3.29) that if τ is
of the form τ ′ ·Xk for some τ ′ and some k > 0, then one has Aiτ = (Aiτ ′)·(AiXk).
Assuming that it is the case for all values less than some N , it therefore suffices to
verify that Ai is multiplicative for elements of the type τ = σ · σ̄ with |σ|i∧|σ̄|i > 0.
If we extend Ai multiplicatively to elements of this type then, as a consequence of
the multiplicativity of ∆i, one has

M(Ai ⊗ id)∆iτ = (M(Ai ⊗ id)∆iσ) · (M(Ai ⊗ id)∆iσ̄) = 0 ,

as required. Since the map Ai satisfying this property was uniquely defined by our
recursion, this implies that Ai is indeed multiplicative.

3.6 Characters group
Recall that an element g ∈ H∗i is a character if g(τ · τ̄ ) = g(τ )g(τ̄ ) for any τ, τ̄ ∈ Hi.
Denoting by Gi the set of all such characters, the Hopf algebra structure described
above turns Gi into a group by

(f ◦ g)(τ ) = (f ⊗ g) ∆iτ , g−1(τ ) = g(Aiτ ) , (3.30)

where the former operation is guaranteed to make sense by Remark 2.13.
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Definition 3.19 Denote by Pi the set of elements F= (F, F̂ , n, o, e) ∈ Hi as in
Remark 3.17, such that
• F has exactly one connected component
• either F̂ is not identically equal to i or F = (•, i, δn, 0, 0) for some n ∈
{1, . . . , d}, where (δn(•))j = δnj .

It is then easy to see that for every τ ∈ Hi there exists a unique (possibly empty)
collection {τ1, . . . , τN} ⊂ Pi such that τ = Ki(τ1 · . . . · τN ). As a consequence, a
multiplicative functional on Hi is uniquely determined by the collection of values
{g(τ ) : τ ∈ Pi}. The following result gives a complete characterisation of the
class of functions g : Pi → R which can be extended in this way to a multiplicative
functional on Hi.

Proposition 3.20 A function g : Pi → R determines an element of Gi as above
if and only if there exists m : N → N such that g(τ ) = 0 for every τ ∈ Pi with
|τ |bi = n such that n1 > m(n2).

Proof. We first show that, under this condition, the unique multiplicative extension
of g defines an element of H∗i . By Remark 2.13, we thus need to show that there
exists a function m̃ : N → N such that g(τ ) = 0 for every τ ∈ Hi with |τ |bi = n
and n1 > m̃(n2).

If σ = (F, F̂ , n, o, e) ∈ Pi satisfies n2 = 0, then F̂ is nowhere equal to 0 on F
by the definition (2.4); by property 2 in Definition 2.3, F̂ is constant on F , since
we also assume that F has a single connected component; in this case e ≡ 0 by
property 3 in Definition 2.5; therefore, if n2 = 0 then n1 = 0 as well. Therefore we
can set m̃(0) = 0.

Let now k ≥ 1. We claim that m̃(k) def
= k sup1≤`≤km(`) has the required property.

Indeed, for τ = Ki(τ1 · . . . · τN ), one has g(τ ) = 0 unless g(τj) 6= 0 for every j; in
this case, setting nj = (nj1, n

j
2) = |τj |bi, we have m(nj2) ≥ nj1 for all j = 1, . . . , N .

Since n = (n1, n2) def
= |τ |bi =

∑
j |τj |bi, this implies that nk =

∑
j n

j
k, k = 1, 2.

Then
m̃(n2) ≥ n2 max

1≤`≤n2

m(`) ≥ n2 max
1≤`≤N

nj1 ≥ n1.

The converse is elementary.

3.7 Comodule bialgebras
Let us fix throughout this section 0 < i < j. We want now to study the possible
interaction between the structures given by the operators ∆i and ∆j .

Assumption 5 Let 0 < i < j. For every coloured forest (F, F̂ ) such that F̂ ≤ j
and {F, F̂j} ⊂ Aj(F, F̂ ), one has F̂i ∈ Ai(F, F̂ ).

Lemma 3.21 Let 0 < i < j. Under Assumptions 1–4 for i and under Assumption 5
we have

∆i : 〈Fj〉 → 〈Fi〉 ⊗̂ 〈Fj〉 , (1?i ⊗ id)∆i = id ,
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which endows 〈Fj〉 with the structure of a left-comodule over the bialgebra 〈Fi〉.

Proof. Let (F, F̂ , n, o, e) ∈ Fj and A ∈ Ai(F, F̂ ); by Definition 3.10, we have
F̂ ≤ j and {F, F̂j} ⊂ Aj(F, F̂ ), so that by Assumption 5 we have F̂i ∈ Ai(F, F̂ ).
Then, by property 1 in Assumption 3, we have F̂i ∩ A = F̂i ∈ Ai(A, F̂ �A).
Now, since A ∩ F̂j = 6# by property 1 in Assumption 1, we have (F̂ ∪i A)j =
F̂j \ A = F̂j ∈ Aj(F, F̂ ∪i A) by the Definition 3.10 of Fj ; all this shows that
∆i : 〈Fj〉 → 〈Fi〉 ⊗̂ 〈Fj〉.

For A ∈ Ai(F, F̂ ), we have (A, F̂ �A, n′, o′, e′) ∈ Ui if and only if F̂ ≡ i on A,
i.e. A ⊆ F̂i; since F̂i ⊆ A by Assumption 1, then the only possibility is A = F̂i.
By Assumption 5 we have F̂i ∈ Ai(F, F̂ ) and therefore (1?i ⊗ id)∆i = id.

Finally, the co-associativity (3.8a) of ∆i on F shows the required compatibility
between the coaction ∆i : 〈Fj〉 → 〈Fi〉 ⊗̂ 〈Fj〉 and the coproduct ∆i : 〈Fi〉 →
〈Fi〉 ⊗̂ 〈Fi〉.

We now introduce an additional structure which will yield as a consequence a
co-interaction property between the maps ∆i and ∆j .

Assumption 6 Let 0 < i < j. For every coloured forest (F, F̂ ), one has

A ∈ Ai(F, F̂ ) & B ∈ Aj(F, F̂ ∪i A) , (3.31a)

if and only if

B ∈ Aj(F, F̂ ) & A ∈ Ai(F, F̂ ∪j B) t Ai(B, F̂ �B) , (3.31b)

where A t Ā is a shorthand for {A t Ā : A ∈ A & Ā ∈ Ā}.

We then have the following result.

Proposition 3.22 Under Assumptions 1 and 6 for some 0 < i < j, the identity

M(13)(2)(4)(∆i ⊗∆i)∆j = (id⊗∆j)∆i (3.32)

holds on F, where we used the notation

M(13)(2)(4)(τ1 ⊗ τ2 ⊗ τ3 ⊗ τ4) = (τ1 · τ3 ⊗ τ2 ⊗ τ4) . (3.33)

Proof. The proof is very similar to that of Proposition 3.9, but using (3.31) instead
of (3.7). Using (3.31) and our definitions, for τ = (F, F̂ , n, o, e) ∈ F one has

M(13)(2)(4)(∆i ⊗∆i)∆j τ =

=
∑

B∈Aj (F,F̂ )

∑
A1∈Ai(B,F̂ �B)

∑
A2∈Ai(F,F̂∪jB)

∑
εFB ,ε

B
A1
,εFA2

∑
nB ,nA1

,nA2

1

εFB!εBA1
!εFA2

!

(
n

nB

)(
n− nB
nA2

)(
nB + πεFB

nA1

)
(3.34)
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(A1 tA2, F̂ �A, nA1 + nA2 + π(εBA1
+ εFA2

), o, e)

⊗ (B, (F̂ �B) ∪i A1, nB + πεFB − nA1 , o + nA1 + π(εBA1
− eA1
6# ), eBA1

+ εBA1
)

⊗ (F, (F̂ ∪j B) ∪i A2, n− nB − nA2 , o + nB + nA2 + π(εFB + εFA2
− eA2tB
6# )

, eFA2tB + (εFB)FA2
+ εFA2

) .

We claim that A2 ∩ B = 6#. Indeed, as noted in the proof of Lemma 3.1, since
B ∈ Aj(F, F̂ ) one has (F̂ ∪j B)−1(j) = B and since A2 ∈ Ai(F, F̂ ∪j B) one has
A2 ∩ (F̂ ∪j B)−1(j) = 6# by property 1 in Assumption 1. This implies that

(εFB)FA2
= εFB ,

since εFB has support in ∂(B,F ) which is disjoint from EA2 . This is because, for
e = (e+, e−) ∈ ∂(B,F ) we have by definition e+ ∈ NB ⊂ NF \NA2 and therefore
e /∈ EA2 .

Similarly, one has

(id⊗∆j)∆iτ =

=
∑

A∈Ai(F,F̂ )

∑
C∈Aj (F,F̂∪iA)

∑
εFC ,ε

F
A

∑
nC ,nA

1

εFA!εFC !

(
n

nA

)(
n− nA
nC

)
(3.35)

(A, F̂ �A, nA + πεFA, o, e)

⊗ (C, (F̂ ∪i A)�C, nC + πεFC , o + nA + π(εFA − eC6#), eFA + εFA)

⊗ (F, (F̂ ∪i A) ∪j C, n− nA − nC , o + nA + nC + π((εFA)FC + εFC − eC∪A6# )

, eFC∪A + (εFA)FC + εFC) .

By Assumption 6, there is a bijection between the outer sums of (3.34) and (3.35)
given by (A,C) ↔ (A1 t A2, B), with inverse (A1, A2, B) ↔ (A ∩ C,A\C,C).
Then one then has indeed (F̂ �B) ∪i A1 = (F̂ ∪i A)�C. Similarly, since i < j and
A2∩C = 6#, one has (F̂ ∪jB)∪iA2 = (F̂ ∪iA)∪j C, so we only need to consider
the decorations and the combinatorial factors.

For this purpose, we define

ε̄CA1
= εFA 1EC , ε̄FA2

= (εFA)1∂(A2,F ) ,

ε̄FA1,C = εFA 1∂(C,F ) , ε̄FC = εFC + ε̄FA1,C ,

as well as

n̄A1 = (nA�C) + πε̄FA1,C , n̄A2 = nA�(F \ C) , n̄C = nC + (nA�C) .

As before, the supports of these functions are consistent with our notations, with
the particular case of ε̄FA1,C

whose support is contained in ∂(A,F ) ∩ ∂(C,F ) =
∂(A1, F ) ∩ ∂(C,F ), where we use again the fact that A2 ∩ C = 6#. Moreover the
map

(εFA, ε
F
C , nA, nC) 7→ (ε̄CA1

, ε̄CA2
, ε̄FA1,C , ε̄

F
C , n̄A1 , n̄A2 , n̄C)
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is invertible on its image, given by the functions with the correct supports and the
additional constraint

n̄A1 ≥ πε̄FA1,C .

Its inverse is given by

εFC = ε̄FC − ε̄FA1,C , εFA = ε̄CA1
+ ε̄FA2

+ ε̄FA1,C ,

nA = n̄A1 + n̄A2 − πε̄FA1,C , nC = n̄C − n̄A1 + πε̄FA1,C .

Following a calculation virtually identical to (3.14) and (3.18), combined with
the fact that nA + nC = n̄C + n̄A2 , we see that

1

εFA! εFC !
=

1

ε̄CA1
! ε̄FA2

! ε̄FA1,C
!

1

(ε̄FC − ε̄FA1,C
)!

=
1

ε̄FC ! ε̄CA1
! ε̄FA2

!

(
ε̄FC
ε̄FA1,C

)
,(

n

nA

)(
n− nA
nC

)
=

(
n̄C + n̄A2

n̄A1 + n̄A2 − πε̄FA1,C

)(
n

n̄C + n̄A2

)
.

Since A2 ∩C = 6# and A1 ⊂ C, we can simplify this expression further and obtain(
n̄C + n̄A2

n̄A1 + n̄A2 − πε̄FA1,C

)
=

(
n̄C

n̄A1 − πε̄FA1,C

)
.

Following the same argument as (3.20), we conclude that∑
ε̄FA1,C

(
ε̄FC
ε̄FA1,C

)(
n̄C

n̄A1 − πε̄FA1,C

)
=

(
n̄C + πε̄FC

n̄A1

)
,

so that (3.35) can be rewritten as

(id⊗∆j)∆iτ =
∑

C∈Aj (F,F̂ )

∑
A∈Ai(F,F̂ �C)

∑
A∈Ai(F,F̂∪jC)

∑
ε̄CA1

,ε̄CA2
,ε̄FC

∑
n̄A1

,n̄A2
,n̄C

1

ε̄FC !ε̄CA1
!ε̄FA2

!

(
n

n̄C + n̄A2

)(
n̄C + πε̄FC

n̄A1

)
(A1 tA2, F̂ �A, n̄A1 + n̄A2 + π(ε̄CA1

+ ε̄FA2
), o, e)

⊗ (C, (F̂ �C) ∪i A1, n̄C + πε̄FC − n̄A1 , o + n̄A1 + π(ε̄CA1
− eA1
6# ), eCA1

+ ε̄CA1
)

⊗ (F, (F̂ ∪j C) ∪i A2, n− n̄C − n̄A2 , o + n̄C + n̄A2 + π(ε̄FC + ε̄FA2
− eA2tC
6# )

, eFA2tC + ε̄FC + ε̄FA2
) .

(3.36)

We have also used the fact that

(πεFA)�NC = π(εFA1EC ) + π(εFA1∂(C,F )) = πε̄CA1
+ πε̄FA1,C .

On the other hand, since A2 and B are disjoint, one has(
n

nB

)(
n− nB
nA2

)
=

n!

nB! nA2 ! (n− nB − nA2)!
=

(
n

nB + nA2

)
,
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so that (3.34) can be rewritten as

M(13)(2)(4)(∆i ⊗∆i)∆j τ =

=
∑

B∈Aj (F,F̂ )

∑
A1∈Ai(B,F̂ �B)

∑
A2∈Ai(F,F̂∪jB)

∑
εFB ,ε

B
A1
,εFA2

∑
nB ,nA1

,nA2

1

εFB!εBA1
!εFA2

!

(
n

nB + nA2

)(
nB + πεFB

nA1

)
(A1 tA2, F̂ �A, nA1 + nA2 + π(εBA1

+ εFA2
), o, eA1tA2

6# )

⊗ (B, (F̂ �B) ∪i A1, nB + πεFB − nA1 , o + nA1 + π(εBA1
− eA1
6# ), eBA1

+ εBA1
)

⊗ (F, (F̂ ∪j B) ∪i A2, n− nB − nA2 , o + nB + nA2 + π(εFB + εFA2
− eA2
6# )

, eFA2
+ εFB + εFA2

) .

(3.37)

Comparing this with (3.36) we obtain the desired result.

Corollary 3.23 Let 0 < i < j. If Assumptions 1–6 hold, then the space 〈Fj〉 is
a comodule bialgebra over the bialgebra 〈Fi〉 with coaction ∆i, in the sense of
[Mol77, Def 2.1(e)]. In the terminology of [Foi16, Def. 1], 〈Fj〉 and 〈Fi〉 are in
cointeraction.

Remark 3.24 Note that the roles of i and j are asymmetric for 0 < i < j: 〈Fi〉
is in general not a comodule bialgebra over 〈Fj〉. This is a consequence of the
asymmetry between the roles played by i and j in Assumption 1. In particular, every
A ∈ Ai(F, F̂ ) has empty intersection with F̂j , while any B ∈ Aj(F, F̂ ) can contain
connected components of F̂i.

3.8 Skew products and group actions
We assume throughout this subsection that 0 < i < j and that Assumptions 1–6
hold. Following [Mol77], we define a space Hij = Hi nHj as follows. As a vector
space, we set Hij = Hi ⊗̂Hj , and we endow it with the product and coproduct

(a⊗ b) · (ā⊗ b̄) = (a · ā)⊗ (b · b̄) , (3.38)

∆ij(a⊗ b) = M(14)(3)(2)(5)(id⊗ id⊗ id⊗∆i)(∆i ⊗∆j)(a⊗ b) .

We also define 1ij
def
= 1i ⊗ 1j , 1?ij

def
= 1?i ⊗ 1?j .

Proposition 3.25 The 5-tuple (Hij , ·,∆ij , 1ij , 1?ij) is a Hopf algebra.

Proof. We first note that, for every τ ∈ Mj , one has ∆iτ = 1 ⊗ τ since one has
Ai(F, j) = {6#} by Assumptions 1 and 5. It follows that one has the identity

(Ki ⊗Kj)∆i = (Ki ⊗Kj)∆iKj ,

see also (3.25). Combining this with Lemma 3.21, we conclude that one can indeed
view ∆i as a map ∆i : Hj → Hi ⊗̂Hj , so that (3.38) is well-defined.
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By Proposition 3.22, ∆ij is coassociative, and it is multiplicative with respect to
the product, see also [Mol77, Thm 2.14]. Note also that on Hj one has the identity

(id⊗ 1?j )∆i = 1i 1?j ,

where 1i is the unit in Hi. As a consequence, 1?ij is the counit for Hij , and one can
verify that

Aij = (AiM⊗Aj)(id⊗∆i) ,

is the antipode turning Hij into a Hopf algebra.

Let us recall that Gi denotes the character group of Hi.

Lemma 3.26 Let us set for ` ∈ Gi, g ∈ Gj , the element `g ∈ H∗j

(`g)τ def
= (`⊗ g) ∆iτ, τ ∈ Hj .

Then this defines a left action of Gi onto Gj by group automorphisms.

Proof. The dualization of Proposition 3.22 yields that `(g1g2) = (`g1)(`g2), which
means that this is indeed an action.

Proposition 3.27 The semi-direct product Gij
def
= GinGj , with group multiplication

(`1, g1)(`2, g2) = (`1`2, g1(`1g2)), `1, `2 ∈ Gi, g1, g2 ∈ Gj , (3.39)

defines a sub-group of the group of characters of Hij .

Proof. Note that (3.39) is the dualisation of ∆ij in (3.38). The inverse is given by

(`, g)−1 = (`−1, `−1g−1) ,

since (`, g) · (`−1, `−1g−1) = (``−1, g(``−1g−1)) = (1?i , 1?j ).

The space 〈Fj〉 is a left comodule over Hij with coaction given by ∆ij : 〈Fj〉 →
Hij ⊗ 〈Fj〉 with

∆ij = σ(132)(∆i ⊗Aj)∆j , (3.40)

where σ(132)(a⊗ b⊗ c) def
= a⊗ c⊗ b . More generally, we have:

Proposition 3.28 Let V be a vector space such that Gi acts on V on the left and
Gj acts on V on the right, and we assume that

`(hg) = (`h)(`g) , ` ∈ Gi, g ∈ Gj , h ∈ V.

Then Gij acts on the left on V by

(`, g)h = (`h)g−1 , ` ∈ Gi, g ∈ Gj , h ∈ V. (3.41)

Proof. Note that (3.41) is the dualisation of (3.40). Now we have

(`1, g1)((`2, g2)h) = (`1, g1)((`2h)g−1
2 ) = (`1((`2h)g−1

2 ))g−1
1

= (`1`2h)(`1g
−1
2 )g−1

1 = (`1`2, g1(`1g2))h = ((`1, g1)(`2, g2))h ,

which is exactly what we wanted.
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4 A specific setting suitable for renormalisation

We now specialise the framework described in the previous section to the situation
of interest to us. We define two collections A1 and A2 as follows.

Definition 4.1 For any coloured forest (F, F̂ ) as in Definition 2.3 we define the
collection A1(F, F̂ ) of all subforests A of F such that F̂1 ⊂ A and F̂2 ∩ A = 6#.
We also define A2(F, F̂ ) to consist of all subforests A of F with the following
properties:
1. A contains F̂2

2. for every non-empty connected component T of F , T ∩ A is connected and
contains the root of T

3. for every connected component S of F̂1, one has either S ⊂ A or S ∩A = 6#.

The images in Example 3.2 above are compatible with these definitions. We recall
from Definition 3.10 that Fi is given for i = 1, 2 by

Fi = {(F, F̂ , n, o, e) ∈ F : F̂ ≤ i & {F, F̂i} ⊂ Ai(F, F̂ )} .

Lemma 4.2 For τ = (F, F̂ )n,oe ∈ F we have
• τ ∈ F1 if and only if F̂ ≤ 1
• τ ∈ F2 if and only if F̂ ≤ 2 and, for every non-empty connected component T

of F , F̂2 ∩ T is a subtree of T containing the root of T .

Proof. Let (F, F̂ )n,oe ∈ F. If F̂ ≤ 1 then F̂2 = 6# and therefore F ∈ A1(F, F̂ );
moreover A = F̂1 clearly satisfies F̂1 ⊂ A and A∩ F̂2 = 6#, so that F̂1 ∈ A1(F, F̂ )
and therefore (F, F̂ )n,oe ∈ F1. The converse is obvious.

Let us suppose now that F̂ ≤ 2 and for every connected component T of F ,
F̂2 ∩ T is a subtree of T containing the root of T . Then A = F clearly satisfies the
properties 1-3 of Definition 4.1. If now A = F̂2, then A satisfies the properties 1
and 2 since for every non-empty connected component T of F , F̂2 ∩ T is a subtree
of T containing the root of T , while property 3 is satisfied since F̂1 ∩ F̂2 = 6#. The
converse is again obvious.

Example 4.3 As in previous examples, red stands for 1 and blue for 2 (and black
for 0):

∈ F1, ∈ F2.

On the other hand,

/∈ F2, /∈ F2

because F̂2 does not contain the root in the first case, and F̂2 is not connected in the
second.



A SPECIFIC SETTING SUITABLE FOR RENORMALISATION 34

Lemma 4.4 Let A1 and A2 be given by Definition 4.1.
• A1 satisfies Assumptions 1, 2, 3 and 4.
• A2 satisfies Assumptions 1, 2, 3 and 4.
• The pair (A1,A2) satisfies Assumptions 5 and 6.

Proof. The first statement concerning A1 is elementary. The only non-trivial
property to be checked about A2 is (3.7); note that A2 has the stronger property
that for any two subtrees B ⊂ A ⊂ F , one has A ∈ A2(F, F̂ ) if and only if
A ∈ A2(F, F̂ ∪2 B) and B ∈ A2(F, F̂ ) if and only if B ∈ A2(A, F̂ �A), so that
property (3.7) follows at once.

Assumption 5 is easily seen to hold, since for every coloured forest (F, F̂ ) such
that F̂ ≤ 2 and {F, F̂2} ⊂ A2(F, F̂ ), for A def

= F̂1 one has F̂1 ⊂ A and F̂2∩A = 6#,
so that F̂1 ∈ A1(F, F̂ ).

We check now that A1 and A2 satisfy Assumption 6. Let A ∈ A1(F, F̂ ) and
B ∈ A2(F, F̂ ∪1 A); then A ∩ F̂2 = 6# and therefore B ∈ A2(F, F̂ ); moreover
every connected component of A is contained in a connected component of F̂1 and
therefore is either contained in B or disjoint from B, i.e. A ∈ A1(F, F̂ ∪2 B) t
A1(B, F̂ �B). Conversely, letB ∈ A2(F, F̂ ) andA ∈ A1(F, F̂∪2B)tA1(B, F̂ �B);
then F̂1 = (F̂ ∪2 B)1 t (F̂ �B)1 and F̂2 ⊂ (F̂ ∪2 B)2 so that A contains F̂1 and is
disjoint from F̂2 and therefore A ∈ A1(F, F̂ ); moreover (F̂ ∪1 A)2 ⊆ F̂2 so that B
contains (F̂ ∪1 A)2; finally (F̂ ∪1 A)1 = A and by the assumption on A we have
that every connected component of (F̂ ∪1 A)1 is either contained in B or disjoint
from B. The proof is complete.

In view of Propositions 3.18 and 3.22, we have the following.

Corollary 4.5 The space (H2, ·,∆2, 12, 1?2) is a Hopf algebra and a comodule
bialgebra over the Hopf algebra (H1, ·,∆1, 11, 1?1) with coaction ∆1 and counit 1?1.

4.1 Joining roots
While the product given by “disjoint unions” considered so far is very natural when
considering forests, it is much less natural when considering spaces of trees. There,
the more natural thing to do is to join trees together by their roots. Given a typed
forest F , we then define the typed tree J (F ) by joining all the roots of F together.
In other words, we set J (F ) = F/ ∼, where ∼ is the equivalence relation on
nodes in NF given by x ∼ y if and only if either x = y or both x and y belong to
the set %F of nodes of F .

When considering coloured or decorated trees as we do here, such an operation
cannot in general be performed unambiguously since different trees may have roots
of different colours. This justifies the definition of the subset Di(J ) ⊂ F as the set
of all forests (F, F̂ , n, o, e) such that F̂ (%) ∈ {0, i} for every root % of F . We also
write D(J ) =

⋃
i≥0 Di(J ) and D̂i(J ) ⊂ Di(J ) for the set of forests such that

every root has colour i.
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Example 4.6 Using as usual red for 1 and blue for 2, we have

∈ D1(J ), ∈ D̂1(J ), ∈ D̂2(J ).

We can then extend J to D(J ) in a natural way as follows.

Definition 4.7 For τ = (F, F̂ , n, o, e) ∈ D(J ), we define the decorated tree
J (τ ) ∈ F by

J (τ ) = (J (F ), [F̂ ], [n], [o], e) ,

where [n](x) =
∑

y∈x n(y), [o](x) =
∑

y∈x o(y), and [F̂ ](x) = supy∈x F̂ (y).

It is clear that the Di’s are closed under multiplication and that one has

J (τ · τ̄ ) = J (τ ·J (τ̄ )) , τ, τ̄ ∈ Di(J ) (4.1)

for every i ≥ 0. Furthermore, J is idempotent and preserves our bigrading.

Example 4.8 The following forests belong to D2(J )

τ1 = τ2 = τ1 · τ2 = J (τ1 · τ2) =

The following fact is also easy to verify, where K, K̂i, Φi, Φ̂i and P̂i were defined
in Section 3.5.

Lemma 4.9 For i ≥ 0, the sets Di(J ) and D̂i(J ) are invariant under K, Φi, P̂i
and J . Furthermore, J commutes with both Kand P̂i on Di(J ) and satisfies
the identity

K̂iJ = K̂iJ K̂i , on D̂i(J ). (4.2)

In particular K̂iJ is idempotent on D̂i(J ).

Proof. The spaces Di(J ) and D̂i(J ) are invariant under K, Φi and P̂i because
these operations never change the colours of the roots. The invariance under J
follows in a similar way.

The fact that J commutes with K is obvious. The reason why it commutes with
P̂i is that o vanishes on colourless nodes by the definition of F. Regarding (4.2),
since K̂i = P̂iΦiK, and all three operators are idempotent and commute with each
other, we have

K̂iJ = ΦiP̂iJ K , K̂iJ K̂i = ΦiP̂iJ ΦiK

so that it suffices to show that

P̂iJ K= P̂iJ ΦiK . (4.3)
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For this, consider an element τ ∈ D̂i(J ) and write τ = µ · ν as in (3.23). By the
definition of this decomposition and of K, there exist k ≥ 0 and labels nj ∈ Nd,
oj ∈ Zd ⊕ Z(L) with j ∈ {1, . . . , k} such that

Kτ = (Kµ) · x(i)
n1,o1 · · ·x

(i)
nk,ok

,

where x(i)
n,o = (•, i, n, o, 0). It follows that

ΦiKτ = (Kµ) · x(i)
n,0 (4.4)

with n =
∑k

j=1 nj . On the other hand, by (4.1), one has

J Kτ = J ((Kµ) · x(i)
n,o) ,

with o defined from the oi similarly to n. Comparing this to (4.4), it follows that
J Kτ differs from J ΦiKτ only by its o-decoration at the root of one of its
connected components in the sense of Remark 2.8. Since these are set to 0 by Φ̂i,
(4.3) follows.

Finally, we show that the operation of joining roots is well adapted to the defini-
tions given in the previous subsection. In particular, we assume from now on that
the Ai for i = 1, 2 are given by Definition 4.1. Our definitions guarantee that
• F1 ⊂ D1(J )
• F2 ⊂ D̂2(J ).

We then have the following, where J is extended to the relevant spaces as a
triangular map.

Proposition 4.10 One has the identities

∆2J = (J ⊗J )∆2 = (J ⊗J )∆2J , on D(J ),

∆1J = (id⊗J )∆1 = (id⊗J )∆1J , on F2.

Proof. Extend J to coloured trees by J (F, F̂ ) = (J (F ), [F̂ ]) with [F̂ ] as in
Definition 4.7. The first identity then follows from the following facts. By the
definition of A2, one has

A2(J (F, F̂ )) = {JFA : A ∈ A2(F, F̂ )} , (4.5)

where JFA is the subforest of JF obtained by the image of the subforest A of F
under the quotient map. The map JF is furthermore injective on A2(F, F̂ ), thus
yielding a bijection between A2(J (F, F̂ )) and A2(F, F̂ ). Finally, as a consequence
of the fact that each connected component of A contains a root of F , there is
a natural tree isomorphism between JFA and JA. Combining this with an
application of the Chu-Vandermonde identity on the roots allows to conclude.

The identity (4.5) fails to be true for A1 in general. However, if (F, F̂ , n, o, e) ∈
F2, then each of the roots of F is covered by F̂−1(2), so that (4.5) with A2 replaced
by A1 does hold in this case. Furthermore, one then has a natural forest isomorphism
between JFA and A (as a consequence of the fact that A does not contain any of
the roots of F ), so that the second identity follows immediately.
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We now use the “root joining” map J to define

Ĥ2
def
= 〈F2〉/ ker(J K̂2) ' H2/ ker(J P̂2) . (4.6)

Note here that J P̂2 is well-defined on H2 by (4.2), so that the last identity makes
sense. The identity (4.2) also implies that ker(J K̂2) = ker(K̂2J ), so the order
in which the two operators appear here does not matter. Furthermore, the Hopf
algebra structure of H2 turns Ĥ2 into a Hopf algebra as well by the first part of
Proposition 4.10 and (4.1), combined with [Nic78, Thm 1 (iv)], which states that if
H is a Hopf algebra over a field and I a bi-ideal ofH such thatH/I is commutative,
then H/I is a Hopf algebra.

4.2 Algebraic renormalisation
We set

F◦
def
= {(F, F̂ , n, o, e) ∈ F : F̂ ≤ 1, F is a tree} , H◦

def
= 〈F◦〉/ ker(K) . (4.7)

Then, H◦ is an algebra when endowed with the tree product

Di(J )× Di(J ) 3 (τ, τ̄ ) 7→ τ τ̄
def
= J (τ · τ̄ ) (4.8)

in the special case i = 1. Note that this product is well-defined on H◦ since K is
multiplicative and J commutes with K. Furthermore, one has τ · τ̄ ∈ D1(J ) for
any τ, τ̄ ∈ F◦. As a consequence of (4.1) and the fact that · is associative, we see
that the tree product is associative, thus turning H◦ into a commutative algebra with
unit (•, 0, 0, 0, 0).

Remark 4.11 The main reason why we do not define H◦ similarly to Ĥ2 by setting
H◦ = 〈F1〉/ ker(J K) is that ∆1 is not well-defined on that quotient space, while
it is well-defined on H◦ as given by (4.7), see Proposition 4.14.

Remark 4.12 Using Lemma 2.14 as in Remark 3.17, we have canonical isomor-
phisms

H◦ ' 〈H◦〉, H◦
def
= {F∈ F◦ : KF= F} ,

H1 ' 〈H1〉, H1
def
= {F∈ F1 : K1F= F} , (4.9)

Ĥ2 ' 〈Ĥ2〉, Ĥ2
def
= {F∈ F2 : J K̂2F= F} .

In particular, we can view H◦ and Ĥ2 as spaces of decorated trees rather than forests.
In both cases, the original forest product · can (and will) be interpreted as the tree
product (4.8) with, respectively, i = 1 and i = 2.

We obtain from Corollary 4.5 the following extension of Theorem 8 in [CEFM11]:

Corollary 4.13 The space (Ĥ2,M,∆2, 12, 1?2), where M is the tree product (4.8)
with i = 2, is a Hopf algebra and a comodule bialgebra over the Hopf algebra
(H1, ·,∆1, 11, 1?1) with coaction ∆1 and counit 1?1.
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Moreover, combining all the results we obtained so far, we see that we have con-
structed the following structure.

Proposition 4.14 We have
1. H◦ is a left comodule over H1 with coaction ∆1 and counit 1?1.
2. H◦ is a right comodule algebra over Ĥ2 with coaction ∆2 and counit 1?2.
3. H◦ is a left comodule over the Hopf algebra Ĥ12 = H1 n Ĥ2 = (H1 n

H2)/ ker(id⊗J ), with counit 1?12 and coaction

∆◦ : H◦ → Ĥ12 ⊗̂H◦, ∆◦v
def
= σ(132)(∆1 ⊗ Â2)∆2

where σ(132)(a⊗ b⊗ c) def
= a⊗ c⊗ b and Â2 is the antipode of Ĥ2.

Proof. The first and the second assertions follow from the coassociativity of ∆1,
respectively ∆2, proved in Proposition 3.9, combined with Proposition 4.10 to show
that these maps are well-defined on the relevant quotient spaces. The multiplica-
tivity of ∆2 with respect to the tree product (4.8) follows from the first identity of
Proposition 4.10, combined with the fact that Ĥ2 is a quotient by ker J .

We denote by Ĝ2 the group of characters of Ĥ2. In order to prove the third
assertion, we show an equivalent statement: that the semi-direct product G1 n Ĝ2

acts on the left on the dual space H∗◦ by the formula

(`, g)h(τ ) def
= (`⊗ h⊗ gÂ2)(∆1 ⊗ id)∆2τ,

for ` ∈ G1, g ∈ Ĝ2, h ∈ H∗◦ , τ ∈ H◦. In order words, we want to show that with
this action H∗◦ is a left module on G1 n Ĝ2. In order to use Proposition 3.28, we
define a left action of G1 on H∗◦ by

`h(τ ) def
= (`⊗ h)∆1τ, ` ∈ G1, h ∈ H∗◦ , τ ∈ H◦,

and a right action of Ĝ2 on H∗◦ by

hg(τ ) def
= (h⊗ g)∆2τ, g ∈ Ĝ2, h ∈ H∗◦ , τ ∈ H◦.

These are indeed actions since by the coassociativity of ∆1 and ∆2 proved in
Proposition 3.9

`1(`2h) = (`1 ⊗ (`2 ⊗ h)∆1)∆1 = (`1 ⊗ `2 ⊗ h)(id⊗∆1)∆1

= (`1 ⊗ `2 ⊗ h)(∆1 ⊗ id)∆1 = ((`1 ⊗ `2)∆1 ⊗ h)∆1 = (`1`2)h,

and

(hg1)g2 = ((h⊗ g1)∆2 ⊗ g2)∆2 = (h⊗ g1 ⊗ g2)(∆2 ⊗ id)∆2

= (h⊗ g1 ⊗ g2)(id⊗∆2)∆2 = (h⊗ (g1 ⊗ g2)∆2)∆2 = h(g1g2).
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Following (3.41), the natural definition is for (`, g) ∈ G1 × Ĝ2 and h ∈ H∗◦

(`, g)h def
= (`h)g−1 = (`h⊗ gA2)∆2 = (`⊗ h⊗ gA2)(∆1 ⊗ id)∆2.

By Proposition 3.28, it is now enough to prove that

`(hg) = (`h)(`g) , ` ∈ G1, g ∈ Ĝ2, h ∈ H∗◦ . (4.10)

By the definitions, we have

`(hg) = (`⊗ (h⊗ g)∆2)∆1 = (`⊗ h⊗ g)(id⊗∆2)∆1

= (`⊗ h⊗ g)(id⊗∆2)∆1,

while

(`h)(`g) = ((`⊗ h)∆1 ⊗ (`⊗ g)∆1)∆2

= (`⊗ h⊗ `⊗ g)(∆1 ⊗∆1)∆2

= (`⊗ h⊗ g)M(13)(2)(4)(∆1 ⊗∆1)∆2,

and we conclude by Proposition 3.22.

4.3 Recursive formulae
We now show how the formalism developed so far in this article links to the one
developed in [Hai14, Sec. 8]. For that, we use the canonical identifications

H◦ = 〈H◦〉, H1 = 〈H1〉, Ĥ2 = 〈Ĥ2〉,

given in Remarks 3.17 and 4.12. We furthermore introduce the following notations.
1. For k ∈ Nd, we write Xk as a shorthand for (•, 0)k,00 ∈ H◦. We also interpret

this as an element of Ĥ2, although its canonical representative there is (•, 2)k,00 ∈
Ĥ2. As usual, we also write 1 instead of X0, and we write Xi with i ∈
{1, . . . , d} as a shorthand forXk with k equal to the ith canonical basis element
of Nd.

2. For every type t ∈ L and every k ∈ Nd, we define the linear operator

It
k : H◦ → H◦ (4.11)

in the following way. Let τ = (F, F̂ )n,oe ∈ H◦, so that we can assume that F
consists of a single tree with root %. Then, It

k(τ ) = (G, Ĝ)n̄,ōē ∈ H◦ is given by

NG = NF t {%G} , EG = EF t {(%G, %)} ,

the root of G is %G, the type of the edge (%G, %) is t. For instance

(F, F̂ ) =
%

=⇒ (G, Ĝ) =
%G

The decorations of It
k(τ ), as well as Ĝ, coincide with those of τ , except on the

newly added edge / vertex where Ĝ, n̄ and ō vanish, while ē(%G, %) = k. This
gives a triangular operator and It

k : H◦ → H◦ is therefore well defined.
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3. Similarly, we define operators

Jt
k : H◦ → Ĥ2 (4.12)

in exactly the same way as the operators It
k defined in (4.11), except that the

root of Jt
k(τ ) is coloured with the colour 2, for instance

(F, F̂ ) =
%

=⇒ (G, Ĝ) =
%G

4. For α ∈ Zd ⊕ Z(L), we define linear triangular maps Rα : H◦ → H◦ in such a
way that if τ = (T, T̂ )n,oe ∈ H◦ with root % ∈ NT , then Rα(τ ) ∈ H◦ coincides
with τ , except for o(%) to which we add α and T̂ (%) which is set to 1. In
particular, one has Rα ◦Rβ = Rα+β .

Remark 4.15 With these notations, it follows from the definition of the sets H◦,
H1 and Ĥ2 that they can be constructed as follows.
• Every element of H◦ \ {1} can be obtained from elements of the type Xk by

successive applications of the maps It
k, Rα, and the tree product (4.8).

• Every element of H1 is the forest product of a finite number of elements of H◦.
• Every element of Ĥ2 is of the form

Xk
∏
i

Jti
ki

(τi) , (4.13)

for some finite collection of elements τi ∈ H◦ \ {1}, ti ∈ L and ki ∈ Nd.

Then, one obtains a simple recursive description of the coproduct ∆2.

Proposition 4.16 With the above notations, the operator ∆2 : H◦ → H◦ ⊗̂ Ĥ2 is
multiplicative and satisfies the identities

∆2Xi = Xi ⊗ 1 + 1⊗Xi , ∆21 = 1⊗ 1 ,

∆2I
t
k(τ ) =

(
It
k ⊗ id

)
∆2τ +

∑
`

X`

`!
⊗Jt

k+`(τ ), (4.14)

∆2Rα(τ ) = (Rα ⊗ id)∆2τ .

Furthermore, the action ∆2 : Ĥ2 → Ĥ2 ⊗ Ĥ2 is completely determined by the fact
that it satisfies the identities on the first line of (4.14) and that, similarly to above,

∆2J
t
k(τ ) =

(
Jt
k ⊗ id

)
∆2τ +

∑
`

X`

`!
⊗Jt

k+`(τ ) . (4.15)



A SPECIFIC SETTING SUITABLE FOR RENORMALISATION 41

Proof. The operator ∆2 is multiplicative on H◦ as a consequence of the first identity
of Proposition 4.10 and its action onXk was already mentioned in (3.27). It remains
to verify that the recursive identities hold as well.

We first consider ∆2σ with σ = It
k(τ ) and τ = (T, T̂ )n,oe . We write σ =

(F, F̂ )n,oe+k1e , where e is the “trunk” of type t created by It
k. Writing % for the root

of F , it follows from the definitions that

A2(F, F̂ ) = {{%}} ∪ {A ∪ {%, e} : A ∈ A2(T, T̂ )} .

Indeed, if e does not belong to an element A of A2(F, F̂ ) then, since A has to
contain % and be connected, one necessarily has A = {%}. If on the other hand
e ∈ A, then one also has % ∈ A and the remainder of A is necessarily a connected
subtree of T containing its root, namely an element of A2(T, T̂ ).

Given A ∈ A2(T, T̂ ), since the root-label of σ is 0, the set of all possible node-
labels nA for σ appearing in (3.3) for ∆2σ coincides with those appearing in the
expression for ∆2τ , so that we have the identity

∆2σ = (It
k ⊗ id)∆2τ +

∑
e%,n%

1

e%!

(
n

n%

)
(•, 0, n% + πe%, o, 0)

⊗ (F, F̂ + 21e, n− n%, o, e)

= (It
k ⊗ id)∆2τ +

∑
`

1

`!
X` ⊗Jt

k+`(τ ) .

This is because n(%) = 0, so that the sum over n% contains only the zero term.
We now consider ∆2σ with σ = Rα(τ ). In this case, we write τ = (T, T̂ )n,oe so

that, denoting by % the root of T , one has σ = (T, T̂ ∨ 1%, n, o + α1%, e). We claim
that in this case one has

A2(T, T̂ ) = A2(T, T̂ ∨ 1%) .

This is non-trivial only in the case T̂ (%) = 0. In this case however, it is necessarily
the case that T̂ (e) = 0 for every edge e incident to the root. This in turn guarantees
that the family A2(T, T̂ ) remains unchanged by the operation of colouring the root.
This implies that one has

∆2Rα(τ ) = (Rα ⊗Rα)∆2τ .

This appears slightly different from the desired identity, but the latter then follows
by observing that, for every τ̄ ∈ Ĥ2, one has Rατ̄ = τ̄ as elements of Ĥ2, thanks
to the fact that we quotiented by the kernel of K̂2 which sets the value of o to 0 on
the root.

We finally have the following results on the antipode of Ĥ2:

Proposition 4.17 Let Â2 : Ĥ2 → Ĥ2 be the antipode of Ĥ2. Then
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• The algebra morphism Â2 : Ĥ2 → Ĥ2 is defined uniquely by the fact that
Â2Xi = −Xi and for all Jt

k(τ ) ∈ Ĥ2 with τ ∈ H◦

Â2Jk(τ ) = −
∑
`∈Nd

(−X)`

`!
M(Jk+` ⊗ Â2)∆2τ , (4.16)

where M: Ĥ2 ⊗ Ĥ2 → Ĥ2 denotes the (tree) product.
• On Ĥ2, one has the identity

∆1Â2 = (id⊗ Â2)∆1 . (4.17)

Proof. By (4.13) and by induction over the number of edges in τ , this uniquely
determines a morphism Â2 of Ĥ2, so it only remains to show that

M(id⊗ Â2)∆2τ = 1
Ĥ2

1?
Ĥ2

(τ ) .

The formula is true for τ = Xk, so that, since both sides are multiplicative, it is
enough to consider elements of the form Jt

k(τ ) for some τ ∈ H◦. Exploiting the
identity (4.16), one then has

M(id⊗ Â2)∆2J
t
k(τ ) =

= M(id⊗ Â2)

[(
Jt
k ⊗ id

)
∆2τ +

∑
`

X`

`!
⊗Jt

k+`(τ )

]

= M

(Jt
k ⊗ Â2

)
−
∑
`,i

X`

`!
⊗ (−X)i

i!
M(Jt

k+`+i ⊗ Â2)

∆2τ

= M

[(
Jt
k ⊗ Â2

)
−
∑
`

(X −X)`

`!
M(Jt

k+` ⊗ Â2)

]
∆2τ

=
[
M
(
Jt
k ⊗ Â2

)
−M(Jt

k ⊗ Â2)
]
∆2τ = 0 ,

as required.
A similar proof by induction yields (4.17): see the proof of Lemma 6.4 for

an analogous argument. Note that (4.17) is also a direct consequence of Propo-
sition 3.22 and more precisely of the fact that the bialgebras H1 and Ĥ2 are in
cointeraction, as follows from Remark 3.23: see [Foi16, Prop. 2] for a proof. Hav-
ing this property, the antipode Â2 is a morphism of the H1-comodule Ĥ2.

5 Renormalisation group in SPDEs

We recall the definition of a regularity structure from [Hai14, Def. 2.1]

Definition 5.1 A regularity structure T = (A, T,G) consists of the following
elements:
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• An index set A ⊂ R such that A is bounded from below, and A is locally finite.
• A model space T , which is a graded vector space T =

⊕
α∈A Tα, with each

Tα a Banach space.
• A structure group G of linear operators acting on T such that, for every Γ ∈ G,

every α ∈ A, and every a ∈ Tα, one has

Γa− a ∈
⊕
β<α

Tβ . (5.1)

The aim of this section is to relate the construction of the previous section to
the theory of regularity structures as exposed in [Hai14, Hai16b]. For this, we first
assign real-valued degrees to each element of F.

Definition 5.2 A scaling is a map s : {1, . . . d} t L→ R \ {0} such that s(i) ≥ 1
for i ∈ {1, . . . d}. By additivity, we then assign a degree to each (k, v) ∈ Zd⊕Z(L)
by setting

|(k, v)|s
def
= |k|s + |v|s ∈ R, |k|s

def
=

d∑
i=1

kisi, |v|s
def
=
∑
t∈L

vt s(t), (5.2)

if v =
∑

t∈L vtt with vt ∈ Z.

Definition 5.3 Given a scaling s as above, for τ = (F, F̂ , n, o, e) ∈ F2, we define
two different notions of degree |τ |−, |τ |+ ∈ R by

|τ |− =
∑

e∈EF \Ê

(|t(e)|s − |e(e)|s) +
∑
x∈NF

|n(x)|s ,

|τ |+ =
∑

e∈EF \EF̂2

(|t(e)|s − |e(e)|s) +
∑
x∈NF

|n(x)|s +
∑

x∈NF \NF̂2

|o(x)|s ,

where we recall that o takes values in Zd ⊕ Z(L) and t : EF → L is the map
assigning to an edge its type in F , see Section 2.1.

Note that both of these degrees are compatible with the contraction operator K
of Definition 3.14, as well as the operator J , in the sense that |τ |± = |τ̄ |± if and
only if |Kτ |± = |Kτ̄ |± and similarly for J . In the case of | · |+, this is true thanks
to the definition (3.22), while the coloured part of the tree is simply ignored by | · |−.
We furthermore have

Lemma 5.4 The degree |·|− is compatible with the operator K1 of (3.24). Similarly,
| · |+ is compatible with both K2 and K̂2. Furthermore, both degrees are compatible
with J and K, so that H1 is | · |−-graded, Ĥ2 is | · |+-graded, and H◦ is both | · |−
and | · |+-graded.
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Proof. For the first statement, we only need to verify that | · |− is compatible with
Φ1 as defined in (3.23), as long as the argument is in M1. This is indeed the case
since for such elements only the second term in the definition of | · |− contributes.
For the second statement, we need to verify that | · |+ is compatible with Φ̂2 as
defined just below (3.23). which is the case when acting on a tree with % ∈ F̂2 since
the o-decoration of nodes in F̂2 does not contribute to the definition of | · |+.

As a consequence, | · |− yields a grading for H1, | · |+ yields a grading for Ĥ2,
and both of them yield gradings for H◦. With these definitions, we see that we
obtain a structure resembling a regularity structure by taking H◦ to be our model
space, with grading given by | · |+ and structure group given by the character group
Ĝ2 of Ĥ2 acting on H◦ via

Γg : 〈F◦〉 → 〈F◦〉 , Γgτ = (id⊗ g)∆2τ .

The second statement of Proposition 4.14 then guarantees that this action is multi-
plicative with respect to the tree product (4.8) on H◦, so that we are in the context
of [Hai14, Sec. 4]. There are however two conditions that are not met:
1. The action of Ĝ2 on H◦ is not of the form “identity plus terms of strictly lower

degree”, as required for regularity structures.
2. The possible degrees appearing in H◦ have no lower bound and might have

accumulation points.
We will fix the first problem by encoding in our context what we mean by

considering a “subcritical problem”. Such problems will allow us to prune our
structure in a natural way so that we are left with a subspace of H◦ that has the
required properties. The second problem will then be addressed by quotienting a
suitable subspace of Ĥ2 by the terms of negative degree. The group of characters of
the resulting Hopf algebra will then turn out to act on H◦ in the desired way.

5.1 Simple decorated trees
In most of Section 5, the colourings and the labels o will be ignored. It is therefore
convenient to consider the space

T
def
= {(T, T̂ , n, o, e) ∈ F : T is a tree, T̂ ≡ 0, o ≡ 0}. (5.3)

In order to lighten notations, we write elements of T as (T, n, e) = T n
e with T a

typed tree (for some set of types L) and n : NT → Nd, e : ET → Nd as above.
Similarly to before, T is a monoid for the tree product (4.8). Again, this product is
associative and commutative, with unit (•, 0, 0).

Definition 5.5 We say that an element T n
e ∈ T is trivial if T consists of a single

node •. It is elementary if T has exactly one edge incident to its root % and
furthermore n(%) = 0.
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In other words, an elementary T n
e ∈ T is necessarily of the form It

k(τ ) with τ ∈ T,
see (4.11).

With this definition, each τ ∈ T has by (4.13) a unique (up to permutations)
factorisation with respect to the tree product (4.8)

τ = •nτ1τ2 · · · τk , (5.4)

for some n ∈ Nd, where each τi is elementary and •n denotes the trivial element
(•, n, 0) ∈ T.

5.2 Trees generated by rules
In order to define a suitable substructure of the structure described in Proposi-
tion 4.14, we introduce the notion of “rules”. Essentially, a “rule” describes what
behaviour we allow for a tree in the vicinity of any one of its nodes.

In order to formalise this, we first define the set of edge types E and the set of
node types Nby

E= L× Nd , N= P̂(E) def
=
⋃
n≥0

[E]n , (5.5)

where [E]n denotes the set of unordered E-valued n-uples, namely [E]n = En/Sn,
with the natural action of the symmetric group Sn on En. In other words, given any
set A, P̂(A) consists of all finite multisets whose elements are elements of A.

Remark 5.6 The fact that we consider multisets and not just n-uples is a reflection
of the fact that we always consider the situation where the tree product (4.8) is
commutative. This condition could in principle be dropped, thus leading us to
consider forests consisting of planar trees instead, but this would lead to additional
complications and does not seem to bring any advantage.

Given two sets A ⊂ B, we have a natural inclusion P̂(A) ⊂ P̂(B). We will usually
write elements of [E]n as n-uples with the understanding that this is just an arbitrary
representative of an equivalence class. In particular, we write () for the unique
element of [E]0.

Given any T n
e ∈ T, we then associate to each node x ∈ NT a node type

N(x) ∈Nby

N(x) = (s(e1), . . . , s(en)), s(e) def
= (t(e), e(e)) ∈ E, e ∈ ET , (5.6)

where (e1, . . . , en) denotes the collection of edges leaving x, i.e. edges of the form
(x, y) for some node y. We will sometimes use set-theoretic notations. In particular,
given N = (s1, . . . , sn) ∈Nand M = (r1, . . . , r`) ∈N, we write

M tN def
= (r1, . . . , r`, s1, . . . , sn) ,

and we say that M ⊂ N if there exists N̄ such that N = M t N̄ . When we write a
sum of the type

∑
M⊂N , we take multiplicities into account. For example (a, b) is
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contained twice in (a, b, b), so that such a sum always contains 2n terms if N is an
n-tuple. Similarly, we write t ∈ N if (t) ⊂ N and we also count sums of the type∑

t∈N with the corresponding multiplicities.

Definition 5.7 Denoting by PN the powerset of N, a rule is a map R : L →
PN\ {6#} such that, defining the subsets Rn ⊂ L by

R0 = 6# , Rn+1 = Rn ∪ {t ∈ L : ∃N ∈ R(t) with N ∈ P̂(Rn × Nd)} ,

one has
⋃
n>0Rn = L, with the convention P̂(6#) = {()}. A rule is said to be

normal if R(t) = {()} for every t ∈ L− and, whenever M ⊂ N ∈ R(t), one also
has M ∈ R(t).

See Remark 5.9 below for a discussion of the condition
⋃
n>0Rn = L.

Definition 5.8 Let R be a rule and τ = T n
e ∈ T. We say that

• τ conforms to R if, for every edge e = (x, y) ∈ ET , one has N(y) ∈ R(t(e)),
with N(y) defined as in (5.6)
• τ strongly conforms to R if it conforms to R and there exists t ∈ L such that

N(%τ ) ∈ R(t), where %τ is the root of τ .

In particular, the trivial tree • strongly conforms to every rule since, as a consequence
of Definition 5.7, there exists at least one t ∈ L with () ∈ R(t).

Remark 5.9 The condition
⋃
n>0Rn = L in Definition 5.7 guarantees that L

contains no useless labels in the sense that, for every t ∈ L, there exists a tree
conforming to R containing an edge of type t. More importantly, this condition also
guarantees that if we start building a tree conforming to R from the root upwards
(start with an edge of type t, add to it a node of some type in R(t), then restart the
construction for each of the outgoing edges of that node), such a construction can
always be terminated after finitely many steps by choosing for every branch a final
edge of type t such that () ∈ R(t).

Remark 5.10 A rule R can be represented by a directed bipartite multigraph
G(R) = (V (R), E(R)) as follows. Take as the vertex set V (R) = EtN. Then,
connect N ∈N to t ∈ E if t ∈ N . If t is contained in N multiple times, repeat the
connection the corresponding number of times. Conversely, connect (t, k) ∈ E to
N ∈ N if N ∈ R(t). The conditions then guarantee that () ∈ N can be reached
from every vertex in the graph. Given a tree τ ∈ T, every edge of τ corresponds
to an element of E and every node corresponds to an element of N via the map
x 7→N(x) defined above. A tree then conforms to R if, for every path joining the
root to one of the leaves, the corresponding path in V always follows directed edges
in G(R). It strongly conforms to R if the root corresponds to a vertex in V with at
least one incoming edge.
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Definition 5.11 Given s as in Definition 5.2, we assign a degree |τ |s to any τ ∈ T
by setting

|T n
e |s =

∑
e∈ET

(|t(e)|s − |e(e)|s) +
∑
x∈NT

|n(x)|s . (5.7)

This definition is compatible with both notions of degree given in Definition 5.3,
since we view T as a subset of F with F̂ and o identically 0. This also allows us to
give the following definition.

Definition 5.12 Given a rule R, we write
• T◦(R) ⊂ T for the set of trees that strongly conform to R
• T1(R) ⊂ F for the submonoid of F (for the forest product) generated by T◦(R)
• T2(R) ⊂ T for the set of trees that conform to R.

Moreover, we write T−(R) ⊂ T◦(R) for the set of trees τ = T n
e such that

• |τ |s < 0, n(%τ ) = 0,
• if τ is elementary, namely τ = It

k(τ̄ ) with τ̄ ∈ T, see (4.11), then |t|s < 0.

The second restriction on the definition of τ ∈ T−(R) is related to the definition
(5.20) of the Hopf algebra Tex

− and of its characters group Gex
− , that we call the

renormalisation group and which plays a fundamental role in the theory, see e.g.
Theorem 6.15.

5.3 Subcriticality
Given a map reg : L→ R we will henceforth interpret it as maps reg : E→ R and
reg : N→ R as follows: for (t, k) ∈ E and N ∈N

reg(t, k) def
= reg(t)− |k|s, reg(N ) def

=
∑

(t,k)∈N
reg(t, k), (5.8)

with the convention that the sum over the empty word () ∈N is 0.

Definition 5.13 A rule R is subcritical with respect to a fixed scaling s if there
exists a map reg : L→ R such that

reg(t) < |t|s + inf
N∈R(t)

reg(N ) , ∀ t ∈ L, (5.9)

where we use the notation (5.8).

We will see in Section 5.5 below that classes of stochastic PDEs generate rules.
In this context, the notion of subcriticality given here formalises the one given
somewhat informally in [Hai14]. In particular, we have the following result which
is essentially a reformulation of [Hai14, Lem. 8.10] in this context.

Proposition 5.14 If R is a subcritical rule, then, for every γ ∈ R, the set {τ ∈
T◦(R) : |τ |s ≤ γ} is finite.
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Proof. Fix γ ∈ R and let T n
e ∈ T◦(R) with |T n

e |s ≤ γ. Since there exists c > 0
such that

|T n
e |s ≥ |T 0

e |s + c|n|

and there exist only finitely many trees in T◦(R) of the type |T 0
e | for a given number

of edges, it suffices to show that the number |ET | of edges of T is bounded by some
constant depending only on γ.

Since the set L is finite, (5.9) implies that there exists a constant κ > 0 such that
the bound

reg(t) + κ ≤ |t|s + inf
N∈R(t)

reg(N ) , (5.10)

holds for every t ∈ L with the notation (5.8). We claim that for every elementary
T n
e ∈ T◦(R) such that the edge type of its trunk e = (%, x) is (t, k) ∈ E, we have

reg(t, k) ≤ |T n
e |s − κ|ET |. (5.11)

We verify (5.11) by induction on the number of edges |ET | of T . If |ET | = 1,
namely the unique element of ET is the trunk e = (%, x), then N(x) = () ∈ R(t) in
the notation of (5.6) and by (5.10)

reg(t) + κ ≤ |t|s =⇒ reg(t, k) ≤ |t|s − |k|s − κ ≤ |T n
e |s − κ.

For an elementary T n
e ∈ T◦(R) with |ET | > 1, then N(x) = (s(e1), . . . , s(en)) ∈

R(t) and by (5.10) and the induction hypothesis

reg(t)− |k|s + κ ≤ |t|s − |k|s +
n∑
i=1

[reg(ti)− |ki|s] ≤ |T n
e |s − κ(|ET | − 1) ,

where s(ei) = (ti, ki). Therefore (5.11) is proved for elementary trees.
Given an arbitrary tree T n

e of degree at most γ strongly conforming to the rule
R, there exists t0 ∈ L such that e ∈N(%T ) = R(t0). We can therefore consider the
elementary tree T̄ n

e containing a trunk of type t0 connected to the root of T , and
with vanishing labels on the root and trunk respectively. It then follows that

κ|ET | < κ|ET̄ | ≤ |T̄ n
e |s − reg(t0) = |T n

e |s + |t0|s − reg(t0)

≤ γ + inf
t∈L

(|t|s − reg(t)) ,

and the latter expression is finite since L is finite. The claim follows at once.

Remark 5.15 The fact that the inequality in (5.9) is strict is crucial, otherwise the
conclusion of Proposition 5.14 may fail to hold.

Remark 5.16 Assuming that there exists a map reg satisfying (5.10) for a given
κ > 0, the optimal such map can be constructed as follows. Set reg0

κ(t) = +∞ for
every t ∈ L and then define recursively

regn+1
κ (t) = |t|s − κ+ inf

N∈R(t)
regnκ(N ) . (5.12)
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Since regnκ(t) is decreasing in n and the function reg from (5.10) is a lower bound
for regnκ, the limit

regκ(t) = lim
n→∞

regnκ(t)

exists and has the required properties. If we extend regnκ to EtN by (5.8), the
iteration (5.12) can be interpreted as a min-plus network on the graph G(R) with
arrows reversed, see Remark 5.10.

5.4 Completeness
Given an arbitrary rule (subcritical or not), there is no reason in general to expect
that the actions of the analogues of the groups G1 and Ĝ2 constructed in Section 4
leave the linear span of T◦(R) invariant. We now introduce a notion of completeness,
which will guarantee later on that the actions of G1 and Ĝ2 do indeed leave the span
of T◦(R) (or rather an extension of it involving again labels o on nodes) invariant.
This eventually allows us to build, for large classes of subcritical stochastic PDEs,
regularity structures allowing to formulate them, endowed with a large enough
group of automorphisms to perform the renormalisation procedures required to give
them canonical meaning.

Definition 5.17 Given N = ((t1, k1), . . . , (tn, kn)) ∈ N and m ∈ Nd, we define
∂mN ⊂Nas the set of all n-tuples of the form ((t1, k1 +m1), . . . , (tn, kn +mn))
where the mi ∈ Nd are such that

∑
imi = m.

Furthermore, we introduce the following substitution operation on N. Assume that
we are given N ∈ N, M ⊂ N and an element M̃ ∈ P̂(N) which has the same
size as M . In other words, if M = (r1, . . . , r`), one has M̃ = (M̃1, . . . , M̃`) with
M̃i ∈N. Then, writing N = M t N̄ , we define

RM̃
MN

def
= N̄ t M̃1 t . . . t M̃` . (5.13)

Definition 5.18 Given a rule R, for any tree T n
e ∈ T◦(R) we associate to each edge

e ∈ ET a set N̄(e) ⊂N in the following recursive way. If e = (x, y) and y is a leaf,
namely the node-type N(y) of the vertex y is equal to the empty word () ∈N, then
we set

N̄(e) def
= R(t(e)) .

Otherwise, writing (e1, . . . , e`) the incoming edges of y, namely ei = (y, vi), we
define

N̄(e) def
= {RM

N(y)N : N(y) ⊂ N ∈ R(t(e)), M ∈ N̄(e1)× · · · × N̄(e`)} .

- Finally, we define for every node y ∈ NT a set M(y) ⊂ P̂(N) by M(y) def
= {()} if

y is a leaf, and
M(y) def

= N̄(e1)× · · · × N̄(e`)

if (e1, . . . , e`) are the outgoing edges of y.
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It is easy to see that, if we explore the tree from the leaves down, this specifies N̄(e)
and M(y) uniquely for all edges and nodes of T .

Definition 5.19 A rule R is 	-complete with respect to a fixed scaling s if, when-
ever τ ∈ T−(R) and t ∈ L are such that there exists N ∈ R(t) with N(%τ ) ⊂ N ,
one also has

∂m(RM
N(%τ )N) ⊂ R(t) ,

for every M ∈M(%τ ) and for every multiindex m with |m|s + |τ |s < 0.

At first sight, the notion of 	-completeness might seem rather tedious to verify
and potentially quite restrictive. Our next result shows that this is fortunately not
the case, at least when we are in the subcritical situation.

Proposition 5.20 Let R be a normal subcritical rule. Then, there exists a normal
subcritical rule R̄ which is 	-complete and extends R in the sense that R(t) ⊂ R̄(t)
for every t ∈ L.

Proof. Given a normal subcritical rule R, we define a new rule QR by setting

(QR)(t) = R(t) ∪
⋃

τ∈T−(R)

R−(t; τ ) , (5.14)

where R−(t; τ ) is the union of all collections of node types of the type

N̂ ∈ ∂m(RM
N(%τ )N) ,

for some N ∈ R(t) with N(%τ ) ⊂ N , some M ∈M(%τ ), and some multiindex m
with |m|s+ |τ |s ≤ 0. Since (QR)(t) ⊃ R(t) and T−(R) is finite by Proposition 5.14,
this is again a valid rule. Furthermore, by definition, a rule R is 	-complete if and
only if QR = R.

We claim that the desired rule R̄ can be obtained by setting

R̄(t) =
⋃
n≥0

(QnR)(t) .

It is straightforward to verify that R̄ is 	-complete. (This follows from the fact that
the sequence of rules QnR is increasing and Q is closed under increasing limits.)

It remains to show that R̄ is again normal and subcritical. To show normality, we
note that ifR is normal, then QR is again normal. This is because, by Definition 5.18,
the sets N̄(e) used to build M(%τ ) also have the property that if N ∈ N̄(e) and
M ⊂ N , then one also has M ∈ N̄(e). As a consequence, QnR is normal for every
n, from which the normality of R̄ follows.

To show that R̄ is subcritical, we first recall that by Remark 5.16, for κ as in
(5.10), we can find a maximal function regκ : L→ R such that

regκ(t) = |t|s − κ+ inf
N∈R(t)

regκ(N ) . (5.15)
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Furthermore, the extension of regκ to node types given by (5.8) is such that, for
every node type N and every multiindex m, one has

regκ(∂mN ) = regκ(N )− |m|s . (5.16)

(We used a small abuse of notation here since ∂mN is really a collection of node
types. Since regκ takes the same value on each of them, this creates no ambiguity.)

We claim that the same function regκ also satisfies (5.9) for the larger rule QR.
In view of (5.15) and of the definition (5.14) of QR, it is enough to prove that

regκ(t) ≤ |t|s − κ+ reg(N ), ∀N ∈
⋃

τ∈T−(R)

R−(t; τ ). (5.17)

Arguing by induction as in the proof of (5.11), one can first show the following.
Let σ ∈ T◦(R) any every elementary tree whose trunk e has edge type (t, k). Then
one has the bound

regκ(t, k) ≤ |σ|s + regκ(G) , ∀G ∈ N̄(e). (5.18)

Indeed, if e is the only edge of σ, then N̄(e) = R(t) and by (5.15)

regκ(t, k) ≤ |t|s − |k|s + regκ(G) = |σ|s + regκ(G).

If now e = (x, y) and (e1, . . . , e`) are the outgoing edges of y, then N̄(e) is the set of
all RM

N(y)N with N(y) ⊂ N ∈ R(t(e)) and M = (M1, . . . ,M`) with Mi ∈ N̄(ei).
By the induction hypothesis,

regκ(N(y)) ≤
∑̀
i=1

[
|σi|s + regκ(Mi)

]
where σi is the largest elementary subtree of σ with trunk ei. Then

regκ(RM
N(y)N ) = regκ(N )− regκ(N(y)) +

∑̀
i=1

regκ(Mi) ≥ regκ(N )−
∑̀
i=1

|σi|s.

Combining this with (5.15) we obtain, since |t|s − |k|s +
∑`

i=1 |σi|s = |σ|s,

regκ(t, k) ≤ |t|s − |k|s + reg(N ) ≤ |σ|s + regκ(RM
N(y)N )

and (5.18) is proved.
We prove now (5.17). Let τ ∈ T−(R), N ∈ R(t) with N(%τ ) ⊂ N , M =

(M1, . . . ,M`) ∈ M(%τ ), and m ∈ Nd with |m|s + |τ |s ≤ 0. Let τ = τ1 . . . τ` be
the decomposition of τ into elementary trees. Recalling (5.16) and Definitions 5.18
and 5.17, we have

regκ(∂m(RM
N(%τ )N)) = regκ

(
RM

N(%τ )N
)
− |m|s
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= regκ(N ) +
∑̀
i=1

[
regκ(Mi)− regκ(si)

]
− |m|s ,

where si is the edge type of the trunk of τi. Combining this with (5.18) yields

regκ(∂m(RM
N(%τ )N)) ≥ regκ(N )− |m|s − |τ |s ≥ regκ(N ) ,

with the last inequality a consequence of the condition |m|s + |τ |s ≤ 0. This proves
(5.17).

We conclude that (5.15) also holds when considering N ∈ (QR)(t), thus yielding
the desired claim. Iterating this, we conclude that regκ satisfies (5.9) for each of the
rules QnR and therefore also for R̄ as required.

Definition 5.21 We say that a subcritical rule R is complete (with respect to a fixed
scaling s) if it is both normal and 	-complete. If R is only normal, we call the rule
R̄ constructed in the proof of Proposition 5.20 the completion of R.

5.5 Three prototypical examples
Let us now show how, concretely, a given stochastic PDE (or system thereof) gives
rise to a rule in a natural way. Let us start with a very simple example, the KPZ
equation formally given by

∂tu = ∆u+ (∂xu)2 + ξ .

One then chooses the set L so that it has one element for each noise process and
one for each convolution operator appearing in the equation. In this case, using the
variation of constants formula, we rewrite the equation in integral form as

u = Pu0 + P ∗ 1t>0((∂xu)2 + ξ) ,

where P denotes the heat kernel and ∗ is space-time convolution. We therefore need
two types in L in this case, which we call {Ξ,I} in order to be consistent with
[Hai14].

We assign degrees to these types just as in [Hai14]. In our example, the under-
lying space-time dimension is d = 2 and the equation is parabolic, so we fix the
parabolic scaling s = (2, 1) and then assign to Ξ a degree just below the exponent
of self-similarity of white noise under the scaling s, namely |Ξ|s = −3

2 − κ for
some small κ > 0. We also assign to each type representing a convolution operator
the degree corresponding to the amount by which it improves regularity in the sense
of [Hai14, Sec. 4]. In our case, this is given by |I|s = 2.

It then seems natural to assign to such an equation a rule R̃ by

R̃(Ξ) = {()}, R̃(I) = {(Ξ), (I1,I1)} ,

where I1 is a shorthand for the edge type (I, (0, 1)) and we simply write t as a
shorthand for the edge type (t, 0). In other words, for every noise type t, we set
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R̃(t) = {()} and for every kernel type t we include one node type into R̃(t) for each
of the monomials in our equation that are convolved with the corresponding kernel.
The problem is that such a rule is not normal. Therefore we define rather

R(Ξ) = {()}, R(I) = {(), (Ξ), (I1), (I1,I1)} ,

which turns out to be normal and complete. It is simple to see that the function
regκ : {Ξ,I} → R

regκ(Ξ) = −3

2
− 2κ, regκ(I) =

1

2
− 3κ,

makes R subcritical for sufficiently small κ > 0.
One can also consider systems of equations. Consider for example the system of

coupled KPZ equations formally given by

∂tu1 = ∆u1 + (∂xu1)2 + ξ1 ,

∂tu2 = ν∆u2 + (∂xu2)2 + ∆u1 + ξ2 .

In this case, we have two noise types Ξ1,2 as well as two kernel types, which we
call I for the heat kernel with diffusion constant 1 and Iν for the heat kernel with
diffusion constant ν. There is some ambiguity in this case whether the term ∆u1

appearing in the second equation should be considered part of the linearisation
of the equation or part of the nonlinearity. In this case, it turns out to be more
convenient to consider this term as part of the nonlinearity, and we will see that
the corresponding rule is still subcritical thanks to the triangular structure of this
system.

Using the same notations as above, the normal and complete rule R naturally
associated with this system of equations is given by

R(Ξi) = {()}, R(I) = {(), (Ξ1), (I1), (I1,I1)}
R(Iν) = {(), (Ξ2), (Iν

1 ), (Iν
1 ,I

ν
1 ), (I2)}.

In this case, we see that R is again subcritical for sufficiently small κ > 0 with

regκ(Ξi) = −3/2− 2κ , regκ(I) = 1/2− 3κ , regκ(Iν) = 1/2− 4κ .

Our last example is given by the following generalisation of the KPZ equation:

∂tu = ∆u+ g(u)(∂xu)2 + h(u)∂xu+ k(u) + f (u)ξ ,

which is motivated by (1.6) above, see [Hai16a]. In this case, the set L is again
given by {Ξ, I}, just as in the case of the standard KPZ equation. Writing [I]` as
a shorthand for I, ...,Iwhere I is repeated ` times, the rule R associated to this
equation is given by

R(Ξ) = {()}, R(I) = {([I]`), ([I]`,I1), ([I]`,I1,I1), ([I]`,Ξ), ` ∈ N} .
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Again, it is straightforward to verify that R is subcritical and that one can use the
same map regκ as in the case of the standard KPZ equation. Even though in this
case there are infinitely many node types appearing in R(I), this is not a problem
because regκ(I) > 0, so that repetitions of the symbol I in a node type only
increase the corresponding degree.

5.6 Regularity structures determined by rules
Throughout this section, we assume that we are given
• a finite type set L together with a scaling s and degrees | · |s as in Definition 5.2,
• a normal rule R for L which is both subcritical and complete, in the sense of

Definition 5.21,
• the integer d ≥ 1 which has been fixed at the beginning of the paper.

We henceforth write L = L− t L+ where L+
def
= {t ∈ L : |t|s > 0} and

L−
def
= {t ∈ L : |t|s < 0}.

We show that the above choices, when combined with the structure built in
Sections 3 and 4, yield a natural substructure with the same algebraic properties
(the only exception being that the subspace of H◦ we consider is not an algebra in
general), but which is sufficiently small to yield a regularity structure. Furthermore,
this regularity structure contains a very large group of automorphisms, unlike the
slightly smaller structure described in [Hai14]. The reason for this is the additional
flexibility granted by the presence of the decoration o, which allows to keep track
of the degrees of the subtrees contracted by the action of G1.

Definition 5.22 Given L, R, s and d as above, we define for every possible pair
(t, N ) with t ∈ L and N ∈ R(t), a set D(t, N ) ⊂ Zd ⊕ Z(L) by postulating that
α ∈ D(t, N ) if and only if there exist
• τ = (F, n, e) ∈ T−(R),
• M ∈ R(t) with N(%τ ) ⊂M and M̄ ∈M(%τ ),
• m ∈ Nd with |τ |s + |m|s < 0,

such that

N ∈ ∂m(RM̄
N(%τ )M) and α =

∑
e∈EF

(t(e)− e(e)) +
∑
x∈NF

n(x) +m .

A crucial fact is the following.

Lemma 5.23 For every pair (t, N ), the set D(t, N ) is finite.

Proof. The set T−(R) ⊂ T◦(R) is finite by Proposition 5.14.

We now use the family of sets D(t, N ) in order to constrain the possible values
of the decoration o in our forests.

Definition 5.24 We denote by Λ = Λ(L, R, s, d) the set of all (F, F̂ , n, o, e) ∈ F
such that, for all x ∈ NF , exactly one of the following three mutually exclusive
statements holds.
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• One has F̂ (x) ∈ {0, 2} and o(x) = 0.
• One has F̂ (x) = 1 and there exists a node y ∈ NF and an edge e = (y, x) ∈ EF

such that o(x) ∈ D(t(e),N(x)), where N(x) is as in Definition 5.8.
• One has F̂ (x) = 1, x is a root of F , and there exists t ∈ L such that o(x) ∈
D(t,N(x)).

The reason why we define D(t, N ) in this way is that it guarantees the following
characterisation of Λ which follows immediately from the previous definitions.

Lemma 5.25 One has τ ∈ Λ if and only if there exists (F, F̂ , n, 0, e) ∈ F with
F̂ (x) ∈ {0, 2} for all x, a subforest A ∈ A1(F, F̂ ), i.e. A ⊂ F \ F̂−1(2), and
functions nA : NA → Nd and εFA : ∂(A,F )→ Nd with nA ≤ n such that
• One has

τ = K1(F, F̂ ∪1 A, n− nA, nA + π(εFA − eA6#), eFA + εFA) . (5.19)

• Define Lx ⊂ L as Lx = {t(e)} if there exists an edge e = (z, x) terminating at
x and Lx = L otherwise (i.e. if x is a root of F ). Then, for every x ∈ NA, the
node type N(x) of x in F belongs to R(t) for some t ∈ Lx.

• For each connected componentB ofA, we have (B, 0, nA+πεFA, 0, e) ∈ T−(R),
see Definition 5.12.

We now define spaces of coloured forests τ = (F, F̂ , n, o, e) such that (F, 0, n, 0, e)
is compatible with the rule R in a suitable sense, and such that τ ∈ Λ.

Definition 5.26 We define S : F → F by S(F, F̂ , n, o, e) def
= (F, 0, n, 0, e). Recall-

ing Definition 5.12 and Remark 4.12, we define the bigraded spaces

T̂ex
+ = 〈B+〉 ⊂ Ĥ2 , B+

def
= {τ ∈ Ĥ2 : τ ∈ Λ & Sτ ∈ T2(R)} ,

T̂ex
− = 〈B−〉 ⊂ H1 , B−

def
= {τ ∈ H1 : τ ∈ Λ & Sτ ∈ T1(R)} ,

Tex = 〈B◦〉 ⊂ H◦ , B◦
def
= {τ ∈ H◦ : τ ∈ Λ & Sτ ∈ T◦(R)} .

Remark 5.27 The superscript “ex” stands for “extended”, see Section 6.4 below
for an explanation of the reason why we choose this terminology. The identification
of these spaces as suitable subspaces of Ĥ2, H1 and H◦ is done via (4.9).

Note that both T̂ex
− and T̂ex

+ are algebras for the products inherited from H1 and
Ĥ2 respectively. On the other hand, Tex is in general not an algebra anymore.

Lemma 5.28 We have

∆1 : Tex → T̂ex
− ⊗̂H◦ , ∆1 : T̂ex

− → T̂ex
− ⊗̂H1 , ∆1 : T̂ex

+ → T̂ex
− ⊗̂ Ĥ2 ,

as well as ∆2 : H→ H ⊗̂ T̂ex
+ for H ∈ {Tex, T̂ex

+ }. Moreover, T̂ex
+ is a Hopf

subalgebra of Ĥ2 and Tex is a right Hopf-comodule over T̂ex
+ with coaction ∆2.
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Proof. By the normality of the rule R, if a tree conforms to R then any of its
subtrees does too. On the other hand, contracting subforests can generate non-
conforming trees in the case of ∆1, while, since ∆2 extracts only subtrees at the
root, completeness of the rule implies that this can not happen in the case of ∆2,
thus showing that the maps ∆i do indeed behave as claimed.

The fact that T̂ex
+ is in fact a Hopf algebra, namely that the antipode Â2 of Ĥ2

leaves T̂ex
+ invariant, can be shown by induction using (4.16) and Remark 4.15.

Note that T̂ex
− is a sub-algebra but in general not a sub-coalgebra of H1 (and a

fortiori not a Hopf algebra). Recall also that, by Lemma 5.4, the grading | · |− of
Definition 5.3 is well defined on T̂ex

− and that | · |+ is well defined on both T̂ex
+ and

Tex. Furthermore, these gradings are preserved by the corresponding products and
coproducts.

Definition 5.29 Let J∓ ⊂ T̂ex
± be the ideals given by

J− =〈{τ ∈ B+ : τ = J K̂2(σ · σ̄) , σ, σ̄ ∈ B+, σ 6= 12, |σ|+ ≤ 0}〉 ,

J+ =〈{τ ∈ B− : τ = K1(σ · σ̄) , σ, σ̄ ∈ B−,
(σ 6= 11 & |σ|− ≥ 0) or (σ = It

k(σ′) & |t|s > 0)}〉 .
(5.20)

Then, we set
Tex
−

def
= T̂ex

− /J+ , Tex
+

def
= T̂ex

+ /J− ,

with canonical projections pex
± : T̂ex

± → Tex
± .

With these definitions at hand, it turns out that the map (pex
− ⊗ id)∆1 is much

better behaved. Indeed, we have the following.

Lemma 5.30 The map ∆−ex = (pex
− ⊗ id)∆1 satisfies

∆−ex : H→ Tex
− ⊗̂H , for H∈ {T̂ex

− ,T, T̂
ex

+ }.

Proof. This follows immediately from Lemma 5.25.

Analogously to Lemma 3.16 we have

Lemma 5.31 We have

(pex
− ⊗ pex

− )∆1J+ = 0 , (pex
− ⊗ pex

+ )∆1J− = 0 , (pex
+ ⊗ pex

+ )∆2J− = 0 . (5.21)

Proof. We note that the degrees | · |± have the following compatibility properties
with the operators ∆i. For 0 < i ≤ j ≤ 2, τ ∈ Fj and ∆iτ =

∑
τ (1)
i ⊗ τ

(2)
i (with

the summation variable suppressed), one has

|τ (1)
1 |− + |τ (2)

1 |− = |τ |− , |τ (2)
1 |+ = |τ |+ , |τ (1)

2 |+ + |τ (2)
2 |+ = |τ |+ . (5.22)

The first identity of (5.21) then follows from the first identity of (5.22) and from the
following remark: if B− 3 τ = It

k(σ), then for each term appearing in the sum
over A ∈ A1 in the expression (3.3) for ∆1τ , one has two possibilities:
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• either A does not contain the edge incident to the root of τ , and then the second
factor is a tree with only one edge incident to its root,

• or A does contain the edge incident to the root, in which case the first factor
contains one connected component of that type.

The second identity of (5.21) follows from the second identity of (5.22) combined
with the fact that, for τ ∈ F2, ∆1τ contains no term of the form σ ⊗ 12, even when
quotiented by ker(J K̂2). The third identity of (5.21) finally follows from the third
identity of (5.22), combined with the fact that if τ ∈ B+ \ {12} with |τ |+ ≤ 0, then
the term 12 ⊗ 12 does not appear in the expansion for ∆2τ .

As a corollary, we have the following.

Corollary 5.32 The operator ∆−ex = (pex
− ⊗ id)∆1 is well-defined as a map

∆−ex : H→ Tex
− ⊗̂H , for H∈ {T̂ex

− ,T
ex
− ,T

ex,Tex
+ , T̂ex

+ }.

Similarly, the operator ∆+
ex = (id⊗ pex

+ )∆2 is well-defined as a map

∆+
ex : H→ H⊗̂Tex

+ , for H∈ {Tex,Tex
+ , T̂ex

+ }.

Remark 5.33 The operators ∆±ex of Corollary 5.32 are now given by finite sums so
that for all of these choices of H, the operators ∆−ex and ∆+

ex actually map H into
Tex
− ⊗H and H⊗Tex

+ respectively.

Proposition 5.34 There exists an algebra morphism Aex
+ : Tex

+ → Tex
+ so that

(Tex
+ ,M,∆+

ex, 12, 1?2,Aex
+ ), where M is the tree product (4.8), is a Hopf algebra.

Moreover the map ∆+
ex : Tex → Tex ⊗ Tex

+ , turns Tex into a right comodule for
Tex

+ with counit 1?2.

Proof. We already know that T̂ex
+ is a Hopf sub-algebra of Ĥ2 with antipode Â2

satisfying (4.16). Since J− is a bialgebra ideal by Lemma 5.31, the first claim
follows from [Nic78, Theorem 1.(iv)].

The fact that ∆+
ex : Tex → Tex ⊗ Tex

+ is a co-action and turns Tex into a right
comodule for Tex

+ follows from the coassociativity of ∆2.

Proposition 5.35 There exists an algebra morphism Aex
− : Tex

− → Tex
− so that

(Tex
− , ·,∆−ex, 11, 1?1,Aex

− ) is a Hopf algebra. Moreover the map ∆−ex : Tex → Tex
− ⊗

Tex turns Tex into a left comodule for Tex
− with counit 1?1.

Proof. One difference between Tex
− and Tex

+ is that T̂ex
− is not in general a sub-

coalgebra of H1 and therefore it does not possess an antipode. However we can see
that the antipode A1 of H1 satisfies for all τ 6= 1

A1τ = −τ −M(A1 ⊗ id)(∆1τ − τ ⊗ 1− 1⊗ τ ),

where M is the product map. By the second formula of (5.22), it follows that if
|τ |− > 0 then A1τ ∈ J+ and therefore, since A1 is an algebra morphism, A1(J+) ⊆
J+. We obtain that A1 defines a unique algebra morphism Aex

− : Tex
− → Tex

− which
is an antipode for Tex

− .
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Definition 5.36 We call Gex
± the character group of Tex

± .

We have therefore obtained the following analogue of Proposition 4.14:

Theorem 5.37 We have
1. On Tex, the identity

M(13)(2)(4)(∆−ex ⊗∆−ex)∆+
ex = (id⊗∆+

ex)∆−ex , (5.23)

holds, with M(13)(2)(4) as in (3.33). The same is also true on Tex
+ .

2. Tex is a left comodule over the Hopf algebra T̂ex
12

def
= Tex

− n Tex
+ , with coaction

∆◦ : Tex → T̂ex
12 ⊗̂Tex, ∆◦v

def
= σ(132)(∆−ex ⊗Aex

+ )∆+
ex

where σ(132)(a⊗ b⊗ c) def
= a⊗ c⊗ b and Aex

+ is the antipode of Tex
+ .

Proof. By the second identity of (5.22), the action of ∆−ex preserves the degree | · |+.
In particular we have

∆−exp
ex
+ =

(
id⊗ pex

+

)
∆−ex. (5.24)

From this property, one has:

M(13)(2)(4)(∆−ex ⊗∆−ex)∆+
ex = M(13)(2)(4)(∆−ex ⊗

(
id⊗ pex

+

)
∆−ex)∆2

=
(
pex
− ⊗ id⊗ pex

+

)
M(13)(2)(4)(∆1 ⊗∆1)∆2

and we conclude by applying the Proposition 3.22.

Remark 5.38 We can finally see here the role played by the decoration o: were it
not included, the cointeraction property (5.23) of Theorem 5.37 would fail, since it
is based upon (5.24), which itself depends on the second identity of (5.22). Now
recall that | · |+ takes the decoration o into account, and this is what makes the
second identity of (5.22) true. See also Remark 6.25 below.

We define Aex def
= {|τ |+ : τ ∈ B◦}, where Tex = 〈B◦〉 as in Definition 5.26.

Proposition 5.39 The above construction yields a regularity structure T ex =
(Aex,Tex, Gex

+ ) in the sense of Definition 5.1.

Proof. By Lemma 5.25, every element τ ∈ Λ has a representation of the type (5.19)
for some σ = (T, n, e) ∈ T. Furthermore, it follows from the definitions of | · |+ and
| · |s that one has |τ |+ = |σ|s. The fact that, for all γ ∈ R, the set {a ∈ Aex : a ≤ γ}
is finite then follows from Proposition 5.14.

The space Tex is graded by | · |+ and Gex
+ acts on it by Γg

def
= (id⊗ g)∆+

ex. The
property (5.1) then follows from the fact the action of Gex

+ preserves the | · |+-degree
by the second identity in (5.22) and all terms appearing in the second factor of
∆+

exτ − τ ⊗ 1 have strictly positive | · |+-degree by Definition 5.29.
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5.7 Link to previous constructions
Recall that in [Hai14, Sec. 8], we considered a regularity structure Tgenerated by
symbols Xk and Ξ, as well as operations Ĩk and a product. (We call the integration
map appearing in [Hai14] Ĩk rather than Ik in order to distinguish the definitions
there from the ones above.) Similarly to the present situation, the structure group G

considered in [Hai14] is described by a comodule structure of Ton a Hopf algebra
T+, with basis vectors of T+ of the form (4.13). In order to distinguish the two,
we write J̃ti

ki
(τi) for the elements of T+ as described in [Hai14]. The operators

∆: T→ T⊗T+ and ∆+ : T+ → T+ ⊗T+ defined in [Hai14, Eq. (8.8)–(8.9)] are
then given recursively by

∆1 = 1⊗ 1 , ∆Ξ̃ = Ξ̃⊗ 1 , ∆Xi = Xi ⊗ 1 + 1⊗Xi ,

∆Ĩk(τ ) = (Ĩk ⊗ 1)∆τ +
∑
`,m

X`

`!
⊗ Xm

m!
J̃k+`+m(τ ) , (5.25)

as well as

∆+1 = 1⊗ 1 , ∆+Xi = Xi ⊗ 1 + 1⊗Xi ,

∆+J̃k(τ ) = 1⊗ J̃kτ +
∑
`

(
J̃k+` ⊗

(−X)`

`!

)
∆τ , (5.26)

with the additional property that both maps are multiplicative. Even if we disregard
the additional presence of the maps Rα in our present context, these identities
appear at first sight somewhat different from those described in (4.14) and (4.15).

The first line of (5.25) is similar to the first line of (4.14), with the exception
of the appearance of the symbol Ξ̃. This can however easily be linked to our
construction. Indeed, assuming that we have L = {t, i} with |t|s < 0 and |i|s > 0,
we set Ξ = It

0(1) and Ik = Ii
k. The second line of (4.14) then yields indeed

∆+
exΞ = Ξ⊗ 1 ,

since |Jt
k(1)|s < 0 for every k, and therefore the corresponding terms vanish in Tex

+ .
The second line of (5.25) on the other hand looks quite different from the second

line of (4.14). This can be remedied by a simple change of basis. Performing the
identifications

Ĩk(τ ) ↔ Ik(τ ) , Jk(τ ) ↔
∑
m

Xm

m!
J̃k+m(τ ) , (5.27)

we see that (5.25) turns into

∆Ik(τ ) = (Ik ⊗ id)∆τ +
∑
`

X`

`!
⊗Jk+`(τ ) ,
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which is the same recursion as (4.14). As far as ∆+ is concerned, exploiting the
multiplicativity of ∆+ and the fact that ∆+Xk

k! =
∑

m+n=k
Xm

m! ⊗
Xn

n! , one has the
identity

∆+Jk(τ ) =
∑
`,m,n

(Xm

m!
J̃k+`+m+n ⊗

(−X)`

`!

Xn

n!

)
∆τ +

∑
`,m

X`

`!
⊗ Xm

m!
J̃k+`+m(τ )

=
∑
m

(Xm

m!
J̃k+m ⊗ 1

)
∆τ +

∑
`,m

X`

`!
⊗ Xm

m!
J̃k+`+m(τ )

= (Jk ⊗ 1)∆τ +
∑
`

X`

`!
⊗Jk+`(τ ) ,

which is nothing but (4.15). This shows that the structure constructed in [Hai14] is
included in the one constructed in the present article, modulo a simple change of
coordinates. Note that this change of coordinates is “harmless” as far as the link
to the analytical part of [Hai14] is concerned since it does not mix basis vectors of
different degrees.

6 Renormalisation of models

We now show how the construction of the previous sections can be applied to the
theory of regularity structures to show that the “contraction” operations one would
like to perform in order to renormalise models are “legitimate” in the sense that
they give rise to automorphisms of the regularity structures built in Section 5.6.
Throughout this section, we are in the framework set at the beginning of Section 5.6.

Note now that we have a natural identification of Tex
± with the subspaces

〈{τ ∈ B± : τ 6∈ Jex
∓ }〉 ⊂ T̂ex

± .

Denote by iex
± : Tex

± → T̂ex
± the corresponding inclusions, so that we have direct

sum decompositions
T̂ex
± = Tex

± ⊕Jex
∓ . (6.1)

For instance, with this identification, the map Jt
k : Tex → T̂ex

+ defined in (4.12)
associates to τ ∈ Tex an element Jt

k(τ ) ∈ T̂ex
+ which belongs to Tex

+ if and only if
its degree |Jt

k(τ )|+ is positive, namely |τ |+ + |t|s − |k|s > 0.

Proposition 6.1 Let Aex
+ : Tex

+ → Tex
+ be the antipode of Tex

+ . Then
• Aex

+ is defined uniquely by the fact that Aex
+Xi = −Xi and for all Jt

k(τ ) ∈ Tex
+

Aex
+Jk(τ ) = −

∑
`∈Nd

(−X)`

`!
Mex

+ (pex
+Jk+` ⊗Aex

+ )∆+
exτ , (6.2)

where Mex
+ : Tex

+ ⊗ Tex
+ → Tex

+ denotes the (tree) product and ∆+
ex : Tex →

Tex ⊗Tex
+ .
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• On Tex
+ , one has the identity

∆−exA
ex
+ = (id⊗Aex

+ )∆−ex . (6.3)

Proof. The claims follow easily from Propositions 4.17 and 5.34.

6.1 Twisted antipodes
We define now the operator P+ : T̂ex

+ → T̂ex
+ given on τ ∈ B+ by

P+(τ ) def
=

{
τ if |τ |+ ≥ 0
0 otherwise.

Note that this is quite different from the projection iex
+ ◦ pex

+ . However, for elements
of the form Jt

k(τ ) ∈ T̂ex
+ for some τ ∈ Tex, we have P+J

t
k(τ ) = (iex

+ ◦ pex
+ )(Jt

k(τ )).
The difference is that iex

+ ◦ pex
+ is multiplicative under the tree product, while P+ is

not.

Proposition 6.2 There exists a unique algebra morphism Ãex
+ : Tex

+ → T̂ex
+ , which

we call the “positive twisted antipode”, such that Ãex
+Xi = −Xi and furthermore

for all Jt
k(τ ) ∈ Tex

+

Ãex
+Jt

k(τ ) = −
∑
`∈Nd

(−X)`

`!
P+M̂

ex
+ (Jt

k+` ⊗ Ãex
+ )∆+

exτ , (6.4)

where Jt
k : Tex → T̂ex

+ is defined in (4.12), similarly to above M̂ex
+ is the product in

T̂ex
+ and ∆+

ex : Tex → Tex ⊗Tex
+ is as in Corollary 5.32.

Proof. Proceeding by induction over the number of edges appearing in τ , one easily
verifies that such a map exists and is uniquely determined by the above properties.

Comparing this to the recursion for Aex
+ given in (6.2), we see that they are very

similar, but the projection pex
+ in (6.2) is inside the multiplication Mex

+ , while P+ in
(6.4) is outside M̂ex

+ .
We recall now that the antipode Aex

+ is characterised among algebra-morphisms
of Tex

+ by the identity

Mex
+ (id⊗Aex

+ )∆+
ex = 121?2 on Tex

+ , (6.5)

where ∆+
ex : Tex

+ → Tex
+ ⊗ Tex

+ is as in Corollary 5.32. The following result
shows that Ãex

+ satisfies a property close to (6.5), which is where the name “twisted
antipode” comes from.

Proposition 6.3 The map Ãex
+ : Tex

+ → T̂ex
+ satisfies the equation

M̂ex
+ (id⊗ Ãex

+ )∆+
exi

ex
+ = 121?2 on Tex

+ , (6.6)

where ∆+
ex : T̂ex

+ → T̂ex
+ ⊗Tex

+ is as in Corollary 5.32.
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Proof. Since both sides of (6.6) are multiplicative and since the identity obviously
holds when applied to elements of the type Xk, we only need to verify that the left
hand side vanishes when applied to elements of the form Jt

k(τ ) for some τ ∈ Tex

with |τ |+ + |t|s − |k|s > 0, and then use Remark 4.15. Similarly to the proof of
(4.16), we have

M̂ex
+ (id⊗ Ãex

+ )∆+
exJ

t
k(τ ) =

= M̂ex
+ (id⊗ Ãex

+ )

[(
Jt
k ⊗ id

)
∆+

exτ +
∑
`

X`

`!
⊗ pex

+Jt
k+`(τ )

]

= M̂ex
+

(Jt
k ⊗ Ãex

+

)
−

∑
`,i:|`|s≤|Jt

k(τ )|+

X`

`!
⊗ (−X)i

i!
P+M̂

ex
+ (Jt

k+`+i ⊗ Ãex
+ )

∆+
exτ

=
[
M̂ex

+

(
Jt
k ⊗ Ãex

+

)
− P+M̂

ex
+ (Jt

k ⊗ Ãex
+ )
]
∆+

exτ = 0 ,

since |M̂ex
+ (Jt

k ⊗ Ãex
+ )∆+

exτ |+ = |Jt
k(τ )|+ > 0.

A very useful property of the positive twisted antipode Ãex
+ is that its action is

intertwined with that of ∆−ex in the following way.

Lemma 6.4 The identity

∆−exÃ
ex
+ = (id⊗ Ãex

+ )∆−ex

holds between linear maps from Tex
+ to Tex

− ⊗ T̂ex
+ .

Proof. Since both sides of the identity are multiplicative, by using Remark 4.15 it
is enough to prove the result on Xi and on elements of the form Jk(τ ) ∈ Tex

+ . The
identity clearly holds on the linear span of Xk since ∆−ex acts trivially on them and
Ãex

+ preserves that subspace.
Using the recursion (6.4) for Ãex

+ , the identity ∆−exP+ = (id⊗ P+)∆−ex on T̂ex
+ ,

followed by the fact that ∆−ex is multiplicative, we obtain

∆−exÃ
ex
+Jt

k(τ ) = −
∑
`∈Nd

(
id⊗ (−X)`

`!

)
∆−exP+M̂

ex
+ (Jt

k+` ⊗ Ãex
+ )∆+

exτ

= −
∑
`∈Nd

(
id⊗ (−X)`

`!
P+M̂

ex
+

)
M(13)(2)(4)(∆−exJ

t
k+` ⊗∆−exÃ

ex
+ )∆+

exτ .

Using the fact that ∆−exJ
t
k =

(
id⊗Jt

k

)
∆−ex, as well as (5.23), we have

∆−exÃ
ex
+Jt

k(τ ) = −
∑
`∈Nd

(
id⊗ (−X)`

`!
P+M̂

ex
+

)
×M(13)(2)(4)((id⊗Jt

k+`)∆
−
ex ⊗ (id⊗ Ãex

+ )∆−ex)∆+
exτ
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= −
∑
`∈Nd

(
id⊗ (−X)`

`!
P+M̂

ex
+ (Jt

k+` ⊗ Ãex
+ )
)

(id⊗∆+
ex)∆−exτ

= (id⊗ Ãex
+Jt

k)∆−exτ = (id⊗ Ãex
+ )∆−exJ

t
kτ .

Here, the passage from the penultimate to the last line crucially relies on the fact
that the action of G−ex onto Tex

+ preserves the | · |+-degree, i.e. on the second formula
in (5.22).

We have now a similar construction of a negative twisted antipode.

Proposition 6.5 There exists a unique algebra morphism Ãex
− : Tex

− → T̂ex
− , that

we call the “negative twisted antipode”, such that for τ ∈ Tex
− ∩ ker 1?1

Ãex
− τ = −M̂ex

− (Ãex
− ⊗ id)(∆−exi

ex
−τ − τ ⊗ 11). (6.7)

Similarly to (6.6), the morphism Ãex
− : Tex

− → T̂ex
− satisfies

M̂ex
− (Ãex

− ⊗ id)∆−exi
ex
− = 111?1 on Tex

− , (6.8)

where ∆−ex : T̂ex
− → Tex

− ⊗ T̂ex
− is as in Corollary 5.32.

Proof. Proceeding by induction over the number of colourless edges appearing in τ ,
one easily verifies that such a morphism exists and is uniquely determined by (6.7).
The property (6.8) is a trivial consequence of (6.7).

6.2 Models
We now recall (a simplified version of) the definition of a model for a regularity
structure given in [Hai14, Def. 2.17]. Given a scaling s as in Definition 5.2 and
interpreting our constant d ∈ N as a space(-time) dimension, we define a metric ds
on Rd by

‖x− y‖s
def
=

d∑
i=1

|xi − yi|1/si . (6.9)

Note that ‖ · ‖s is not a norm since it is not 1-homogeneous, but it is still a distance
function since si ≥ 1. It is also homogeneous with respect to the (inhomogeneous)
scaling in which the ith component is multiplied by λsi .

Definition 6.6 A smooth model for a given regularity structure T = (A, T,G) on
Rd with scaling s consists of the following elements:
• A map Γ: Rd × Rd → G such that Γxx = id, the identity operator, and such

that Γxy Γyz = Γxz for every x, y, z in Rd.
• A collection of continuous linear maps Πx : T → C∞(Rd) such that Πy =

Πx ◦ Γxy for every x, y ∈ Rd.
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Furthermore, for every ` ∈ A and every compact set K ⊂ Rd, we assume the
existence of a constant C`,K such that the bounds

|Πxτ (y)| ≤ C`,K‖τ‖` ‖x− y‖`s, ‖Γxyτ‖m ≤ C`,K‖τ‖` ‖x− y‖`−ms , (6.10)

hold uniformly over all x, y ∈ K, all m ∈ A with m < ` and all τ ∈ T`.

Here, recalling that the space T in Definitions 5.1 and 6.6 is a direct sum of
Banach spaces (Tα)α∈A, the quantity ‖σ‖m appearing in (6.10) denotes the norm
of the component of σ ∈ T in the Banach space Tm for m ∈ A. We also note that
Definition 6.6 does not include the general framework of [Hai14, Definition 2.17],
where Πx takes values in D′(Rd) rather than C∞(Rd); however this simplified
setting is sufficient for our purposes, at least for now. The condition (6.10) on Πx is
of course relevant only for ` > 0 since Πxτ (·) is assumed to be a smooth function
at this stage.

As in Section 5.6, we consider a label set of the type L = L− t L+. We fix a
collection of kernels {Kt}t∈L+ , Kt : Rd \ {0} → R, satisfying the conditions of
[Hai14, Ass. 5.1] with β = |t|s. We use extensively the notations of Section 4.3.

Definition 6.7 Given a linear map Π : Tex → C∞, we define for all z, z̄ ∈ Rd

• a character g+
z (Π) : T̂ex

+ → R by extending multiplicatively

g+
z (Π)Xi = (ΠXi)(z), g+

z (Π)Jt
k(τ ) = (DkKt ∗Πτ )(z)

for t ∈ L+ and setting g+
z (Π)Jl

k(τ ) = 0 for l ∈ L−.
• a linear map Πz : Tex → C∞ and a character fz ∈ Gex

+ by

Πz = (Π⊗ fz)∆+
ex , fz = g+

z (Π)Ãex
+ , (6.11)

where Ãex
+ is the positive twisted antipode defined in (6.4)

• a linear map Γzz̄ : Tex → Tex and a character γzz̄ ∈ Gex
+ by

Γzz̄ = (id⊗ γzz̄)∆+
ex, γzz̄ = (fzA

ex
+ ⊗ fz̄)∆+

ex . (6.12)

Finally, we write Zex : Π 7→ (Π,Γ) for the map given by (6.11) and (6.12).

We do not want to consider arbitrary maps Π as above, but we want them to
behave in a “nice” way with respect to the natural operations we have on Tex. We
therefore introduce the following notion of admissibility. For this, we note that
since the rule R used to construct our structure is normal in the sense of Definition
5.7, the only basis vectors of the type It

k(τ ) with t ∈ L− belonging to Tex are
those with τ = X` for some ` ∈ Nd, so we give them a special name by setting
Ξl
k,` = Il

k(X`) and Ξl = Ξl
0,0.

Definition 6.8 Given a linear map Π : Tex → C∞, we set ξl
def
= ΠΞl for l ∈ L−.

We then say that Π is admissible if it satisfies

Π1 = 1 , ΠXkτ = xkΠτ ,

ΠIt
k(τ ) = DkKt ∗Πτ , ΠΞl

k,` = Dk(x`ξl) ,
(6.13)
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for all τ ∈ Tex, k, ` ∈ Nd, t ∈ L+, l ∈ L−, where It
k : Tex → Tex is defined by

(4.11), ∗ is the distributional convolution in Rd, and we use the notation

Dk =
d∏
i=1

∂ki

∂ykii
, xk : Rd → R, xk(y) def

=
d∏
i=1

ykii .

Note that this definition guarantees that the identity ΠIt
k(τ ) = DkΠIt

0(τ ) always
holds, whether t is in L− or in L+.

It is then simple to check that, with these definitions, ΠzΓzz̄ = Πz̄ and (Π,Γ)
satisfies the algebraic requirements of Definition 6.6. However, (Π,Γ) does not
necessarily satisfy the analytical bounds (6.10), although one has the following.

Lemma 6.9 If Π is admissible then, for every It
k(τ ) ∈ Tex with t ∈ L+, we have

fz(Jt
k(τ )) = −

∑
|`|s<|It

k(τ )|+

(−z)`

`!
(Dk+`Kt ∗Πzτ)(z) ,

(
ΠzI

t
k(τ )

)
(z̄) = (DkKt ∗Πzτ)(z̄)−

∑
|`|s<|It

k(τ )|+

(z̄ − z)`

`!
(Dk+`Kt ∗Πzτ)(z) .

Proof. In view of the identifications (5.27), this is essentially the same as [Hai14,
Eqns (8.19)–(8.20)].

Alternatively, it follows immediately from (4.15) and the admissibility of Π that
ΠzI

t
k(τ )−DkKt ∗Πzτ is a polynomial of degree |It

k(τ )|+. On the other hand, it
follows from (6.6) that ΠzI

t
k(τ ) and its derivatives up to the required order (because

taking derivatives commutes with the action of the structure group) vanish at z, so
there is no choice of what that polynomial is, thus yielding the second identity. The
first identity then follows by comparing the second formula to (6.11).

Remark 6.10 Lemma 6.9 shows that the positive twisted antipode Ãex
+ is intimately

related to Taylor remainders, see (6.11).

Lemma 6.9 shows that (Π,Γ) satisfies the analytical property (6.10) on elemen-
tary trees of the form It

k(τ ) ∈ Tex. However this is not necessarily the case for
products of such trees, since neither Π nor Πz are assumed to be multiplicative
under the tree product (4.8). If, however, we also assume that Π is multiplicative,
then the map Zex always produces a bona fide model.

Proposition 6.11 If Π : Tex → C∞ is admissible and such that, for all τ, τ̄ ∈ Tex

with τ τ̄ ∈ Tex and all α ∈ Zd ⊕ Z(L), we have

Π(τ τ̄ ) = (Πτ ) · (Πτ̄ ) , ΠRα(τ ) = Πτ , (6.14)

then Zex(Π) is a model for T ex.
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Proof. The proof of the algebraic properties follows immediately from (6.12). Re-
garding the analytical bound (6.10) on Πzσ, it immediately follows from Lemma 6.9
in the case when σ is of the form It

k(τ ). For products of such elements, it follows im-
mediately from the multiplicative property of Π combined with the multiplicativity
of the action of ∆+

ex on Tex, which imply that

Πx(σσ̄) = (Πxσ) · (Πxσ̄) .

Regarding vectors of the type σ = Rα(τ ), it follows immediately from the last
identity in (4.14) combined with (6.14) that ΠxRα(τ ) = Πxτ .

The proof of the second bound in (6.10) for Γxy is virtually identical to the
one given in [Hai14, Proposition 8.27], combined with Lemma 6.9. Formally, the
main difference comes from the change of basis mentioned in Section 5.7, but this
does not affect the relevant bounds since it does not mix basis vectors of different
| · |+-degree.

Remark 6.12 If a map Π : Tex → C∞ is admissible and furthermore satisfies
(6.14), then it is uniquely determined by the functions ξl

def
= ΠΞl for l ∈ L−. In this

case, we call Π the canonical lift of the functions ξl.

6.3 Renormalised Models
We now use the structure built in this article to provide a large class of renormalisa-
tion procedures, which in particular includes those used in [Hai14, HP15, HS15].
For this, we first need a topology on the space of all models for a given regularity
structure. Given two smooth models (Π,Γ) and (Π̄, Γ̄), for all ` ∈ A and K ⊂ Rd a
compact set, we define the pseudo-metrics

|||(Π,Γ); (Π̄, Γ̄)|||`;K
def
= ‖Π− Π̄‖`;K + ‖Γ− Γ̄‖`;K , (6.15)

where

‖Π− Π̄‖`;K
def
= sup

{
|〈(Πx − Π̄x)τ, ϕλx〉|

‖τ‖λ`
: x ∈ K, |τ |+ = `, λ ∈ (0, 1], ϕ ∈ B

}
,

‖Γ− Γ̄‖`;K
def
= sup

{
‖Γxyτ − Γ̄xyτ‖m
‖τ‖ ‖x− y‖m−`s

: x, y ∈ K, x 6= y, |τ |+ = `,m < `

}
.

Here, the set B ∈ C∞0 (Rd) denotes the set of test functions with support in the
centred ball of radius one and all derivatives up to oder 1 + | infA| bounded by 1.
Given ϕ ∈ B, ϕλx : Rd → R denotes the translated and rescaled function

ϕλx(y) def
= λ−(s1+···+sd) ϕ

(
((yi − xi)λ−si)di=1

)
, y ∈ Rd,

for x ∈ Rd and λ > 0 as in [Hai14]. Finally, 〈·, ·〉 is the usual L2 scalar product.
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Definition 6.13 We denote by M ex
∞ the space of all smooth models of the form

Zex(Π) for some admissible linear map Π : Tex → C∞ in the sense of Defini-
tion 6.8. We endow M ex

∞ with the system of pseudo-metrics (|||·; ·|||`;K)`;K and we
denote by M ex

0 the completion of this metric space.

We refer to [Hai14, Def. 2.17] for the definition of the space M ex of models of a
fixed regularity structure. With that definition, M ex

0 is nothing but the closure of
M ex
∞ in M ex.
In many singular SPDEs, one is naturally led to a sequence of models Z(Π(ε))

which do not converge as ε → 0. One would then like to be able to “tweak” this
model in such a way that it remains an admissible model but has a chance of
converging as ε→ 0. A natural way of “tweaking” Π(ε) is to compose it with some
linear map M ex : Tex → Tex. This naturally leads to the following question: what
are the linear maps M ex which are such that if Zex(Π) is an admissible model, then
Zex(ΠM ex) is also a model? We then give the following definition.

Definition 6.14 A linear map M : Tex → Tex is an admissible renormalisation
procedure if
• for every admissible Π : Tex → C∞ such that Zex(Π) ∈ M ex

∞ , ΠM is
admissible and Zex(ΠM ) ∈M ex

∞
• the map M ex

∞ 3 Zex(Π) 7→ Zex(ΠM ) ∈ M ex
∞ extends to a continuous map

from M ex
0 to M ex

0 .

Recall that we have a right action of Gex
− onto Tex by g 7→M ex

g with

M ex
g : Tex → Tex, M ex

g τ = (g ⊗ id)∆−exτ. (6.16)

Since ∆−ex can also be viewed as a map on Tex
+ and Tex

− by Corollary 5.32, we
will also view M ex

g as a map on these spaces by formally using the same definition
(6.16). The following is one of the main results of this article.

Theorem 6.15 For every g ∈ Gex
− , the map M ex

g : Tex → Tex is an admissible
renormalisation procedure. Moreover the renormalised model Zex(ΠM ex

g ) =
(Πg,Γg) is described by:

Πg
z = ΠzM

ex
g , γgzz̄ = γzz̄M

ex
g . (6.17)

Proof. Let us fix g ∈ Gex
− and an admissible linear map Π such that Zex(Π) =

(Π,Γ) is a model and set Πg def
= ΠM ex

g . We check first that Πg is admissible,
namely that it satisfies (6.13). First, we note that, in the sum over A in (3.3) defining
∆1I

t
k(τ ), we have two mutually excluding possibilities:

• A is a subforest of τ
• A contains the edge of type t added by the operator It

k or the root of It
k(τ ) as

an isolated node (which has however positive degree and is therefore killed by
the projection pex

− in ∆−ex).



RENORMALISATION OF MODELS 68

Therefore we have

(g ⊗ id)∆−exI
t
k(τ ) = (gpex

− ⊗It
k)∆1τ + (gpex

−I
t
k ⊗ id)∆1τ = (g ⊗It

k)∆−exτ

since pex
−I

t
k = 0 by the definition (5.20) of J+. Therefore

ΠgIt
k(τ ) = (g ⊗Π)∆−exI

t
k(τ ) = (g ⊗ΠIt

k)∆−exτ

= (g ⊗DkKt ∗Π)∆−exτ = DkKt ∗Πgτ.

Since Xk has positive degree, with a similar computation we obtain

ΠgXkτ = (g ⊗Π)∆−exX
kτ = (g ⊗ΠXk)∆−exτ

= (g ⊗ xkΠ)∆−exτ = xkΠgτ

and this shows that Πg is admissible.
Now we verify that, writing M ex

g as before and Zex(Πg) = (Πg,Γg), we have

γgzz̄ = (g ⊗ γzz̄)∆−ex , Πg
z = (g ⊗Πz)∆−ex .

To show this, one first uses (6.3) to show that fgz = (g ⊗ fz)∆−ex, where f and fg

are defined from Π and Πg as in (6.11). Indeed, one has

fgz = g+
z (ΠM ex

g )Ãex
+ =

(
g ⊗ g+

z (Π)
)
∆−exÃ

ex
+

= (g ⊗ g+
z (Π)Ãex

+ )∆−ex = (g ⊗ fgz )∆−ex = fzM
ex
g .

One then uses (5.23) on Tex to show that the required identity (6.17) for Πg
z holds.

Indeed, it follows that

Πg
z = (Πg ⊗ fgz )∆+

ex = (g ⊗Π⊗ g ⊗ fz)
(
∆−ex ⊗∆−ex

)
∆+

ex

= (g ⊗Π⊗ fz)
(
id⊗∆+

ex
)
∆−ex = (g ⊗Πz)∆−ex.

(6.18)

Regarding γzz̄ , we have

γgzz̄ =
(
fgzA

ex
+ ⊗ f

g
z̄

)
∆+

ex =
(
fzM

ex
g Aex

+ ⊗ fz̄M ex
g

)
∆+

ex

= (fzAex
+ ⊗ fz̄)

(
M ex
g ⊗M ex

g

)
∆+

ex = (fzAex
+ ⊗ fz̄)∆+

exM
ex
g

= (g ⊗ γzz̄)∆−ex .

(6.19)

Note now that, at the level of the character γzz̄ , the bound (6.10) reads |γzz̄(τ )| ≤
‖z − z̄‖|τ |+s as a consequence of the fact that ∆+

ex preserves the sum of the | · |+-
degrees of each factor. On the other hand, for every character g of Tex

− and any τ
belonging to either B◦ or B+ (see Definition 5.26), the element (g ⊗ id)∆−exτ is a
linear combination of terms with the same | · |+-degree as τ . As a consequence, it is
immediate that if a given model (Π,Γ) satisfies the bounds (6.10), then the renor-
malised model (Πg,Γg) satisfies the same bounds, albeit with different constants,
depending on g. We conclude that indeed for every admissible Π : Tex → C∞

such that Zex(Π) ∈M ex
∞ , ΠMg is admissible and Zex(ΠM ) ∈M ex

∞ .
The exact same argument also shows that if we extend the action of Gex

− to all of
M ex by (6.18) and (6.19), then this yields a continuous action, which in particular
leaves M ex

0 invariant as required by Definition 6.14.
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Note now that the group Rd acts on admissible (in the sense of Definition 6.8)
linear maps Π : Tex → C∞ in two different ways. First, we have the natural action
by translations Th, h ∈ Rd given by

(Th(Π)τ)(z) def
= (Πτ)(z − h) .

However, Rd can also be viewed as a subgroup of Gex
+ by setting

gh(Xi) = −hi , gh(Jt
k(τ )) = 0 . (6.20)

This also acts on admissible linear maps by setting

(T̃h(Π)τ)(z) def
= ((Π⊗ gh)∆+

exτ)(z) . (6.21)

Note that if Π is admissible, then one has Th(Π)Xk = T̃h(Π)Xk for every k ∈ Nd

and every h ∈ Rd.

Definition 6.16 We say that a random linear map Π : Tex → C∞ is stationary
if, for every (deterministic) element h ∈ Rd, the random linear maps Th(Π) and
T̃h(Π) are equal in law. We also assume that Π and its derivatives, computed at 0
have moments of all orders.

Using the the Definition 5.26 and the Remark 4.15, T̂ex
− can be identified canoni-

cally with the free algebra generated by B◦. We write

ι◦ : Tex = 〈B◦〉 → T̂ex
−

for the associated canonical injection.
Every random stationary map Π : Tex → C∞ in the sense of Definition 6.16

then naturally determines a (deterministic) character g−(Π) of T̂ex
− by setting

g−(Π)(ι◦τ ) def
= E(Πτ)(0) ,

for τ ∈ B◦, where the symbol E on the right hand side denotes expectation over the
underlying probability space. This is extended multiplicatively to all of T̂ex

− . Then
we can define a renormalised map Π̂ : Tex → C∞ by

Π̂τ = (g−(Π)Ãex
− ⊗Π)∆−exτ , (6.22)

where Ãex
− : Tex

− → T̂ex
− is the negative twisted antipode defined in (6.7) and

satisfying (6.8).
Let us also denote by B−◦ the (finite!) set of basis vectors τ ∈ B◦ such that

|τ |− < 0. The specific choice of g = g−(Π)Ãex
− used to define Π̂ is very natural

and canonical in the following sense.
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Theorem 6.17 Let Π : Tex → C∞ be stationary and admissible such that Zex(Π)
is a model in M ex

∞ . Then, among all random functions Πg : Tex → C∞ of the form

Πg = ΠM ex
g = (g ⊗Π)∆−exτ, g ∈ Gex

− ,

with M ex
g as in (6.16), Π̂ is the only one such that, for all h ∈ Rd, we have

E(Π̂τ)(h) = 0 , ∀ τ ∈ B−◦ . (6.23)

We call Π̂ the BPHZ renormalisation of Π.

Proof. We first show that Π̂ does indeed have the desired property. We first consider
h = 0 and we write Π0 : Tex → R for the map (not to be confused with Π0)

Π0τ = E(Πτ )(0) .

Let us denote by B]
◦ the set of τ ∈ B−◦ which are not of the form It

k(σ) with
|t|s > 0. The main point now is that, thanks to the definitions of g−(Π) and ∆−ex,
we have the identity

(id⊗Π0)∆−ex = (id⊗ g−(Π))∆−exι◦ , on Tex.

Combining this with (6.22), we obtain for all τ ∈ B]
◦

E(Π̂τ)(0) = (g−(Π)Ãex
− ⊗Π0)∆−exτ = (g−(Π)Ãex

− ⊗ g−(Π))∆−exι◦τ

= g−(Π)M̂ex
− (Ãex

− ⊗ id)∆−exι◦τ = 0 ,

by the defining property (6.8) of the negative twisted antipode, since ι◦τ belongs
both to the image of iex

− and to the kernel of 1?1.
Let now τ ∈ B]

◦ be of the form It
k(σ) with |t|s > 0. Arguing as in the proof of

Theorem 6.15 we see that

∆−exι◦I
t
k(σ) = (id⊗ ι◦It

k)∆−exσ .

It then follows that

E(Π̂τ)(0) = M̂ex
− (g−(Π)Ãex

− ⊗ g−(Π)ι◦It
k)∆−exσ .

The definition of g−(Π) combined with the fact that Π is admissible and the
definition of Π̂ now implies that

E(Π̂τ)(0) =

∫
Rd
DkKt(−y)E(Π̂σ)(y) dy ,

where DkKt should be interpreted in the sense of distributions. In particular, one
has

E(Π̂τ)(0) = (−1)|k|
∫

Rd
Kt(−y)DkE(Π̂σ)(y) dy . (6.24)
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For σ = (F, F̂ , n, o, e) and n̄ : NF → Nd with n̄ ≤ n, we now write Ln̄σ =
(F, F̂ , n− n̄, o, e) and we note that for gh as in (6.20) one has the identity

(id⊗ gh)∆+
exσ =

∑
n̄

(
n

n̄

)
(−h)Σn̄Ln̄σ ,

so that the stationarity of Π implies that

E(Π̂σ)(y) = E(T̃−yΠ̂σ)(0) =
∑
n̄

(
n

n̄

)
yΣn̄E(Π̂Ln̄σ)(0) .

Plugging this into (6.24), we conclude that the terms for which there exists i with
ki > (Σn̄)i vanish. If on the other hand one has ki ≤ (Σn̄)i for every i, then
|k|s ≤ |Σn̄|s and one has

|Ln̄σ|s = |σ|s − |Σn̄|s ≤ |σ|s − |k|s ≤ |σ|s − |k|s + |t|s = |It
k(σ)|s < 0 ,

so that Ln̄σ ∈ B−◦ and has strictly less colourless edges than τ = It
k(σ). If σ has

only one colourless edge, then σ belongs to B]
◦; therefore the proof follows by

induction over the number of colourless edges of τ .
Let us now turn to the case h 6= 0. First, we claim that, setting Π̂h = T̃h(Π̂),

one has
E(Π̂hτ)(h) = 0 . (6.25)

This follows from the fact that Π̂ is stationary since the action T̃ commutes with that
of Gex

− as a consequence of (5.23), combined with the fact that (f⊗gh)∆−exτ = gh(τ )
for every f ∈ Gex

− , every τ ∈ Tex
+ and every gh of the form (6.20).

On the other hand, we have

Π̂τ = T̃−h(Π̂h)τ .

It follows immediately from the expression for the action of T̃ that Π̂τ is a deter-
ministic linear combination of terms of the form Π̂hσ with |σ|− ≤ |τ |−, so that the
claim (6.23) follows from (6.25).

It remains to show that Π̂ is the only function of the type Πg with this property.
For this, note that every such function is also of the form Π̂g for some different
g ∈ Gex

− , so that we only need to show that for every element g different from the
identity, there exists τ such that E(Π̂gτ)(0) 6= 0.

Using the Definitions 5.26 and 5.29, the Remark 4.15 and the identification (6.1),
Tex
− can be canonically identified with the free algebra generated by B]

◦. Therefore
the character g is completely characterised by its evaluation on B]

◦ and it is the
identity if and only if this evaluation vanishes identically. Fix now such a g different
from the identity and let τ ∈ B]

◦ be such that g(τ ) 6= 0, and such that g(σ) = 0
for all σ ∈ B]

◦ with the property that either |σ|− < |τ |− or |σ|− = |τ |−, but σ
has strictly less colourless edges than τ . Since B]

◦ is finite and g doesn’t vanish
identically, such a τ exists.
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We can then also view τ as an element of Tex and we write

∆−exτ = τ ⊗ 11 +
∑
i

τ (1)
i ⊗ τ

(2)
i ,

so that
Π̂gτ = g(τ ) +

∑
i

g(τ (1)
i )Π̂τ (2)

i . (6.26)

Note now that ∆−ex preserves the | · |−-degree so that for each of the term in the
sum it is either the case that |τ (1)

i |− < |τ |− or that |τ (2)
i | ≤ 0. In the former case,

the corresponding term in (6.26) vanishes identically by the definition of τ . In the
latter case, its expectation vanishes at the origin if |τ (2)

i | < 0 by (6.23). If |τ (2)
i | = 0

then, since τ (2)
i is not proportional to 11 (this is the first term which was taken out

of the sum explicitly), τ (2)
i must contain at least one colourless edge. Since ∆−ex

also preserves the number of colourless edges, this implies that again g(τ (1)
i ) = 0

by our construction of τ . We conclude that one has indeed E(Π̂gτ )(0) = g(τ ) 6= 0,
as required.

Remark 6.18 The rigidity apparent in (6.23) suggests that for a large class of
random admissible maps Π(ε) : Tex → C∞ built from some stationary processes
ξ(ε)
t by (6.13) and (6.14), the corresponding collection of models built from Π̂(ε)

defined as in (6.22) should converge to a limiting model, provided that the ξ(ε)
t

converge in a suitable sense as ε → 0. This is indeed the case, as shown in
the companion “analytical” article [CH16]. It is also possible to verify that the
renormalisation procedures that were essentially “guessed” in [Hai13, Hai14, HP15,
HS15] are precisely of BPHZ type.

Remark 6.19 One immediate consequence of Theorem 6.17 is that, for any g ∈ Gex
−

and any admissible Π, if we set Πg = (g ⊗Π)∆−ex as in Theorem 6.15, then the
BPHZ renormalisation of Πg is Π̂. In particular, the BPHZ renormalisation of the
canonical lift of a collection of stationary processes {ξl}l∈L− as in Remark 6.12 is
identical to that of the centred collection {ξ̃l}l∈L− where ξ̃l = ξl − Eξl(0).

Remark 6.20 Although the map Π 7→ Π̂ selects a “canonical” representative in
the class of functions of the form Πg, this does not necessarily mean that every
stochastic PDE in the class described by the underlying rule R can be renormalised
in a canonical way. The reason is that the kernels Kt are typically some truncated
version of the heat kernel and not simply the heat kernel itself. Different choices of
the kernels Kt may then lead to different choices of the renormalisation constants
for the corresponding SPDEs.

6.4 The reduced regularity structure
In this section we study the relation between the regularity structure T ex introduced
in this paper and the one originally constructed in [Hai14, Sec. 8].
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Definition 6.21 Let us call an admissible map Π : Tex → C∞ reduced if the
second identity in (6.14) holds, namely ΠRα(τ ) = Πτ for all τ ∈ Tex and
α ∈ Zd ⊕ Z(L). We also define the idempotent map Q1 : F→ F by

Q1 : (F, F̂ , n, o, e) 7→ (F, d1 ◦ F̂ , n, 0, e) ,

with d1 : N→ N, d1(n) = n1(n 6=1), and set Q = Q1K.

An admissible map is reduced iff Πτ = ΠQτ for every τ ∈ Tex. Moreover Q
commutes with the maps Ki, K̂i and J , and preserves the | · |−-degree, so that it
is in particular also well-defined on Tex, T̂ex

+ , T̂ex
− and Tex

− . (It does however not
preserve the | · |+-degree so that it is not well-defined on Tex

+ !) An important remark
is that, as a consequence of the induction (6.7), the fact that Q is multiplicative, and
the fact that

(Q⊗ Q)∆−exQ = (Q⊗ Q)∆−ex , (6.27)

for ∆−ex : Tex → Tex
− ⊗Tex, the twisted antipode Ãex

− satisfies the identity QÃex
− =

QÃex
−Q. Therefore, if a stationary admissible Π is (almost surely) reduced, then the

character g−(Π) is also reduced in the sense that g−(Π)(Qτ ) = g−(Π)(τ ). Using
again (6.27), it follows immediately that Π̂ as given by (6.22) is again reduced,
so that the class of reduced models is preserved by the BPHZ renormalisation
procedure.

Definition 6.22 Let Tand T̂+ respectively be the subspaces of Tex and T̂ex
+ given

by
T= {τ ∈ Tex : Qτ = τ} , T̂+ = {τ ∈ T̂ex

+ : Qτ = τ} .

We also set T+ = pex
+ T̂+.

The reason why we define T+ in this slightly more convoluted way instead of
setting it equal to {τ ∈ Tex

+ : Qτ = τ} is that although Q is well-defined on T̂ex
+ ,

it is not well-defined on Tex
+ as a consequence of the fact that it doesn’t preserve the

| · |+-degree.
Since Q is multiplicative, T+ is a subalgebra of Tex

+ . Furthermore, it is clear
that ∆+

ex maps T̂+ to T̂+ ⊗ T̂+ so that T+ is a bialgebra. Looking at the recursive
definition of the antipode Aex

+ , it is clear that it also maps T+ into itself, so that T+

is a Hopf subalgebra of Tex
+ .

This allows to construct a regularity structure T = (A,T, G+) where A def
=

{|τ |+ : τ ∈ B◦, τ = Qτ}, Tex = 〈B◦〉 as in Definition 5.26 and G+ is the group
of characters of T+. The regularity structure T , associated to a subcritical complete
rule R, is then isomorphic to the regularity structure associated to a subcritical
equation constructed in [Hai14, Sec. 8], as a consequence of the discussion of
Section 5.7. As explained in Remark 5.27, the superscript ex stands for extended:
the reason is that the regularity structure T ex is an extension of T in the sense that
T ⊂ T ex with the inclusion interpreted as in [Hai14, Sec. 2.1]. By contrast, we
call T the reduced regularity structure.
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Note that if Π : Tex → C∞ is such that Zex(Π) = (Π,Γ) is a model of T ex,
then the restriction Z(Π) of Zex(Π) to T is automatically again a model. This is
always the case, irrespective of whether Π is reduced or not. This allows to give the
following

Definition 6.23 We denote by M∞ the space of all smooth models for T , in the
sense of Definition 6.6, obtained by restriction to Tof Zex(Π) for some reduced
admissible linear map Π : Tex → C∞. We endow M∞ with the system of pseudo-
metrics (6.15) and we denote by M0 the completion of this metric space.

Remark 6.24 The restriction that Π be reduced may not seem very natural in view
of the discussion preceding the definition. It follows however from Theorem 6.30
below that lifting this restriction makes no difference whatsoever since it implies in
particular that every smooth admissible model on T is of the form Z(Π) for some
reduced Π.

Remark 6.25 By restriction of Zex(ΠMg) to T for g ∈ Gex
− , we get a renormalised

model Z(ΠMg) which covers all the examples treated so far in singular SPDEs. It
is however not clear a priori whether we really have an action of a suitable subgroup
of Gex

− onto M∞ or M0. This is because the coaction of ∆−ex on Tex and Tex
+ fails

to leave the reduced sector invariant. If on the other hand we tweak this coaction
by setting ∆− = (id⊗ Q)∆−ex, then it unfortunately fails to have the cointeraction
property (3.32), which was crucial for our construction, see Remark 5.38.

There turn out to be two natural subgroups of Gex
− that are determined by their

values on QTex
− :

• We set G−
def
= {g ∈ Gex

− : g(τ ) = g(Qτ ), ∀ τ ∈ Tex
− }. This is the most

natural subgroup of Gex
− since it contains the characters g−(Π)Ãex

− used for the
definition of Π̂ in (6.22), as soon as Π = ΠQ. The fact that G− is a subgroup
follows from the property (6.27).

• We set Ga−
def
= {g ∈ Gex

− : g(τ ) = 0∀τ ∈ Tc
−} where Tc

− is the bialgebra ideal
of Tex

− generated by {τ ∈ B−, Qτ 6= τ}. Then one can identify Ga− with the
group of characters of the Hopf algebra

(
Tex
− /T

c
−,∆

−
ex
)
. It turns out that this

is simply the polynomial Hopf algebra with generators {τ ∈ B− : |τ |− <
0, Qτ = τ}, so that Ga− is abelian.

We then have the following result.

Theorem 6.26 There is a continuous action R of G− onto M0 with the property
that, for every g ∈ G− and every reduced and admissible Π : Tex → C∞ with
Zex(Π) ∈M ex

0 , one has RgZ(Π) = Z(ΠMg).

Proof. We already know by Theorem 6.15 that G− acts continuously onto M ex
0 .

Furthermore, by the definition of G−, it preserves the subset M r
0 ⊂M ex

0 of reduced
models, i.e. the closure in M ex

0 of all models of the form Zex(Π) for Π admissible
and reduced. Since T ⊂ T ex, we already mentioned that we have a natural
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projection πex : M ex
0 →M0 given by restriction (so that Z(Π) = πexZex(Π)), and

it is straightforward to see that πex is injective on M r
0 . It therefore suffices to show

that there is a continuous map ιex : M0 →M ex
0 which is a right inverse to πex, and

this is the content of Theorem 6.30 below.

Remark 6.27 In principle, one can show slightly more, namely that the action of
G− onto M0 is given by elements of the “renormalisation group” defined in [Hai14,
Sec. 8.3].

6.4.1 Construction of extended models

In general if, for some sequence Π(n) : Tex → C∞, Zex(Π(n)) ∈M ex
∞ converges

to a limiting model in M ex
0 , it does not follow that the characters g+(Π(n)) of T̂ex

+

converge to a limiting character. However, we claim that the characters f (n)
x of

Tex
+ given by (6.11) do converge, which is not so surprising since our definition of

convergence implies that the characters γ(n)
xy of Tex

+ given by (6.12) do converge.
More surprising is that the convergence of the characters f (n)

x follows already
from a seemingly much weaker type of convergence. Writing D′ for the space of
distributions on Rd, we have the following.

Proposition 6.28 Let Π(n) : Tex → C∞ be an admissible linear map with

Zex(Π(n)) = (Π(n),Γ(n)) ∈M ex
∞

and assume that there exist linear maps Πx : Tex → D′(Rd) such that, with the
notation of (6.15), ‖Π(n) − Π‖`,K → 0 for every ` ∈ R and every compact set K.
Then, the characters f (n)

x defined as in (6.11) converge to a limit fx. Furthermore,
defining Γxy by (6.12), one has Z= (Π,Γ) ∈M ex

0 and Zex(Π(n))→ Z in M ex
0 .

Finally, one has Π : Tex → S′(Rd) such that Πx = (Π⊗ fx)∆+
ex and such that

Π(n)τ → Πτ in S′(Rd) for every τ ∈ Tex.

Proof. The convergence of the f (n)
x follows immediately from the formula given

in Lemma 6.9, combined with the convergence of the Π(n)
x and [Hai14, Lem. 5.19].

The fact that (Π,Γ) satisfies the algebraic identities required for a model follows
immediately from the fact that this is true for every n. The convergence of the Γ(n)

xy

and the analytical bound on the limit then follow from [Hai14, Sec. 5.1].

Remark 6.29 This relies crucially on the fact that the maps Π under consideration
are admissible and that the kernels Kt satisfy the assumptions of [Hai14, Sec. 5].
If one considers different notions of admissibility, as is the case for example in
[HQ15], then the conclusion of Proposition 6.28 may fail.

For a linear Π : T → C∞ we define Πex : Tex → C∞ by simply setting
Πex = ΠQ. Then we say that Π is admissible if Πex is. We have the following
crucial fact
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Theorem 6.30 If Π : T→ C∞ is admissible and Z(Πex) belongs to M∞, then
Zex(Πex) belongs to M ex

∞ . Furthermore, the map Z(Πex) 7→ Zex(Πex) extends to
a continuous map from M0 to M ex

0 .

Proof. Let Π : T→ C∞ be such that Z(Πex) = (Π,Γ) is a model of T and write
(Πex,Γex) = Zex(Πex). Our aim is to find linear maps Lx : Tex → T, depending
furthermore continuously on the model Z(Πex), with the property that

Πex
x τ = ΠxLxτ , ∀τ ∈ Tex . (6.28)

If these maps all increase the | · |+-degree, then it follows immediately that Πex
x

satisfies the required analytical bounds, provided that Πx does. The claim then
follows at once from Proposition 6.28.

For every x ∈ Rd, we define Lx as follows. First, we set

LxΞl
k,` = Ξl

k,` , LxX
k = Xk , (6.29)

and we then define recursively

LxRα(τ ) = Lxτ , Lx(τ τ̄ ) = Lx(τ )Lx(τ̄ ) ,

where the product on Tex is given by (4.8), as well as

LxI
t
k(τ ) = It

k(Lxτ )−
∑

|Jt
kτ |+≤|m|s

Xm

m!
fx(Jt

k+m(τ̄ )) . (6.30)

Note that this sum is finite since Jt
k+mτ̄ = 0 as an element of Tex

+ as soon as
|m|s ≥ |Jt

kτ̄ |+. It is immediate from these definitions that Lx does indeed increase
the | · |+-degree, as a consequence of the fact that elements of the type Rα(τ ) appear
in Tex only if |α|s < 0.

It remains to show that (6.28) does indeed hold. For this, define Π̂ : Tex → C∞

by
Π̂τ = (ΠxLx ⊗ fxAex

+ )∆+
exτ .

Since one then has
ΠxLxτ = (Π̂⊗ fx)∆+

exτ ,

it suffices to show that one has Π̂ = Πex. Noting that

Π̂ = ((Π⊗ fx)∆+
exLx ⊗ fxA+ex)∆+

ex ,

we actually check a slightly stronger property, namely we show that the linear maps

Qxτ
def
= ((id⊗ fx)∆+

exLx ⊗ fxAex
+ )∆+

exτ

satisfy Qx = Q for every x. This in turn follows immediately from the properties of
the antipode Aex

+ if we can show that

(id⊗ fx)∆+
exLxτ = (Q⊗ fx)∆+

exτ . (6.31)
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Since both Lx and Q act as the identity on Xk and Ξl
k,`, it follows that (6.31)

does indeed holds for these elements. We then proceed inductively over the number
of colourless edges of τ , using (4.14). Note first that since ∆+

exRα = (Rα⊗ id)∆+
ex

and QRα = Q, it follows that if (6.31) holds for τ , then it also holds for Rατ .
Similarly, since both sides of (6.31) are multiplicative, it follows that if the identity
holds for both τ and τ̄ , then it also holds for τ τ̄ . It therefore remains to show that if
(6.31) holds for every τ with at most n colourless edges, then it also holds for every
element of Tex of the form It

k(τ ) where τ has exactly n colourless edges.
Note now that by (4.14) and the fact that Q commutes with It

k one has

(Q⊗ fx)∆+
exI

t
k(τ ) = It

k(Q⊗ fx)∆+
exτ +

∑
`

X`

`!
fx(Jt

k+`(τ )) .

On the other hand, it follows from (6.30), (4.14), and the fact that fx(X) = −x that

(id⊗ fx)∆+
exLxI

t
k(τ ) = It

k(id⊗ fx)∆+
exLxτ +

∑
`

X`

`!
fx(Jt

k+`(Lxτ ))

−
∑

|Jt
kτ |+≤|`+m|s

X`

`!

(−x)m

m!
fx(Jt

k+`+m(Lxτ )) .

Comparing these two expressions and exploiting the induction hypothesis, we see
that it remains to show that

fx(Jt
k(Lxτ ))− fx(Jt

k(τ )) =
∑

|Jt
kτ |+≤|m|s

(−x)m

m!
fx(Jt

k+m(Lxτ )) . (6.32)

Writing Lxτ =
∑

i ci,xτi and using the fact that |τi|+ ≥ |τ |+ for every i, it follows
from Lemma 6.9 that

fx(Jt
k(Lxτ )) = −

∑
i

ci,x
∑

|k+`|s<|Jtτi|+

(−x)`

`!
(Dk+`Kt ∗Πxτi)(x)

= −
∑

|k+`|s<|Jtτ |+

(−x)`

`!
(Dk+`Kt ∗ΠxLxτ)(x)

−
∑
i

ci,x
∑

|Jtτ |+≤|k+`|s<|Jtτi|+

(−x)`

`!
(Dk+`Kt ∗Πxτi)(x) .

Since ΠxLxτ = Πxτ by our inductive hypothesis, the first term is indeed equal to
fx(Jt

k(τ )). The fact that the second term is equal to the right hand side in (6.32)
follows from the binomial identity, thus concluding the proof.
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Appendix A Symbolic index

Here, we collect some of the most used symbols of the article, together with their
meaning and the page where they were first introduced.

Symbol Meaning Page

| · |bi Bigrading on coloured decorated forests 13
| · |− Degree not taking into account the label o 43
| · |+ Degree taking into account the label o 43
Ai Subforests appearing in the definition of ∆i 14
Ai Antipode of Hi 25
Aex
± Antipode of Tex

± 57
Ãex
± Twisted antipode Tex

± → T̂ex
± 61

Â2 Antipode of Ĥ2 38
B◦ Elements of H◦ strongly conforming to the rule R 55
B−◦ Elements of B◦ of negative degree 55
B]
◦ Elements of B−◦ that are not elementary 55

B− Elements of H1 strongly conforming to the rule R 55
B+ Elements of Ĥ2 conforming to the rule R 55
Di(J ) All roots of colour in {0, i} 34
D̂i(J ) All roots of colour i 34
∆i Coproduct on 〈F〉 turning the 〈Fi〉 into bialgebras 16
E Edge types given by E= L× Nd 45
f�A Restriction of the function f to the set A 13
F All coloured decorated forests (F, F̂ , n, o, e) 10
Fi All forests compatible with Ai 21
F◦ Trees with colours in {0, 1} 37
Φi Collapse of factors in Mi 24
g+
z (Π) Character on T̂ex

+ defined by Π 64
g−z (Π) Character on T̂ex

− defined by Π 69
Gi Characters of Hi 26
Gex
± Character group of Tex

± 58
Ĝ2 Characters of Ĥ2 38
H◦ Algebra given by 〈F◦〉/ kerK 37
Ĥ2 Hopf algebra H2/ ker(J P̂2) 37
Hi Hopf algebra 〈Fi〉/Ii 25
H◦ Representative of H◦ given by H◦ = KF◦ 37
Ĥ2 Representative of Ĥ2 given by Ĥ2 = J K̂2F2 37
Hi Representative of Hi given by Hi = KiFi 25
iex
± Canonical injection Tex

± ↪→ T̂ex
± 60
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Symbol Meaning Page

Ii Kernel of Ki 24
Îi Kernel of K̂i 24
It
k Abstract integration map in H◦ 39

J Joins the root of all trees together 34
Jt
k Abstract integration map H◦ → Ĥ2 40

J+ Subspace of terms in T̂ex
− with a factor of positive degree 56

J− Subspace of terms in T̂ex
+ with a factor of negative degree 56

K Contraction of coloured portions 23
Ki Defined by Ki = Φi ◦K 24
K̂i Defined by Ki = Pi ◦ Φi ◦K 24
|k| Unscaled length of a multi-index k 13
|k|s Scaled length of a multi-index k 43
L Set of all types 9
Mi Elements of 〈Fi〉 completely coloured with i 24
M Space of all models 67
M0 Closure of smooth models 67
M∞ Space of all smooth models 67
N Node types given by N= P̂(E) 45
N(x) Type of the node x 45
P̂i Sets o-decoration to 0 on i-coloured roots 24
P(A) Powerset of the set A 46
P̂(A) Multisets with elements from the set A 45
pex
± Canonical projection T̂ex

± → Tex
± 56

Π Linear map Tex → C∞ specifying a model 64
R Rule determining a class of trees 46
Rα Operator adding α to o at the root 40
s Scaling of Rd 43
T Simple decorated trees 44
T◦(R) Trees strongly conforming to the rule R 47
T1(R) Forests strongly conforming to the rule R 47
T2(R) Trees conforming to the rule R 47
T−(R) Trees strongly conforming to R of negative degree 47
T̂ex

+ Subspace of Ĥ2 determined by a rule R 55
T̂ex
− Subspace of H1 determined by a rule R 55

Tex Subspace of H◦ determined by a rule R 55
Tex

+ Quotient space T̂ex
+ /J− 56

Tex
− Quotient space T̂ex

− /J+ 56
Ui Units of 〈Fi〉 21
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Symbol Meaning Page

〈V 〉 Bigraded space generated from a bigraded set V 13
Xk Shorthand for (•, i)k,00 with i ∈ {0, 2} depending on context 39
Ξl Element Il

0(1) representing the noise 64
‖z‖s Scaled distance 63
Zex Map turning Π into a model 64
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