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A numerical analysis of chaos in the double pendulum

Tomasz Stachowiaka, Toshio Okadab

a Astronomical Observatory, Jagiellonian University, Orla 171, 30 244 Kraków, Poland
b Tokyo University of Agriculture and Technology, Naka machi, Koganei shi, Tokyo 184 8588, Japan
We analyse the double pendulum system numerically, using a modified mid point integrator. Poincaré sections and
bifurcation diagrams are constructed for certain, characteristic values of energy. The largest Lyapunov characteristic
exponents are also calculated. All three methods confirm the passing of the system from the regular low energy limit
into chaos as energy is increased.
1. Introduction

The planar double pendulum, as shown in Fig. 1, is one of the mechanical systems that exhibits chaotic behaviour,
despite their simple construction. As it is a Hamiltonian system, its energy is a conserved quantity determining the glo
bal properties of motion at the two limits of zero and infinite energy, the system�s motion is regular. (And in the infi
nite limit, the total angular momentum might be considered as the second conserved quantity.) It is the interval between
these limits that presents typical chaotic features. Although there has been no rigorous proof of the system being non
integrable, the analysis of chaos has given many results indicating such a possibility (see [1] for further references).

In this paper, we concentrate on three chaotic aspects. In Section 2 we set the notation and derive the equations used,
together with the parameter values chosen for simulations. The subsequent sections contain a presentation of Poincaré
sections given for increasing values of energy, bifurcation diagrams for regular, quasi regular and chaotic regions, and
finally, calculation of the largest Lyapunov characteristic exponents.
2. Main equations

With the notation used in Fig. 1, we can immediately obtain the Lagrange function for the system:
L ¼ 1

2
l21ðm1 þ m2Þ _u2

1 þ l22m2 _u
2
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Fig. 1. The physical setup of the system.
where the dot denotes the derivative with respect to time. We choose not to employ the Hamilton�s formalism, and use
as two additional variables the angular velocities instead of momenta. Thus, the second order equations of motion:
l1ðm1 þ m2Þ€u1 þ l2m2 cosðu1 u2Þ€u2 þ sinðu1 u2Þ _u2
2

� �
þ gðm1 þ m2Þ sinu1 ¼ 0;

l2€u2 þ l1 cosðu1 u2Þ€u1 sinðu1 u2Þ _u2
1

� �
þ g sinu2 ¼ 0

ð2Þ
are reduced to a system of four equations of the first order:
_u1 ¼ x1;

_u2 ¼ x2;

_x1 ¼
sinðu1 u2Þ½l1 cosðu1 u2Þx2

1 þ x2
2�

2l1½1þ m1 cos2ðu1 u2Þ�
ð1þ 2m1Þ sinu1 þ sinðu1 2u2Þ

l1½1þ m1 cos2ðu1 u2Þ�
;

_x2 ¼ sinðu1 u2Þ
ð1þ m1Þðcosu1 þ l1x2

1Þ þ cosðu1 u2Þx2
2

1þ m1 cos2ðu1 u2Þ
;

ð3Þ
where m2 = 1 is the unit of mass, l2 = 1 of length and g = 1, which effectively sets a unit of time. For practical appli
cation, we choose particular values of the remaining parameters as: m1 = 3 and l1 = 2.
Fig. 2. Poincaré section for E = E1 = E01 + 0.01; regular behaviour.
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There are four critical (or stationary) points:
ðu1;u2;x1;x2Þ ¼

ð0; 0; 0; 0Þ; E01 ¼ 1 l1ð1þ m1Þ ¼ 9;

ð0; p; 0; 0Þ; E02 ¼ þ1 l1ð1þ m1Þ ¼ 7;

ðp; 0; 0; 0Þ; E03 ¼ 1þ l1ð1þ m1Þ ¼ 7;

ðp; p; 0; 0Þ; E04 ¼ þ1þ l1ð1þ m1Þ ¼ 9;

8>>>>><
>>>>>:

ð4Þ
with E being the corresponding energy values. The phase space sections and Lyapunov exponents have been obtained
for three values of energy, close to the above, namely: E1 = E01 + 0.01, E2 = E02 0.01 and E3 = E03 0.01.

The numerical analysis was performed using the Bulirsch Stoer method with Richardson extrapolation as described
in [2].
3. Poincaré sections

As the whole phase space is four dimensional, it is convenient to look at its sections, i.e., the values of the coordi
nates whenever one of them assumes a certain value. Here the sections were constructed with the surface u1 = 0, and
x1 ¼ _u1 > 0, and restricted to the plane of u2 and x2.

The first one (Fig. 2) at the energy level of E = E1 presents a very regular image, as would be expected from the
regular limit E = E01. The situation becomes more complex in Fig. 3, when the energy is increased to E = E2, although
without chaotic regions, the invariant tori are visibly deformed. Finally, in Fig. 4 almost all of the regular orbits decay
into a global chaotic region.
4. Bifurcation diagrams

In order to detect periodic orbits and their number, regular windows in chaos, etc., a bifurcation diagram can be
constructed. It depicts the dependence of a suitably chosen quantity reflecting the chaotic behaviour on some
parameter of the system. As we fixed the values for mass and length, we used energy for that purpose. The other quan
tity, which should be different for different orbits, if they exist, could be the amplitude of one of the variables. Choosing
Fig. 3. Poincaré section for E = E2 = E02 0.01; regular trajectories begin to deform.

3



Fig. 4. Poincaré section for E = E3 = E03 0.01; regular regions decay with the appearance of a global, completely chaotic region.

Fig. 5. The first appearance of global chaos, and ‘‘windows’’ that are magnified in Fig. 6.
u2 as this variable, we effectively needed to construct Poincaré sections with respect to _u2 ¼ x2, with _x2 < 0, so that the
maximum values of u2 were obtained.

Fig. 5 shows the behaviour from the lowest energy E01, up to the first appearance of global chaos. There are regions,
shown magnified in Fig. 6, where the orbits� maxima tend to cluster at evenly spaced intervals of u2, and ‘‘diverge’’
around such places, densely occupying the whole admissible region.

In Fig. 7 contains a window between two completely chaotic regions, showing smaller regions, of behaviour similar
to Fig. 6, where there are only four possible values of u2, which then chaotically increase.
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Fig. 6. A ‘‘window’’ showing convergence of admissible values of u2max; this is thus a regular behaviour.

Fig. 7. A gap between two globally chaotic regions, showing windows, and regular regions with bifurcations quickly leading to chaos.
5. Lyapunov exponents

We limited our investigations to the largest Lyapunov exponents, as it effectively gives us the information on the
divergence of two close trajectories. We used the simple method described, in [3]. The main formula is
v ¼ 1

tN

XN
i 1

ln
jdiðtÞj
jdið0Þj

; ð5Þ
where v denotes the Lyapunov exponents, the index i, consecutive initial positions, and d is the separation between two
close trajectories (Fig. 8).

The simulations were performed for the same values of energy as in the case of the Poincaré sections and the results
are in very good agreement. For both E1 and E2, the exponents tend to zero, indicating practically regular behaviour.
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Fig. 8. The largest Lyapunov exponents for the system. The regular behaviour of the two first cases, E = E1 and E = E2, makes the
thin solid line, and the dashed line, respectively, almost coincide. The third line, corresponding to the chaotic case of E3, indicates a
positive value of the exponents.
In the case of E3, definite limit is not clearly visible, but it is obvious that the exponents stay positive in the vicinity of
0.179, thus corresponding to the chaos clearly visible in the third phase space section.
6. Summary

In this article we present further numerical results concerning the planar double pendulum system. Its chaotic fea
tures are fully exposed by all the tools used, namely, Poincaré sections, bifurcation diagrams and Lyapunov character
istic exponents. They reveal regular behaviour at the zero energy limit, which, as energy is increased, transforms into
quasi regular and, finally, globally chaotic motion.

We note that the existence and decay of the invariant torii, is visible on the phase space sections, but the Lyapunov
exponent analysis is not as evident. Together with the other aspects, though, it could be considered as a valid result.

The bifurcation diagrams are not standard, in the sense that energy was used as the parameter, instead of a quantity
explicitly appearing in the equations of motion. However, it is with energy that the characteristics of the system change
drastically, as the obtained diagrams proved. Thus, further evidence of chaotic behaviour such as windows and bifur
cations were found, providing yet another image of chaos for the double pendulum.
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