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CNRS, Heudiasyc UMR 7253

CS 60319, 60203 Compiègne cedex, France
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Abstract

Accurate localization with high availability is a key requirement for autonomous vehicles. It

remains a major challenge when using automotive sensors such as single-frequency GNSS re-

ceivers, a lane detection camera and proprioceptive sensors. This paper describes a method

that enables the estimation of standalone L1-GNSS errors by integrating the measurements

from a forward looking camera matched with lane markings stored in a digital map. It

includes a parameter identification method for a shaping model which is evaluated using

experimental data. An algebraic observability study is then conducted to prove that the

proposed state vector is fully observable in a road-oriented frame. This observability prop-

erty is the basis to develop a road-centred Extended Kalman filter (EKF) which can maintain

the observability of every component of the state vector on any road, whatever its orienta-



tion. To accomplish this the filter needs to handle road changes, which it does using bijective

transformations. The filter was implemented and tested intensely on an experimental vehi-

cle for driverless valet parking services. Field results have shown that the performance of

the estimation process is better than solutions based on EKF implemented in a fixed work-

ing frame. The proposed filter guarantees that the drift along the road direction remains

bounded. This is very important when the vehicle navigates autonomously. Further, the

road-centred modeling improves the accuracy, consistency and robustness of the localization

solver.

1 Introduction

Autonomous ground vehicles (AGVs) have existed as prototype and demonstration vehicles since the 1970s.

Their widespread use promises increased comfort, safety, reduced traffic congestion, energy conservation,

and pollution reductions(Litman, 2013). Usually, an AGV needs to perform four kinds of tasks: localization,

perception, path planning and control. This paper focuses on the localization system. Localization generally

refers to determining the vehicle’s position (x, y) and heading (ψ) with respect to a map that includes the

vehicle’s goals. For autonomous navigation, the real-time vehicle localization is required to be accurate, fully

available and reliable. Expensive sensor suites, such as RTK-GPS and high-grade Inertial Measurement Unit

(IMU) are often adopted to achieve good performance. The ability to simultaneously estimate the pose of

a vehicle and give reliable confidence indicators using only low-cost sensors remains a challenging problem,

particularly in outdoor environments.

Recently there have been impressive demonstrations on both rural and urban routes of self-driving cars using

close-to-market sensors and enhanced maps (Ziegler et al., 2014; Furgale et al., 2013; ?). In most cases, an

on-road assumption and the use of an informative digital map make low-cost autonomous driving possible. In

the research community, there has been significant progress in the generation of detailed digital maps (Guo

et al., 2014), to the point that map-aided perception (Kurdej et al., 2014; Cui et al., 2014) and map-aided

localization (Miller et al., 2011; Jo et al., 2013; Schreiber et al., 2013; Rose et al., 2014) are now energetically

being considered for autonomous navigation. A detailed and highly accurate map often contains lane poly-

lines, carriageway boundaries, lane markings with associated types, speed limits and additional information

useful for navigation. The use of such a map makes the vehicle able to localize itself precisely in order to

maneuver correctly with a path planner.



In order to benefit from a highly accurate map, a vehicle needs to measure its relative position with respect

to features of the road on which it is traveling, by integrating perception information such as lane detections.

An up-to-date survey of lane detection can be found in (Bar Hillel et al., 2014). The sensing technologies

involved are mainly camera and lidar. Lidar uses active light and is therefore not affected by certain natural

light issues. However, it can face problems in snow, rain and fog. Lane and road boundary detection using

only laser-based sensors has been discussed in (Wijesoma et al., 2004; Reyher et al., 2005; Ogawa and Takagi,

2006; Morales et al., 2009). Cameras are attractive sensors, as they are cheap and provide high resolution

information with lower operating power. Multi-sensor lane-finding systems have also been proposed for

autonomous driving (Huang et al., 2008). The obvious major drawback of lidar is the relatively high cost of

sensors, which has prevented their use becoming widespread in automotive applications. Camera-based lane

recognition systems are relatively mature nowadays and have already been introduced to market for Lane

Departure Warning Systems (LDWS). Many LDWSs provide, on the Controller Area Network (CAN) bus of

a modern vehicle, several attributes of the detected lane markings, including lane type, position, curvature,

curvature derivative and heading. These local measurements are useful for improving vehicle localization

when coupled with a lane marking map.

In order to get localization at high frequency and with high availability, proprioceptive sensors like wheel

speed sensors and yaw rate gyros are particularly relevant. These sensors are already available in modern

cars. In Europe, every new vehicle has had to be equipped with an Electric Stability Program (ESP) since

January 2012. Anti-lock Braking System (ABS) has been part of standard equipment even longer. These

two systems contain a wealth of proprioceptive sensors which are capable of measuring vehicle yaw rate and

individual wheel speed. The sensors can easily send their measurements to electronic control units via a

CAN bus, to enable Dead-Reckoning (DR). Even if drift is unavoidable, DR provides accurate short term

estimates with high frequency.

The most widely used outdoor localization systems are Global Navigation Satellite Systems (GNSSs). A

GNSS provides an estimation of absolute position, and can therefore be useful when initializing a system,

compensating for DR drift or calibrating sensors. The fusion of GNSS and DR has been widely studied

(Bonnifait et al., 2001; Bar-shalom et al., 2002; Gao et al., 2006; Sukkarieh et al., 1999). However, measure-

ments are often affected by strong biases when using a standalone GNSS receiver. These biases are caused

mainly by satellite position errors from real-time broadcast ephemeris, atmospheric propagation delays and

multipath effects. Although the manufacturers of GNSS receivers are providing increasingly reliable solutions

with the development of multi-constellation satellite technology, it remains hard to compensate systematic



Figure 1: Driverless valet parking vehicle used in the PAMU (Plateforme avancée de Mobilité Urbaine) project
(Laboratoire Heudiasyc, 2015).

errors for a standalone solution without additional sensors or differential corrections.

In this paper we develop a localization system for providing an accurate real-time pose estimate to be used

as a feedback for the autonomous navigation of a full-sized car in valet parking operations (see Fig. 1). The

estimation of pose is used by a motion planner that enables the car to follow a predetermined path.We focus

on map-aided methods and explore the feasibility of using low-cost automotive sensors to achieve this goal.

Fig. 2 displays a systemic view of the proposed localization system. We use automotive sensors with CAN

bus interfaces. The available sensor information sources are wheel speed sensors and a gyro for DR, GNSS

for global positioning, and a lane detection camera coupled with a lane marking map for accurate cross-track

positioning. The GNSS, when coupled with DR, provides vehicle pose estimation with high availability

but low accuracy. Conversely, the lane detection camera with the lane marking map provides estimates

with low availability but high accuracy. Availability is low because the lane detection camera from the

LDWS works well only in areas where the lane marking is well defined, without any ambiguity, and reliable

measurements cannot be obtained at intersections and on highly curved roads. The two groups of sensors

are quite complementary. Therefore, our objective is to design a localization solver that merges all these

information sources to achieve GNSS/DR-like availability and camera-like accuracy. In addition, we expect

to have a highly consistent localization solver, which means the estimated confidence domain contains the

ground truth as often as possible.

Research approaches in the literature have focused on tightly coupling vision sensors and enhancing the

feature detection algorithm such as in (Pink, 2008; Levinson and Thrun, 2010; Wolcott and Eustice, 2014;

Hara and Saito, 2015; Gruyer et al., 2016). In this paper, the lane detection camera is an off-the-shelf system.

The availability of lane marking detection will sometimes be low and it outputs only the lane marking
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Figure 2: Systemic view of the proposed approach

parameters of the host lane of the vehicle. The good aspect is that the host lane detection function is proved

to be quite robust. The detection of the closest markings usually leads to less complex and more robust

detection as argued in (Gruyer et al., 2016). We focus on improving the GNSS/DR accuracy by modeling

the measurement errors. Integrating the camera with the lane marking map makes this possible. Meanwhile,

the camera measurements are related to the local geometry of the road. Generally, cross-track measurements

(e.g. lane marking measurements) will be made more frequently than along-track measurements (e.g. stop

line measurements). The observability of the GNSS/DR error is therefore weak in the along-track direction,

whereas it is high in the cross-track direction.

We adopt a loosely coupled scheme, meaning that high level information (e.g. position fixes of the GNSS

receiver and clothoids of the lanes detected by the camera) and not raw data are fed into the localization

solver. This option is often chosen because of its simplicity, given that position fixes are available in any

standard GNSS unit. In this paper, the localization solver is realized using an Extended Kalman filter

(EKF). It is difficult to model the error of a loosely coupled GNSS receiver, because it is affected by both

the external environment and internal filtering effects of the receiver. Our solution is to identify a model

that can represent effectively the major properties of GNSS errors, namely systematic bias, white noise, and

autoregressive/Gauss-Markov processes. Navigation system errors can be approximated by this modeling

in most cases, provided that the models adequately fit the real errors (Groves, 2013). In particular, we

propose to enhance the GNSS error model in the cross-track direction by integrating camera cross-track

measurement. The state vector is then augmented by adding the sensor error models. To maintain the

observability of each state element we propose a road-centred EKF algorithm for handling the enhanced

GNSS error model. By “road-centred” we mean that the working frame of the localization solver is adjusted

so that it is always aligned with the road that the vehicle is traveling along. This idea is inspired from the

Invariant EKF proposed by Bonnabel et al. (Bonnabel et al., 2009). Our localization problem possesses

natural invariance with respect to road rotations, and geometrical transformations can be found to make the

system invariant. The nonlinear observability of the augmented state vector is studied here in an algebraic



framework.

The main contribution of this paper is to propose a new modeling of GNSS error that is particularly well

adapted for a new road-centred filtering scheme integrating cross-track lane marking measurements in real

time. We do an algebraic observability analysis to support the design of this approach. The filter is

implemented as an EKF that works in a frame which follows the road. A number of real outdoor experiments

were carried out to evaluate the method in terms of localization accuracy and consistency.

The paper is organized as follows. Section 2 describes the system modeling, in particular the frames and

GNSS fix error modeling. The observability of the proposed state space modeling is studied in section 3.

Section 4 describes the road-centred EKF implementation. Outdoor real experimental results are presented

and analyzed in section 6. Section 7 concludes the paper.

2 System modeling

2.1 Definition of Frames

A local East, North, Up (ENU) frame is defined as a Cartesian coordinate system tangential to the Earth’s

ellipsoid at an origin point close to the navigation area. The north axis is tangential to the meridian that

passes through the origin in a northerly direction. The east axis is normal to the north axis and is in the

positive longitudes direction. The Up axis is chosen so that the ENU is a right-handed coordinate system

(see Fig. 3). This ENU frame is defined as the local navigation frame. GNSS receivers usually provide

geographical data (λ, ϕ, h) in the WGS84 system.

When the navigation area is flat enough, the 3D ENU frame can be simplified into 2D coordinates by only

considering easting and northing. The lower frame RO in Fig. 3 is the 2D ENU frame with xO pointing east

and yO pointing north. The lane marking map is also defined in RO. As shown in Fig. 3, camera-relative

measurement is done with respect to an absolute navigation frame.

RM denotes the mobile vehicle frame (xM is the longitudinal axis pointing forward and yM is such that zM

is upwards). Point C, the origin of the camera frame RC , is located at the front of the vehicle, since camera

systems will often auto-calibrate. In order to stay consistent with vision system conventions, yC is pointing

to the right side of the vehicle. Even if the camera is located behind the windscreen with a position offset

(Cx, Cy), every detected lane marking is expressed in RC . P x refers to the translation between point M
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Figure 3: Frames used: ECEF (Earth Centered Earth Fixed), ENU, vehicle body and camera. λ, ϕ and h refer
respectively to longitude, latitude and altitude.

and the front bumper.

2.2 Dead reckoning kinematic model

The linear velocity of each rear wheel is measured by the ABS speed sensors. Since the vehicle is front-wheel

driven, the slippage of the rear wheels is neglected. In the following differential model, time is omitted for

simplification:



ẋ = vm · cosψ

ẏ = vm · sinψ

ψ̇ = ωm − εω

ε̇ω = 0

(1)

where the linear velocity is calculated by vm = (vmrl + vmrr) /2; vmrl and vmrr denote the measured linear velocity

of the left and right rear wheels respectively. The angular velocity of the vehicle (ωm) is measured by the

ESP yaw rate gyro. εω is the gyro bias modeled by a random constant. An estimate of the pose (x, y, ψ)of



the vehicle is given by the integration of the measurements from a known initial pose.

2.3 Camera observation model

We consider a camera system which provides the following lane marking parameters of a Taylor’s expansion

of a clothoid in the camera frame (Kluge, 1994):

y = C3 · x3 + C2 · x2 + C1 · x+ C0 (2)

where C0, C1, C2 and C3 are respectively the cross-track distance, the slope, the curvature and the curvature

derivative of the detected lane marking (see Fig. 3 for C0 and C1).

Since the lane marking map is represented by polylines, the only parameter that is considered for vehicle

localization is the cross-track distance C0. The heading C1 is too sensitive to movements of the vehicle body.

In Fig. 3, let L denote the lane marking detection located at ordinate C0 in RC . The coordinates of point

L in frame RO are:

 xL

yL

 =

 Px · cosψ + C0 · sinψ + x

Px · sinψ − C0 · cosψ + y

 (3)

In Fig.3, [AB] represents the detected lane marking segment. The coordinates of points A and B are (xA, yA)

and (xB , yB) in RO. Let V = (xAB = xB − xA, yAB = yB − yA)
T

. Point L on segment [AB] is such that:

 xL = xA + λ · xAB

yL = yA + λ · yAB
with λ ∈ [0, 1] (4)

Plugging Eq. (3) into Eq. (4), we have:

 Px · cosψ + C0 · sinψ + x = xA + λ · xAB

Px · sinψ − C0 · cosψ + y = yA + λ · yAB
(5)

Through Eq. (5), we can derive



C0 =
(P x · sinψ + y − yA) · xAB − (P x · cosψ + x− xA) · yAB

xAB · cosψ + yAB · sinψ
(6)

The camera observation model takes into account explicitly the camera position in the body frame. It is

nonlinear and can be written as:

ycam = gcam (x, l) + βcam (7)

where ycam = [C0] is the camera measurement, x is the state vector of the vehicle, l the lane marking

parameters extracted from the digital map, and βcam is a measurement noise that is centered when the

camera is well calibrated intrinsically and extrinsically (Bouguet, 2008).

2.4 Road feature maps

Detailed maps provide prior information to navigation tasks and can provide a self-driving capability that

is low-cost in terms of on-board hardware equipment. In this section we discuss relevant previous works.

Different kinds of maps have been considered in the literature. In (Laneurit et al., 2006), a map was used

that comprised a grid of rectangular facets representing the roadsides. The origin, orientation, length and

width of each facet are defined in the local navigation frame. Using a front view camera, an image processing

algorithm is then implemented to give precise cross-track position and orientation of the vehicle with respect

to the roadside. l corresponds to the parameters of the nearest facet. This work shows that it is possible and

potentially useful to integrate lane boundary information, which often means detecting white lane markings.

In (Miller et al., 2011), the map is modeled by GNSS waypoints designating lane centers, stop lines and lane

markings. Dashed, solid and unstructured lane types are denoted for each lane marking. In this approach,

ycam contains the perpendicular distance of the camera from each of the lane boundaries, the camera heading

with respect to the lane, the lane width, the lane type and the distance to the stop line. The authors use a

particle filter to augment the GNSS/DR solution with camera measurements coupled with a surveyed map.

They give a demonstration of the stability of the localization solutions used to feedback the controller of a

full-size autonomous ground vehicle. Recently, other works with similar ideas but different configurations

have been carried out, such as in (Jo et al., 2013; Gruyer et al., 2014; Lee et al., 2015). Section 2.5.3 describes

some research works. In GNSS error modeling (Jo et al., 2013), a front view camera is used to detect lane

markings and zebra lines which have been charted in the map. In (Gruyer et al., 2014), two cameras are

used to provide an assessment of the cross-track distances between the vehicle and the ego-lane markings



Figure 4: Lane marking map of the test area. (Blue line: road centreline; Green line: lane centreline; White line:
lane marking; Gray box: building)

or borders. This information is then coupled with an accurate digital map of the road markings. However,

the modeling of GNSS errors is not considered. The authors of (Lee et al., 2015) propose, in particular, a

localization method with GNSS/DR error estimation based on lane detection for curved lane models. They

propose an along-track measurement from a curve matching . The curved parameter of the lane ahead is

fitted using the waypoint map by supposing that the waypoints and the lane markings are parallel. The fitted

waypoint curve is then transformed into the vehicle frame. However, the impact of the uncertainty of the

estimated vehicle heading on this transformation (which introduces errors on the along-track measurement)

is not discussed.

The lane marking map used in the present paper was the result of a surveying operation carried out by a

private company. The mobile mapping system was equipped with a RIEGL VQ450 lidar with millimeter-

level accuracy. The mobile mapping platform itself was localized using a Post-Processed Kinematic (PPK)

GPS. The absolute error of the collected lane marking data is estimated to be in the order of 10cm. Fig.

4 shows the lane marking map of the navigation area. The gray boxes represent the buildings imported

from OpenStreetMap1. The blue, green and white lines respectively represent the road centrelines, the lane

centrelines and the lane markings.

2.5 GNSS fix error model

GNSS is mandatory for initialization of the localization system, and GNSS information should be used as

much as possible as long as it is consistent with the pose estimate.Where there are no lane markings in a

navigation area, or where the camera fails to detect lane markings (for instance, at an intersection), GNSS

1www.openstreetmap.org
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Figure 5: Errors of L1-GNSS solutions in the local navigation frame. The vehicle was manually driven up to 30
km/h with a RTK-GPS IMU for ground truth.

can improve the accuracy of the pose information and compensate for DR errors. Moreover, since the camera

observations provide only cross-track correction, where the vehicle is traveling on a long straight road, the

along-track drift of a map-aided dead-reckoned estimate can become significant. The GNSS information can

again be used to correct the along-track drift. We augment the state vector with shaping components so

that data from GNSS fixes can be merged.

2.5.1 GNSS position fix errors

Loosely coupling L1-GNSS with other sensors is a challenging task since GNSS positioning errors are not

white and can be affected by strong biases and multipath, particularly in urban areas. Fig. 5 illustrates these

issues on a real test with a low-cost L1-GNSS receiver: Positioning errors can be as much as several meters,

are strongly correlated and can have jumps within short time intervals. The solution that we propose is to

model the correlation to compensate for the biases and to reject fixes suffering from multipath effects. The

GNSS error signals (βx, βy) were obtained using a ground truth system.

Autocorrelations of 3 different sequences of (βx, βy) produced by the same GNSS receiver (1000 samples

each at 5 Hz) are shown in Fig. 6. As the shape is clearly different from a Delta-Dirac at zero, errors are

colored. Moreover, for short correlation times (less than 30 seconds), the different curves superimpose quite

well, which indicates a repeatable behavior that can be modeled. Therefore, L1-GNSS errors can be modeled

by zero-mean white noise that is put through shaping filters to yield an output statistically similar to the

error under consideration.
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The problem is to find a structure for the filter and then to estimate its parameters and the variance of the

driving noise.

2.5.2 Autoregressive processes for modeling GNSS colored errors

An Autoregressive (AR) model is a representation of a type of random process. The name autoregressive

comes from the fact that each signal sample is regressed on the previous values of itself. The AR process

can be described using a discrete pole-zero transfer function system H (z) as follows:

H (z) =
O (z)

I (z)
=

β0
1 +

∑p
n=1 αnz

−n (8)

where I (z) is the z-transform of the input Ik, and O (z) is the z-transform of the output Ok. β2
0 represents

the estimated variance of the white noise input to the AR model and p is the AR order.

Applying the inverse z-transform to Eq. (8), the AR transfer function in the time domain can be obtained

as:

Ok = −
p∑

n=1

αnOk−n + β0Ik (9)



In (Nassar, 2003), the AR processes are first used to model the randomness of the inertial sensor measure-

ments. The residual random error component is modeled as a zero-mean white noise put through a shaping

filter to yield a time-correlated output. In the present work we suggest using AR processes to model GNSS

random errors. In our case, Eq. (9) becomes:


εx,k = −

p∑
n=1

αx,nεx,k−n + wx,k

εy,k = −
p∑

n=1
αy,nεy,k−n + wy,k

(10)

where εx and εy are the biases on the GNSS position fix, and wx and wy are the input white noises.

We now look at how to determine the AR model parameters (αx,n andαy,n), the input white noise (wx andwy)

and the AR order p.

Different methods exist for estimating AR parameters. Three methods are quite common, namely Yule-

Walker, the covariance method, and Burg’s method(Nassar, 2003). The Yule-Walker method first determines

the sample Autocorrelation Sequence of the input signal (GNSS residual bias), and the AR model parameters

are then optimally computed by solving a set of linear normal equations in a least-squares sense. However,

the Yule-Walker method performs adequately only for very long data records (Jackson, 1996) and it may

introduce a large bias in the AR estimated coefficients, since it does not guarantee a stable solution of the

model. The covariance method is similar to the Yule-Walker method in that it minimizes the prediction in

the least-squares sense.

Burg’s method was introduced to overcome most of the drawbacks of the other modeling techniques by

providing both stable resolution and high resolution, especially for short data records (Burg, 1975). Burg’s

method attempts to use the data as fully as possible, by defining both a forward and a backward prediction

error term.

In the present work, Burg’s method is adopted to estimate the AR parameters and the variance of the input

white noise of the shaping filter.

The choice of the order of the AR model is also of importance.

Fig. 7 and Fig. 8 show the variation of the estimated parameters of first and second-order models (denoted

AR1 and AR2 parameters respectively) on 8 different sequences acquired at speeds up to 50 km/h. The

variation in the AR1 parameters is at most 0.06%. However, the variation in the AR2 parameters is almost
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Figure 7: Relative variation in AR1 parameters for 8 different estimation sequences (Burg’s method)
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Figure 9: Auto-correlations of the experimental signal and of the inverse of the shaping filter

50%. Although the sequences that we used to identify the parameters are probably too short to estimatethe

AR2 parameters correctly, an AR1 model clearly has better stability. Our strategy is therefore to use an

AR1 filter which is more robust to the nonstationarity of the errors.

In order to validate this shaping model, the recurrence equations may be reversed in offline processing:

 wx,k = εx,k + αxεx,k−1

wy,k = εy,k + αyεy,k−1

(11)

The autocorrelations of wx,k and wy,k are given in Fig. 9 (red curves). They approximate a Delta-Dirac

function quite well. We conclude that these signals can be seen as white noise sequences with respect to the

dynamics of our system, and the AR1 model defined by Eq. (11) is a good shaping filter.

2.5.3 GNSS error models

When using GNSS as a sensor in a loosely coupled fusion architecture, the position fix estimates

(xGNSS , yGNSS) in the working frame are affected by errors (βx, βy). Neglecting the lever arm of the

antenna for simplification, we have:



 xGNSS = x+ βx

yGNSS = y + βy

(12)

The errors (βx, βy) cannot be considered as zero-mean white noise in the way that was discussed above. The

position fix of a GNSS receiver is affected by time-correlated errors caused by atmospheric effects and by the

filter implemented in the receiver. Modeling of GNSS biases has been discussed in a number of publications,

including (Laneurit et al., 2006)(Clanton et al., 2009)(Miller et al., 2011) .

The non-modeled part of the error can be expressed by some random process β
′

x and β
′

y, assumed to be

zero-mean white noise:  xGNSS = x+ εx + β
′

x

yGNSS = y + εy + β
′

y

(13)

εx and εy are slow-variation errors in the ENU frame for which an evolution model exists. Some authors,

such as (Laneurit et al., 2006) and (Lee et al., 2015), suppose that these errors are quite constant between

two samples:  εx,k = εx,k−1

εy,k = εy,k−1

(14)

In (Laneurit et al., 2006), a bias management strategy is proposed to decide whether the bias has changed.

In (Miller et al., 2011)(Jo et al., 2013), the GNSS biases are modeled by an AR1 process as proposed in

(Bar-shalom et al., 2002):

 εx,k = e−dt/τx · εx,k−1 + νx,k−1

εy,k = e−dt/τy · εy,k−1 + νy,k−1

(15)

where τx and τy are the bias autocorrelation time constants and dt the elapsed time. νx and νy are zero-mean

white noise. The vehicle dynamic equations are then augmented by Eq. (14) or (15).

In our work, we use a combination of the random constant process defined by Eq. (14) and the autoregressive

model defined by Eq. (15) to enhance the GNSS error modeling. This choice is motivated by the road-frame

implementation presented hereafter.
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Figure 10: Road frame : The x axis is chosen to be parallel to the road. GNSS fix uncertainty and bias are shown
as the green ellipse and the red line respectively.

2.6 Road-oriented frame modeling of the localization problem

The working frame in which a localization solver is implemented can play an important role in terms of

modeling and estimation performance. Often a local ENU frame is used but, since we are using a camera

that is able to measure the cross-track distance with respect to known lane markings, we proposemodeling

the system in a road-oriented Cartesian frame.

A road-oriented frame ixiy (see Fig. 10) is defined to have the same origin as the local ENU frame, and to

have its x-axis pointing in the direction of the road i on which the vehicle is traveling.

As the vehicle uses DR sensors (yaw rate gyro and wheel speeds) and L1-GNSS fixes affected by non-white

noise, the state vector contains different terms for the GNSS errors:

x = [x, y, ψ, εω, εx1, εx2, εy1, εy2]T (16)

where (x, y, ψ) is the 2D pose of the vehicle; εω denotes the gyro bias; (εx1, εx2, εy1, εy2) are GNSS errors on x

and y in the road-oriented frame which are split into different components, as in (Bar-shalom et al., 2002).

The proposed evolution model of the state vector is given by:





ẋ = v · cosψ

ẏ = v · sinψ

ψ̇ = ω − εω

ε̇ω = 0

ε̇x1 = −εx1/τ1

ε̇x2 = −εx2/τ2

ε̇y1 = −εy1/τ1

ε̇y2 = 0

(17)

In this model, first-order autoregressive models with time constants τ1 and τ2 are used to model the non-

whiteness of the GNSS errors. The error in the x-direction is split into two components (εx1 and εx2) with

different decorrelation time constants in order to manage the frame transformation when the road changes

(a detailed explanation is given in Section 4.1). The time constant of εy1 is the same as εx1. v is the linear

velocity measured by the wheel speed sensors and ω is the angular velocity measured by the yaw rate gyro.

The last equation of the model associated with εy2 plays an important role in our localizer. It is a random

constant model, as used in (Laneurit et al., 2006), and as such it is well adapted to quickly estimate the

cross-track bias of the GNSS fix in the road frame.

3 Observability analysis in the road frame

Observability is a necessary condition for any filtering algorithm to converge to an unbiased state estimate. In

this section, the following question needs to be answered: are all the components of the state vector observable

when using the exteroceptive measurements y = [xGNSS , yGNSS , C0] (the GNSS fix and the cross-track

measure of the forward-looking camera that detects lane markings) and the proprioceptive measurements

u = [v, w]?

The exteroceptive sensors that are considered are a GNSS receiver providing position fixes and a forward-

looking camera that detects lane markings. To examine the structural properties of the modeling using

equations that are easy to handle, let us suppose that the camera and the GNSS antenna coincide with point

M , the origin of the body frame (see Fig. 11).

At this stage we consider that there is only one lane marking, locally represented by a line [AB]. The
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Figure 11: Bird’s eye view in the road-oriented frame. ix-iy indicates the working frame along road i. The green
line is the vehicle trajectory. ψ is the vehicle heading in the road-oriented frame. The camera is assumed to be located
at the origin (point M) of the body frame for a simplified observation model defined by Eq. (18).

observation model in this case is given by:

C0 = (y − yA) /cosψ (18)

C0 is the cross-track distance measured by the camera in the body frame (Tao et al., 2013). yA is the

ordinate of point A in the road-oriented frame. Fig. 11 illustrates the simplification.

The GNSS fixes with their shaping errors are linked to the state by the following model:

 xGNSS = x+ εx1 + εx2

yGNSS = y + εy1 + εy2

(19)

3.1 Algebraic observability

We are dealing with a nonlinear system, and in such cases there are two main approaches to studying the

observability of the state. The classical approach is local weak observability (Hermann and Krener, 1977)

that relies on the study of a rank condition after linearization and the computation of Lie derivatives. There

is another approach based on differential algebra, which is largely the work of Ritt (Ritt, 1950). Differential

algebra was introduced into control theory through the works of Fliess, Glad and Ljung (Fliess, 1989; Glad

and Ljung, 1990; Fliess and Glad, 1993; Ljung and Glad, 1994). Algebraic observability can be expressed as

follows (see (Sert et al., 2012)):

The state of a system with known internal dynamics is said to be observable if, and only if, there is an

algebraic equation linking the state vector to the measured output y and input u and a finite number

of their time derivatives. If a state component x1 is observable and another state component x2 can be

expressed by a algebraic function of x1, y, u and their derivatives, then x2 is also observable.



Algebraic observability is therefore a different way of studying observability. It has the advantage of providing

a closed form for building a state observer in cases where the derivatives of the inputs and outputs can be

estimated with a good quality. It is equivalent to local generic observability (Diop and Wang, 1993).

Eq. (17) and (18) are analytic but not algebraic. A solution is to define an equivalent algebraic system (with

algebraic functions) by introducing auxiliary state variables (Chatzis et al., 2015).

Let us define two auxiliary state variables:

 x1 = cosψ

x2 = sinψ
(20)

Since

ẋ1 = −ψ̇ · sinψ = − (ω − εω)x2

and

ẋ2 = ψ̇ · cosψ = (ω − εω)x1

Eq. (17) and (18) are complemented with two additional equations and ψ̇ is removed:



ẋ = v · x1

ẏ = v · x2

ẋ1 = −x2 (ω − εω)

ẋ2 = x1 (ω − εω)

ε̇ω = 0

ε̇x1 = −εx1/τ1

ε̇x2 = −εx2/τ2

ε̇y1 = −εy1/τ1

ε̇y2 = 0

(21)

and

C0 = (y − yA) /x1 (22)

All the functions are now rational.



Below we examine the observability of the different components of the state in the algebraic framework. We

first look at the observability of the vehicle heading and gyro bias, and then at vehicle position and GNSS

biases.

3.2 Observability of the vehicle heading ψ

Taking the derivative of Eq. (22), we have:

ẏ = Ċ0 · x1 − ψ̇ · C0 · x2 (23)

Plugging ẏ = v · x2 and ψ̇ = ω − εω:

v · x2 = Ċ0 · x1 − (ω − εω) · C0 · x2 (24)

Now, taking now the derivative of Eq. (24), we have:

[
v̇ + 2Ċ0 (ω − εω) + ω̇ · C0

]
x2 =

[
C̈0 − C0 (ω − εω)

2 − v (ω − εω)
]
x1 (25)

If ψ is identically null (the vehicle is traveling parallel to the lane marking) then ψ̇ = 0 and we have εω = ω.

The gyro bias is then observable. Moreover, in this case, we have Ċ0 that is identically null and so it can be

seen that ψ is identically null.

Now, suppose that ψ is not null. Consequently, x2 6= 0. From Eq. (24) we can work out:

εω =
v · x2 − Ċ0 · x1

C0 · x2
+ ω (26)

C0 is physically non-null because the lane markings are at the sides of the lane.

Plugging Eq. (26) into Eq. (25) and noting that x1 =
(
1− x22

)1/2
, we obtain an implicit algebraic function :

(
v̇ · C0 − v · Ċ0 + ω̇ · C2

0

)
x
3
2 +

(
C̈0 · C0 − Ċ0

2
)(

1− x2
2

)3/2
+

(
2Ċ0

2 − C̈0 · C0

)(
1− x2

2

)1/2
− v · Ċ0 · x2 = 0 (27)



From this expression, we can get an algebraic equation. A demonstration is given in (Tao, 2016).

x2 = Φx2

(
C0, Ċ0, C̈0, v, v̇, ω, ω̇

)
(28)

So, x2 is observable. ψ is determined by ψ = arcsin (x2).

x1 =
√

1− x22 = Φx1

(
C0, Ċ0, C̈0, v, v̇, ω, ω̇

)
(29)

is observable.

There is a particular situation when the trajectory is strictly parallel to the road. In this case, ψ is identically

null and then Ċ0 is identically null. Therefore, ψ is seen to be identically null, and so ψ is observable.

3.3 Observability of the gyro bias εω

Using Eq. (29) and (28) in Eq. (26), we obtain a function Φεω which gives εω :

εω = Φεω

(
C0, Ċ0, C̈0, v, v̇, ω, ω̇

)
(30)

εω is therefore observable.

3.4 Observability of vehicle position (x, y) and of GNSS biases

Taking the derivative of Eq. (19), we have:

ẋGNSS = v · x1 − εx1/τ1 − εx2/τ2 (31)

Similarly, for Eq. (31):

ẍGNSS = v̇ · x1 − v · x2 · (ω − εω) + εx1/τ
2
1 + εx2/τ

2
2 (32)

Since ψ is observable, and since we have a linear system with two unknowns and two equations, we have:



εxi = Φεxi

(
C0, Ċ0, C̈0, ẋGNSS , ẍGNSS , v, v̇, ω, ω̇

)
i = 1, 2 (33)

So εx1 and εx2 are observable. If τ1 = τ2, then εx1 and εx2 are not solvable by Eq. (19) and (31), but

(εx1 + εx2) is observable.

With x = xGNSS − (εx1 + εx2) and Eq. (33), x is observable.

With y = yA + C0 · x1 and Eq. (29), y is observable.

The expression of εy1 is given as follows:

ẏGNSS = v · x2 − εy1/τ1 (34)

εy1 = (v · x2 − ẏGNSS) τ1 (35)

So εy1 is observable.

With εy2 = yGNSS − y − εy1, we can derive that εy2 is observable.

3.5 Observability: conclusion

So far, we have proved that every element in the state vector x can be expressed by an algebraic function

of components of y and u and a finite number of their derivatives. We can consequently conclude that the

state vector with its associated state space is observable, as long as the vehicle moves or accelerates.

4 Road-centred Extended Kalman filter

The observability of the state has been demonstrated in a road-oriented frame. However, in real conditions,

the orientation of the road changes as the vehicle moves from one road to another. We are now building

an Extended Kalman filter that estimates the pose vector of the vehicle from one road to another, in a

sequential way.
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Figure 12: Geometrical transformation of the GNSS errors. The estimated error remains unchanged. However, its
components on x and y are transformed from road i to road j.

4.1 Geometrical transformation

RO denotes the local ENU frame and Ri is the working road-oriented frame, with its x-axis pointing in the

direction of road i. When the vehicle moves from road i to road j, the working frame changes from Ri to

Rj . Let jx denote the state vector in frame Rj :

jx =
[
jx, jy, jψ,j εω,

jεx1,
jεx2,

jεy1,
jεy2

]T
(36)

The transformation from ix to jx is given by Eq. (37):



jx = ix · cosα+ iy · sinα
jy = −ix · sinα+ iy · cosα

jψ = iψ − α
jεω = iεω

jεx1 = iεx1 · cosα+ iεy1 · sinα
jεx2 = iεx2 · cosα+ iεy2 · sinα
jεy1 = −iεx1 · sinα+ iεy1 · cosα

jεy2 = −iεx2 · sinα+ iεy2 · cosα

(37)

where α = θj − θi, θi and θj are respectively the orientations of road i and road j in RO (cf. Fig. 10).

Fig. 12 illustrates how the estimated biases change when the two successive roads are orthogonal.

Let iP denote the covariance matrix estimated by the EKF in the working frame Ri. The transformation

from
(
ix,i P

)
to
(
jx,j P

)
is described by the function given in Algorithm 1, where sα and cα denote sinα

and cosα respectively. The road directions being deterministic, this is simply the linear transformation of a



random vector.

The reason why the bias on ix has been modeled by two components now becomes clear. Our aim is

to model the cross-track bias on iy by an autoregressive process plus a random constant in order to get

a better estimation process (we have seen that these two components are observable thanks to the camera

measurements, when working in the road-oriented frame). If the bias on ix is modeled by only one component,

then there is no way of finding a bijective transformation when the frame changes from Ri to Rj . When the

vehicle pose is converted from one road frame to another, doing the inverse transformation has to give the

same estimate. Mathematically, this means that matrix jHi (see Algorithm 1) has to be squared such that

jHi · iHj = I (Identity matrix). It is straightforward to check that our proposal satisfies this property.

Algorithm 1 Function Ri2Rj State

Input: ix, iP, θi, θj
1: α = θj − θi

2: jHi =



cα sα 0 0 0 0 0 0
−sα cα 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 cα 0 sα 0
0 0 0 0 0 cα 0 sα
0 0 0 0 −sα 0 cα 0
0 0 0 0 0 −sα 0 cα


3: jbi = [0, 0,−α, 0, 0, 0, 0, 0]T

4: jx = jHi ·i x + jbi
5: jP = jHi ·i P ·

(
jHi

)T
Output: jx, jP

Since the output of the filter has to be given in the ENU frame RO, the state transformation is performed

using a function Ri2RO State, which is constructed by replacing j in Algorithm 1 with O. θO = 0.
(
Ox,OP

)
denotes the Kalman filter estimates expressed in the ENU frame.

4.2 Implementation of road-centred EKF

The filter is implemented as a discrete EKF triggered by the proprioceptive sensors (typically at a sampling

period Te = 0.01s). GNSS and camera measurements are used where they are available. The filter is

described in Algorithm 2. iA and iB denote the coordinates of the detected lane marking [AB] in Ri.

4.2.1 Prediction

When the proprioceptive sensors are available, the function Predict
(
ix,i P,u

)
consists in computing:



Algorithm 2 Road-centred Extended Kalman filter

1: U =Get (proprioceptive sensor measurements)
2:
(
ix,i P

)
=Predict

(
ix,i P,U

)
3: if GNSS data is available then
4:

(
OyGNSS ,

ORGNSS

)
= Get (GNSS fix)

5:
(
iyGNSS ,

iRGNSS

)
=RO2Ri

(
OyGNSS ,

ORGNSS , θi
)

6:
(
ix, iP

)
=Update GNSS (ix, iP ,iyGNSS ,iRGNSS)

7: end if
8: if Camera data is available then
9: C0 =Get (camera measurement)

10:
(
Ox,O P

)
=Ri2RO State

(
ix,i P, θi

)
11:

(
j,OA,O B

)
=Map Match

(
Ox,O P,C0,Map

)
12: if θi 6= θj then
13:

(
ix,i P

)
=Ri2Rj State

(
ix,i P, θi, θj

)
14: θi = θj
15: end if
16: iA = RO2Ri Point

(
OA, θi

)
17: iB = RO2Ri Point

(
OB, θi

)
18:

(
ix, iP

)
=Update Camera

(
ix, iP,C0,

iA,iB
)

19: end if
20:

(
Ox,O P

)
=Ri2RO State

(
ix,i P, θi

)
. /*System output*/

21: Go to 1
. /*See Algorithms 1, 3 and 4*/

ix = f
(
ix,u

)
⇐⇒



ix =i x+ Te · v · cos
(
iψ
)

iy =i x+ Te · v · sin
(
iψ
)

iψ = iψ + Te ·
(
ω − iεω

)
iεω = iεω

iεx1 = a1 · iεx1
iεx2 = a2 · iεx2
iεy1 = a1 · iεy1
iεy2 = iεy2

(38)

and

 iP = A · iP ·AT +B ·N ·BT +Q

A =
∂f(ix,u)

∂ix
, B =

∂f(ix,u)
∂u

(39)

The measurement noises on v and ω are assumed to be zero-mean independent white noise. N denotes their

covariance matrix. Q is the covariance matrix of the process noise a1 = e−Te/τ1 and a2 = e−Te/τ2 .



4.2.2 GNSS update

When a GNSS fix is available, the measurement vector OyGNSS =
(
OxGNSS ,

O yGNSS

)
in the ENU frame

RO is transformed to the working road-oriented frame Ri (see Fig 10) by Algorithm 3. The covariance

matrix ORGNSS (typically given in the NMEA-0183 GST message) is also converted. Algorithm 3 shows the

transformation.

Algorithm 3 Function RO2Ri

Input: OyGNSS ,
ORGNSS , θi

1: iTO =

[
cosθi sinθi
−sinθi cosθi

]
2: iyGNSS = iTO ·O yGNSS

3: iRGNSS = iTO ·O RGNSS ·
(
iTO

)T
Output: iyGNSS ,

iRGNSS

A classical Kalman update step is then performed to update
(
ix,i P

)
with an innovation gating to reject the

GNSS fix outliers (e.g. multipath on close buildings). For accurate data fusion, the level arm of the antenna

with respect to the body frame has to be taken into account (see (Tao et al., 2013) for details).

4.2.3 Camera update

In order to update the filter, the map is used as it contains the coordinates of the lane marking. Map

matching is therefore done when camera measurements are available.

For feature-based indoor localization, geometric constraints for data association can be classified as either

location-independent constraints or location-dependent constraints (Arras et al., 2003). For our purposes,

the aim of map-matching is to determine which lane marking segment [AB] (see Fig. 3) has been detected

by the camera. We use the lane marking type and the orientation of the lane marking segment as location

independent constraints. As soon as a vehicle position is available, we utilize the distance between the

estimated point L and the possible lane marking segment as a location-dependent constraint.

In a first stage, a set S of candidate segments is selected based on the following conditions:

• The lane marking type is consistent with the lane marking type reported by the camera,

• The orientation of the segment is close to the heading of the vehicle,

• The distance dist between point L and the candidate segment is less than the width of the road.



In a second stage, the segment s with the smallest dist is chosen as the map-matching result:

Map matched = arg min
s∈{S}

{dist}

The lane marking map used in this paper consists mainly of two-lane roadways with dashed lane markings

in the center of the road, and solid lane markings at both sides of the road. In this case, the lane marking

type constraints are very good at distinguishing different lanes. This strategy works well in our tests.

Since the map is defined in RO, the first step consists in converting the pose in the ENU frame. The algorithm

checks whether the vehicle is on a different road, in which case the road working frame is modified and the

state with its covariance matrix is converted. It only remains to obtain the coordinates of the lane marking

in the road frame described by Algorithm 4 and to update the state and covariance matrix by applying the

estimation stage of the EKF. In practice, the location of the camera in the body frame is taken into account

to get an accurate correction (see (Tao and Bonnifait, 2014)).

Algorithm 4 Function RO2Ri Point

Input: OA, θi

1: iTO =

[
cosθi sinθi
−sinθi cosθi

]
2: iA = iTO ·O A

Output: iA

5 Experimental setup and trial conditions

To evaluate the Road-centred Extended Kalman filter (RC EKF) we used real data from outdoor experiments

which were carried out near Paris, France. Three tests were performed on the same road with an experimental

automotive vehicle (see Fig. 13) in urban conditions.

The experimental vehicle was equipped with an IMU Oxford RT3000 coupled with RTK-GPS. It provided

ground truth data at a rate of 100Hz. A CAN-bus gateway was used to access the wheel speed sensors and

the yaw rate gyro. The measured input [v, w] from the CAN bus was available at 100Hz. A Mobileye camera

installed behind the windscreen detected lane markings at 10Hz (see Fig. 13c). A low-cost u-blox 6T GPS

receiver with a patch antenna was also part of the equipment (see Fig. 13b), and this provided position

measurements at 5Hz without any correction.



(a) Experimental vehicle (b) u-blox 6T receiver

(c) Mobileye EyeQ2 camera

Figure 13: Experimental setup
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Figure 14: Azimuth-Elevation plot of the tracked GPS satellites during the experiments. In total there are 10
satellites in view. The satellite geometries were different between the morning and the afternoon.

Fig. 14a shows the satellites in view for the first two tests and Fig. 14b for the third test. It will be remarked

that the GPS satellites geometries were quite different in the morning and in the afternoon.

Fig. 15 shows the test area in the local ENU frame. The gray bounds represent buildings which are from

OpenStreetMap to show the urban conditions of the test area. The black lines represent the lane marking

map expressed by polylines. The test area consists mainly of two-lane roadways with dashed lane markings

in the center of the road and solid markings at both sides of the road. The map has a centimeter-level

precision, but a lower accuracy. As the mission goal of the car is given in the map frame, a small map offset

has little effect once the GNSS errors have been compensated for in the map frame.

The traveling distance for each test was about 2km, with a typical speed of 30 km/h. Taking test 1 as an

example, the red line represents the test trajectory (see Fig. 15). The vehicle started at t = 0s and halted at

t = 327s. Between t = 80s and t = 140s the vehicle was in a strong, 300-meter-long urban canyon. Around

t = 123s it encountered situations with GPS multipath and satellite masking. In addition, the camera was

unable to detect lane markings at intersections or on roundabouts. Fig. 16 shows some typical scenarios

recorded by the experimental vehicle.
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Figure 15: Test scene and trajectory in the local ENU frame. The red line is the vehicle trajectory in the first test.
The black lines are lane markings. The gray boxes are buildings. The vehicle entered an urban canyon around t =
123s. Several typical locations (a, b, c, d, e and f) are tagged along the trajectories. The corresponding scenarios are
displayed in Fig. 16.



(a) (b)

(c) (d)

(e) (f)

Figure 16: Scenarios recorded by a webcam mounted on the experimental vehicle. The roads in the trials had two
lanes with mainly dashed lane markings in the center of the road and solid lane markings at both sides, as in (a).
In (b), the vehicle encounters a roundabout with few lane markings. (c) shows a typical turning scenario: the lane
marking detection always fails in such cases. (d) shows the most challenging situations in our experiments, where
multipath effect and camera failure occur at the same time. In (e), the vehicle arrives at a fork where the lane
detection fails. In (f), the camera fails to detect the highly curved lane markings. Their positions in the map are
tagged in Fig. 15.
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Figure 17: Change of road frame from one road to another in a real experiment. The vehicle is changing from the
southeast road to the northeast road.

6 Results

As described in Algorithm 2, the output of our localization solver is the vehicle state converted into frame

RO. Localization performance is studied in RO by replaying recorded data. The method proposed in this

paper is compared with a classical loosely coupled EKF implemented in the ENU frame RO, in which GNSS

bias on x and y are modeled as a first-order autoregressive process to maintain the observability of every

component of the state. The two filters were implemented in C++ so that they could be tested with the

same development framework and with the same tuning parameters.

Fig. 17 illustrates what happens when the vehicle moves from one road to another. The green bar indicates

the orientation of the x-axis and the red bar the y-axis of the road frame. The blue lines represent the road

centrelines and the white lines are the lane markings. The black ellipse represents the estimated confidence

domain (3σ).

6.1 Accuracy analysis

Table 1 gives the global performance metrics for the three tests. The outputs of the u-blox receiver, the

EKF in the ENU frame (ENU EKF) and the road-centred EKF are compared. The cross-track and along-

track positioning errors (PE) are analyzed and compared. It can be seen that the road-centred EKF greatly

improves localization accuracy, with 95% of the cross-track positioning errors less than 0.55m.

Table 2 gives the relative improvement by the road-centred EKF with respect to the EKF in the ENU frame,

in terms of median, 95th percentile and maximum of the cross-track and along-track positioning errors.



Fig. 18 shows the cumulative distribution of the absolute positioning errors by road-centred EKF and ENU

EKF for the three tests. The road-centred EKF gives a better estimation in both the cross-track and the

along-track directions.
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Figure 18: Cumulative distribution functions (CDF) of the positioning errors. The performance gain using the
road-centred EKF is particularly significant in the along-track direction.

Fig. 19 shows the cross-track and along-track positioning errors over time, with ±3σ bounds estimated by

the road-centred EKF. The uncertainty on the cross-track position increases greatly when the camera does

not detect lane markings.

6.2 Consistency Analysis

Before looking at the consistency of the localization solver, let us examine the distribution of the size of the

confidence domain estimated by the filters. For this purpose we consider the determinant of PHPE , denoted

as |PHPE |, since this is the usual measure of uncertainty where PHPE =

 σ2
x σ2

xy

σ2
xy σ2

y

, and σx, σy and σxy

are estimated by the filter. In practice, confidence is compared to a threshold so that the client application

is told either “use” or “don’t use” It is important, in terms of the availability of the positioning information,

to provide confidence zones that are as small as possible. Fig. 20 plots the cumulative distribution of the

size of the uncertainty, and shows that the confidence domain given by the ENU EKF is a little tighter than

that given by the road-centred EKF, but with the same magnitude.

Let us now look at the consistency. The consistency of a filter can be analyzed by constructing the normalized

estimation error squared δ2 which has to follow a χ2 distribution under Gaussian assumption:

δ2 = (x− x̂)
T
P−1 (x− x̂) (40)
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Figure 19: Cross-track and along-track PE obtained with the road-centred EKF



The normalized horizontal positioning error (HPE) squared e2 is defined by the 2D position components of

the state vector:

e2 =

 ex

ey


T

P−1HPE

 ex

ey

 (41)

where ex = x̂− xref and ey = ŷ − yref , with (xref , yref ) the ground truth of the vehicle horizontal position

and (x̂, ŷ) the estimated position.

If the model assumptions and the tuning filter are correct, then Eq. (41) follows a χ2 distribution with two

degrees of freedom (denoted χ2 (2) in the following).

In order to study the consistency of the horizontal positioning error, we look at the percentage of samples

exceeding a determined threshold given by a χ2 (2) distribution.

 ex

ey


T

P−1HPE

 ex

ey

 > k2 (42)

where k2 is the predefined threshold linked to the chosen risk.

It is easy to check that Eq. (42) is equivalent to the following equation:

√
e2x + e2y > k

√
1

uT
e P
−1
HPEue

(43)

where ue =

 ex

ey

 /
√
e2x + e2y is the unit vector supporting the horizontal positioning error.

Let us define σHPE as the standard deviation along the horizontal positioning error vector:

σHPE =

√
1

uT
e P
−1
HPEue

(44)
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ance matrix |PHPE |. LC RC EKF stands for loosely coupled road-centred EKF.
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Figure 21: (x̂, ŷ) is the estimated position. (xref , yref ) is the ground truth of the vehicle horizontal position. Here,
the reference is located outside of the confidence domain
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Figure 22: Consistency plots for the two filters on the three tests (1% consistency risk). The density of the points
for the road-centred EKF are better located above the black line than for the ENU EKF.

Fig. 21 illustrates the definition of kσHPE , where the equation of the ellipse is

 x− x̂

y − ŷ


T

P−1HPE

 x− x̂

y − ŷ

 = k2

We have chosen to set the consistency risk at 10−2 (1%), which is a common choice in robotics, but this value

can easily be adjusted to any specific requirement. According to the χ2 (2) distribution, k2 = 9.21. In this

case, the corresponding bound of the 2D estimated position is 3.035σHPE , with σHPE being estimated in

real-time by the solver. Therefore, a consistency failure occurs when the real error is beyond this 3.035σHPE

bound, which means √
e2x + e2y > 3.035σHPE (45)

Fig. 22 shows the consistency performance of the ENU and road-centred EKFs using a 2D histogram. The

points within the gray area satisfy Eq. (45) and indicate consistency failures. The road-centred EKF is seen

to be more consistent, since there are fewer points in the gray area.

The consistencies for the three tests are reported in Table 3. The consistency performance of the road-

centred EKF dominates the ENU EKF in every test. The global failure rate of the loosely coupled method

is 39.9% which indicates that the filter is significantly overconfident. When using the road-centred EKF,

the improvement in consistency is more than 55% (from 39.9% to 17.6%. ). The absolute values are not

important here, but it is worth noting the relative improvement.
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Figure 23: Cross-track positioning error during multipath and intersection. The green and blue points indicate lane
marking detections on the left and right sides respectively.

6.3 Robustness of the road-centred EKF

Robustness refers here to the ability of the localization system to withstand external perturbations like GNSS

multi-path or lane marking large measurements errors. The solution proposed in this paper is to reject the

exteroceptive measurements that are doubtful. In this kind of situation, the filter uses DR sensors and

continues to provide estimates for the navigation of the car.

6.3.1 Robustness to GNSS multipath

In Fig. 23, the yellow box indicates a period during which a GNSS multipath occurs because of an urban

canyon. For instance, in test 1, the GNSS receiver is affected by multipath during the time interval t = 120-

128s (Fig. 16d shows the scenario). The green and blue points in Fig. 23 indicate lane marking detections

on the left and right sides respectively. Unfortunately there are no lane marking measurements when the

multipath effect begins. The cross-track positioning error rises to 1.2m for the road-centred EKF and to

1.83m for the ENU EKF, and the cross-track positioning error of the road-centred EKF is smaller overall

than for the ENU EKF during the multipath effect. The camera provides a lane marking measurement at

the right side of the lane at t = 122.2s. The cross-track PE of the road-centred EKF quickly falls to less

than 0.5m.

6.3.2 Robustness to outages of the camera lane marking measurements

Now, let us see what happens at an intersection without any camera detection.

In Fig. 23, the blue box indicates a period during which the vehicle is crossing an intersection. There is no
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Figure 24: Cross-track positioning errors with camera measurement masks

lane marking detection in this kind of situation. The cross-track positioning performance of the road-centred

EKF is seen to be much better during this period, and the cross-track errors remain bounded by 1m.

In order to further validate the robustness to outages of lane marking measurements, we simulated camera

outages at t = 160-170s, 215-240s and 250-260s in test 1 (the gray boxes in Fig. 24) when the vehicle was

moving in a straight line (cf. Fig. 15). Results show that the cross-track positioning by the road-centred

EKF is again much better than for the ENU EKF. The positioning errors are less than 0.5m, which indicates

a lane level positioning capability.

7 Conclusions

An enhanced model of GNSS errors for use in a multisensor data fusion algorithm that includes GNSS

estimates, camera measurements on geo-referenced lane markings and vehicle odometry was developed in

this paper. The proposed error model addresses time-correlation and bias of GNSS errors by using a road

frame that is always aligned with the main direction of the carriageway. The observability of this model was

demonstrated within an algebraic observability framework. The proposed state space model also allows a

bijective transformation between two road frames which guarantees the continuity of the filter estimates when

the working frame changes from one road to another. A road-centred EKF algorithm integrates the proposed

shaping models and manages the changes in the working frame. This was tested using experimental data. In

all situations, the proposed method works better, in terms of accuracy and consistency, than a localization

solver implemented in an ENU frame. During the experiments, GNSS multipath and satellite masking were

encountered, as well as outages of camera measurements. Results show that the proposed methods is robust

to these incidences.

Acknowledgment



This work was carried out within the framework of the Equipex ROBOTEX (ANR-10- EQPX-44-01). The PAMU project was

supported by the Conseil Général des Yvelines.
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de technologie de Compiègne.
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Cross-track PE (m) Along-track PE (m)
I II III I II III

mean 1.30 0.07 0.04 1.55 -0.32 -0.19
std. dev. 1.12 0.29 0.26 1.18 0.32 0.29
median 0.96 0.10 0.09 1.31 0.30 0.24
95th percentile 3.20 0.68 0.55 3.88 0.88 0.73
max 6.78 1.83 1.37 4.69 1.50 1.36

Table 1: Error statistics. (PE: positioning error; I: u-blox; II: ENU EKF; III: road-centred EKF)



median 95th percentile max

Cross-track Positioning 10% 19% 25%
Along-track Positioning 20% 17% 9%

Table 2: Improvement by road-centred EKF with respect to ENU EKF



Consistency failure rate
test 1 test 2 test 3 global

ENU EKF 41.2% 31.8% 47.1% 39.9%
RC EKF 9.9% 22.9% 20.5% 17.6%

Table 3: Consistency failure rate of the three methods. RC stands for road-centred.


